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Abstract

We take up the scientific question of what

determines the preferred order of adjectives

in English, in phrases such as big blue box

where multiple adjectives modify a following

noun. We implement and test four quantita-

tive theories, all of which are theoretically mo-

tivated in terms of efficiency in human lan-

guage production and comprehension. The

four theories we test are subjectivity (Scon-

tras et al., 2017), information locality (Futrell,

2019), integration cost (Dyer, 2017), and in-

formation gain, which we introduce. We eval-

uate theories based on their ability to predict

orders of unseen adjectives in hand-parsed and

automatically-parsed dependency treebanks.

We find that subjectivity, information locality,

and information gain are all strong predictors,

with some evidence for a two-factor account,

where subjectivity and information gain reflect

a factor involving semantics, and information

locality reflects collocational preferences.

1 Introduction

Across languages, there exist strong and stable

constraints on the order of adjectives when more

than one is used to modify a noun (Dixon, 1982;

Sproat and Shih, 1991). For example, in English,

big blue box sounds natural and appears relatively

frequently in corpora, while blue big box sounds

less natural and occurs less frequently (Scontras

et al., 2017). In this paper, we take up the scien-

tific question of what explains these constraints in

natural language. To do so, we implement quanti-

tative models that have been proposed in previous

literature as explanations for these constraints, and

compare their accuracy in predicting adjective or-

dering data in parsed corpora of English1.

In the last few years, adjective order has become

a crucial testing ground for quantitative theories

1All code and data are available at https://github.
com/langprocgroup/adjorder.

of syntax. These theories provide mathematical

models that can describe the distribution of words

in sentences and the way those words combine to

yield the meaning of a sentence, in a way that cap-

tures the fine-grained quantitative patterns observ-

able in large text datasets (Manning, 2003; Bres-

nan et al., 2007; Chen and Ferrer-i-Cancho, 2019).

Quantitative syntactic theories are often

efficiency-based, meaning that they model word

distributions as the result of a process that tries to

maximize information transfer while minimizing

some measure of cognitive cost; as a result, they

often use the mathematical language of informa-

tion theory. Such theories promise not only to

describe distributions of words, but also to explain

why they take the shape they do, by viewing

human language as an efficient code subject to

appropriate constraints. This work informs NLP

by providing a theory of language structure that

integrates with data-driven, optimization-based

machine learning models.

Adjective order is a fruitful empirical target for

quantitative theories of syntax because it is an area

where the traditional discrete and symbolic the-

ories become highly complex, and a quantitative

approach becomes more attractive. For example,

in the formal syntax literature, a standard expla-

nation for adjective order constraints is that each

adjective belongs to a certain semantic class (e.g.,

COLOR or SIZE) and that there exists a universal

total order on these semantic classes (e.g., COLOR

< SIZE) shared among all languages, which deter-

mines the order of adjectives in any given instance

(Cinque, 1994; Scott, 2002). Such discrete theo-

ries of adjective order become complex rapidly as

the number of semantic classes to be posited be-

comes large (upwards of twelve in Scontras et al.

2017) and more fine-grained (see Bar-Sever et al.

2018 for discussion of the learning problem posed

by such classifications).
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In contrast, quantitative syntax theories typi-

cally identify a single construct that grounds out in

real-valued numerical scores given to adjectives,

which determine their ordering preferences. These

scores can be estimated based on large-scale cor-

pus data or based on human ratings. In what fol-

lows, we test the predictions of four such theories:

the subjectivity hypothesis (Scontras et al., 2017;

Simonič, 2018; Hahn et al., 2018; Franke et al.,

2019; Scontras et al., 2019), the information lo-

cality hypothesis (Futrell and Levy, 2017; Futrell

et al., 2017; Hahn et al., 2018; Futrell, 2019), the

integration cost hypothesis (Dyer, 2017), and the

information gain hypothesis, which we introduce.

