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Abstract

The Natural Language Understanding (NLU)
component in task oriented dialog systems pro-
cesses a user’s request and converts it into
structured information that can be consumed
by downstream components such as the Dialog
State Tracker (DST). This information is typi-
cally represented as a semantic frame that cap-
tures the intent and slot-labels provided by the
user. We first show that such a shallow repre-
sentation is insufficient for complex dialog sce-
narios, because it does not capture the recur-
sive nature inherent in many domains. We pro-
pose a recursive, hierarchical frame-based rep-
resentation and show how to learn it from data.
We formulate the frame generation task as a
template-based tree decoding task, where the
decoder recursively generates a template and
then fills slot values into the template. We ex-
tend local tree-based loss functions with terms
that provide global supervision and show how
to optimize them end-to-end. We achieve a
small improvement on the widely used ATIS
dataset and a much larger improvement on a
more complex dataset we describe here.

1 Introduction

The output of an NLU component is called a se-
mantic or dialog frame (Hakkani-Tür et al., 2016).
The frame consists of intents which capture infor-
mation about the goal of the user and slot-labels
which capture constraints that need to be satisfied
in order to fulfill the users’ request. For example,
in Figure 1, the intent is to book a flight (atis flight)
and the slot labels are the from location, to location
and the date. The intent detection task can be mod-
eled as a classification problem and slot labeling as
a sequential labeling problem.

The ATIS (Airline Travel Information System)
dataset (Hakkani-Tür et al., 2010) is widely used
for evaluating the NLU component. We focus on
complex aspects of dialog that occur in real-world

Intent: atis_flight
Slot-labels: 
from      pittsburgh i’d like to travel to  atlanta on     september fourth

O fromloc.city_name O O  O     O     O toloc.city_name O depart_date.month depart_date.day

Figure 1: Flat structures used to represent Intents and
slot labels in ATIS. ‘O’ for Other or irrelevant tokens.

scenarios but are not captured in ATIS or other al-
ternatives such as, DSTC (Henderson et al., 2014)
or SNIPS 1. As an example, consider a reason-
able user utterance, “can i get two medium veggie
pizza and one small lemonade” (Figure 2A). The
intent is OrderItems. There are two items men-
tioned, each with three properties. The properties
are the name of the item (veggie pizza, lemonade),
the quantity of the item (two, one) and size of the
item (medium, small). These properties need to be
grouped together accurately to successfully fulfill
the customer’s request - the customer would not be
happy with one small veggie pizza.

This structure occurs to a limited extent in the
ATIS dataset (Figure 2B), which has specific forms
such as, from loc.city name and to loc.city name,
which must be distinguished. However, the scale
is small enough that these can be separate labels
and multi-class slot-labeling approaches that pre-
dict each specific form as a separate class (Figure
1) have had success. In more open domains, this
hierarchy-to-multi-class conversion increases the
number of classes exponentially vs. an approach
that appropriately uses available structure. Further,
hierarchical relationships, e.g. between fromloc
and city name, are ignored, which limits the shar-
ing of data and statistical strength across labels.

The contributions of this paper are as follows:
• We propose a recursive, hierarchical frame-

based representation that captures complex rela-
tionships between slots labels, and show how to

1https://github.com/snipsco/nlu-
benchmark/tree/master/2017-06-custom-intent-engines
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atis_flight

fromloc toloc depart_date

pittsburgh atlanta

month_name day_name

september fourth

city_name city_name

OrderItems

itemitem item item

quantity size

one small

quantity size

two medium

item

namename

veggie pizza lemonade

from pittsburgh i'd like to travel to 
atlanta on september fourth

can i get two medium veggie pizza and one
small lemonade 

A B

Figure 2: Hierarchical relationships between slot labels
and intents. A: simulated dataset, B: ATIS dataset.

learn this representation from raw user text. This
enables sharing statistical strength across labels.
Such a representation (Figure 3) also allows us to
include multiple intents in a single utterance (Gan-
gadharaiah and Narayanaswamy, 2019; Kim et al.,
2017; Xu and Sarikaya, 2013).
•We formulate frame generation as a template-

based tree-decoding task (Section 3). The value
or positional information at each terminal (repre-
sented by a $) in the template generated by the tree
decoder is predicted (or filled in) using a pointer
to the tokens in the input sentence (Vinyals et al.,
2015; Jia and Liang, 2016). This allows the sys-
tem to copy over slot values directly from the input
utterance.
• We extend (local) tree-based loss functions

with global supervision (Section 3.5), optimize
jointly for all loss functions end-to-end and show
that this improves performance (Section 4).

