
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 238–252
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

238

Neural Syntactic Preordering for Controlled Paraphrase Generation

Tanya Goyal and Greg Durrett
Department of Computer Science
The University of Texas at Austin

tanyagoyal@utexas.edu, gdurrett@cs.utexas.edu

Abstract

Paraphrasing natural language sentences is a
multifaceted process: it might involve replac-
ing individual words or short phrases, local re-
arrangement of content, or high-level restruc-
turing like topicalization or passivization. Past
approaches struggle to cover this space of para-
phrase possibilities in an interpretable manner.
Our work, inspired by pre-ordering literature
in machine translation, uses syntactic trans-
formations to softly “reorder” the source sen-
tence and guide our neural paraphrasing model.
First, given an input sentence, we derive a set
of feasible syntactic rearrangements using an
encoder-decoder model. This model operates
over a partially lexical, partially syntactic view
of the sentence and can reorder big chunks.
Next, we use each proposed rearrangement to
produce a sequence of position embeddings,
which encourages our final encoder-decoder
paraphrase model to attend to the source words
in a particular order. Our evaluation, both au-
tomatic and human, shows that the proposed
system retains the quality of the baseline ap-
proaches while giving a substantial increase in
the diversity of the generated paraphrases.1

1 Introduction

Paraphrase generation (McKeown, 1983; Barzilay
and Lee, 2003) has seen a recent surge of inter-
est, both with large-scale dataset collection and
curation (Lan et al., 2017; Wieting and Gimpel,
2018) and with modeling advances such as deep
generative models (Gupta et al., 2018; Li et al.,
2019). Paraphrasing models have proven to be es-
pecially useful if they expose control mechanisms
that can be manipulated to produce diverse para-
phrases (Iyyer et al., 2018; Chen et al., 2019b; Park
et al., 2019), which allows these models to be em-
ployed for data augmentation (Yu et al., 2018) and

1Data and code are available at https://github.
com/tagoyal/sow-reap-paraphrasing

Rearrangement Aware ParaphrasingSource Order Rewriting
S

Clippers

won the game

NP VP

NPVBD

XNP won YNP

YNP won by XNP 4 3 1 2
Clippers won the game

The game was won by the Clippers.

Source order  
encoding

Transformer seq2seq

Figure 1: Overview of our paraphrase model. First, we
choose various pairs of constituents to abstract away in
the source sentence, then use a neural transducer to gen-
erate possible reorderings of the abstracted sentences.
From these, we construct a guide reordering of the in-
put sentence which then informs the generation of out-
put paraphrases.

adversarial example generation (Iyyer et al., 2018).
However, prior methods involving syntactic control
mechanisms do not effectively cover the space of
paraphrase possibilities. Using syntactic templates
covering the top of the parse tree (Iyyer et al., 2018)
is inflexible, and using fully-specified exemplar
sentences (Chen et al., 2019b) poses the problem
of how to effectively retrieve such sentences. For
a particular input sentence, it is challenging to use
these past approaches to enumerate the set of re-
orderings that make sense for that sentence.

In this paper, we propose a two-stage approach
to address these limitations, outlined in Figure 1.
First, we use an encoder-decoder model (SOW,
for Source Order reWriting) to apply transduc-
tion operations over various abstracted versions
of the input sentence. These transductions yield
possible reorderings of the words and constituents,
which can be combined to obtain multiple feasi-
ble rearrangements of the input sentence. Each
rearrangement specifies an order that we should
visit words of the source sentence; note that such
orderings could encourage a model to passivize
(visit the object before the subject), topicalize, or
reorder clauses. These orderings are encoded for
our encoder-decoder paraphrase model (REAP, for
REarrangement Aware Paraphrasing) by way of po-

https://github.com/tagoyal/sow-reap-paraphrasing
https://github.com/tagoyal/sow-reap-paraphrasing

239

sition embeddings, which are added to the source
sentence encoding to specify the desired order of
generation (see Figure 2). This overall workflow is
inspired by the pre-ordering literature in machine
translation (Xia and McCord, 2004; Collins et al.,
2005); however, our setting explicitly requires en-
tertaining a diverse set of possible orderings corre-
sponding to different paraphrasing phenomena.

We train and evaluate our approach on the large-
scale English paraphrase dataset PARANMT-50M
(Wieting and Gimpel, 2018). Results show that
our approach generates considerably more diverse
paraphrases while retaining the quality exhibited
by strong baseline models. We further demonstrate
that the proposed syntax-based transduction proce-
dure generates a feasible set of rearrangements for
the input sentence. Finally, we show that position
embeddings provide a simple yet effective way to
encode reordering information, and that the gener-
ated paraphrases exhibit high compliance with the
desired reordering input.

2 Method

Given an input sentence x = {x1, x2, . . . , xn},
our goal is to generate a set of structurally distinct
paraphrases Y = {y1,y2, . . . ,yk}. We achieve
this by first producing k diverse reorderings for the
input sentence, R = {r1, r2, . . . , rk}, that guide
the generation order of each corresponding y. Each
reordering is represented as a permutation of the
source sentence indices.

Our method centers around a sequence-to-
sequence model which can generate a paraphrase
roughly respecting a particular ordering of the input
tokens. Formally, this is a model P (y | x, r). First,
we assume access to the set of target reorderings R
and describe this rearrangement aware paraphras-
ing model (REAP) in Section 2.2. Then, in Section
2.3, we outline our reordering approach, including
the source order rewriting (SOW) model, which
produces the set of reorderings appropriate for a
given input sentence x during inference (x→ R).

2.1 Base Model

The models discussed in this work build on a
standard sequence-to-sequence transformer model
(Vaswani et al., 2017) that uses stacked layers of
self-attention to both encode the input tokens x and
decode the corresponding target sequence y. This
model is pictured in the gray block of Figure 2.
Throughout this work, we use byte pair encoding

Encoder Decoder

+ + + +

Input tokens x

Original Order
Token embeddings

Encoder Output EM

Target Order r

New Encoder
Output E

4 3 1 2

1 2 3 4

Output tokens y

Clippers won the game BOS The

The game

Figure 2: Rearrangement aware paraphrasing (REAP)
model. The gray area corresponds to the standard trans-
former encoder-decoder system. Our model adds posi-
tion embeddings corresponding to the target reordering
to encoder outputs. The decoder attends over these aug-
mented encodings during both training and inference.

(BPE) (Sennrich et al., 2016) to tokenize our input
and output sentences. These models are trained in
the standard way, maximizing the log likelihood of
the target sequence using teacher forcing. Addition-
ally, in order to ensure that the decoder does not
attend to the same input tokens repeatedly at each
step of the decoding process, we include a coverage
loss term, as proposed in See et al. (2017).

Note that since the architecture of the trans-
former model is non-recurrent, it adds position
embeddings to the input word embeddings in or-
der to indicate the correct sequence of the words
in both x and y (see Figure 2). In this work, we
propose using an additional set of position embed-
dings to indicate the desired order of words during
generation, described next.

