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Abstract
Evaluating the quality of a dialogue interaction
between two agents is a difficult task, espe-
cially in open-domain chit-chat style dialogue.
There have been recent efforts to develop au-
tomatic dialogue evaluation metrics, but most
of them do not generalize to unseen datasets
and/or need a human-generated reference re-
sponse during inference, making it infeasible
for online evaluation. Here, we propose an
unreferenced automated evaluation metric that
uses large pre-trained language models to ex-
tract latent representations of utterances, and
leverages the temporal transitions that exist be-
tween them. We show that our model achieves
higher correlation with human annotations in
an online setting, while not requiring true re-
sponses for comparison during inference.

1 Introduction

Recent approaches in deep neural language genera-
tion have opened new possibilities in dialogue gen-
eration (Serban et al., 2017; Weston et al., 2018).
Most of the current language generation efforts are
centered around language modelling or machine
translation (Ott et al., 2018), which are evaluated
by comparing directly against the reference sen-
tences. In dialogue, however, comparing with a
single reference response is difficult, as there can
be many reasonable responses given a context that
have nothing to do with each other (Liu et al., 2016).
Still, dialogue research papers tend to report scores
based on word-overlap metrics from the machine
translation literature (e.g. BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)).
However word-overlap metrics aggressively penal-
ize the generated response based on lexical differ-
ences with the ground truth and correlate poorly to
human judgements (Liu et al., 2016).

∗Corresponding author: koustuv.sinha@mail.mcgill.ca.
Code for reproducing the experiments are available at
https://github.com/facebookresearch/online dialog eval.

Figure 1: Model architecture for MaUdE, which is
an unsupervised unreferenced metric for dialog evalu-
ation.

One can build dialogue evaluation metrics in
two ways: referenced metrics, which compare the
generated response with a provided ground-truth re-
sponse (such as the above word-overlap metrics), or
an unreferenced metrics, which evaluate the gener-
ated response without any such comparison. Lowe
et al. (2017) propose a learned referenced metric
named ADEM, which learns an alignment score be-
tween context and response to predict human score
annotations. However, since the score is trained
to mimic human judgements, it requires collect-
ing large-scale human annotations on the dataset
in question and cannot be easily applicable to new
datasets (Lowe, 2019).

Recently, Tao et al. (2017) proposed a hybrid
referenced-unreferenced metric named RUBER,
where the metric is trained without requiring hu-
man responses by bootstrapping negative samples
directly from the dataset. However, referenced met-
rics (including RUBER, as it is part referenced)
are not feasible for evaluation of dialogue models
in an online setting—when the model is pitched
against a human agent (model-human) or a model
agent (model-model)—due to lack of a reference
response. In this setting, models are usually eval-

https://github.com/facebookresearch/online_dialog_eval
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uated directly by humans, which is costly and re-
quires careful annotator training (Li et al., 2019).

The contributions of this paper are (1) a com-
pletely unsupervised unreferenced metric MAUDE

(Metric for automatic Unreferenced dialogue
evaluation), which leverages state-of-the-art pre-
trained language models (Devlin et al., 2018; Sanh
et al., 2019), combined with a novel discourse-
structure aware text encoder and contrastive train-
ing approach; and (2) results showing that MAUDE

has good correlation with human judgements.

2 Background

We consider the problem of evaluating the re-
sponse of a dialogue system, where an agent is
provided with a sequence of sentences (or utter-
ances) c = {u1, u2, ..., un} (termed as context)
to generate a response r = un+1. Each utter-
ance, ui, can be represented as a set of words
ui = {w1, w2, ..., wn}. An utterance ui can be
represented as a vector as hi = fe(ui), where fe
is an encoder that encodes the words into a fixed
vector representation.

This work focuses on the evaluation of gen-
erative neural dialogue models, which typically
consist of an encoder-decoder style architecture
that is trained to generate un+1 word-by-word
(Serban et al., 2017). The response of a gener-
ative model is typically evaluated by comparing
with the ground-truth response using various au-
tomatic word-overlap metrics, such as BLEU or
METEOR. These metrics, along with ADEM and
RUBER, are essentially single-step evaluation met-
rics, where a score is calculated for each context-
response pair. If a dialogue Di contains n ut-
terances, we can extract n − 1 context-response
pairs : (c1 : {u1}, r1 : {u2}), (c2 : {u1, u2}, r2 :
{u3}), . . . , (cn−1 : {u1 . . . un−1}, rn−1 : un). In
this paper, we are interested in devising a scalar
metric that can evaluate the quality of a context-
response pair: score(ci, ri) = R ∈ (0, 1). A key
benefit of this approach is that this metric can be
used to evaluate online and also for better train-
ing and optimization, as it provides partial credit
during response generation.

