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Abstract

Human conversations naturally evolve around
related concepts and scatter to multi-hop con-
cepts. This paper presents a new conversation
generation model, ConceptFlow, which lever-
ages commonsense knowledge graphs to ex-
plicitly model conversation flows. By ground-
ing conversations to the concept space, Con-
ceptFlow represents the potential conversa-
tion flow as traverses in the concept space
along commonsense relations. The traverse
is guided by graph attentions in the con-
cept graph, moving towards more meaning-
ful directions in the concept space, in or-
der to generate more semantic and informa-
tive responses. Experiments on Reddit con-
versations demonstrate ConceptFlow’s effec-
tiveness over previous knowledge-aware con-
versation models and GPT-2 based models
while using 70% fewer parameters, confirm-
ing the advantage of explicit modeling con-
versation structures. All source codes of this
work are available at https://github.com/
thunlp/ConceptFlow.

1 Introduction

The rapid advancements of language modeling
and natural language generation (NLG) techniques
have enabled fully data-driven conversation models,
which directly generate natural language responses
for conversations (Shang et al., 2015; Vinyals and
Le, 2015; Li et al., 2016b). However, it is a com-
mon problem that the generation models may de-
generate dull and repetitive contents (Holtzman
et al., 2019; Welleck et al., 2019), which, in con-
versation assistants, leads to off-topic and useless
responses. (Tang et al., 2019; Zhang et al., 2018;
Gao et al., 2019).

Conversations often develop around Knowledge.
A promising way to address the degeneration prob-
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Figure 1: An Example of Concept Shift in a Conver-
sation. Darker green indicates higher relevance and
wider arrow indicates stronger concept shift (captured
by ConceptFlow).

lem is to ground conversations with external knowl-
edge (Xing et al., 2017), such as open-domain
knowledge graph (Ghazvininejad et al., 2018), com-
monsense knowledge base (Zhou et al., 2018a), or
background documents (Zhou et al., 2018b). Re-
cent research leverages such external knowledge
by using them to ground conversations, integrat-
ing them as additional representations, and then
generating responses conditioned on both the texts
and the grounded semantics (Ghazvininejad et al.,
2018; Zhou et al., 2018a,b).

Integrating external knowledge as extra semantic
representations and additional inputs to the conver-
sation model effectively improves the quality of
generated responses (Ghazvininejad et al., 2018;
Logan et al., 2019; Zhou et al., 2018a). Never-
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theless, some research on discourse development
suggests that human conversations are not “still”:
People chat around a number of related concepts,
and shift their focus from one concept to others.
Grosz and Sidner (1986) models such concept shift
by breaking discourse into several segments, and
demonstrating different concepts, such as objects
and properties, are needed to interpret different
discourse segments. Attentional state is then intro-
duced to represent the concept shift corresponding
to each discourse segment. Fang et al. (2018)
shows that people may switch dialog topics en-
tirely in a conversation. Restricting the utilization
of knowledge only to those directly appear in the
conversation, effective as they are, does not reach
the full potential of knowledge in modeling human
conversations.

To model the concept shift in human con-
versations, this work presents ConceptFlow
(Conversation generation with Concept Flow),
which leverages commonsense knowledge graphs
to model the conversation flow in the explicit
concept space. For example, as shown in Fig-
ure 1, the concepts of a conversation from Red-
dit evolves from “chat” and “future”, to adjacent
concept “talk”, and also hops to distant concept
“dream” along the commonsense relations—a typi-
cal involvement in natural conversations. To better
capture this conversation structure, ConceptFlow
explicitly models the conversations as traverses in
commonsense knowledge graphs: it starts from the
grounded concepts, e.g., “chat” and “future”, and
generates more meaningful conversations by hop-
ping along the commonsense relations to related
concepts, e.g., “talk” and “dream”.

The traverses in the concept graph are guided by
graph attention mechanisms, which derives from
graph neural networks to attend on more appro-
priate concepts. ConceptFlow learns to model
the conversation development along more mean-
ingful relations in the commonsense knowledge
graph. As a result, the model is able to “grow” the
grounded concepts by hopping from the conversa-
tion utterances, along the commonsense relations,
to distant but meaningful concepts; this guides the
model to generate more informative and on-topic
responses. Modeling commonsense knowledge as
concept flows, is both a good practice on improving
response diversity by scattering current conversa-
tion focuses to other concepts (Chen et al., 2017),
and an implementation solution of the attentional

state mentioned above (Grosz and Sidner, 1986).
Our experiments on a Reddit conversation

dataset with a commonsense knowledge graph,
ConceptNet (Speer et al., 2017), demonstrate the
effectiveness of ConceptFlow. In both automatic
and human evaluations, ConceptFlow significantly
outperforms various seq2seq based generation mod-
els (Sutskever et al., 2014), as well as previous
methods that also leverage commonsense knowl-
edge graphs, but as static memories (Zhou et al.,
2018a; Ghazvininejad et al., 2018; Zhu et al., 2017).
Notably, ConceptFlow also outperforms two fine-
tuned GPT-2 systems (Radford et al., 2019), while
using 70% fewer parameters. Explicitly modeling
conversation structure provides better parameter
efficiency.