2.2 Rearrangement aware Paraphrasing
Model (REAP)

Let r = {r1, r2, . . . , rn} indicate the target reorder-
ing corresponding to the input tokens x. We want
the model to approximately attend to tokens in this
specified order when generating the final output
paraphrase. For instance, in the example in Figure
1, the reordering specifies that when producing the
paraphrase, the model should generate content re-
lated to the game before content related to Clippers
in the output. In this case, based on the rearrange-
ment being applied, the model will most likely use
passivization in its generation, although this is not
strictly enforced.

The architecture for our model P (y | x, r) is
outlined in Figure 2. Consider an encoder-decoder
architecture with a stack of M layers in the encoder

240

REORDER(S0): Recursively reorder
constituents to get final ordering

S0

SBAR PRP VP

IN S

PRP VP1

If it continues to rain I will carry an umbrella

MD VP2

VB NP

SOW Input SOW Output

If S I will VP
4 5 1 2 3

SBAR I will carry NP
 1 3 4 5 2

SELECTSEGMENTPAIRS:  
Choose constituents to abstract

REORDERPHRASE:  
Use seq2seq model to reorder phrase

SBAR I will carry NP

If S I will VP I will VP if S

SBAR NP I carry

Source reordering

Final paraphrases

I will carry an umbrella if rain continues.

FOR A, B SELECTSEGMENTPAIRS(S0)∈
REORDERPHRASE (S0, A, B)

REAP

SOW

SBAR I will carry NP
If S I will VP
4 5 1 2 3

If S I will carry an umbrella
6 7 1 2 3 4 5

If it continues to rain I will carry an umbrella
6 7 10 8 9 1 2 3 4 5

REORDER(A)

REORDER(B)
r
r If it continues to rain, an umbrella is what i will carry.

Derived
reorderings

Figure 3: Overview of the source sentence rearrangement workflow for one level of recursion at the root node. First,
candidate tree segment pairs contained within the input node are selected. A transduction operation is applied over
the abstracted phrase, giving the reordering 4 5 1 2 3 for the case shown in red, then the process recursively
continues for each abstracted node. This results in a reordering for the full source sentence; the reordering indices
serve as additional input to the REAP model.

and N layers in the decoder. We make the target
reordering r accessible to this transformer model
through an additional set of positional embeddings
PEr. We use the sinusoidal function to construct
these following Vaswani et al. (2017).

Let EM = encoderM (x) be the output of the
M th (last) layer of the encoder. The special-
purpose position embeddings are added to the out-
put of this layer (see Figure 2): E = EM + PEr.
Note that these are separate from standard position
embeddings added at the input layer; such embed-
dings are also used in our model to encode the orig-
inal order of the source sentence. The transformer
decoder model attends over E while computing
attention and the presence of the position embed-
dings should encourage the generation to obey the
desired ordering r, while still conforming to the de-
coder language model. Our experiments in Section
4.3 show that this position embedding method is
able to successfully guide the generation of para-
phrases, conditioning on both the input sentence
semantics as well as the desired ordering.

2.3 Sentence Reordering
We now outline our approach for generating these
desired reorderings r. We do this by predicting
phrasal rearrangements with the SOW model at var-
ious levels of syntactic abstraction of the sentence.
We combine multiple such phrase-level rearrange-
ments to obtain a set R of sentence-level rearrange-
ments. This is done using a top-down approach,
starting at the root node of the parse tree. The over-
all recursive procedure is outlined in Algorithm 1.

One step of the recursive algorithm has three

Algorithm 1 REORDER(t)

Input: Sub-tree t of the input parse tree
Output: Top-k list of reorderings for t’s yield
T = SELECTSEGMENTPAIRS(t) // Step 1

R = INITIALIZEBEAM(size = k)
for (A,B) in T do
z = REORDERPHRASE(t, A,B) // Step 2

RA(1, . . . , k) = REORDER(tA) // k orderings

RB(1, . . . , k) = REORDER(tB) // k orderings

for ra, rb in RA ×RB do
r = COMBINE(z, ra, rb) // Step 3

score(r) = score(z)+score(ra)+score(rb)
R.push(r, score(r))

end for
end for
return R

major steps: Figure 3 shows the overall workflow
for one iteration (here, the root node of the sen-
tence is selected for illustration). First, we select
sub-phrase pairs of the input phrase that respect
parse-tree boundaries, where each pair consists
of non-overlapping phrases (Step 1). Since the
aim is to learn generic syntax-governed rearrange-
ments, we abstract out the two sub-phrases, and
replace them with non-terminal symbols, retaining
only the constituent tag information. For example,
we show three phrase pairs in Figure 3 that can
be abstracted away to yield the reduced forms of
the sentences. We then use a seq2seq model to
obtain rearrangements for each abstracted phrase
(Step 2). Finally, this top-level rearrangement is

241

combined with recursively-constructed phrase rear-
rangements within the abstracted phrases to obtain
sentence-level rearrangements (Step 3).

Step 1: SELECTSEGMENTPAIRS

We begin by selecting phrase tuples that form the in-
put to our seq2seq model. A phrase tuple (t, A,B)
consists of a sub-tree t with the constituents A and
B abstracted out (replaced by their syntactic cat-
egories). For instance, in Figure 3, the S0, S, and
VP2 nodes circled in red form a phrase tuple. Multi-
ple distinct combinations of A and B are possible.2

Step 2: REORDERPHRASE

Next, we obtain rearrangements for each phrase
tuple (t, A,B). We first form an input consisting
of the yield of t with A and B abstracted out; e.g.
If S I will VP, shown in red in Figure 3. We use a
sequence-to-sequence model (the SOW model) that
takes this string as input and produces a correspond-
ing output sequence. We then perform word-level
alignment between the input and generated output
sequences (using cosine similarity between GloVe
embeddings) to obtain the rearrangement that must
be applied to the input sequence.3 The log proba-
bility of the output sequence serves as a score for
this rearrangement.

SOW model The SOW model is a sequence-to-
sequence model P (y′ | x′, o), following the trans-
former framework in Section 2.1.4 Both x′ and y′

are encoded using the word pieces vocabulary; ad-
ditionally, embeddings corresponding to the POS
tags and constituent labels (for non-terminals) are
added to the input embeddings.

For instance, in Figure 3, If S I will VP and I will
VP if S is an example of an (x′,y′), pair. While
not formally required, Algorithm 1 ensures that
there are always exactly two non-terminal labels in
these sequences. o is a variable that takes values
MONOTONE or FLIP. This encodes a preference to
keep the two abstracted nodes in the same order or
to “flip” them in the output.5 o is encoded in the
model with additional positional encodings of the
form {. . . 0, 0, 1, 0, . . . 2, 0 . . . } for monotone and

2In order to limit the number of such pairs, we employ a
threshold on the fraction of non-abstracted words remaining
in the phrase, outlined in more detail in the Appendix.