3 Proposed model

We propose a new model, MAUDE, for online un-
referenced dialogue evaluation. We first describe
the general framework behind MAUDE, which is in-
spired by the task of measuring alignment in natural

language inference (NLI) (Williams et al., 2017). It
involves training text encoders via noise contrastive
estimation (NCE) to distinguish between valid dia-
logue responses and carefully generated negative
examples. Following this, we introduce our novel
text encoder that is designed to leverage the unique
structural properties of dialogue.

MAUDE is designed to output a scalar
score(ci, ri) = R ∈ (0, 1), which measures how
appropriate a response ri is given a dialogue con-
text ci. This task is analogous to measuring align-
ment in NLI, but instead of measuring entailment or
contradiction, our notion of alignment aims to quan-
tify the quality of a dialogue response. As in NLI,
we approach this task by defining encoders fθe (c)
and fθe (r) to encode the context and response, a
combination function fcomb(.) to combine the rep-
resentations, and a final classifier ft(.), which out-
puts the alignment score:

score(c, r) = σ(ft(fcomb(f
θ1
e (c), fθ2e (r))). (1)

The key idea behind an unreferenced dialogue
metric is the use of Noise Contrastive Estimation
(NCE) (Gutmann and Hyvärinen, 2010) for train-
ing. Specifically, we train the model to differentiate
between a correct response (score(c, r)→ 1), and
a negative response (score(c, r̂) → 0), where r̂
represents a candidate false response for the given
context c. The loss to minimize contains one pos-
itive example and a range of negative examples
chosen from a sampling policy P (r̂):

L = − log(score(c, r))−Er̂∼P (r̂) log(−score(c, r̂)).
(2)

The sampling policy P (r̂) consists of syntactic and
semantic negative samples.
Syntactic negative samples. We consider three
variants of syntax level adversarial samples: word-
order (shuffling the ordering of the words of r),
word-drop (dropping x% of words in r) and word-
repeat (randomly repeating words in r).
Semantic negative samples. We also consider
three variants of negative samples that are syntac-
tically well formed, but represent corruption in
the semantic space. First, we choose a response
rj which is chosen at random from a different
dialogue such that rj 6= ri (random utterance).
Second, we use a pre-trained seq2seq model on
the dataset, and pair random seq2seq generated re-
sponse with ri (random seq2seq). Third, to provide
a bigger variation of semantically negative samples,
for each ri we generate high-quality paraphrases
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rbi using Back-Translation (Edunov et al., 2018).
We pair random Back-Translations rbj with ri as
in the above setup (random back-translation). We
also provide the paired rbi as positive example for
the models to learn variation in semantic similarity.
We further discuss the effect of different sampling
policies in Appendix C.
Dialogue-structure aware encoder. Traditional
NLI approaches (e.g., Conneau et al. (2017)) use
the general setup of Equation 1 to score context-
response pairs. The encoder fe is typically a Bidi-
rectional LSTM—or, more recently, a BERT-based
model (Devlin et al., 2018), which uses a large
pre-trained language model. fcomb is defined as in
Conneau et al. (2017):

fcomb(u, v) = concat([u, v, u ∗ v, u− v]). (3)

However, the standard text encoders used in these
traditional NLI approaches ignore the temporal
structure of dialogues, which is critical in our set-
ting where the context is composed of a sequence
of distinct utterances, with natural and stereotyp-
ical transitions between them. (See Appendix A
for a qualitative analysis of these transitions). Thus
we propose a specialized text encoder for MAUDE,
which uses a BERT-based encoder fBERT

e but addi-
tionally models dialogue transitions using a recur-
rent neural network:

hui = Dgf
BERT
e (ui),

h′ui+1
= fR(hui ,h

′
ui),

ci = W.pool∀t∈{u1,...,un−1}(h
′
t)

score(ci, ri) = σ(ft([hri , ci,hri ∗ ci,hri − ci])),

(4)

where hui ∈ Rd is a downsampled BERT repre-
sentation of the utterance ui (using a global learned
mapping Dg ∈ RB×d). h′ui is the hidden repre-
sentation of fR for ui, where fR is a Bidirectional
LSTM. The final representation of the dialogue
context is learned by pooling the individual hid-
den states of the RNN using max-pool (Equation
4). This context representation is mapped into the
response vector space using weight W, to obtain
ci. We then learn the alignment score between
the context ci and response ri’s representation hri
following Equation 1, by using the combination
function fcomb being the same as in Equation 3.