2 Related Work

Encoder-Decoder architectures, e.g. Seq2Seq mod-
els (Sutskever et al., 2014), are a popular class of
approaches to the problem of mapping source se-
quences (here words) to target sequences (here slot
labels) of variable length. Seq2Seq models have
been used to generate agent responses without the
need for intermediate dialog components such as
the DST or the Natural Language Generator (Gan-
gadharaiah et al., 2018). However, there has not
been much work that uses deeper knowledge of
semantic representations in task-oriented dialog.
A notable exception is recent work by Gupta et.al
(2018), who used a hierarchical representation for
dialog that can be easily parsed by off-the-shelf
constituency-based parsers. Neural constituency
parsers (Socher et al., 2011; Shen et al., 2018) work
directly off the input sentence, and as a result, dif-
ferent sentences with the same meaning end up
having different syntactic structures.

Example: “from pittsburgh i'd like to travel to atlanta on september fourth”

( atis_flight ( fromloc ( city_name ( pittsburgh ) ) toloc ( city_name ( atlanta) ) 
depart_date ( month ( september ) day ( fourth ) ) ) )

{ 
"atis_flight":{ 

”fromloc":{ 
"city_name” : ”pittsburgh"

},
"toloc":{ 

"city_name” : ”atlanta"
},
”depart_date":{ 

"month_name” : ”september”,
"day_number” : ”fourth”

}
}

}

atis_flight

fromloc toloc depart_date

pittsburgh atlanta

month_name day_name

september fourth

Dialog Frame Tree representation

Flat representation

city_name city_name

Bracketed Representation

Figure 3: Representations proposed in this paper for an
example from the ATIS dataset.

We define a recursive, hierarchical, frame-based
representation allows us to exploit some of the
structure in natural language while allowing end-
to-end training. Our template-based generation is
similar to sketch-based Seq2Tree decoding (Dong
and Lapata, 2018) developed for SQL query gen-
eration, where the decoder predicts a rough sketch
of the meaning, omitting low-level details such as
arguments and variable names. Here, we generate
templates that generalize slot values by their labels.

3 Proposed Approach

We learn to map a user’s utterance x =
{x1, x2, ...xn} to a template-based tree represen-
tation (Figure 2), specifically the bracketed repre-
sentation in Figure 3. We denote the symbols in
the bracketed representation by y = {y1, y2, ..ym}.
The translation from x to y is performed using four
components that are jointly trained end-to-end, (1)
an encoder, (2) a slot decoder, (3) a tree decoder
(Figure 4) and (4) a pointer network. Each of these
components is briefly explained below.

3.1 Encoder:
We use BERT (Devlin et al., 2019) as the encoder to
obtain token embeddings which are fine-tuned dur-
ing the end-to-end learning. This can be replaced
with any other choice of embedding.

3.2 Slot Decoder:
The slot decoder accepts embeddings from the
encoder, is deep, and has a dense final layer
which predicts the slot label for each token po-
sition â = â1, â2, ...ân. The true slot label
a = a1, a2, ...an is the general form of the
label. For example, city name, month name
and day name are the general forms obtained
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[CLS] from pittsburgh i would like to travel to atlanta on september fourth .

O O B-city_name O O O O O O B-city_name O B-month_name B-day_name O 

e

Figure 4: Proposed architecture.

from fromloc.city name, toloc.city name, de-
part date.month name, depart date.day name.

The decoder learns to predict Begin-Inside-
Outside (BIO) tags, since this allows the tree de-
coder to focus on producing a tree form and re-
quires the slot decoder to perform boundary de-
tection. The slot decoder is trained to minimize a
supervised loss,

lossSL = − 1

n

n∑
i=1

log πSL(ai|â<i, x) (1)

where, πSL is the output of the softmax layer at out-
put position i. â<i represents slot labels predicted
upto position i− 1.

3.3 Template-based Tree Decoder
The tree decoder works top down as shown in Fig-
ure 4. Long Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) models are used to
generate tokens and symbols. In the example
shown in Figure 4, the decoder generates atis flight
NT. Here, theNT symbol stands for a non-terminal.
When a non-terminal is predicted, the subsequent
symbol or token is predicted by applying the de-
coder to the hidden vector representation of the
non-terminal. Table 1 walks through this process
with an example.

Each of the predicted NT s enter a queue and
are expanded when popped from the queue. This
process continues until no more NT s are left to
expand. The loss function is,

lossT = − 1

S

S∑
s=1

1

Ts

Ts∑
t=1

log πTD(z
s
t |zs<t, z

s, x)

(2)
S refers to the size of the queue for a given train-
ing example. Ts refers to the number of nodes (or

children) to be generated for a non terminal in the
queue, zs. zst represents the tth child of the non
terminal zs. zs<t refers to left siblings of zst . Chil-
dren of zs are generated conditioned on the hidden
vector of zs and the left siblings of that child.