We begin with a presentation of the details

of each theory, then implement the theories and

test their predictions against large-scale naturalis-

tic data from English. In addition to comparing

the predictors in terms of accuracy, we also per-

form a number of analyses to determine the impor-

tant similarities and differences among their pre-

dictions. The paper concludes with a discussion

of what our results tell us about adjective order and

related issues, and a look towards future work.

2 Theories of adjective order

2.1 Subjectivity

Scontras et al. (2017) show that adjective order

is strongly predicted by adjectives’ subjectivity

scores: an average rating obtained by asking hu-

man participants to rate adjectives on a numerical

scale for how subjective they are. Adjectives that

are rated as more subjective typically appear far-

ther from the noun than adjectives rated as less

subjective, and the strength of ordering prefer-

ences tracks the subjectivity differential between

two adjectives. For example, in big blue box, the

adjective big has a subjectivity rating of 0.64 (out

of 1), and the adjective blue has a subjectivity rat-

ing of 0.30. If adjectives are placed in order of de-

creasing subjectivity, then big must appear before

blue, corresponding to the preferred order. The no-

tion of subjectivity as a predictor of adjective order

was previously introduced by Hetzron (1978).

Subsequent work has attempted to explain the

role of subjectivity in adjective ordering by ap-

pealing to the communicative benefit afforded by

ordering adjectives with respect to decreasing sub-

jectivity. For example, Franke et al. (2019) use

simulated reference games to demonstrate that,

given a set of independently-motivated assump-

tions concerning the composition of meaning in

multi-adjective strings, subjectivity-based order-

ings lead to a greater probability of successful ref-

erence resolution; the authors thus offer an evolu-

tionary explanation for the role of subjectivity in

adjective ordering (see also Simonič, 2018; Hahn

et al., 2018; Scontras et al., 2019).

2.2 Information locality

The theory of information locality holds that

words that have high mutual information are un-

der pressure to be close to each other in linear or-

der (Futrell and Levy, 2017; Futrell et al., 2017).

Information locality is a generalization of the well-

supported principle of dependency length mini-

mization (Liu et al., 2017; Temperley and Gildea,

2018). In the case of adjective ordering, the pre-

diction is simply that adjectives that have high

pointwise mutual information (PMI) with their

head noun will tend to be closer to that noun. The

PMI of an adjective a and a noun n is (Fano, 1961;

Church and Hanks, 1990):

PMI(a : n) ≡ log
p(a, n)

p(a)p(n)
. (1)

In this paper, we take the relevant joint distribu-

tion p(a, n) to be the distribution of adjectives

and nouns in a dependency relationship, with the

marginals calculated as p(a) =
∑

n p(a, n) and

p(n) =
∑

a p(a, n).

Information locality is motivated as a conse-

quence of a more general theory of efficiency

in human language. In this theory, languages

should maximize information transfer while mini-

mizing cognitive information-processing costs as-

sociated with language production and compre-

hension. Information locality emerges from these

theories when we assume that the relevant measure

of information-processing cost is the surprisal of

words given lossy memory representations (Hale,

2001; Levy, 2008; Smith and Levy, 2013; Futrell

and Levy, 2017; Futrell, 2019).

2.3 Integration Cost

The theory of integration cost is also based in

the idea of efficiency with regard to information-

processing costs. It differs from information lo-

cality in that it assumes that the correct metric of

processing difficulty for a word w is the entropy
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over the possible heads of w:

Cost(w) ∝ H[T |w]

=
∑

t

−pT (t|w) log pT (t|w), (2)

where T is a random variable indicating the head

t of the word w (Dyer, 2017). This notion of cost

captures the amount of uncertainty that has to be

resolved about the proper role of the word w with

respect to the rest of the words in the sentence.

Like information locality, the theory of integration

cost recovers dependency length minimization as

a special case. For the case of predicting adjective

order, the prediction is that an adjective a will be

closer to a noun when it has lower integration cost:

IC(a) = H[N |a], (3)

where N is a random variable ranging over nouns.