We also provide extensive analyses and case
studies to investigate the advantage of modeling
conversation flow in the concept space. Our analy-
ses show that many Reddit conversations are nat-
urally aligned with the paths in the commonsense
knowledge graph; incorporating distant concepts
significantly improves the quality of generated re-
sponses with more on-topic semantic information
added. Our analyses further confirm the effective-
ness of our graph attention mechanism in selecting
useful concepts, and ConceptFlow’s ability in lever-
aging them to generate more relevant, informative,
and less repetitive responses.

2 Related Work

Sequence-to-sequence models, e.g., Sutskever et al.
(2014), have been widely used for natural language
generation (NLG), and to build conversation sys-
tems (Shang et al., 2015; Vinyals and Le, 2015;
Li et al., 2016b; Wu et al., 2019). Recently, pre-
trained language models, such as ELMO (Devlin
et al., 2019), UniLM (Dong et al., 2019) and GPT-
2 (Radford et al., 2018), further boost the NLG
performance with large scale pretraining. Neverthe-
less, the degenerating of irrelevant, off-topic, and
non-useful responses is still one of the main chal-
lenges in conversational generation (Rosset et al.,
2020; Tang et al., 2019; Zhang et al., 2018; Gao
et al., 2019).

Recent work focuses on improving conversation
generation with external knowledge, for example,
incorporating additional texts (Ghazvininejad et al.,
2018; Vougiouklis et al., 2016; Xu et al., 2017;
Long et al., 2017), or knowledge graphs (Long
et al., 2017; Ghazvininejad et al., 2018). They have
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shown external knowledge effectively improves
conversation response generation.

The structured knowledge graphs include rich
semantics represented via entities and rela-
tions (Hayashi et al., 2019). Lots of previous stud-
ies focus on task-targeted dialog systems based on
domain-specific knowledge bases (Xu et al., 2017;
Zhu et al., 2017; Gu et al., 2016). To generate re-
sponses with a large-scale knowledge base, Zhou
et al. (2018a) and Liu et al. (2018) utilize graph
attention and knowledge diffusion to select knowl-
edge semantics for utterance understanding and
response generation. Moon et al. (2019) focuses
on the task of entity selection, and takes advantage
of positive entities that appear in the golden re-
sponse. Different from previous research, Concept-
Flow models the conversation flow explicitly with
the commonsense knowledge graph and presents a
novel attention mechanism on all concepts to guide
the conversation flow in the latent concept space.

3 Methodology

This section presents our Conversation generation
model with latent Concept Flow (ConceptFlow).
Our model grounds the conversation in the con-
cept graph and traverses to distant concepts along
commonsense relations to generate responses.

3.1 Preliminary
Given a user utterance X = {x1, ..., xm} with m
words, conversation generation models often use
an encoder-decoder architecture to generate a re-
sponse Y = {y1, ..., yn}.

The encoder represents the user utterance X as a
representation set H = {~h1, ...,~hm}. This is often
done by Gated Recurrent Units (GRU):

~hi = GRU(~hi−1, ~xi), (1)

where the ~xi is the embedding of word xi.
The decoder generates t-th word in the response

according to the previous t − 1 generated words
y<t = {y1, ..., yt−1} and the user utterance X:

P (Y |X) =

n∏
t=1

P (yt|y<t, X). (2)

Then it minimizes the cross-entropy loss L and
optimizes all parameters end-to-end:

L =

n∑
t=1

CrossEntropy(y∗t , yt), (3)

where y∗t is the token from the golden response.
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Figure 2: The Architecture of ConceptFlow.

The architecture of ConceptFlow is shown in
Figure 2. ConceptFlow first constructs a concept
graph G with central graph Gcentral and outer graph
Gouter according to the distance (hops) from the
grounded concepts (Sec. 3.2).

Then ConceptFlow encodes both central and
outer concept flows in central graph Gcentral and
outer graph Gouter , using graph neural networks
and concept embedding (Sec. 3.3).

The decoder, presented in Section 3.4, leverages
the encodings of concept flows and the utterance to
generate words or concepts for responses.

3.2 Concept Graph Construction

ConceptFlow constructs a concept graph G as the
knowledge for each conversation. It starts from the
grounded concepts (zero-hop concepts V 0), which
appear in the conversation utterance and annotated
by entity linking systems.

Then, ConceptFlow grows zero-hop concepts
V 0 with one-hop concepts V 1 and two-hop con-
cepts V 2. Concepts from V 0 and V 1, as well as
all relations between them, form the central con-
cept graph Gcentral, which is closely related to the
current conversation topic. Concepts in V 1 and V 2

and their connections form the outer graph Gouter.
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3.3 Encoding Latent Concept Flow
The constructed concept graph provides explicit se-
mantics on how concepts related to commonsense
knowledge. ConceptFlow utilizes it to model the
conversation and guide the response generation. It
starts from the user utterance, traversing through
central graph Gcentral, to outer graph Gouter. This is
modeled by encoding the central and outer concept
flows according to the user utterance.