3We experimented with a pointer network to predict indices
directly; however, the approach of generate and then align post
hoc resulted in a much more stable model.

4See Appendix for SOW model architecture diagram.
5In syntactic translation systems, rules similarly can be

divided by whether they preserve order or invert it (Wu, 1997).

{. . . 0, 0, 2, 0, . . . 1, 0 . . . } for flipped, wherein the
non-zero positions correspond to the positions of
the abstracted non-terminals in the phrase. These
positional embeddings for the SOW MODEL are
handled analogously to the r embeddings for the
REAP model. During inference, we use both the
monotone rearrangement and flip rearrangement
to generate two reorderings, one of each type, for
each phrase tuple.

We describe training of this model in Section 3.

Step 3: COMBINE

The previous step gives a rearrangement for the
subtree t. To obtain a sentence-level rearrange-
ment from this, we first recursively apply the RE-
ORDER algorithm on subtrees tA and tB which re-
turns the top-k rearrangements of each subtree. We
iterate over each rearrangement pair (ra, rb), ap-
plying these reorderings to the abstracted phrases
A and B. This is illustrated on the left side of
Figure 3. The sentence-level representations, thus
obtained, are scored by taking a mean over all the
phrase-level rearrangements involved.

3 Data and Training

We train and evaluate our model on the PARANMT-
50M paraphrase dataset (Wieting and Gimpel,
2018) constructed by backtranslating the Czech
sentences of the CzEng (Bojar et al., 2016) corpus.
We filter this dataset to remove shorter sentences
(less than 8 tokens), low quality paraphrase pairs
(quantified by a translation score included with the
dataset) and examples that exhibit low reordering
(quantified by a reordering score based on the po-
sition of each word in the source and its aligned
word in the target sentence). This leaves us with
over 350k paired paraphrase pairs.

3.1 Training Data for REAP

To train our REAP model (outlined in Section 2.2),
we take existing paraphrase pairs (x,y∗) and de-
rive pseudo-ground truth rearrangements r∗ of the
source sentence tokens based on their alignment
with the target sentence. To obtain these rearrange-
ments, we first get contextual embeddings (Devlin
et al., 2019) for all tokens in the source and tar-
get sentences. We follow the strategy outlined in
Lerner and Petrov (2013) and perform reorderings
as we traverse down the dependency tree. Starting
at the root node of the source sentence, we deter-
mine the order between the head and its children
(independent of other decisions) based on the order

242

If it continues to rain I will carry an umbrella

I will carry an umbrella if rain continues

Figure 4: Paraphrase sentence pair and its aligned tu-
ples A → B,C and A′ → B′, C ′. These produce the
training data for the SOW MODEL.

of the corresponding aligned words in the target
sentence. We continue this traversal recursively to
get the sentence level-rearrangement. This mirrors
the rearrangement strategy from Section 2.3, which
operates over constituency parse tree instead of the
dependency parse.

Given triples (x, r∗,y∗), we can train our REAP

model to generate the final paraphrases condition-
ing on the pseudo-ground truth reorderings.

3.2 Training Data for SOW

The PARANMT-50M dataset contains sentence-
level paraphrase pairs. However, in order to train
our SOW model (outlined in section 2.3), we need
to see phrase-level paraphrases with syntactic ab-
stractions in them. We extract these from the
PARANMT-50M dataset using the following pro-
cedure, shown in Figure 4. We follow Zhang et al.
(2020) and compute a phrase alignment score be-
tween all pairs of constituents in a sentence and
its paraphrase.6 From this set of phrase alignment
scores, we compute a partial one-to-one mapping
between phrases (colored shapes in Figure 4); that
is, not all phrases get aligned, but the subset that do
are aligned one-to-one. Finally, we extract aligned
chunks similar to rule alignment in syntactic trans-
lation (Galley et al., 2004): when aligned phrases
A and A′ subsume aligned phrase pairs (B,C) and
(B′, C ′) respectively, we can extract the aligned
tuple (tA, B,C) and (tA′ , B

′, C ′). The phrases
(B,C) and (B′, C ′) are abstracted out to construct
training data for the phrase-level transducer, includ-
ing supervision of whether o = MONOTONE or
FLIP. Using the above alignment strategy, we were
able to obtain over 1 million aligned phrase pairs.

4 Evaluation

Setup As our main goal is to evaluate our
model’s ability to generate diverse paraphrases, we

6The score is computed using a weighted mean of the
contextual similarity between individual words in the phrases,
where the weights are determined by the corpus-level inverse-
document frequency of the words. Details in the Appendix.

obtain a set of paraphrases and compare these to
sets of paraphrases produced by other methods. To
obtain 10 paraphrases, we first compute a set of
10 distinct reorderings r1, . . . , r10 with the SOW

method from Section 2.3 and then use the REAP to
generate a 1-best paraphrase for each. We use top-
k decoding to generate the final set of paraphrases
corresponding to the reorderings. Our evaluation is
done over 10k examples from PARANMT-50M.

4.1 Quantitative Evaluation

Baselines We compare our model against the
Syntactically Controlled Paraphrase Network
(SCPN) model proposed in prior work (Iyyer et al.,
2018). It produces 10 distinct paraphrase outputs
conditioned on a pre-enumerated list of syntactic
templates. This approach has been shown to outper-
form other paraphrase approaches that condition on
interpretable intermediate structures (Chen et al.,
2019b). Additionally, we report results on the fol-
lowing baseline models: i) A copy-input model
that outputs the input sentence exactly. ii) A vanilla
seq2seq model that uses the same transformer
encoder-decoder architecture from Section 2.1 but
does not condition on any target rearrangement. We
use top-k sampling (Fan et al., 2018) to generate
10 paraphrases from this model.7 iii) A diverse-
decoding model that uses the above transformer
seq2seq model with diverse decoding (Kumar et al.,
2019) during generation. Here, the induced di-
versity is uncontrolled and aimed at maximizing
metrics such as distinct n-grams and edit distance
between the generated sentences. iv) A LSTM
version of our model where the REAP model uses
LSTMs with attention (Bahdanau et al., 2014) and
copy (See et al., 2017) instead of transformers. We
still use the transformer-based phrase transducer
to obtain the source sentence reorderings, and still
use positional encodings in the LSTM attention.

Similar to Cho et al. (2019), we report two types
of metrics:
1. Quality: Given k generated paraphrases Y =
{y1,y2 . . .yk} for each input sentence in the
test set, we select ŷbest that achieves the best
(oracle) sentence-level score with the ground
truth paraphrase y. The corpus level evaluation
is performed using pairs (ŷbest,y).

2. Diversity: We calculate BLEU or WER be-

7Prior work (Wang et al., 2019; Li et al., 2019) has shown
that such a transformer-based model provides a strong baseline
and outperforms previous LSTM-based (Hasan et al., 2016)
and VAE-based (Gupta et al., 2018) approaches.