Integration cost corresponds to an intuitive idea

previously articulated in the adjective ordering lit-

erature. The idea is that adjectives that can mod-

ify a smaller set of nouns appear closer to the

noun: for example, an order such as big wooden

spoon is preferred over wooden big spoon be-

cause the word big can modify nearly any noun,

while wooden can only plausibly modify a small

set of nouns (Ziff, 1960). The connection be-

tween integration cost and set size comes from

the information-theoretic notion of the typical set

(Cover and Thomas, 2006, pp. 57–71); the entropy

of a random variable can be interpreted as the (log)

cardinality of the typical set of samples from that

variable. When we order adjectives by integra-

tion cost, this is equivalent to ordering them such

that adjectives that can modify a larger typical set

of nouns appear farther from the noun. The re-

sult is that each adjective gradually reduces the en-

tropy of the possible nouns to follow, thus avoid-

ing information-processing costs that may be asso-

ciated with entropy reduction (Hale, 2006, 2016;

Dye et al., 2018).

2.4 Information gain

We propose a new efficiency-based predictor of

adjective order: information gain. The idea is to

view the noun phrase, consisting of prenominal

adjectives followed by the noun, as a decision tree

for identifying a referent, where each word parti-

tions the space of possible referents. Each parti-

tioning is associated with some information gain,

indicating how much the set of possible referents

shrinks. In line with the logic for integration cost,

we propose that the word with smaller informa-

tion gain will be placed earlier, so that the set of

referents is gradually narrowed by each word.

As generally implemented in decision trees,

information gain refers to the reduction of en-

tropy obtained from partitioning a set on a feature

(Quinlan, 1986). In our case, the distribution of

nouns N is partitioned on a given adjective a, cre-

ating two partitions: Na and its complement Na
c.

The difference between the starting entropy H[N ]
and the sum of the entropy of each partition, con-

ditioned on the size of that partition, is the infor-

mation gain of a:

IG(a) = H[N ]

−

[

|Na|

|N |
H[Na] +

|Na
c|

|N |
H[Na

c]

]

.
(4)

Information gain is therefore comprised of both

positive and negative evidence. That is, specify-

ing an adjective such as big partitions the proba-

bility distribution of nouns into Nbig, the subset of

N which takes big as a dependent, and Nbig
C , the

subset of N which does not.

Crucially, H[Na] is not H[N |a] in general.

H[N |a] is the conditional entropy of nouns given a

specific adjective, while H[Na] is the entropy of a

distribution over nouns whose support is limited to

noun types that have been observed to occur with

an adjective a. Combined with H[Na
c], informa-

tion gain tells us how much the entropy of N is

reduced by partitioning on a. This means that in-

formation gain and integration cost, while concep-

tually similar, are not mathematically equivalent.

To our knowledge, information gain has not

been previously suggested as a predictor of ad-

jective ordering, although Danks and Glucksberg

(1971) expressed a similar intuition in proposing

that adjectives are ordered according to their ‘dis-

criminative potential’. Although decision-tree al-

gorithms such as ID3 choose the highest-IG fea-

ture first, we predict that the lower-information-

gain adjective will precede the higher one.

3 Related Work

Previous corpus studies of adjective order include

Malouf (2000), who examined methods for or-

dering adjectives in a natural language generation

context, and Wulff (2003), who examined effects

of phonological length, syntactic category ambi-

guity, semantic closeness, adjective frequency, and
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a measure similar to PMI called noun specificity.

Our work differs from this previous work by fo-

cusing on recently-introduced predictors that have

theoretical motivations grounded in efficiency and

information theory.

The theories we test here (except information

gain) have been tested in previous corpus studies,

but never compared against each other. Scontras

et al. (2017) validate that subjectivity is a good

predictor of adjective order in corpora, and Hahn

et al. (2018) and Futrell et al. (2019) evaluate

both information locality and subjectivity. Dyer

(2018) uses integration cost to model the order of

same-side sibling dependents cross-linguistically

and across all syntactic categories.