Central Flow Encoding. The central concept
graphGcentral is encoded by a graph neural network
that propagates information from user utterance
H to the central concept graph. Specifically, it
encodes concept ei ∈ Gcentral to representation ~gei :

~gei = GNN(~ei, Gcentral, H), (4)

where ~ei is the concept embedding of ei. There
is no restriction of which GNN model to use. We
choose Sun et al. (2018)’s GNN (GraftNet), which
shows strong effectiveness in encoding knowledge
graphs. More details of GraftNet can be found in
Appendix A.3.

Outer Flow Encoding. The outer flow fep , hop-
ping from ep ∈ V1 to its connected two-hop con-
cept ek, is encoded to ~fep by an attention mecha-
nism:

~fep =
∑
ek

θek · [~ep ◦ ~ek], (5)

where ~ep and ~ek are embeddings for ep and ek, and
are concatenated (◦). The attention θek aggregates
concept triple (ep, r, ek) to get ~fep :

θek = softmax((wr · ~r)> · tanh(wh · ~ep + wt · ~ek)), (6)

where ~r is the relation embedding between the con-
cept ep and its neighbor concept ek. wr, wh and
wt are trainable parameters. It provides an efficient
attention specifically focusing on the relations for
multi-hop concepts.

3.4 Generating Text with Concept Flow
To consider both user utterance and related infor-
mation, the texts from the user utterance and the
latent concept flows are incorporated by decoder
using two components: 1) the context representa-
tion that combines their encodings (Sec. 3.4.1); 2)
the conditioned generation of words and concepts
from the context representations (Sec. 3.4.2).

3.4.1 Context Representation
To generate t-th time response token, we first cal-
culate the output context representation ~st for t-th

time decoding with the encodings of the utterance
and the latent concept flow.

Specifically, ~st is calculated by updating the (t−
1)-th step output representation ~st−1 with the (t−
1)-th step context representation ~ct−1:

~st = GRU(~st−1, [~ct−1 ◦ ~yt−1]), (7)

where ~yt−1 is the (t − 1)-th step generated to-
ken yt−1’s embedding, and the context representa-
tion~ct−1 concatenates the text-based representation
~c text
t−1 and the concept-based representation ~c concept

t−1 :

~ct−1 = FFN([~c text
t−1 ◦ ~c

cpt
t−1 ]). (8)

The text-based representation ~c text
t−1 reads the

user utterance encodingH with a standard attention
mechanism (Bahdanau et al., 2015):

~c text
t−1 =

m∑
i=1

αjt−1 · ~hj , (9)

and attentions αj
t−1 on the utterance tokens:

αjt−1 = softmax(~st−1 · ~hj). (10)

The concept-based representation ~c concept
t−1 is a

combination of central and outer flow encodings:

~c
cpt
t−1 =

 ∑
ei∈Gcentral

βeit−1 · ~gei

◦
 ∑
fep∈Gouter

γft−1 · ~fep

 .

(11)

The attention βeit−1 weights over central concept
representations:

βeit−1 = softmax(~st−1 · ~gei), (12)

and the attention γft−1 weights over outer flow rep-
resentations:

γft−1 = softmax(~st−1 · ~fep). (13)

3.4.2 Generating Tokens
The t-th time output representation ~st (Eq. 7) in-
cludes information from both the utterance text,
the concepts with different hop steps, and the at-
tentions upon them. The decoder leverages ~st to
generate the t-th token to form more informative
responses.

It first uses a gate σ∗ to control the generation by
choosing words (σ∗ = 0), central concepts (V 0,1,
σ∗ = 1) and outer concept set (V 2, σ∗ = 2):

σ∗ = argmaxσ∈{0,1,2}(FFNσ(~st)), (14)

The generation probabilities of word w, central
concept ei, and outer concepts ek are calculated
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over the word vocabulary, central concept set V 0,1,
and outer concept set V 2:

yt ∼


softmax(~st · ~w), σ∗ = 0

softmax(~st · ~gei), σ
∗ = 1

softmax(~st · ~ek), σ∗ = 2,

(15)

where ~w is the word embedding for word w, ~gei
is the central concept representation for concept ei
and ~ek is the two-hop concept ek’s embedding.

The training and prediction of ConceptFlow are
conducted following standard conditional language
models, i.e. using Eq. 15 in place of Eq. 2 and
training it by the Cross-Entropy loss (Eq. 3). Only
ground truth responses are used in training and no
additional annotation is required.

4 Experiment Methodology

This section describes the dataset, evaluation met-
rics, baselines, and implementation details of our
experiments.

Dataset. All experiments use the multi-hop ex-
tended conversation dataset based on a previous
dataset which collects single-round dialogs from
Reddit (Zhou et al., 2018a). Our dataset contains
3,384,185 training pairs and 10,000 test pairs. Pre-
processed ConceptNet (Speer et al., 2017) is used
as the knowledge graph, which contains 120,850
triples, 21,471 concepts and 44 relation types.

Evaluation Metrics. A wide range of evalu-
ation metrics are used to evaluate the quality of
generated responses: PPL (Serban et al., 2016),
Bleu (Papineni et al., 2002), Nist (Doddington,
2002), ROUGE (Lin, 2004) and Meteor (Lavie and
Agarwal, 2007) are used for relevance and repeti-
tiveness; Dist-1, Dist-2 and Ent-4 are used for diver-
sity, which is same with the previous work (Li et al.,
2016a; Zhang et al., 2018). The metrics above are
evaluated using the implementation from Galley
et al. (2018). Zhou et al. (2018a)’s concept PPL
mainly focuses on concept grounded models and
this metric is reported in Appendix A.1.