243

Model oracle quality (over 10 sentences, no rejection) ↑ pairwise diversity (post-rejection)

BLEU ROUGE-1 ROUGE-2 ROUGE-L % rejected self-BLEU ↓ self-WER ↑

copy-input 18.4 54.4 27.2 49.2 0 − −
SCPN 21.3 53.2 30.3 51.0 40.6 35.9 63.4

Transformer seq2seq 32.8 63.1 41.4 63.3 12.7 50.7 35.4
+ diverse-decoding 24.8 56.8 33.2 56.4 21.3 34.2 58.1

SOW-REAP (LSTM) 27.0 57.9 34.8 57.5 31.7 46.2 53.9
SOW-REAP 30.9 62.3 40.2 61.7 15.9 38.0 57.9

Table 1: Quality and diversity metrics for the different models. Our proposed approach outperforms other diverse
models (SCPN and diverse decoding) in terms of all the quality metrics. These models exhibit higher diversity, but
with many more rejected paraphrases, indicating that these models more freely generate bad paraphrases.

tween all pairs (yi,yj) generated by a single
model on a single sentence, then macro-average
these values at a corpus-level.

In addition to these metrics, we use the paraphrase
similarity model proposed by Wieting et al. (2017)
to compute a paraphrase score for generated out-
puts with respect to the input. Similar to Iyyer et al.
(2018), we use this score to filter out low quality
paraphrases. We report on the rejection rate accord-
ing to this criterion for all models. Note that our
diversity metric is computed after filtering as it is
easy to get high diversity by including nonsensical
paraphrase candidates that differ semantically.

Table 1 outlines the performance of the dif-
ferent models. The results show that our pro-
posed model substantially outperforms the SCPN
model across all quality metrics.8 Furthermore,
our LSTM model also beats the performance of
the SCPN model, demonstrating that the gain in
quality cannot completely be attributed to the use
of transformers. The quality of our full model
(with rearrangements) is also comparable to the
quality of the vanilla seq2seq model (without rear-
rangements). This demonstrates that the inclusion
of rearrangements from the syntax-based neural
transducer do not hurt quality, while leading to a
substantially improved diversity performance.

The SCPN model has a high rejection score of
40.6%. This demonstrates that out of the 10 tem-
plates used to generate paraphrases for each sen-
tence, on average 4 were not appropriate for the
given sentence, and therefore get rejected. On the
other hand, for our model, only 15.9% of the gen-
erated paraphrases get rejected, implying that the
rearrangements produced were generally meaning-
ful. This is comparable to the 12.7% rejection rate

8The difference in performance between our proposed
model and baseline models is statistically significant according
to a paired bootstrap test.

exhibited by the vanilla seq2seq model that does
not condition on any syntax or rearrangement, and
is therefore never obliged to conform to an inap-
propriate structure.

Finally, our model exhibits a much higher diver-
sity within the generated paraphrases compared to
the transformer seq2seq baseline. As expected, the
SCPN model produces slightly more diverse para-
phrases as it explicitly conditions the generations
on templates with very different top level structures.
However, this is often at the cost of semantic equiv-
alence, as demonstrated by both quantitative and
human evaluation (next section). A similar trend
was observed with the diverse-decoding scheme.
Although it leads to more diverse generations, there
is a substantial decrease in quality compared to
SOW-REAP and the seq2seq model. Moreover, the
paraphrases have a higher rejection rate (21.3%),
suggesting that diverse decoding is more likely to
produce nonsensical paraphrases. A similar phe-
nomenon is also reported by Iyyer et al. (2018),
wherein diverse-decoding resulted in paraphrases
with different semantics than the input.

Syntactic Exemplars In addition to SCPN, we
compare our proposed model against the control-
lable generation method of Chen et al. (2019b).
Their model uses an exemplar sentence as a syn-
tactic guide during generation; the generated para-
phrase is trained to incorporate the semantics of the
input sentence while emulating the syntactic struc-
ture of the exemplar (see Appendix D for exam-
ples). However, their proposed approach depends
on the availability of such exemplars at test time;
they manually constructed these for their test set
(800 examples). Since we do not have such exam-
ple sentences available for our test data, we report
results of our model’s performance on their test
data.

244

Input SOW-REAP SCPN

if at any time in the
preparation of this
product the integrity
of this container is
compromised it
should not be used .

this container should not be used if any time in
the preparation of this product is compromised

in the preparation of this product , the integrity of
this container is compromised , but it should not be
used .

if the integrity of the packaging is impaired at
any time , the product should not be used .

where is the integrity of this product of this container
the integrity of this container should not be used .

if the product integrity of this container is
compromised it should not be used .

i should not use if at any time in the preparation of
this product , it should not be used .

i was the first grower
to use hydroponics .

to use hydroponics , i was the first one . where did i have the first tendency to use hydropon-
ics ?

i used hydroponics for the first time . i used to use hydroponics .
to use hydroponics the first time i was . first i was the first grower to use hydroponics

Table 2: Examples of paraphrases generated by our system and the baseline SCPN model. Our model successfully
rearranges the different structural components of the input sentence to obtain meaningful rearrangements. SCPN
conforms to pre-enumerated templates that may not align with a given input.

Note that Chen et al. (2019b) carefully curated
the exemplar to be syntactically similar to the actual
target paraphrase. Therefore, for fair comparison,
we report results using the ground truth ordering
(that similarly leverages the target sentence to ob-
tain a source reordering), followed by the REAP

model. This model (ground truth order + REAP)
achieves a 1-best BLEU score of 20.9, outperform-
ing both the prior works: Chen et al. (2019b) (13.6
BLEU) and SCPN (17.8 BLEU with template, 19.2
BLEU with full parse). Furthermore, our full SOW-
REAP model gets an oracle-BLEU (across 10 sen-
tences) score of 23.8. These results show that our
proposed formulation outperforms other control-
lable baselines, while being more flexible.

4.2 Qualitative Evaluation

Table 2 provides examples of paraphrase outputs
produced by our approach and SCPN. The exam-
ples show that our model exhibits syntactic diver-
sity while producing reasonable paraphrases of the
input sentence. On the other hand, SCPN tends to
generate non-paraphrases in order to conform to
a given template, which contributes to increased
diversity but at the cost of semantic equivalence. In
Table 3, we show the corresponding sequence of
rules that apply to an input sentence, and the final
generated output according to that input rearrange-
ment. Note that for our model, on average, 1.8
phrase-level reorderings were combined to produce
sentence-level reorderings (we restrict to a maxi-
mum of 3). More examples along with the input
rule sequence (for our model) and syntactic tem-
plates (for SCPN) are provided in the Appendix.

Human Evaluation We also performed human
evaluation on Amazon Mechanical Turk to evalu-

Input Sentence: if at any time in the preparation of this
product the integrity of this container is compromised it
should not be used .