4 Methods

Our task is to find predictors of adjective order

based solely on data about individual adjectives

and nouns. More formally, the goal is to find

a scoring function S(A,N) applying to an ad-

jective A and a noun N , such that the order of

two adjectives modifying a noun A1A2N can be

predicted accurately by comparing S(A1, N) and

S(A2, N). Furthermore, the scoring function S

should not include information about relative or-

der in observed sequences of the form A1A2N—

the scoring function should be based only on cor-

pus data about co-occurrences of A and N , or on

human ratings about A and/or N . We apply this

restriction because our goal is to evaluate scientific

theories of why adjectives are ordered the way they

are, rather than to achieve maximal raw accuracy.

4.1 Data sources

Corpus-based predictors We estimate

information-theoretic quantities for adjectives

using a large automatically-parsed subsection of

the English Common Crawl corpus (Buck et al.,

2014; Futrell et al., 2019). The use of a parsed

corpus is necessary to identify adjectives that are

dependents of nouns in order to calculate PMI

and IC. As described in Futrell et al. (2019), this

corpus was produced by heuristically filtering

Common Crawl to contain only full sentences and

to remove web boilerplate text, and then parsing

the resulting text using SyntaxNet (Andor et al.,

2016), obtaining a total of ∼1 billion tokens of

automatically parsed web text. In this work, we

use a subset of this corpus, described below.

From this corpus, we extract two forms of data.

First, we extract adjective–noun (AN) pairs: a

set of pairs 〈A,N〉 where A is an adjective and

N is a noun and N is the head of A with depen-

dency type amod. As in Futrell (2019), we de-

fine A as an adjective iff its part-of-speech is JJ

and its wordform is listed as an adjective in the

English CELEX database (Baayen et al., 1995).

We define N as a noun iff its part-of-speech is

NN or NNS and its wordform is listed as a noun in

CELEX. These AN pairs are used to estimate the

information-theoretic predictors that we are inter-

ested in. We extracted 33,210,207 adjective–noun

pairs from the parsed Common Crawl corpus.

Second, we extract adjective–adjective–noun

(AAN) triples: a set of triples 〈A1, A2, N〉 where

A1 and A2 are adjectives as defined above, and A1

and A2 are both adjective dependents with relation

type amod of a single noun head N . Furthermore,

A1 and A2 must not have any further dependents,

and they must appear in the order A1A2N in the

corpus with no intervening words. We extracted

a total of 842,714 AAN triples from the parsed

Common Crawl corpus.

The values of all corpus-based predictors are es-

timated using the AN pairs. The AAN triples are

used only for fitting regressions from the predic-

tors to adjective orders, and for evaluation.

Ratings-based predictors We gathered subjec-

tivity ratings for all 398 adjectives present in AAN

triples in the English UD corpus. These subjec-

tivity ratings were collected over Amazon.com’s

Mechanical Turk, using the methodology of Scon-

tras et al. (2017). 264 English-speaking partici-

pants indicated the subjectivity of 30 random ad-

jectives by adjusting a slider between endpoints

labeled “completely objective” (coded as 0) and

“completely subjective” (coded as 1). Each adjec-

tive received an average of 20 ratings.

Test set As a held-out test set for our predictors,

we use the English Web Treebank (EWT), a hand-

parsed corpus, as contained in Universal Depen-

dencies (UD) v2.4 (Silveira et al., 2014; Nivre,

2015). Following our criteria, we extract 155

AAN triples having scores for all our predictors.

Because this test set is very small, we also evaluate

against a held-out portion of the parsed Common

Crawl data. In the Common Crawl test set, after

including only AAN triples that have scores for all

of our predictors, we have 41,822 AAN triples.
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4.2 Estimation of predictors

Our information-theoretic predictors require esti-

mates of probability distributions over adjectives

and nouns. To estimate these probability distribu-

tions, we first use maximum likelihood estimation

as applied to counts of wordforms in AN pairs. We

call these estimates wordform estimates.