The Precision, Recall, and F1 scores are used to
evaluate the quality of learned latent concept flow
in predicting the golden concepts which appear in
ground truth responses.

Baselines. The six baselines compared come
from three groups: standard Seq2Seq, knowledge-
enhanced ones, and fine-tuned GPT-2 systems.

Seq2Seq (Sutskever et al., 2014) is the basic
encoder-decoder for language generation.

Knowledge-enhanced baselines include Mem-
Net (Ghazvininejad et al., 2018), CopyNet (Zhu

et al., 2017) and CCM (Zhou et al., 2018a). Mem-
Net maintains a memory to store and read concepts.
CopyNet copies concepts for the response genera-
tion. CCM (Zhou et al., 2018a) leverages a graph
attention mechanism to model the central concepts.
These models mainly focus on the grounded con-
cepts. They do not explicitly model the conversa-
tion structures using multi-hop concepts.

GPT-2 (Radford et al., 2019), the pre-trained
model that achieves the state-of-the-art in lots of
language generation tasks, is also compared in our
experiments. We fine-tune the 124M GPT-2 in two
ways: concatenate all conversations together and
train it like a language model (GPT-2 lang); extend
the GPT-2 model with encode-decoder architecture
and supervise with response data (GPT-2 conv).

Implement Details. The zero-hop concepts are
initialized by matching the keywords in the post to
concepts in ConceptNet, the same with CCM (Zhou
et al., 2018a). Then zero-hop concepts are extended
to their neighbors to form the central concept graph.
The outer concepts contain a large amount of two-
hop concepts with lots of noises. To reduce the
computational cost, we first train ConceptFlow (se-
lect) with 10% random training data, and use the
learned graph attention to select top 100 two-hop
concepts over the whole dataset. Then the standard
train and test are conducted with the pruned graph.
More details of this filtering step can be found in
Appendix A.4.

TransE (Bordes et al., 2013) embedding and
Glove (Pennington et al., 2014) embedding are
used to initialize the representation of concepts
and words, respectively. Adam optimizer with the
learning rate of 0.0001 is used to train the model.

5 Evaluation

Five experiments are conducted to evaluate the gen-
erated responses from ConceptFlow and the effec-
tiveness of the learned graph attention.

5.1 Response Quality

This experiment evaluates the generation quality of
ConceptFlow automatically and manually.

Automatic Evaluation. The quality of gener-
ated responses is evaluated with different metrics
from three aspects: relevance, diversity, and nov-
elty. Table 1 and Table 2 show the results.

In Table 1, all evaluation metrics calculate the
relevance between the generated response and the
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Model Bleu-4 Nist-4 Rouge-1 Rouge-2 Rouge-L Meteor PPL
Seq2Seq 0.0098 1.1069 0.1441 0.0189 0.1146 0.0611 48.79
MemNet 0.0112 1.1977 0.1523 0.0215 0.1213 0.0632 47.38
CopyNet 0.0106 1.0788 0.1472 0.0211 0.1153 0.0610 43.28
CCM 0.0084 0.9095 0.1538 0.0211 0.1245 0.0630 42.91
GPT-2 (lang) 0.0162 1.0844 0.1321 0.0117 0.1046 0.0637 29.08∗

GPT-2 (conv) 0.0124 1.1763 0.1514 0.0222 0.1212 0.0629 24.55∗

ConceptFlow 0.0246 1.8329 0.2280 0.0469 0.1888 0.0942 29.90

Table 1: Relevance Between Generated and Golden Responses. The PPL results∗ of GPT-2 is not directly compa-
rable because of its different tokenization. More results can be found in Appendix A.1.

Diversity(↑) Novelty w.r.t. Input(↓)
Model Dist-1 Dist-2 Ent-4 Bleu-4 Nist-4 Rouge-2 Rouge-L Meteor
Seq2Seq 0.0123 0.0525 7.665 0.0129 1.3339 0.0262 0.1328 0.0702
MemNet 0.0211 0.0931 8.418 0.0408 2.0348 0.0621 0.1785 0.0914
CopyNet 0.0223 0.0988 8.422 0.0341 1.8088 0.0548 0.1653 0.0873
CCM 0.0146 0.0643 7.847 0.0218 1.3127 0.0424 0.1581 0.0813
GPT-2 (lang) 0.0325 0.2461 11.65 0.0292 1.7461 0.0359 0.1436 0.0877
GPT-2 (conv) 0.0266 0.1218 8.546 0.0789 2.5493 0.0938 0.2093 0.1080
ConceptFlow 0.0223 0.1228 10.27 0.0126 1.4749 0.0258 0.1386 0.0761

Table 2: Diversity (higher better) and Novelty (lower better) of Generated Response. Diversity is calculated within
generated responses; Novelty compares generated responses to the input post. More results are in Appendix A.1.

Model Parameter Average Score Best@1 Ratio
App. Inf. App. Inf.