Rule Sequence: if S it should not VB used .→ should not
VB used if S (parse tree level: 0)

at NP the integrity of this container VBZ compromised→
this container VBZ weakened at NP (parse tree level: 1)

the NN of NP→ NP NN (parse tree level: 2)

Generated Sentence: this container should not be used if
the product is compromised at any time in preparation .

Table 3: Examples of our model’s rearrangements ap-
plied to a given input sentence. Parse tree level indi-
cates the rule subtree’s depth from the root node of the
sentence. The REAP model’s final generation considers
the rule reordering at the higher levels of the tree but ig-
nores the rearrangement within the lower sub-tree.

ate the quality of the generated paraphrases. We
randomly sampled 100 sentences from the develop-
ment set. For each of these sentences, we obtained
3 generated paraphrases from each of the following
models: i) SCPN, ii) vanilla sequence-to-sequence
and iii) our proposed SOW-REAP model. We fol-
low earlier work (Kok and Brockett, 2010; Iyyer
et al., 2018) and obtain quality annotations on a 3
point scale: 0 denotes not a paraphrase, 1 denotes
that the input sentence and the generated sentence
are paraphrases, but the generated sentence might
contain grammatical errors, 2 indicates that the in-
put and the candidate are paraphrases. To emulate
the human evaluation design in Iyyer et al. (2018),
we sample paraphrases after filtering using the cri-
terion outlined in the previous section and obtain
three judgements per sentence and its 9 paraphrase
candidates. Table 4 outlines the results from the hu-
man evaluation. As we can see, the results indicate

245

Model 2 1 0

SCPN (Iyyer et al., 2018) 35.9 24.8 39.3
Transformer seq2seq 45.1 20.6 34.3

SOW-REAP 44.5 22.6 32.9

Table 4: Human annotated quality across different mod-
els. The evaluation was done on a 3 point quality scale,
2 = grammatical paraphrase, 1 = ungrammatical para-
phrase, 0 = not a paraphrase.

Ordering oracle-ppl ↓ oracle-BLEU ↑

Monotone 10.59 27.98
Random 9.32 27.10

SOW 8.14 30.02

Ground Truth 7.79 36.40

Table 5: Comparison of different source reordering
strategies. Our proposed approach outperforms base-
line monotone and random rearrangement strategies.

that the quality of the paraphrases generated from
our model is substantially better than the SCPN
model.9 Furthermore, similar to quantitative evalu-
ation, the human evaluation also demonstrates that
the performance of this model is similar to that of
the vanilla sequence-to-sequence model, indicating
that the inclusion of target rearrangements do not
hurt performance.

4.3 Ablations and Analysis

4.3.1 Evaluation of SOW Model
Next, we intrinsically evaluate the performance of
our SOW model (Section 2.3). Specifically, given
a budget of 10 reorderings, we want to understand
how close our SOW model comes to covering the
target ordering. We do this by evaluating the REAP

model in terms of oracle perplexity (of the ground
truth paraphrase) and oracle BLEU over these 10
orderings.

We evaluate our proposed approach against 3
systems: a) Monotone reordering {1, 2, . . . , n}.
b) Random permutation, by randomly permuting
the children of each node as we traverse down the
constituency parse tree. c) Ground Truth, using
the pseudo-ground truth rearrangement (outlined
in Section 3) between the source and ground-truth
target sentence. This serves as an upper bound for
the reorderings’ performance, as obtained by the
recursive phrase-level transducer.

9The difference of our model performance with SCPN is
statistically significant, while that with baseline seq2seq is not
according to a paired bootstrap test.

−0.5 −0.2 0.1 0.4 0.7 1.0
Target Degree of Rearrangement
b/w input and ground truth output

−0.5

0.0

0.5

1.0

A
ch

ie
v
e
d

D
e
g
re

e
o
f

R
e
a
rr

a
n

g
e
m

e
n
t

b
/w

in
p

u
t

an
d

ge
n

er
at

ed
ou

tp
u

t

Monotone r

Ground Truth r∗

Figure 5: The degree of rearrangement (Kendall’s Tau)
achieved by conditioning on monotone and pseudo-
ground truth reorderings (r∗). The dotted line de-
notes the ideal performance (in terms of reordering-
compliance) of the REAP model, when supplied with
perfect reordering r∗. The actual performance of the
REAP model mirrors the ideal performance.

Table 5 outlines the results for 10 generated para-
phrases from each rearrangement strategy. Our pro-
posed approach outperforms the baseline monotone
and random reordering strategies. Furthermore, the
SOW model’s oracle perplexity is close to that of
the ground truth reordering’s perplexity, showing
that the proposed approach is capable of generat-
ing a diverse set of rearrangements such that one
of them often comes close to the target rearrange-
ment. The comparatively high performance of the
ground truth reorderings demonstrates that the po-
sitional embeddings are effective at guiding the
REAP model’s generation.

4.3.2 Compliance with target reorderings
Finally, we evaluate whether the generated para-
phrases follow the target reordering r. Note that
we do not expect or want our REAP model to be ab-
solutely compliant with this input reordering since
the model should be able to correct for the mis-
takes make by the SOW model and still generate
valid paraphrases. Therefore, we perform reorder-
ing compliance experiments on only the monotone
reordering and the pseudo-ground truth reorderings
(r∗, construction outlined in Section 3), since these
certainly correspond to valid paraphrases.

For sentences in the test set, we generate para-
phrases using monotone reordering and pseudo-
ground truth reordering as inputs to REAP. We get
the 1-best paraphrase and compute the degree of
rearrangement10 between the input sentence and

10Quantified by Kendall’s Tau rank correlation between
original source order and targeted/generated order. Higher

246

the generated sentence. In Figure 5, we plot this
as a function of the target degree of rearrangement,
i.e., the rearrangement between the input sentence
x and the ground truth sentence y∗. The dotted
line denotes the ideal performance of the model in
terms of agreement with the perfect reordering r∗.
The plot shows that the REAP model performs as
desired; the monotone generation results in high
Kendall’s Tau between input and output. Condition-
ing on the pseudo-ground truth reorderings (r∗) pro-
duces rearrangements that exhibit the same amount
of reordering as the ideal rearrangement.

5 Related Work

Paraphrase Generation Compared to prior
seq2seq approaches for paraphrasing (Hasan et al.,
2016; Gupta et al., 2018; Li et al., 2018), our model
is able to achieve much stronger controllability
with an interpretable control mechanism. Like
these approaches, we can leverage a wide variety
of resources to train on, including backtranslation
(Pavlick et al., 2015; Wieting and Gimpel, 2018;
Hu et al., 2019) or other curated data sources (Fader
et al., 2013; Lan et al., 2017).