4 Experiments

To empirically evaluate our proposed unreferenced
dialogue evaluation metric, we are interested in
answering the following key research questions:
• Q1: How robust is our proposed metric on

different types of responses?

• Q2: How well does the self-supervised metric
correlate with human judgements?

Datasets. For training MAUDE, we use Per-
sonaChat (Zhang et al., 2018), a large-scale open-
domain chit-chat style dataset which is collected
by human-human conversations over provided user
persona. We extract and process the dataset using
ParlAI (Miller et al.) platform. We use the pub-
lic train split for our training and validation, and
the public validation split for testing. We use the
human-human and human-model data collected by
See et al. (2019) for correlation analysis, where the
models themselves are trained on PersonaChat.
Baselines. We use InferSent (Conneau et al., 2017)
and unreferenced RUBER as LSTM-based base-
lines. We also compare against BERT-NLI, which
is the same as the InferSent model but with the
LSTM encoder replaced with a pre-trained BERT
encoder. Note that these baselines can be viewed
as ablations of the MAUDE framework using sim-
plified text encoders, since we use the same NCE
training loss to provide a fair comparison. Also,
note that in practice, we use DistilBERT (Sanh
et al., 2019) instead of BERT in both MAUDE and
the BERT-NLI baseline (and thus we refer to the
BERT-NLI baseline as DistilBERT-NLI).1.

4.1 Evaluating MAUDE on different types of
responses

We first analyze the robustness of MAUDE by
comparing with the baselines, by using the same
NCE training for all the models for fairness. We
evaluate the models on the difference score, ∆ =
score(c, rground-truth)−score(c, r) (Table 6). ∆ pro-
vides an insight on the range of score function. An
optimal metric would cover the full range of good
and bad responses. We evaluate response r in three
settings: Semantic Positive: responses that are se-
mantically equivalent to the ground truth response;
Semantic Negative: responses that are semantically
opposite to the ground truth response; and Syntactic

1DistilBERT is the same BERT encoder with significantly
reduced memory footprint and training time, which is trained
by knowledge distillation (Bucilu et al., 2006; Hinton et al.,
2015) on the large pre-trained model of BERT.
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R IS DNLI M
Semantic Positive ↓ BackTranslation 0.249 0.278 0.024 0.070

Seq2Seq 0.342 0.362 0.174 0.308

Semantic Negative ↑ Random Utterance 0.152 0.209 0.147 0.287
Random Seq2Seq 0.402 0.435 0.344 0.585

Syntactic Negative ↑
Word Drop 0.342 0.367 0.261 0.3
Word Order 0.392 0.409 0.671 0.726
Word Repeat 0.432 0.461 0.782 0.872

Table 1: Metric score evaluation (∆ = score(c, rground-truth)−
score(c, r)) between RUBER (R), InferSent (IS), DistilBERT-
NLI (DNI) and MAUDE (M) on PersonaChat dataset’s public
validation set. For Semantic Positive tests, lower ∆ is better;
for all Negative tests higher ∆ is better.

Negative: responses that have been adversarially
modified in the lexical units. Ideally, we would
want ∆ → 1 for semantic and syntactic negative
responses, ∆→ 0 for semantic positive responses.

We observe that the MAUDE scores perform ro-
bustly across all the setups. RUBER and InferSent
baselines are weak, quite understandably so be-
cause they cannot leverage the large pre-trained
language model data and thus is poor at general-
ization. DistilBERT-NLI baseline performs signif-
icantly better than InferSent and RUBER, while
MAUDE scores even better and more consistently
overall. We provide a detailed ablation of vari-
ous training scenarios as well as the absolute raw
∆ scores in Appendix C. We also observe both
MAUDE and DistilBERT-NLI to be more robust on
zero-shot generalization to different datasets, the
results of which are available in Appendix B.