CCM 35.6M 1.802 1.802 17.0% 15.6%
GPT-2 (conv) 124.0M 2.100 1.992 26.2% 23.6%
ConceptFlow 35.3M 2.690 2.192 30.4% 25.6%
Golden Human 2.902 3.110 67.4% 81.8%

Table 3: Human Evaluation on Appropriate (App.) and
Informativeness (Inf.). The Average Score takes the av-
erage from human judgments. Best@1 Ratio indicates
the fraction of judges consider the case as the best. The
number of parameters are also presented.

Model App. Inf.
ConceptFlow-CCM 0.3724 0.2641
ConceptFlow-GPT2 0.2468 0.2824

Table 4: Fleiss’ Kappa of Human Agreement. Two test-
ing scenarios Appropriate (App.) and Informativeness
(Inf.) are used to evaluate the the quality of generated
response. The Fleiss’ Kappa evaluates agreement from
various annotators and focuses on the comparison of
two models with three categories: win, tie and loss.

golden response. ConceptFlow outperforms all
baseline models by large margins. The responses
generated by ConceptFlow are more on-topic and
match better with the ground truth responses.

In Table 2, Dist-1, Dist-2, and Ent-4 measure the
word diversity of generated responses and the rest
of metrics measure the novelty by comparing the
generated response with the user utterance. Con-
ceptFlow has a good balance in generating novel

and diverse responses. GPT-2’s responses are more
diverse, perhaps due to its sampling mechanism
during decoding, but are less novel and on-topic
compared to those from ConceptFlow.

Human Evaluation. The human evaluation fo-
cuses on two aspects: appropriateness and infor-
mativeness. Both are important for conversation
systems (Zhou et al., 2018a). Appropriateness eval-
uates if the response is on-topic for the given ut-
terance; informativeness evaluates systems’ abil-
ity to provide new information instead of copying
from the utterance (Zhou et al., 2018a). All re-
sponses of sampled 100 cases are selected from
four methods with better performances: CCM,
GPT-2 (conv), ConceptFlow, and Golden Response.
The responses are scored from 1 to 4 by five judges
(the higher the better).

Table 3 presents Average Score and Best@1 ra-
tio from human judges. The first is the mean of five
judges; the latter calculates the fraction of judges
that consider the corresponding response the best
among four systems. ConceptFlow outperforms
all other models in all scenarios, while only us-
ing 30% of parameters compared to GPT-2. This
demonstrates the advantage of explicitly modeling
conversation flow with structured semantics.

The agreement of human evaluation is tested to
demonstrate the authenticity of evaluation results.
We first sample 100 cases randomly for our human
evaluation. Then the responses from four better
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conversation systems, CCM, GPT-2 (conv), Con-
ceptFlow and Golden Responses, are provided with
a random order. A group of annotators are asked to
score each response ranged from 1 to 4 according
to the quality on two testing scenarios, appropriate-
ness and informativeness. All annotators have no
clues about the source of generated responses.

The agreement of human evaluation for CCM,
GPT-2 (conv) and ConceptFlow are presented in
Table 4. For each case, the response from Con-
ceptFlow is compared to the responses from two
baseline models, CCM and GPT-2 (conv). The
comparison result is divided into three categories:
win, tie and loss. Then the human evaluation agree-
ment is calculated with Fleiss’ Kappa (κ). The
κ value ranges from 0.21 to 0.40 indicating fair
agreement, which confirms the quality of human
evaluation.

Both automatic and human evaluations illustrate
the effectiveness of ConceptFlow. The next experi-
ment further studies the effectiveness of multi-hop
concepts in ConceptFlow.

5.2 Effectiveness of Multi-hop Concepts

This part explores the role of multi-hop concepts in
ConceptFlow. As shown in Figure 3, three experi-
ments are conducted to evaluate the performances
of concept selection and the quality of generated
responses with different sets of concepts.

This experiment considers four variations of
outer concept selections. Base ignores two-hop
concepts and only considers the central concepts.
Rand, Distract, and Full add two-hop concepts in
three different ways: Rand selects concepts ran-
domly, Distract selects all concepts that appear in
the golden response with random negatives (dis-
tractors), and Full is our ConceptFlow (select) that
selects concepts by learned graph attentions.

As shown in Figure 3(a), Full covers more
golden concepts than Base. This aligns with our
motivation that natural conversations do flow from
central concepts to multi-hop ones. Compared to
Distract setting where all ground truth two-hop con-
cepts are added, ConceptFlow (select) has slightly
less coverage but significantly reduces the number
of two-hop concepts.

The second experiment studies the model’s abil-
ity to generate ground truth concepts, by com-
paring the concepts in generated responses with
those in ground truth responses. As shown in Fig-
ure 3(b), though Full filtered out some golden two-

Depth Amount Golden Coverage
Ratio Number

Zero-hop 5.8 9.81% 0.579
+ One-hop 98.6 38.78% 2.292
+ Two-hop 880.8 61.37% 3.627
+ Three-hop 3769.1 81.58% 4.821
ConceptFlow 198.6 52.10% 3.075

Table 5: Statistics of Concept Graphs with different
hops, including the total Amount of connected con-
cepts, the Ratio and Number of covered golden con-
cepts (those appear in ground truth responses). Con-
ceptFlow indicates the filtered two-hop graph.

hop concepts, it outperforms other variations by
large margins. This shows ConceptFlow’s graph at-
tention mechanisms effectively leverage the pruned
concept graph and generate high-quality concepts
when decoding.