Controlled Generation Recent work on con-
trolled generation aims at controlling attributes
such as sentiment (Shen et al., 2017), gender or po-
litical slant (Prabhumoye et al., 2018), topic (Wang
et al., 2017), etc. However, these methods cannot
achieve fine-grained control over a property like
syntax. Prior work on diverse paraphrase genera-
tion can be divided into three groups: diverse de-
coding, latent variable modeling, and syntax-based.
The first group uses heuristics such as Hamming
distance or distinct n-grams to preserve diverse
options during beam search decoding (Vijayaku-
mar et al., 2018; Kumar et al., 2019). The second
group includes approaches that use uninterpretable
latent variables to separate syntax and semantics
(Chen et al., 2019a), perturb latent representations
to enforce diversity (Gupta et al., 2018; Park et al.,
2019) or condition on latent codes used to repre-
sent different re-writing patterns (Xu et al., 2018;
An and Liu, 2019). Qian et al. (2019) uses distinct
generators to output diverse paraphrases. These
methods achieve some diversity, but do not con-
trol generation in an interpretable manner. Finally,
methods that use explicit syntactic structures (Iyyer
et al., 2018; Chen et al., 2019b) may try to force a

Kendall’s Tau indicates lower rearrangement and vice-versa.

sentence to conform to unsuitable syntax. Phrase-
level approaches (Li et al., 2019) are inherently less
flexible than our approach.

Machine Translation Our work is inspired by
pre-ordering literature in machine translation.
These systems either use hand-crafted rules de-
signed for specific languages (Collins et al., 2005;
Wang et al., 2007) or automatically learn rewriting
patterns based on syntax (Xia and McCord, 2004;
Dyer and Resnik, 2010; Genzel, 2010; Khalilov and
Simaan, 2011; Lerner and Petrov, 2013). There
also exist approaches that do not rely on syntac-
tic parsers, but induce hierarchical representations
to leverage for pre-ordering (Tromble and Eisner,
2009; DeNero and Uszkoreit, 2011). In the context
of translation, there is often a canonical reordering
that should be applied to align better with the target
language; for instance, head-final languages like
Japanese exhibit highly regular syntax-governed
reorderings compared to English. However, in di-
verse paraphrase generation, there doesn’t exist a
single canonical reordering, making our problem
quite different.

In concurrent work, Chen et al. (2020) similarly
use an additional set of position embeddings to
guide the order of generated words for machine
translation. This demonstrates that the REAP tech-
nique is effective for other tasks also. However,
they do not tackle the problem of generating plau-
sible reorderings and therefore their technique is
less flexible than our full SOW-REAP model.

6 Conclusion

In this work, we propose a two-step framework for
paraphrase generation: construction of diverse syn-
tactic guides in the form of target reorderings fol-
lowed by actual paraphrase generation that respects
these reorderings. Our experiments show that this
approach can be used to produce paraphrases that
achieve a better quality-diversity trade-off com-
pared to previous methods and strong baselines.

Acknowledgments

This work was partially supported by NSF Grant
IIS-1814522, a gift from Arm, and an equipment
grant from NVIDIA. The authors acknowledge the
Texas Advanced Computing Center (TACC) at The
University of Texas at Austin for providing HPC
resources used to conduct this research. Thanks as
well to the anonymous reviewers for their helpful
comments.

247

References

Zhecheng An and Sicong Liu. 2019. Towards Diverse
Paraphrase Generation Using Multi-Class Wasser-
stein GAN. arXiv preprint arXiv:1909.13827.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR,
abs/1409.0473.

Regina Barzilay and Lillian Lee. 2003. Learning
to paraphrase: an unsupervised approach using
multiple-sequence alignment. In Proceedings of the
2003 Conference of the North American Chapter
of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pages 16–
23. Association for Computational Linguistics.

Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Li-
bovickỳ, Michal Novák, Martin Popel, Roman Su-
darikov, and Dušan Variš. 2016. CzEng 1.6: en-
larged Czech-English parallel corpus with process-
ing tools Dockered. In International Conference
on Text, Speech, and Dialogue, pages 231–238.
Springer.

Kehai Chen, Rui Wang, Masao Utiyama, and Ei-
ichiro Sumita. 2020. Explicit Reordering for
Neural Machine Translation. arXiv preprint
arXiv:2004.03818.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019a. A Multi-Task Approach for
Disentangling Syntax and Semantics in Sentence
Representations. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2453–2464.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019b. Controllable Paraphrase Gen-
eration with a Syntactic Exemplar. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5972–5984, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jaemin Cho, Minjoon Seo, and Hannaneh Hajishirzi.
2019. Mixture Content Selection for Diverse Se-
quence Generation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3112–3122.

Michael Collins, Philipp Koehn, and Ivona Kučerová.
2005. Clause restructuring for statistical machine
translation. In Proceedings of the 43rd annual
meeting on association for computational linguis-
tics, pages 531–540. Association for Computational
Linguistics.

John DeNero and Jakob Uszkoreit. 2011. Inducing
sentence structure from parallel corpora for reorder-
ing. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Chris Dyer and Philip Resnik. 2010. Context-free re-
ordering, finite-state translation. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 858–866, Los
Angeles, California. Association for Computational
Linguistics.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1608–1618.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical Neural Story Generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of the Human Language Technol-
ogy Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 273–280, Boston, Mas-
sachusetts, USA. Association for Computational
Linguistics.

Dmitriy Genzel. 2010. Automatically learning source-
side reordering rules for large scale machine transla-
tion. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 376–384.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Sadid A Hasan, Kathy Lee, Vivek Datla, Ashequl
Qadir, Joey Liu, Oladimeji Farri, et al. 2016. Neu-
ral Paraphrase Generation with Stacked Residual
LSTM Networks. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2923–2934.

J. Edward Hu, Rachel Rudinger, Matt Post, and Ben-
jamin Van Durme. 2019. ParaBank: Monolingual

https://doi.org/10.18653/v1/P19-1599
https://doi.org/10.18653/v1/P19-1599
https://www.aclweb.org/anthology/N10-1128
https://www.aclweb.org/anthology/N10-1128
https://www.aclweb.org/anthology/N04-1035

248

Bitext Generation and Sentential Paraphrasing via
Lexically-constrained Neural Machine Translation.
In Proceedings of AAAI.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial Example Genera-
tion with Syntactically Controlled Paraphrase Net-
works. In Proceedings of NAACL-HLT, pages 1875–
1885.

Maxim Khalilov and Khalil Simaan. 2011. Context-
sensitive syntactic source-reordering by statistical
transduction. In Proceedings of 5th International
Joint Conference on Natural Language Processing,
pages 38–46.

Stanley Kok and Chris Brockett. 2010. Hitting the right
paraphrases in good time. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 145–153. Association for
Computational Linguistics.