The tree decoder is initialized with the [CLS] rep-
resentation of the BERT encoder. The tree decoder
generates templates which are then filled with slot
values from the user’s utterance. In the example,
atlanta and pittsburgh are replaced by $city name,
september is replaced by $month name and fourth
is replaced by $day name during training. The $
symbol indicates a terminal.

3.4 Pointer Network:
We predict positions for every terminal, pointing to
a specific token in the user’s utterance. We perform
element-wise multiplication between the terminal
node’s hidden representation (h) and the encoder
representations (e) obtained from the encoder. This
is followed by a feed forward layer (g) and a dense
layer to finally assign probabilities to each position
(p) in the input utterance. That is,

pt = argmax
i

softmax(g(h(zst )� e(xi))) (3)

The pointer network loss, lossPT , is the categorical
cross entropy loss between pt and the true positions.
The four components are trained jointly end-to-end
to minimize a total loss,

loss−G = lossSL + lossT + lossPT (4)

3.5 Global Context
We found that the tree decoder tends to repeat
nodes, since representations may remain similar
from parent to child. We overcome this by pro-
viding global supervision. This global supervision
does not consider the order of nodes, but rather
rewards predictions if a specific node is present or
not in the final tree. If the model fails to predict
that a node is present, the model is penalized based
on the number of times it appears in the reference
(or ground truth) tree.

Say, z1, ...zK is the unique set of nodes present
in the reference tree and N(zk) is the number of
times node zk occurs in the reference. The repre-
sentation of the [CLS] token is used to predict the
presence of these nodes with the loss function,

lossG = −
K∑
k=1

N(zk)∑
j N(zj)

log πG(zk|x) (5)
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parent children Queue contents Partially generated frame

head ROOT NT1 [NT1] ROOT ( )
NT1 atis flight NT2 [NT2] ROOT ( atis flight ( ) )
NT2 fromloc NT3 toloc NT4 [NT3, NT4, NT5] ROOT ( atis flight ( fromloc ( ) toloc ( )

depart date NT5 depart date ( ) ) )
NT3 city name NT6 [NT4, NT5, NT6] ROOT ( atis flight ( fromloc ( city name ( ) ) toloc ( )

depart date ( ) ) )
NT4 city name NT7 [NT5, NT6, NT7] ROOT ( atis flight ( fromloc ( city name ( ) )

toloc ( city name ( ) ) depart date ( ) ) )
NT5 month name NT8 [NT6, NT7, NT8, NT9] ROOT ( atis flight ( fromloc ( city name ( ) ) toloc (

day name NT9 city name ( ) ) depart date ( month name ( )
day name ( ) ) ) )

NT6 $city name [NT7, NT8, NT9] ROOT ( atis flight ( fromloc ( city name ( $city name
) ) toloc ( city name ( ) ) depart date ( month name ( )
day name ( ) ) ) )

NT7 $city name [NT8, NT9] ROOT ( atis flight ( fromloc ( city name ( $city name
) ) toloc ( city name ( $city name ) )
depart date ( month name ( ) day name ( ) ) ) )

NT8 $month name [NT9] ROOT ( atis flight ( fromloc ( city name ( $city name
) ) toloc ( city name ( $city name ) ) depart date
( month name ( $month name ) day name ( ) ) ) )

NT9 $day name [∅] ROOT ( atis flight ( fromloc ( city name ( $city name
) ) toloc ( city name ( $city name ) ) depart date (
month name ( $month name ) day name ($day name
) ) ) )

Table 1: Actions taken to generate the frame representation of the sentence, from pittsburgh i’d like to travel to
atlanta on september fourth. “NT” refers to non-terminals.

with overall loss,

lossweighted G = loss−G + lossG (6)

4 Datasets and Results

We start with ATIS, the only public dataset that has
even a shallow hierarchy. The ATIS dataset con-
tains audio recordings of people requesting flight
reservations, with 21 intent types and 120 slot la-
bels. There are 4,478 utterances in the training set,
893 in the test set and 500 utterances in the devel-
opment set. We transform the ATIS dataset to the
bracketed tree format (Figure 3).

We also evaluate the proposed approach using
a simulated ordering dataset (example in Figure
3). The dataset contains 2 intents and 7 slot la-
bels, 4767 training examples, 1362 test examples
and 681 development examples. We manually cre-
ated templates for every intent (i.e, OrderItems,
GetTotal). An intent is randomly sampled, then
a template along with a number of items and slot
values for each of the properties of the items are
randomly drawn to generate an utterance and a
bracketed representation for the utterance 2.

2The modified ATIS and simulated datasets are available
as part of Supplementary material.