The high-quality latent concept flow leads to
better modeling of conversations, as shown in Fig-
ure 3(c). Full outperforms Distract in their gener-
ated responses’ token level perplexity, even though
Distract includes all ground truth two-hop concepts.
This shows that “negatives” selected by Concept-
Flow, while not directly appear in the target re-
sponse, are also on-topic and include meaningful
information, as they are selected by graph atten-
tions instead of random.

More studies of multi-hop concept selection
strategies can be found in Appendix A.2.

5.3 Hop Steps in Concept Graph

This experiment studies the influence of hop steps
in the concept graph.

As shown in Table 5, the Number of covered
golden concepts increases with more hops. Com-
pared to zero-hop concepts, multi-hop concepts
cover more golden concepts, confirming that con-
versations naturally shift to multi-hop concepts:
extending the concept graph from one-hop to two-
hop improves the recall from 39% to 61%, and to
three-hop further improves to 81%.

However, at the same time, the amounts of the
concepts also increase dramatically with multiple
hops. Three hops lead to 3,769 concepts on aver-
age, which are 10% of the entire graph we used. In
this work, we choose two-hop, as a good balance
of coverage and efficiency, and used ConceptFlow
(select) to filter around 200 concepts to construct
the pruned graph. How to efficiently and effec-
tively leverage more distant concepts in the graph
is reserved for future work.



2038

(a) Golden Concept Coverage. (b) Response Concept Generation. (c) Response Token Generation.

Figure 3: Comparisons of Outer Concept Selection Methods. Base only considers the central concepts and ignores
two-hop concepts. Rand randomly selects two-hop concepts. Distract incorporates golden concepts in the response
with random negatives (distractors). Full chooses two-hop concepts with ConceptFlow’s graph attention.

Figure 4: Case Study (Best viewed in color). Left: Attention flow in commonsense concept graph, where zero-
hop concepts, one-hop concepts and two-hop concepts are highlighted. Right: Attention scores over all concepts.
Darker green indicates higher attention scores.

(a) Central Concept. (b) Two-hop Concept.

Figure 5: Distribution of Attention Score. The dis-
tributions of Overall (all concepts of the certain part),
Golden (concepts in the golden response) and Zero-hop
(concepts appear in the post) are presented. The atten-
tion score is calculated by scaling the mean of attention
scores of n step decoding.

5.4 Case Study

Some cases from three conversation models are
listed in Table 6. Responses from CCM may repeat
the same contents as it does not explicitly model
the traverse in the concept space. For example,

the responses from the first and third cases always
repeat “I’m not sure”. On the other hand, GPT-2
generates more fluent responses compared to CCM.
Nevertheless, some cases from GPT-2 merely copy
contents or concepts from the given post. For ex-
ample, for the third case, GPT-2 (conv) mainly
discusses the concept music.

In comparison, the generated responses from our
ConceptFlow are more fluent and informative than
those from both CCM and GPT-2. For example,
in the third case, ConceptFlow brings associated
concepts “sound” and “check” to the response gen-
eration, hopping from the grounded concepts “mu-
sic” and “advice”. Introducing these multi-hop
concepts effectively improves the informativeness
and diversity of generated responses.

Figure 4 presents a case study of ConceptFlow.
The attention score βei and γf are presented in the
form of color intensity. The “championship” of
zero-hop, “fan” of one-hop and “team” of two-hop
receive more attention than others and are used to
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#1 Post actually i stayed at the building right next to the lighthouse . i believe it was a boiler room .
another group was already sleeping at the lighthouse .

CCM i ’m not sure if you ’re joking , but i ’m not sure if you ’re talking about the lighthouse .
i ’m not sure if it was a blanket or a blanket .

GPT-2 (conv) i ’m pretty sure it was a room with a door .
ConceptFlow good luck , i ’m sure there are some good things in the house .

#2 Post at this point it may be more beneficial for him to keep playing as much as he can before the next season .
trick his body into thinking he is still in the season .

CCM i think he ’s just going to be a great player .
GPT-2 (conv) i ’m sure he ’ll be fine . he ’s a great player , but he ’s not a top 10 player .
ConceptFlow he ’s been playing the same game for the last two years . he ’s been playing the same way .
#3 Post i ’ve known how to change the music , it does n’t feel natural . thanks for the advice though .

CCM i ’m not sure if you ’re joking , but i ’m not sure if you ’re being sarcastic or not . i ’m not sure if you ’re
being sarcastic or not , but i ’m not sure if you ’re being sarcastic or not . i ’m pretty sure it ’s just a video .

GPT-2 (conv) i ’ve been playing with a lot of different music and it ’s always been the same .
ConceptFlow i did n’t even notice the natural sound . i ’ll check it out !

#4 Post are milan and inter no longer top clubs given that they currently do n’t have the finances
to compete with the best ?