4.2 Correlation with human judgements

Metrics are evaluated on correlation with human
judgements (Lowe et al., 2017; Tao et al., 2017), or
by evaluating the responses of a generative model
trained on the metric (Wieting et al., 2019), by
human evaluation. However, this introduces a bias
either during the questionnaire setup or during data
post-processing in favor of the proposed metric.
In this work, we refrain from collecting human
annotations ourselves, but refer to the recent work
by See et al. (2019) on PersonaChat dataset. Thus,
the evaluation of our metric is less subject to bias.

See et al. (2019) conducted a large-scale human
evaluation of 28 model configurations to study the
effect of controllable attributes in dialogue gener-
ation. We use the publicly released model-human
and human-human chat logs from See et al. (2019)
to generate the scores on our models, and correlate
them with the associated human judgement on a
Likert scale. See et al. (2019) propose to use a
multi-step evaluation methodology, where the hu-

R IS DNLI M
Fluency 0.322 0.246 0.443 0.37
Engagingness 0.204 0.091 0.192 0.232
Humanness 0.057 -0.108 0.129 0.095
Making Sense 0.0 0.005 0.256 0.208
Inquisitiveness 0.583 0.589 0.598 0.728
Interestingness 0.275 0.119 0.135 0.24
Avoiding Repetition 0.093 -0.118 -0.039 -0.035
Listening 0.061 -0.086 0.124 0.112
Mean 0.199 0.092 0.23 0.244

Table 2: Correlation with calibrated scores between RUBER
(R), InferSent (IS), DistilBERT-NLI (DNI) and MAUDE (M)
when trained on PersonaChat dataset

man annotators rate the entire dialogue and not a
context-response pair. On the other hand, our setup
is essentially a single-step evaluation method. To
align our scores with the multi-turn evaluation, we
average the individual turns to get an aggregate
score for a given dialogue.

Figure 2: Human correlation on un-calibrated scores col-
lected on PersonaChat dataset (Zhang et al., 2018), for
MAUDE, DistilBERT-NLI, InferSent and RUBER

We investigate the correlation between the scores
and uncalibrated individual human scores from 100
crowdworkers (Fig. 2), as well as aggregated scores
released by See et al. (2019) which are adjusted for
annotator variance by using Bayesian calibration
(Kulikov et al., 2018) (Table 2). In all cases, we
report Spearman’s correlation coefficients.

For uncalibrated human judgements, we observe
MAUDE having higher relative correlation in 6 out
of 8 quality measures. Interestingly, in case of cal-
ibrated human judgements, DistilBERT proves to
be better in half of the quality measures. MAUDE

achieves marginally better overall correlation for
calibrated human judgements, due to significantly
strong correlation on specifically two measures: In-
terestingness and Engagingness. These measures
answers the questions “How interesting or bor-
ing did you find this conversation?” and “How
much did you enjoy talking to this user?”. (Re-
fer to Appendix B of See et al. (2019) for the full



2434

list of questions). Overall, using large pre-trained
language models provides significant boost in the
human correlation scores.

5 Conclusion

In this work, we explore the feasibility of learning
an automatic dialogue evaluation metric by leverag-
ing pre-trained language models and the temporal
structure of dialogue. We propose MAUDE, which
is an unreferenced dialogue evaluation metric that
leverages sentence representations from large pre-
trained language models, and is trained via Noise
Contrastive Estimation. MAUDE also learns a re-
current neural network to model the transition be-
tween the utterances in a dialogue, allowing it to
correlate better with human annotations. This is a
good indication that MAUDE can be used to evalu-
ate online dialogue conversations. Since it provides
immediate continuous rewards and at the single-
step level, MAUDE can be also be used to optimize
and train better dialogue generation models, which
we want to pursue as future work.
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A Temporal Structure

We hypothesize that a good encoding function can
capture the structure that exists in dialogue. Of-
ten this translates to capturing the semantics, co-
herency in dialogue which are some of the key
attributes of a conversation. Formally, we propose
using a function fDi

t which maps one utterance to
the next.

hui+1 = fDi
t (hui) (5)

To define a good encoding function, we turn to
pre-trained language models. These models are
typically trained on large corpus and achieve state-
of-the-art results on a range of language under-
standing tasks (Ott et al., 2018). To validate our
hypothesis, we use a pre-trained (and fine-tuned)
BERT (Devlin et al., 2018) as fe. We compute
hui = fe(ui)∀ui ∈ D, and learn a linear classifier
to predict an approximate position of the ui ∈ Di.
The task has details in its design, in the case of
goal-oriented dialogues the vocabulary differs in
different parts of the conversation and in chitchat
dialogues it cannot be said. To experiment, we
choose PersonaChat (Zhang et al., 2018) and Dai-
lyDialog (Li et al., 2017) to be nominal of chit-chat
style data, and Frames (Asri et al., 2017) and Multi-
WOZ (Budzianowski et al., 2018) for goal-oriented
data.