Ashutosh Kumar, Satwik Bhattamishra, Manik Bhan-
dari, and Partha Talukdar. 2019. Submodular
Optimization-based Diverse Paraphrasing and its Ef-
fectiveness in Data Augmentation. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3609–3619.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017. A
Continuously Growing Dataset of Sentential Para-
phrases. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1224–1234, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Uri Lerner and Slav Petrov. 2013. Source-side classi-
fier preordering for machine translation. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 513–523.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018. Paraphrase Generation with Deep Reinforce-
ment Learning. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3865–3878, Brussels, Belgium.
Association for Computational Linguistics.

Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu.
2019. Decomposable Neural Paraphrase Genera-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 3403–3414, Florence, Italy. Association for
Computational Linguistics.

Kathleen R McKeown. 1983. Paraphrasing questions
using given and new information. Computational
Linguistics, 9(1):1–10.

Sunghyun Park, Seung-won Hwang, Fuxiang Chen,
Jaegul Choo, Jung-Woo Ha, Sunghun Kim, and
Jinyeong Yim. 2019. Paraphrase Diversification Us-
ing Counterfactual Debiasing. In Proceedings of

the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6883–6891.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 425–430, Beijing, China. As-
sociation for Computational Linguistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style Transfer
Through Back-Translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
866–876.

Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and
Yong Yu. 2019. Exploring Diverse Expressions
for Paraphrase Generation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3164–3173.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get To The Point: Summarization with
Pointer-Generator Networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1073–1083.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in neural informa-
tion processing systems, pages 6830–6841.

Roy Tromble and Jason Eisner. 2009. Learning linear
ordering problems for better translation. In Proceed-
ings of the 2009 Conference on Empirical Methods
in Natural Language Processing: Volume 2-Volume
2, pages 1007–1016. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

https://doi.org/10.18653/v1/D17-1126
https://doi.org/10.18653/v1/D17-1126
https://doi.org/10.18653/v1/D17-1126
https://doi.org/10.18653/v1/D18-1421
https://doi.org/10.18653/v1/D18-1421
https://doi.org/10.18653/v1/P19-1332
https://doi.org/10.18653/v1/P19-1332
https://doi.org/10.3115/v1/P15-2070
https://doi.org/10.3115/v1/P15-2070
https://doi.org/10.3115/v1/P15-2070

249

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasaath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2018. Diverse beam
search for improved description of complex scenes.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Chao Wang, Michael Collins, and Philipp Koehn. 2007.
Chinese syntactic reordering for statistical machine
translation. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 737–745.

Di Wang, Nebojsa Jojic, Chris Brockett, and Eric Ny-
berg. 2017. Steering Output Style and Topic in
Neural Response Generation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2140–2150.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2019. A task in a suit and a tie: para-
phrase generation with semantic augmentation. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7176–7183.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 451–462, Melbourne, Australia.
Association for Computational Linguistics.

John Wieting, Jonathan Mallinson, and Kevin Gimpel.
2017. Learning Paraphrastic Sentence Embeddings
from Back-Translated Bitext. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 274–285.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational linguistics, 23(3):377–403.

Fei Xia and Michael McCord. 2004. Improving a statis-
tical MT system with automatically learned rewrite
patterns. In Proceedings of the 20th international
conference on Computational Linguistics, page 508.
Association for Computational Linguistics.

Qiongkai Xu, Juyan Zhang, Lizhen Qu, Lexing Xie,
and Richard Nock. 2018. D-PAGE: Diverse Para-
phrase Generation. CoRR, abs/1808.04364.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong,
Rui Zhao, and Kai Chen. 2018. QANet: Combin-
ing Local Convolution with Global Self-Attention
for Reading Comprehension. In International Con-
ference on Learning Representations.

Shiyue Zhang and Mohit Bansal. 2019. Addressing
Semantic Drift in Question Generation for Semi-
Supervised Question Answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 2495–2509, Hong Kong,
China. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Interna-
tional Conference on Learning Representations.

Appendix

A SELECTSEGMENTPAIRS: Limiting
number of segment pairs

As outlined in Section 2.3, the SELECTSEGMENT-
PAIRS subroutine returns a set of non-overlapping
sub-phrases (A,B). In order to limit the number
of sub-phrase pairs during inference, we employ
the following heuristics:

1. We compute a score based on number of non-
abstracted tokens divided by the total number
of tokens in the yield of the parent sub-phrase
t. We reject pairs (A,B) that have a score of
more than 0.6. This reduces spurious ambi-
guity by encouraging the model to rearrange
big constituents hierarchically rather than only
abstracting out small pieces.

2. We maintain a list of tags that are never in-
dividually selected as sub-phrases. These in-
clude constituents that would be trivial to the
reordering such as determiners (DT), prepo-
sitions (IN), cardinal numbers (CD), modals
(MD), etc. However, these may be a part of
larger constituents that form A or B.

B Training Data for SOW MODEL

In Section 3.2, we outlined our approach for obtain-
ing phrase-level alignments from the PARANMT-
50M dataset used to train the SOW MODEL. In
the described approach, an alignment score is com-
puted between each pair of phrases p, p̂ belonging
to sentences s and ŝ respectively. We use the exact
procedure in Zhang and Bansal (2019) to compute
the alignment score, outlined below:

1. First, we compute an inverse document fre-
quency (idf) score for each token in the train-
ing set. Let M = {s(i)} be the total number
of sentences. Then idf of a word w is com-
puted as:

idf(w) = − log
1

M

M∑
i=i

1[w ∈ s(i)]

2. Next, we extract a contextual representation of
each word in the two phrases s and ŝ. We use
ELMo (Peters et al., 2018) in our approach.

https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
http://arxiv.org/abs/1808.04364
http://arxiv.org/abs/1808.04364
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1253
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

250

SOW Input SOW Output

removing the NN from NP excluding this NN from NP

they might consider VP
if NP were imposed

in the case of imposition of
NP , they would consider
VP

NP lingered in the
deserted NNS .

in the abandoned NNS ,
there was NP .

PP was a black NN
archway .

was a black NN passage
PP .

there is already a ring
NN PP . PP circular NN exist .

Table 6: Examples of aligned phrase pairs with exactly
two sub-phrases abstracted out and replaced with con-
stituent labels. These phrase pairs are used to train the
SOW MODEL.

3. In order to compute a similarity score between
each pair of phrases (p, p̂), we use greedy
matching to first align each token in the source
phrase to its most similar word in the target
phrase. To compute phrase-level similarity,
these these word-level similarity scores are
combined by taking a weighted mean, with
weights specified by to the idf scores. For-
mally,

Rp,p̂ =

∑
wi∈p idf(wi)maxŵj∈p̂w

T
i ŵj∑

wi∈p idf(wi)

Pp,p̂ =

∑
ŵj∈p̂ idf(ŵj)maxwi∈pw

T
i ŵj∑

ŵj∈p̂ idf(ŵj)

Fp,p̂ =
2Pp,p̂Rp,p̂

Pp,p̂ +Rp,p̂

This scoring procedure is exactly same as the
one proposed by Zhang et al. (2020) to evalu-
ate sentence and phrase similarities.