Although maximum likelihood estimation is

sufficient to give an estimate of the general entropy

of words (Bentz et al., 2017), it is not yet clear that

it gives a good measure for conditional entropy or

mutual information, due to data sparsity, even with

millions of tokens of text (Futrell et al., 2019).

Therefore, as a second method that alleviates

the data sparsity issue, we also calculate our

probability distributions not over raw wordforms

but over clusterings of words in an embedding

space, a method which showed promise in Futrell

et al. (2019). To derive word clusters, we use

sklearn.cluster.KMeans applied to a pre-

trained set of 1.9 million 300-dimension GloVe

vectors2 generated from the Common Crawl cor-

pus (Pennington et al., 2014). We classify ad-

jectives into kA = 300 clusters and nouns into

kN = 1000 clusters. These numbers k were found

by choosing the largest k multiple of 100 that did

not result in any singleton clusters. We then es-

timated probabilities p(a, n) by maximum likeli-

hood estimation after replacing wordforms a and

n with their cluster indices.

This clustering method alleviates data sparsity

by reducing the size of the support of the distri-

butions over adjectives and nouns, to kA and kN
respectively, and by effectively spreading prob-

ability mass among words with similar seman-

tics. The clusters might also end up recapitulating

the semantic categories that have played a role in

more traditional syntactic theories of adjective or-

der (Dixon, 1982; Cinque, 1994; Scott, 2002). We

call these estimates cluster estimates.

4.3 Evaluation

Fitting predictors to data Most of our individ-

ual predictors come along with theories that say

what their effect on adjective order should be. Ad-

jectives with low PMI should be farther from the

noun, adjectives with high IC should be farther

from the noun, and adjectives with high subjec-

tivity should be farther from the noun. Therefore,

2http://nlp.stanford.edu/data/glove.

42B.300d.zip

strictly speaking, it is not necessary to fit these pre-

dictors to any training data: we can evaluate our

theories based on their a priori predictions simply

by asking how accurately we can predict the or-

der of adjectives in AAN triples based on the rules

above.

However, we can get a deeper picture of the per-

formance of our predictors by using them in classi-

fiers for adjective order. By fitting classifiers using

our predictors, we can easily extend our models

to ones with multiple predictors, in order to de-

termine if a combined set of the predictors gives

increased accuracy over any one.

Logistic regression method We fit logistic re-

gressions to predict adjective order in AAN triples

using our predictors. Our goal is to predict the

order of the triple from the unordered set of the

two adjectives {A1, A2} and the noun N . To do

so, we consider the adjectives in lexicographic

order: Given an AAN triple, let A1 denote the

lexicographically-first adjective, and A2 the sec-

ond. Then any given AAN triple is either of the

form 〈A1, A2, N〉 or 〈A2, A1, N〉. We fit a logis-

tic regression to predict this order given the differ-

ence in the values of the predictors for the two ad-

jectives. That is, we fit a logistic regression of the

form in Figure 1. This method of fitting a classifier

to predict order data was used previously in Mor-

gan and Levy (2016). Based on theoretical consid-

erations and previous empirical results, we expect

that the fitted values of β1 will be negative for PMI

and positive for IC and subjectivity. The regres-

sion in Figure 1 can easily be extended to include

multiple predictors, with a separate β for each.

Evaluation metrics We evaluate our models us-

ing raw accuracy in predicting the order of held-

out AAN triples. We also calculate 95% confi-

dence intervals on these accuracies, indicating our

uncertainty about how the accuracy would change

in repeated experiments. Following standard ex-

perimental practice, if we find that two predictors

achieve different accuracies, but their confidence

intervals overlap, then we conclude that we do not

have evidence that their accuracies are reliably dif-

ferent. We say a difference in accuracy between

predictors is significant if the 95% confidence in-

tervals do not overlap.