We encode every consecutive pairs of the utter-
ances with a % score, t, that denotes its occurrence
after the completion of t% of dialogue.

tup =
indexup + 1

k
(6)

where indexup denote the average of the indices
in the pair of the utterances and k denote the total
number of utterances in dialogue.

Now, we pre-define the number of bins B.
We split the range 0-100 into B non-overlapping
sets(every set will have min and max denoted by
simin and simax respectively). We parse every di-
alogue in the dataset, and place the encoding of
every utterance pair in the corresponding bin.

binup = {i | tup > simin&simax > tup} (7)

We then use Linear Discriminant Analysis
(LDA) to predict the bin of each utterance ui in
the dialogue after converting the high dimensional
embedding into 2 dimensions. LDA provides the

best possible class conditioned representation of
data. This gives us a downsampled representation
of each utterance ui which we plot as shown in
Figure 3. The reduction on BERT encoding to 2-
dimensions shows that BERT is useful in nudging
the encoded utterances towards useful structures.
We see well defined clusters in goal-oriented but
not-so-well-defined clusters in open domain dia-
logues. This is reasonable to expect and intuitive.

B Generalization on unseen dialog
datasets

In order for a dialogue evaluation metric to be
useful, one has to evaluate how it generalizes to
unseen data. We performed the evaluation using
our trained models on PersonaChat dataset, and
then evaluated them zero-shot on two goal-oriented
datasets, Frames (Asri et al., 2017) and MultiWoz
(Budzianowski et al., 2018), and one chit-chat style
dataset: Daily Dialog (Li et al., 2017) (Table 3).
We find BERT-based models are significantly better
at generalization than InferSent or RUBER, with
MAUDE marginally better than DistilBERT-NLI
baseline. MAUDE has the biggest impact on gen-
eralization to DailyDialog dataset, which suggests
that it captures the commonalities of chit-chat style
dialogue from PersonaChat. Surprisingly, gener-
alization gets significantly better of BERT-based
models on goal-oriented datasets as well. This sug-
gests that irrespective of the nature of dialogue,
pre-training helps because it contains the informa-
tion common to English language lexical items.

C Noise Contrastive Estimation training
ablations

The choice of negative samples (Section 3) for
Noise Contrastive Estimation can have a large im-
pact on the test-time scores of the metrics. In this
section, we show the effect when we train only us-
ing syntactic negative samples (Table 4) and only
semantic negative samples (Table 5). For compar-
ison, we show the full results when trained using
both of the sampling scheme in Table 6. We find
overall training only using either syntactic or se-
mantic negative samples achieve less ∆ than train-
ing using both of the schemes. All models achieve
high scores on the semantic positive samples when
only trained with syntactical adversaries. However,
training only with syntactical negative samples re-
sults in adverse effect on detecting semantic nega-
tive items.
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Datasets DailyDialog Frames MultiWOZ
Model Eval Mode Score ∆ Score ∆ Score ∆

RUBER
+ 0.173 ±0.168 0.211 ±0.172 0.253 ±0.177
− 0.063 ±0.092 0.11 0.102 ±0.114 0.109 0.121 ±0.123 0.123

InferSent
+ 0.163 ±0.184 0.215 ±0.186 0.277 ±0.200
− 0.050 ±0.085 0.113 0.109 ±0.128 0.106 0.127 ±0.133 0.15

DistilBERT NLI
+ 0.885 ±0.166 0.744 ±0.203 0.840 ±0.189
− 0.575 ±0.316 0.31 0.538 ±0.330 0.206 0.566 ±0.333 0.274

MAUDE
+ 0.782 ±0.248 0.661 ±0.293 0.758 ±0.265
− 0.431 ±0.300 0.351 0.454 ±0.358 0.207 0.483 ±0.345 0.275

Table 3: Zero-shot generalization results on DailyDialog, Frames and MultiWOZ dataset for the baselines and
MAUDE. + denotes semantic positive responses, and − denotes semantic negative responses.