4. Finally, the phrases p ∈ s and p̂ ∈ ŝ are
aligned if:

p = argmax
pi∈s

Fpi,p̂ & p̂ = argmax
p̂j∈ŝ

Fp,p̂j

These aligned set of phrase pairs (p, p̂) are used
to construct tuples (tA, B, C) and (t′A, B

′, C ′), as
outlined in Section 3.2. Table 6 provides examples
of such phrase pairs.

C SOW Model Architecture

Figure 6 provides an overview of the SOW seq2seq
model. We add POS tag embeddings (or cor-

Encoder Decoder

+ + + +

Input tokens x

Original Order
POS Embeddings

Encoder Output EM

Order o = FLIP

New Encoder
Output E

0 2 0 1

1 2 3 4

Output tokens y

If X then Y
BOS Y

Y if

Token Embeddings

Figure 6: Source Order reWriting (SOW) model. Our
model encodes order preference MONOTONE or FLIP
through position embeddings added to the encoder out-
put.

responding constituent label embeddings for ab-
stracted X and Y) to the input token embeddings
and original order position embeddings. As out-
lined in Section 2.3, another set of position em-
beddings corresponding to the order preference,
either MONOTONE or FLIP, are further added to
the output of the final layer of the encoder. The
decoder attends over these augmented encodings
during both training and inference.

D Syntactic Exemplars

Table 7 provides an example from the test set of
Chen et al. (2019b). The output retains the se-
mantics of the input sentence while following the
structure of the exemplar.

I: his teammates eyes got an ugly, hostile expression.
E: the smell of flowers was thick and sweet.
O: the eyes of his teammates had turned ugly and hostile.

Table 7: Example of input (I), syntactic exemplar (E),
and the reference output (O) from the evaluation test
set of (Chen et al., 2019b).

E Example Generations

In Table 8, we provide examples of paraphrases
generated by our system (SOW-REAP) and the base-
line SCPN (Iyyer et al., 2018) system. We addition-
ally include the phrase level transductions applied
to obtain the sentence level reordering by our sys-
tem (column 1) and the input template that the
corresponding SCPN generation was conditioned
on (Column 3).

251

Rules (SOW) Output (REAP) Template (SCPN) Output (SCPN)

Input: the public tender result message normally contains the following information :

NP normally contains the following
NN: → the following NN usually
contains in NP :

the following information
shall normally be included
in the public procurement re-
port :

SBARQ (WHADVP
SQ .)

where is the public pro-
curement report report usu-
ally contains the following
information .

NP normally VP :→ usually VP ,
NP
VBZ the following NN→ the NN
VBZ

normally the following in-
formation shall be included
in the public procurement re-
sult report :

S (PP , NP VP .) in the public competition ,
the report on competition
contains the following in-
formation .

Input: the story of obi-wan kenobi ends here .

NP VP .→ VP is NP
the NN of NP→ NP NN .

end of the obi-wan kenobi
story .

S (VP .) tell the story of obi-wan
kenobi .

the story PP NNS here . → there
NNS a story PP .

here ends the story of obi-
wan kenobi .

S (S , CC S .) the story of obi-wan
kenobi is here , and it ends
here .

Input: i leased it before i knew where the money came from .

i VBN it before i VP .→ before i
VP , i VBN it .

before i knew where the
money came from , i rented
it .

SBARQ (WHADVP
SQ .)

where did you learn that it
was the money ?

NP knew SBAR . → SBAR , S
knew .

where the money came from
, i lent it to me before i knew
.

S (NP VP .) i borrowed money before
i knew where the money
came from .

Input: priority actions should be more clearly specified in future reviews .

NP should be more clearly specified
PP .→ PP , NP should be clearly
specified .

in future reviews , priority
measures should be more
clearly specified .

S (S , CC S .) priority actions should be
more clearly specified in
future reviews , and they
should be informed .

ADVP VBN in future reviews →
VBN in future reviews ADVP

priority measures should be
specified in future reviews
clearly .

SBARQ (WHADVP
SQ .)

where should priority ac-
tions are more clearly spec-
ified in future reviews ?

Input: okay , well , tonight the occasion is calling .

ADJP , S .→ S , ADJP .
well , NN the occasion VP→ the
occasion VP , NN

the occasion is calling today
, okay ?

S (NP VP .) the opportunity is calling .

ADJP , S .→ S , ADJP .
well , NP VBZ calling→ VBZ call-
ing NP

we ’ll call it tonight , okay ? S (ADVP NP VP .) of course , the occasion is
calling .

Input: a minor risk considering the number of telephones in new york .

a JJ risk considering NP .→ NP is
a JJ risk .
the NN of NP→ NP NN

phones in new york are a mi-
nor risk considering .

SBARQ (WHADVP
SQ .)

when do you consider the
number of telephones in
new york ?

NP1 considering NP2 . → consid-
ering NP2 for NP1

NN of NP→ NP NN
NP in JJ york→ JJ york NP

in new york , the number of
phones is a minor risk .

FRAG (SBAR) . that minor risk is the num-
ber of telephones in new
york .

Input: that dress gets me into anywhere i want .

that S i VBP .→ i VBP S . i want that dress gets me
into the place .

NP (NP .) that dress gets me in there ,
i wish .

that S i VBP .→ i VBP S .
NN gets me PP→ PP , NN gets me
.

i want a dress in front of me
.

S (VP .) i want everywhere .

Table 8: Examples of paraphrases generated by our system and the baseline SCPN model. The outputs from
our model successfully rearranges the different structural components of the input sentence to obtain meaningful
rearrangements. SCPN on the other hand tends to conform to pre-specified templates that are often not aligned
with a given input.

252

F Implementation Details

The hyperparameters values used in REAP (see Ta-
ble 9) and SOW (see Table 10) models. Note that
we do not use coverage loss for the SOW model.

Seq2seq transformer architecture

Hidden size 256
Num layers 2
Num heads 8
Dropout 0.1

Training

Optimizer Adam, β = (0.9, 0.999), ε = 10−8

Learning rate 0.0001
Batch size 32
Epochs 50 (maximum)
Coverage loss coeff. 1 (first 10 epochs), 0.5 (10 - 20

epochs), 0 (rest)

Inference

k in top-k 20
Beam Size 10

Table 9: Hyperparameters used in the implementation
of the REAP model.

Seq2seq transformer architecture

Hidden size 256
Num layers 2
Num heads 8
Dropout 0.1

Training

Optimizer Adam, β = (0.9, 0.999), ε = 10−8

Learning rate 0.0001
Batch size 32
Epochs 50 (maximum)

Recombination of rules/transductions

Ignored tags DT, IN, CD, MD, TO, PRP
Max. no. of rules 3

Table 10: Hyperparameters used in the implementation
of the SOW model.