Evaluation on held-out hand-parsed data It

is crucial that we not evaluate solely on

automatically-parsed data. The reason is that both
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log
p(〈A1, A2, N〉)

p(〈A2, A1, N〉)
= β0 + β1(S(A

1, N)− S(A2, N)) + ǫ

Figure 1: Logistic regression for adjective order. The function S(A,N) is the predictor to be evaluated, β0 and β1

are the free parameters to be fit, and ǫ is an error term to be minimized.

PMI and IC, as measures of the strength of sta-

tistical association between nouns and adjectives,

could conceivably double as predictors of pars-

ing accuracy for automatic dependency parsers. If

that is the case, then we might observe that AAN

triples with low PMI or high IC are rare in auto-

matically parsed data. However, this would not be

a consequence of any interesting theory of cogni-

tive cost, but rather simply an artifact of the auto-

matic parser used. To avoid this confound, we in-

clude an evaluation based on held-out hand-parsed

data in the form of the English Web Treebank.

5 Results

Table 1a shows the accuracies of our predictors in

predicting held-out adjective orders in the Com-

mon Crawl test set, visualized in Figure 2a. We

find that the pattern of results depends on whether

predictors are estimated based on wordforms or

based on distributional clusters. When estimat-

ing based on wordforms, we find that subjectivity

and PMI have the best accuracy. When estimating

based on clusters, the accuracy of PMI drops, and

the best predictor is subjectivity, with IG close be-

hind. We find a negative logistic regression weight

for information gain, indicating that the adjective

with lower information gain is placed first.

This basic pattern of results is confirmed in the

hand-parsed EWT data. Accuracies of predictors

on the EWT test set are shown in Table 1b and vi-

sualized in Figure 2b. When estimating based on

wordforms, the best predictors are subjectivity and

PMI, although the confidence intervals of all pre-

dictors are overlapping. When estimating based

on clusters, IG has the best performance, and PMI

again drops in accuracy. For this case, IG, IC, and

subjectivity all have overlapping confidence inter-

vals, so we conclude that there is no evidence that

one is better than the other. However, we do have

evidence that IG and IC are more accurate than

PMI when estimated based on clusters.

5.1 Multivariate analysis

Adjective order may be determined by multiple

separate factors operating in parallel. In order to

investigate whether our predictors might be mak-

ing independent contributions to explaining adjec-

tive order, we fit logistic regressions containing

multiple predictors. If the best accuracy comes

from a model with two or more predictors, then

this would be evidence that these two predictors

are picking up on separate sources of information

relevant for predicting adjective order.

We conducted logistic regressions using all sets

of two of our predictors. The top 5 such mod-

els, in terms of Common Crawl test set accuracy,

are shown in Table 2. The best two are clus-

ter/wordform subjectivity and wordform PMI, fol-

lowed by cluster subjectivity and cluster informa-

tion gain. No set of three predictors achieves sig-

nificantly higher accuracy than the best predictors

shown in Table 2.

5.2 Qualitative analysis

We manually examined cases where each model

made correct and incorrect predictions in the hand-

parsed EWT data. Table 3a shows example AAN

triples that were ordered correctly by PMI, but not

by subjectivity. These are typically cases where a

certain adjective–noun pair forms a common col-

location whose meaning is in some cases even

noncompositional; for example, “bad behaviors”

is a common collocation when describing train-

ing animals, and “ulterior motives” and “logical

fallacy” are likewise common English colloca-

tions. In contrast, when subjectivity makes the

right prediction and PMI makes the wrong predic-

tion, these are often cases where a word pair which

normally would form a collocation is broken up

by another adjective, such as “dear sick friend”,

where “dear friend” is a common collocation.

We also performed a manual qualitative anal-

ysis to determine the contribution of information

gain beyond subjectivity and PMI. Table 3b shows

examples of such cases from the EWT. Many of

these seem to be cases with weak preferences,

where both the attested order and the the flipped

order are acceptable (e.g., “tiny little kitten”).
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Predictor Accuracy Conf. Interval

Subj. (cluster) .661 [.657, .666]

PMI (wordform) .659 [.654, .664]

Subj. (wordform) .659 [.654, .664]

IG (cluster) .650 [.645, .654]

IC (wordform) .642 [.634, .646]

IG (wordform) .640 [.635, .645]

IC (cluster) .613 [.608, .618]

PMI (cluster) .606 [.601, .610]

(a) Common Crawl (N = 41822).