PersonaChat Dataset Model RUBER InferSent DistilBERT NLI MAUDE

Training Modes Only Semantics Only Semantics Only Semantics Only Semantics
Evaluation Modes Score ∆ Score ∆ Score ∆ Score ∆

Semantic Positive
Gold Truth Response 0.443±0.197 0 0.466±0.215 0 0.746±0.236 0 0.789±0.244 0
BackTranslation 0.296±0.198 0.147 0.273±0.195 0.192 0.766±0.235 -0.02 0.723±0.277 0.066
Seq2Seq 0.082±0.163 0.361 0.10±0.184 0.367 0.46±0.357 0.286 0.428±0.390 0.361

Semantic Negative
Random Utterance 0.299±0.203 0.144 0.287±0.208 0.178 0.489±0.306 0.257 0.388±0.335 0.40
Random Seq2Seq 0.028±0.077 0.415 0.036±0.082 0.429 0.237±0.283 0.529 0.16±0.26 0.629

Syntactic Negative
Word Drop 0.334±0.206 0.109 0.308±0.217 0.158 0.802±0.224 -0.056 0.73±0.29 0.059
Word Order 0.472±0.169 -0.029 0.482±0.19 -0.016 0.685±0.284 0.061 0.58±0.35 0.209
Word Repeat 0.255±0.24 0.188 0.153±0.198 0.312 0.657±0.331 0.089 0.44±0.39 0.349

Table 4: Metric score evaluation between InferSent, DistilBERT-NLI and MAUDE on PersonaChat dataset, trained
on P (r̂) = Semantics. Bold scores represent the best individual scores, and bold with blue represents the best
difference with the true response.

PersonaChat Dataset Model RUBER InferSent DistilBERT NLI MAUDE

Training Modes Only Syntax Only Syntax Only Syntax Only Syntax
Evaluation Modes Score ∆ Score ∆ Score ∆ Score ∆

Semantic Positive
Gold Truth Response 0.891±0.225 0 0.893±0.231 0 0.986±0.088 0 0.99±0.07 0
BackTranslation 0.687±0.363 0.204 0.672±0.387 0.221 0.877±0.268 0.109 0.91±0.23 0.08
Seq2Seq 0.929±0.187 -0.038 0.949±0.146 -0.055 0.996±0.048 -0.01 0.99±0.05 0.00

Semantic Negative
Random Utterance 0.869±0.248 0.022 0.835±0.294 0.058 0.977±0.116 0.009 0.97±0.13 0.02
Random Seq2Seq 0.915±0.196 -0.024 0.904±0.206 -0.011 0.994±0.057 -0.008 0.99±0.08 0

Syntactic Negative
Word Drop 0.119±0.255 0.772 0.105±0.243 0.788 0.373±0.414 0.613 0.41±0.44 0.584
Word Order 0.021±0.101 0.87 0.015±0.0915 0.878 0.064±0.194 0.922 0.07±0.21 0.928
Word Repeat 0.001±0.007 0.89 0.001±0.020 0.893 0.006±0.057 0.980 0.01±0.06 0.981

Table 5: Metric score evaluation between InferSent, DistilBERT-NLI and MAUDE on PersonaChat dataset, trained
onP (r̂) = Syntax. Bold scores represent the best individual scores, and bold with blue represents the best difference
with the true response.
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Figure 3: From left to right, LDA downsampled representation of BERT on Frames (Goal oriented), MultiWOZ
(Goal oriented), PersonaChat (chit-chat) and DailyDialog (chit-chat)

PersonaChat Dataset Model RUBER InferSent DistilBERT NLI MAUDE

Training Modes All All All All
Evaluation Modes Score ∆ Score ∆ Score ∆ Score ∆

Semantic Positive
Gold Truth Response 0.432±0.213 0 0.462±0.254 0 0.824±0.154 0 0.909±0.152 0
BackTranslation 0.183±0.198 0.249 0.184±0.218 0.278 0.8±0.19 0.024 0.838±0.227 0.070
Seq2Seq 0.09±0.17 0.342 0.10±0.184 0.362 0.65±0.287 0.174 0.6008±0.38 0.308

Semantic Negative
Random Utterance 0.28±0.21 0.152 0.252±0.236 0.209 0.677±0.255 0.147 0.621±0.344 0.287
Random Seq2Seq 0.03±0.09 0.402 0.026±0.079 0.435 0.48±0.313 0.344 0.323±0.355 0.585

Syntactic Negative
Word Drop 0.09±0.16 0.342 0.094±0.17 0.367 0.563±0.377 0.261 0.609±0.401 0.3
Word Order 0.04±0.10 0.392 0.052±0.112 0.409 0.153±0.29 0.671 0.182±0.327 0.726
Word Repeat 0.00±0.01 0.432 0.001±0.010 0.461 0.041±0.153 0.782 0.036±0.151 0.872

Table 6: Metric score evaluation between InferSent, DistilBERT-NLI and MAUDE on PersonaChat dataset, trained
on P (r̂) = Syntax + Semantics. Bold scores represent the best individual scores, and bold with blue represents the
best difference with the true response.