CCM milan is n’t a top club , but they are n’t top clubs . they are n’t the only ones who are n’t in the world .
GPT-2 (conv) i think they are . they are a club that has been in the top 4 for a long time .
ConceptFlow the best part of the team is the way they are , and we do n’t want to play the best team in the country .
#5 Post no i ’ve never felt like i had friends whoops
CCM i ’m sorry , i feel you .
GPT-2 (conv) i ’ve never felt like i had friends whoops . i ’ve never felt like i ’ve had friends whoops .
ConceptFlow you ’re gonna have to call your friend !

Table 6: Some Cases Generated by Different Models. Tokens from zero concepts, one-hop concepts and two-hop
concepts are highlighted.

generate the response. The concept flow from “fans”
to “fan” models the concept shift from user post to
response. The concept flow from “fan” to “team”
further describes the concept shift in response gen-
eration. In addition, some concepts, such as “win”
and “pretty”, share higher attention and may help
to understand the one-hop concepts, and are fil-
tered out when generating response by the gate σ∗

according to the relevance with conversation topic.

5.5 Learned Attentions on Concepts

This experiment studies the learned attention of
ConceptFlow on different groups of concepts. We
consider the average attention score (β for central
concepts and α (Appendix A.4) for two-hop con-
cepts) from all decoding steps. The probability
density of the attention is plotted in Figure 5.

Figure 5(a) shows the attention weights on cen-
tral concepts. ConceptFlow effectively attends
more on golden and zero-hop concepts, which in-
clude more useful information. The attention on
two-hop concepts are shown in Figure 5(b). Con-
ceptFlow attends slightly more on the Golden two-
hop concepts than the rest two-hop ones, though
the margin is smaller—the two-hop concepts are
already filtered down to high-quality ones in the
ConceptFlow (select) step.

6 Conclusion and Future Work

ConceptFlow models conversation structure explic-
itly as transitions in the latent concept space, in
order to generate more informative and meaningful
responses. Our experiments on Reddit conversa-
tions illustrate the advantages of ConceptFlow over
previous conversational systems. Our studies con-
firm that ConceptFlow’s advantages come from the
high coverage latent concept flow, as well as its
graph attention mechanism that effectively guides
the flow to highly related concepts. Our human
evaluation demonstrates that ConceptFlow gener-
ates more appropriate and informative responses
while using much fewer parameters.

In future, we plan to explore how to combine
knowledge with pre-trained language models, e.g.
GPT-2, and how to effectively and efficiently intro-
duce more concepts in generation models.
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A Appendices

Supplementary results of the overall performance
and ablation study for multi-hop concepts are pre-
sented here. More details of Central Flow Encoding
and Concept Selection are also shown.

A.1 Supplementary Results for Overall
Experiments

This part presents more evaluation results of the
overall performance of ConceptFlow from two as-
pects: relevance and novelty.

Table 7 shows supplementary results on Rele-
vance between generated responses and golden re-
sponses. ConceptFlow outperforms other baselines
with large margins among all evaluation metrics.
Concept-PPL is the Perplexity that calculated by
the code from previous work (Zhou et al., 2018a).
Zhou et al. (2018a) calculates Perplexity by con-
sidering both words and entities. It is evident that
more entities will lead to a better result in terms of
Concept-PPL because the vocabulary size of enti-
ties is always smaller than word vocabulary size.

More results for model novelty evaluation are
shown in Table 8. These supplementary results
compare the generated response with the user post
to measure the repeatability of the post and gener-
ated responses. A lower score indicates better per-
formance because the repetitive and dull response
will degenerate the model performance. Concept-
Flow presents competitive performance with other
baselines, which illustrate our model provides an
informative response for users.

These supplementary results further confirm the
effectiveness of ConceptFlow. Our model has the
ability to generate the most relevant response and
more informative response than other models.

A.2 Supplementary Results for Multi-hop
Concepts

The quality of generated responses from four two-
hop concept selection strategies is evaluated to fur-
ther demonstrate the effectiveness of ConceptFlow.

We evaluate the relevance between generated re-
sponses and golden responses, as shown in Table 9.
Rand outperforms Base on most evaluation metrics,
which illustrates the quality of generated response
can be improved with more concepts included. Dis-
tract outperforms Rand on all evaluation metrics,
which indicates that concepts appearing in golden
responses are meaningful and important for the
conversation system to generate a more on-topic

and informative response. On the other hand, Full
outperforms Distract significantly, even though not
all golden concepts are included. The better perfor-
mance thrives from the underlying related concepts
selected by our ConceptFlow (select). This experi-
ment further demonstrates the effectiveness of our
ConceptFlow to generate a better response.

A.3 Model Details of Central Flow Encoding
This part presents the details of our graph neural
network to encode central concepts.

A multi-layer Graph Neural Network
(GNN) (Sun et al., 2018) is used to encode
concept ei ∈ Gcentral in central concept graph:

~gei = GNN(~ei, Gcentral, H), (16)

where ~ei is the concept embedding of ei and H is
the user utterance representation set.

The l-th layer representation ~g l
ei of concept ei is

calculated by a single-layer feed-forward network
(FFN) over three states:

~g lei = FFN

~g l−1
ei ◦ ~p l−1 ◦

∑
r

∑
ej

f
ej→ei
r

(
~g l−1
ej

) ,

(17)

where ◦ is concatenate operator. ~g l−1
ej is the con-

cept ej’s representation of (l − 1)-th layer. ~p l−1 is
the user utterance representation of (l− 1)-th layer.