Predictor Accuracy Conf. Interval

IG (cluster) .737 [.668, .806]

Subj. (wordform) .724 [.654, .795]

IC (cluster) .705 [.633, .777]

Subj. (cluster) .692 [.620, .765]

PMI (wordform) .667 [.592, .741]

IC (wordform) .641 [.566, .717]

IG (wordform) .603 [.526, .680]

PMI (cluster) .590 [.512, .667]

(b) Hand-parsed EWT (N = 155). All confidence inter-
vals overlap, other than cluster-based PMI and IG.

Table 1: Accuracies of the predictors on AAN triples in the held-out test data.
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(b) Hand-parsed EWT (N = 155)

Figure 2: Accuracies of predictors on AAN triples in the held-out test data, with 95% confidence intervals shown.

Predictor Accuracy Conf. Interval

Subj. (cluster) + PMI (wordform) .723 [.719, .727]

Subj. (wordform) + PMI (wordform) .713 [.708, .717]

Subj. (cluster) + IG (cluster) .699 [.695, .703]

Subj. (cluster) + IC (cluster) .690 [.686, .695]

IG (cluster) + IC (cluster) .684 [.680, .689]

Table 2: Common Crawl test set accuracy of the top 5 models combining two predictors.
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A1 A2 N

major bad behaviors

large outstanding debts

classical logical fallacy

dark ulterior motives

minor fine tuning

(a) Ordered correctly by wordform PMI, but not by word-
form subjectivity.

A1 A2 N

tiny little kitten

correct legal name

chronic intractable pain

radical religious politics

lonely eerie place

(b) Ordered correctly by cluster-based information gain,
but not by cluster-based subjectivity nor PMI.

Table 3: Selected examples of AAN triples ordered incorrectly by our models, from the EWT test set.

5.3 Interpretation

Our results broadly support the following interpre-

tation. Adjective ordering preferences are largely

determined by a semantic factor that can be quan-

tified variously using wordform subjectivity or

distributional-cluster-based estimates of informa-

tion gain. In addition to this factor, another fac-

tor is in play: when an adjective–noun pair forms

a collocation with a possibly non-compositional

meaning, then the adjective in this pair will tend

to be placed next to the noun. This latter factor is

measured by PMI. This interpretation matches that

of Hahn et al. (2018), who found separate contri-

butions from PMI and a model-based operational-

ization of subjectivity.

Our interpretation is supported by the following

points from the analysis above. First, among pre-

dictors based solely on wordforms, the best accu-

racy is obtained by a combination of subjectivity

and PMI. Second, when we turn to estimates based

on clusters, two things happen: the accuracy of

PMI drops, and the accuracy of information gain

increases while the accuracy of subjectivity stays

about the same. This pattern of results suggests

that PMI is measuring a factor that has more to do

with specific wordforms, while IG and subjectiv-

ity are measuring a factor that has more to do with

semantic uncertainty about the noun or about the

relationship between the adjective and the noun.

6 Conclusion

We examined a number of theoretically-motivated

predictors of adjective order in dependency tree-

bank corpora of English. We found that the pre-

dictors have comparable accuracy, but that it is

possible to identify two broad factors: a seman-

tic factor variously captured by subjectivity scores

and information gain based on word clusters, and

a wordform-based factor captured by PMI.

This study provides a framework for evaluat-

ing further theories of adjective order, and for

evaluating the theories given here against new

data from dependency treebanks. Generalizing to

larger datasets of English is straightforward. More

excitingly, we now have the opportunity to bring

new languages into the fold. The vast majority of

research on adjective ordering, and all the corpus

work to our knowledge, has been done on English,

where adjectives almost always come before the

noun. Studying other typologically-distinct lan-

guages provides an opportunity to disentangle the

theories that we studied here in a way that cannot

be done in English.