D Qualitative Evaluation

We investigate qualitatively how the scores of dif-
ferent models are on the online evaluation setup
on See et al. (2019)’c collected data. In Figure
4, we show a sample conversation where a human
evaluator is pitched against a strong model. Here,
MAUDE scores correlate strongly with raw likert
scores on different metrics. We observe that RU-
BER and InferSent baselines overall correlate neg-
atively with the response. In Figure 5, we show
another sample where a human evaluator is pitched
against a weak model, which exhibits degenerate
responses. We see both MAUDE and DistilBERT-
NLI correlate strongly with human annotation and
provides a very low score, compared to RUBER or
InferSent.

Since we essentially cherry-picked good results,
its only fair to show a similarly cherry-picked
negative example of MAUDE. We sampled from
responses where MAUDE scores are negatively
correlated with human annotations on Inquisitive-
ness metric (5% of cases), and we show one of
those responses in Figure 6. We notice how both
DistilBERT-NLI and MAUDE fails to recognize
the duplication of utterances which leads to a low
overall score. This suggests there still exists room
for improvement in developing MAUDE, possibly
by training the model to detect degeneracy in the

context.

E Hyperparameters and Training Details

We performed rigorous hyperparameter search to
tune our model MAUDE. We train MAUDE with
downsampling, as we observe poor results when we
run the recurrent network on top of 768 dimensions.
Specifically, we downsample to 300 dimensions,
which is the same used by our baselines RUBER
and InferSent in their respective encoder represen-
tations. We also tested with the choice of either
learning a PCA to downsample the BERT represen-
tations vs learning the mapping Dg (Equation 4),
and found the latter producing better results. We
keep the final decoder same for all models, which
is a two layer MLP with hidden layer of size 200
dimensions and dropout 0.2. For BERT-based mod-
els (DistilBERT-NLI and MAUDE), we use Hug-
gingFace Transformers (Wolf et al., 2019) to first
fine-tune the training dataset on language model
objective. We tested with training on frozen fine-
tuned representations in our initial experiments, but
fine-tuning end-to-end lead to better ablation scores.
For all models we train using Adam optimizer with
0.0001 as the learning rate, early stopping till vali-
dation loss doesn’t improve. For the sake of easy
reproducibility, we use Pytorch Lightning (Falcon,
2019) framework. We used 8 Nvidia-TitanX GPUs
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Figure 4: An example of dialogue conversation between human and a strong model, where MAUDE (M) score
correlates positively with human annotations. Raw Likert scores for the entire dialogue are: Engagingness : 3,
Interestingness : 3, Inquisitiveness : 2, Listening : 3, Avoiding Repetition : 3, Fluency : 4, Making Sense : 4,
Humanness : 3, Persona retrieval : 1. Baselines are RUBER (R), InferSent (I) and BERT-NLI (B).

on a DGX Server Workstation to train faster using
Pytorch Distributed Data Parallel (DDP).
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Figure 5: An example of dialogue conversation between human and a weak model, where MAUDE (M) score
correlates positively with human annotations. Raw Likert scores for the entire dialogue are: Engagingness : 1,
Interestingness : 4, Inquisitiveness : 1, Listening : 1, Avoiding Repetition : 3, Fluency : 1, Making Sense : 2,
Humanness : 1, Persona retrieval : 1. In our setup we only score responses only following a human response.
Baselines are RUBER (R), InferSent (I) and BERT-NLI (B).
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Figure 6: An example of dialogue conversation between human and a model, where MAUDE (M) score correlates
negatively with human annotations. Raw Likert scores for the entire dialogue are: Engagingness : 1, Interesting-
ness : 1, Inquisitiveness : 2, Listening : 2, Avoiding Repetition : 2, Fluency : 3, Making Sense : 4, Humanness : 2,
Persona retrieval : 1. Baselines are RUBER (R), InferSent (I) and BERT-NLI (B).