The (l−1)-th layer user utterance representation
is updated with the zero-hop concepts V 0:

~p l−1 = FFN(
∑
ei∈V 0

~g l−1
ei ). (18)

f
ej→ei
r (~g l−1

ej ) aggregates the concept semantics of
relation r specific neighbor concept ej . It uses
attention αej

r to control concept flow from ei:

f
ej→ei
r (~e l−1

j ) = α
ej
r · FFN(~r ◦ ~g l−1

ej ), (19)

where ◦ is concatenate operator and ~r is the rela-
tion embedding of r. The attention weight αej

r is
computed over all concept ei’s neighbor concepts
according to the relation weight score and the Page
Rank score (Sun et al., 2018):

α
ej
r = softmax(~r · ~p l−1) · PageRank(e l−1

j ), (20)

where PageRank(e l−1j ) is the page rank score to
control propagation of embeddings along paths
starting from ei (Sun et al., 2018) and ~p l−1 is the
(l − 1)-th layer user utterance representation.

The 0-th layer concept representation ~e 0i for con-
cept ei is initialized with the pre-trained concept
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Model Bleu-1 Bleu-2 Bleu-3 Nist-1 Nist-2 Nist-3 Concept-PPL
Seq2Seq 0.1702 0.0579 0.0226 1.0230 1.0963 1.1056 -
MemNet 0.1741 0.0604 0.0246 1.0975 1.1847 1.1960 46.85
CopyNet 0.1589 0.0549 0.0226 0.9899 1.0664 1.0770 40.27
CCM 0.1413 0.0484 0.0192 0.8362 0.9000 0.9082 39.18
GPT-2 (lang) 0.1705 0.0486 0.0162 1.0231 1.0794 1.0840 -
GPT-2 (conv) 0.1765 0.0625 0.0262 1.0734 1.1623 1.1745 -
ConceptFlow 0.2451 0.1047 0.0493 1.6137 1.7956 1.8265 26.76

Table 7: More Metrics on Relevance of Generated Responses. The relevance is calculated between the generated
response and the golden response. Concept-PPL is the method used for calculating Perplexity in CCM (Zhou et al.,
2018a), which combines the distribution of both words and concepts together. The Concept-PPL is meaningless
when utilizing different numbers of concepts (more concepts included, better Perplexity shows).

Novelty w.r.t. Input(↓)
Model Bleu-1 Bleu-2 Bleu-3 Nist-1 Nist-2 Nist-3 Rouge-1
Seq2Seq 0.1855 0.0694 0.0292 1.2114 1.3169 1.3315 0.1678
MemNet 0.2240 0.1111 0.0648 1.6740 1.9594 2.0222 0.2216
CopyNet 0.2042 0.0991 0.056 1.5072 1.7482 1.7993 0.2104
CCM 0.1667 0.0741 0.0387 1.1232 1.2782 1.3075 0.1953
GPT-2 (lang) 0.2124 0.0908 0.0481 1.5105 1.7090 1.7410 0.1817
GPT-2 (conv) 0.2537 0.1498 0.1044 1.9562 2.4127 2.5277 0.2522
ConceptFlow 0.1850 0.0685 0.0281 1.3325 1.4600 1.4729 0.1777

Table 8: More Metrics on Novelty of Generated Responses. The novelty is calculated between the generated
response and the user utterance, where lower means better.

Version Bleu-1 Bleu-2 Bleu-3 Bleu-4 Nist-1 Nist-2 Nist-3 Nist-4
Base 0.1705 0.0577 0.0223 0.0091 0.9962 1.0632 1.0714 1.0727
Rand 0.1722 0.0583 0.0226 0.0092 1.0046 1.0726 1.0810 1.0823
Distract 0.1734 0.0586 0.0230 0.0097 1.0304 1.0992 1.1081 1.1096
Full 0.2265 0.0928 0.0417 0.0195 1.4550 1.6029 1.6266 1.6309

Table 9: The Generation Quality of Different Outer Hop Concept Selectors. Both Bleu and Nist are used to
calculate the relevance between generated responses and golden responses.

embedding ~ei and the 0-th layer user utterance rep-
resentation ~p 0 is initialized with the m-th hidden
state hm from the user utterance representation set
H . The GNN used in ConceptFlow establishes
the central concept flow between concepts in the
central concept graph using attentions.

A.4 Concept Selection

With the concept graph growing, the number of
concepts is increased exponentially, which brings
lots of noises. Thus, a selection strategy is needed
to select high-relevance concepts from a large num-
ber of concepts. This part presents the details of
our concept selection from ConceptFlow (select).

The concept selector aims to select top K related

two-hop concepts based on the sum of attention
scores for each time t over entire two-hop concepts:

αn =
n∑

t=1

softmax(~st · ~ek), (21)

where ~st is the t-th time decoder output representa-
tion and ~ek denotes the concept ek’s embedding.

Then two-hop concepts are sorted according to
the attention score αn. In our settings, top 100
concepts are reserved to construct the two-hop con-
cept graph V 2. Moreover, central concepts are
all reserved because of the high correlation with
the conversation topic and acceptable computation
complexity. Both central concepts and selected
two-hop concepts construct the concept graph G.