4.1 Evaluating the proposed approach

We evaluate both the generalized and the specific
forms generated by the proposed model (Figure 5)
in Table 2. The exact match criteria requires that
the predicted tree completely match the reference
tree. As this metric does not assign any credit to
partial matches, we also compare all parent child
relationships between the reference and the pre-
dicted trees and compute micro-f1 scores (Lipton
et al., 2014).

Specific:( atis_flight ( fromloc ( city_name ( $city_name ) ) toloc ( city_name ( $city_name) ) 
depart_date ( month_name ( $month_name ) day_name ( $day_name ) ) ) )

Generalized: ( atis_flight ( fromloc ( city_name ( pittsburgh ) ) toloc ( city_name ( atlanta) ) 
depart_date ( month_name ( september ) day_name ( fourth ) ) ) )

Figure 5: Generalized and Specific bracketed forms for,
from pittsburgh i’d like to travel to atlanta on septem-
ber fourth.

To measure the benefit of the weighted G loss,
we also evaluate an unweighted G loss function,

lossunweighted G = loss−G −
1

K

K∑
k=1

log πG(zk|x)

(7)
As seen in Table 2, the best performance both
on f-measure and accuracy is obtained with the
weighted G loss function.
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Model ATIS Simulated
gen-acc spec-acc gen-f1 spec-f1 gen-acc spec-acc gen-f1 spec-f1

Proposed method,-G 61.74 59.53 88.50 87.29 91.48 90.75 99.64 98.63
Proposed method,+unweighted G 62.21 60.23 87.33 86.81 91.85 90.68 99.97 98.63

Proposed method,+weighted G 72.00 70.54 89.32 88.87 92.14 91.12 99.97 98.76

Table 2: +/-G: with or without the global context loss function. gen: generalized form metrics and spec:results
with the specific form. acc:accuracy and f1: f1-score on parent child relationships.

4.2 Baseline: Extending flat representations
with group information

We also compare with a reasonable baseline that
extends the traditional flat structured frame (Figure
1) in a way that captures hierarchies. We learn to
predict group information along with the slot la-
bels (Baseline in Table 3) by appending indices to
the labels that indicate which group the slot label
belongs to. Consider, i want to fly from milwau-
kee to orlando on either wednesday evening or
thursday morning. This example requires captur-
ing two groups of information as shown in Figure
6. Group0 contains all the necessary pieces of in-
formation for traveling on wednesday evening and
Group1 contains information for traveling on thurs-
day morning. As shown, milwaukee and orlando
are present in both the groups.

Group0
fromloc: milwaukee
toloc: orlando
day_name: wednesday
period_of_day: evening

Group1
fromloc: milwaukee
toloc: orlando
day_name: thursday
period_of_day: morning

Figure 6: Example shows two groups of information.

We can represent the two
day names (and period of day) with B-
atis flight.depart date.day name0 and B-
atis flight.depart date.day name1. We can
then use B-atis flight.fromloc.city name01 and
B-atis flight.toloc.city name01 to indicate that
they belong to both the groups. Such an approach
increases the number of unique slot labels,
resulting in fewer training examples for each slot
label, but allows multi-class classification methods
from prior work to be used as is.

We then train and test the model using the ap-
proach that provided highest slot labeling scores
which used BERT (Chen et al., 2019). We also
convert the generated output of the hierarchical
method proposed in this paper to the flat format
above. Note, the f1 scores we obtain here are
different from those reported in Table 2 as here
we only consider the most specific label (eg. B-

atis flight.toloc.city name01) as the true slot label
for a token versus the f1 measure over all the parent
child relationships in Table 2. Since adding group
information increases the number of unique slot
labels, the results reported for the Baseline are dif-
ferent from what has been reported in (Chen et al.,
2019).

We notice a large improvement with the pro-
posed approach on the simulated dataset. This
implies that modeling hierarchical relationships be-
tween slot labels via a tree decoder is indeed help-
ful. The small improvement we see on ATIS can
be attributed to the fact that only a small fraction
of the test data required grouping information (≈
1.7%).

5 Conclusion and Future Work:

With this preliminary work, we showed cases
where traditional flat semantic representations fail
to capture slot label dependencies and we high-
lighted the need for deep hierarchical semantic rep-
resentations for dialog frames. The proposed recur-
sive, hierarchical frame-based representation cap-
tures complex relationships between slots labels.
We also proposed an approach using a template-
based tree decoder to generate these hierarchical
representations from users’ utterances. We also in-
troduced global supervision by extending the tree-
based loss function, and showed that it is possible
to learn all this end-to-end.

As future work, we are extending the proposed
approach and test its efficacy on real human con-
versations. More broadly, we continue to explore
strategies that combine semantic parsing and neural
networks for frame generation.

Model ATIS Simulated
Baseline 87.51 32.85

Proposed method + weighted G 88.01 97.67

Table 3: Comparing slot-label f1 scores of the Pro-
posed approach and Baseline.
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