The available behavioral evidence suggests that

mirror-image preferences (e.g., “box blue big”)

may be the norm in post-nominal adjective lan-

guages (Martin, 1969; Scontras et al., 2020). In-

formation locality, subjectivity, and integration

cost make precisely that prediction, though none

addresses mixed-type languages in which adjec-

tives can precede or follow nouns. It is an open

question how to implement IG for these post-

or mixed-placement adjectives; one possibility is

to measure the information gained when the set

of adjectives associated to a noun An is parti-

tioned by an adjective a. In that case, the predic-

tions about post-nominal order could differ sub-

stantially from the predictions about pre-nominal

order.

Our dependency-treebank-based methods can

be applied to any other corpus of any language,

provided it has enough data in the form of

adjective–noun pairs to get reliable estimates of

the information-theoretic predictors. Such stud-

ies will be crucial to achieve a complete compu-

tational understanding of natural language syntax.



2011

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2442–2452, Berlin, Germany. Asso-
ciation for Computational Linguistics.

R. Harald Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX Lexical Database. Release
2 (CD-ROM). Linguistic Data Consortium, Univer-
sity of Pennsylvania.

Galia Bar-Sever, Rachael Lee, Gregory Scontras, and
Lisa S. Pearl. 2018. Little lexical learners: Quantita-
tively assessing the development of adjective order-
ing preferences. In 42nd annual Boston University
Conference on Language Development, pages 58–
71.

Christian Bentz, Dimitrios Alikaniotis, Michael
Cysouw, and Ramon Ferrer-i-Cancho. 2017. The
entropy of words—Learnability and expressivity
across more than 1000 languages. Entropy, 19:275–
307.

Joan Bresnan, Anna Cueni, Tatiana Nikitina, and Har-
ald Baayen. 2007. Predicting the dative alternation.
In Cognitive Foundations of Interpration, pages 69–
94. Royal Netherlands Academy of Science, Ams-
terdam.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen.
2014. N-gram counts and language models from the
common crawl. In LREC, volume 2, page 4. Cite-
seer.

Xinying Chen and Ramon Ferrer-i-Cancho, editors.
2019. Proceedings of the First Workshop on Quanti-
tative Syntax (Quasy, SyntaxFest 2019). Association
for Computational Linguistics, Paris, France.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22–29.

Guglielmo Cinque. 1994. On the evidence for partial
N-movement in the Romance DP. In R S Kayne,
G Cinque, J Koster, J.-Y. Pollock, Luigi Rizzi,
and R Zanuttini, editors, Paths Towards Universal
Grammar. Studies in Honor of Richard S. Kayne,
pages 85–110. Georgetown University Press, Wash-
ington DC.

Thomas M. Cover and J. A. Thomas. 2006. Elements of
Information Theory. John Wiley & Sons, Hoboken,
NJ.

J. H. Danks and S. Glucksberg. 1971. Psychological
scaling of adjective orders. Journal of Verbal Learn-
ing and Verbal Behavior, 10(1):63–67.

Robert M. W. Dixon. 1982. Where have all the ad-
jectives gone? And other essays in semantics and
syntax. Mouton, Berlin, Germany.

Melody Dye, Petar Milin, Richard Futrell, and Michael
Ramscar. 2018. Alternative solutions to a language
design problem: The role of adjectives and gender
marking in efficient communication. Topics in cog-
nitive science, 10(1):209–224.

William Dyer. 2018. Integration complexity and the
order of cosisters. In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018),
pages 55–65, Brussels, Belgium. Association for
Computational Linguistics.

William E. Dyer. 2017. Minimizing integration cost:
A general theory of constituent order. Ph.D. thesis,
University of California, Davis, Davis, CA.

Robert M. Fano. 1961. Transmission of Information:
A Statistical Theory of Communication. MIT Press,
Cambridge, MA.

Michael Franke, Gregory Scontras, and Mihael Si-
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