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Abstract

We propose a novel text editing task, referred
to as fact-based text editing, in which the goal
is to revise a given document to better de-
scribe the facts in a knowledge base (e.g., sev-
eral triples). The task is important in practice
because reflecting the truth is a common re-
quirement in text editing. First, we propose a
method for automatically generating a dataset
for research on fact-based text editing, where
each instance consists of a draft text, a revised
text, and several facts represented in triples.
We apply the method into two public table-
to-text datasets, obtaining two new datasets
consisting of 233k and 37k instances, respec-
tively. Next, we propose a new neural network
architecture for fact-based text editing, called
FACTEDITOR, which edits a draft text by re-
ferring to given facts using a buffer, a stream,
and a memory. A straightforward approach to
address the problem would be to employ an
encoder-decoder model. Our experimental re-
sults on the two datasets show that FACTE-
DITOR outperforms the encoder-decoder ap-
proach in terms of fidelity and fluency. The
results also show that FACTEDITOR conducts
inference faster than the encoder-decoder ap-
proach.

1 Introduction

Automatic editing of text by computer is an impor-
tant application, which can help human writers to
write better documents in terms of accuracy, flu-
ency, etc. The task is easier and more practical than
the automatic generation of texts from scratch and
is attracting attention recently (Yang et al., 2017;
Yin et al., 2019). In this paper, we consider a new
and specific setting of it, referred to as fact-based
text editing, in which a draft text and several facts
(represented in triples) are given, and the system

∗ The work was done when Hayate Iso was a research
intern at ByteDance AI Lab.

Set of triples
{(Baymax, creator, Douncan Rouleau),

(Douncan Rouleau, nationality, American),
(Baymax, creator, Steven T. Seagle),
(Steven T. Seagle, nationality, American),
(Baymax, series, Big Hero 6),
(Big Hero 6, starring, Scott Adsit)}

Draft text
Baymax was created by Duncan Rouleau, a winner of
Eagle Award. Baymax is a character in Big Hero 6 .

Revised text
Baymax was created by American creators
Duncan Rouleau and Steven T. Seagle . Baymax is
a character in Big Hero 6 which stars Scott Adsit .

Table 1: Example of fact-based text editing. Facts are
represented in triples. The facts in green appear in
both draft text and triples. The facts in orange are
present in the draft text, but absent from the triples.
The facts in blue do not appear in the draft text, but
in the triples. The task of fact-based text editing is to
edit the draft text on the basis of the triples, by deleting
unsupported facts and inserting missing facts while
retaining supported facts.

aims to revise the text by adding missing facts and
deleting unsupported facts. Table 1 gives an exam-
ple of the task.

As far as we know, no previous work did address
the problem. In a text-to-text generation, given a
text, the system automatically creates another text,
where the new text can be a text in another language
(machine translation), a summary of the original
text (summarization), or a text in better form (text
editing). In a table-to-text generation, given a table
containing facts in triples, the system automatically
composes a text, which describes the facts. The
former is a text-to-text problem, and the latter a
table-to-text problem. In comparison, fact-based
text editing can be viewed as a ‘text&table-to-text’
problem.
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First, we devise a method for automatically cre-
ating a dataset for fact-based text editing. Recently,
several table-to-text datasets have been created and
released, consisting of pairs of facts and corre-
sponding descriptions. We leverage such kind of
data in our method. We first retrieve facts and
their descriptions. Next, we take the descriptions
as revised texts and automatically generate draft
texts based on the facts using several rules. We
build two datasets for fact-based text editing on
the basis of WEBNLG (Gardent et al., 2017) and
ROTOWIRE, consisting of 233k and 37k instances
respectively (Wiseman et al., 2017) 1.

Second, we propose a model for fact-based text
editing called FACTEDITOR. One could employ
an encoder-decoder model, such as an encoder-
decoder model, to perform the task. The encoder-
decoder model implicitly represents the actions for
transforming the draft text into a revised text. In
contrast, FACTEDITOR explicitly represents the
actions for text editing, including Keep, Drop,
and Gen, which means retention, deletion, and
generation of word respectively. The model utilizes
a buffer for storing the draft text, a stream to store
the revised text, and a memory for storing the facts.
It also employs a neural network to control the
entire editing process. FACTEDITOR has a lower
time complexity than the encoder-decoder model,
and thus it can edit a text more efficiently.

Experimental results show that FACTEDITOR

outperforms the baseline model of using encoder-
decoder for text editing in terms of fidelity and
fluency, and also show that FACTEDITOR can per-
form text editing faster than the encoder-decoder
model.

2 Related Work

2.1 Text Editing

Text editing has been studied in different settings
such as automatic post-editing (Knight and Chan-
der, 1994; Simard et al., 2007; Yang et al., 2017),
paraphrasing (Dolan and Brockett, 2005), sentence
simplification (Inui et al., 2003; Wubben et al.,
2012), grammar error correction (Ng et al., 2014),
and text style transfer (Shen et al., 2017; Hu et al.,
2017).

The rise of encoder-decoder models (Cho et al.,
2014; Sutskever et al., 2014) as well as the atten-
tion (Bahdanau et al., 2015; Vaswani et al., 2017)

1The datasets are publicly available at https://
github.com/isomap/factedit

and copy mechanisms (Gu et al., 2016; Gulcehre
et al., 2016) has dramatically changed the land-
scape, and now one can perform the task rela-
tively easily with an encoder-decoder model such
as Transformer provided that a sufficient amount
of data is available. For example, Li et al. (2018)
introduce a deep reinforcement learning framework
for paraphrasing, consisting of a generator and an
evaluator. Yin et al. (2019) formalize the prob-
lem of text edit as learning and utilization of edit
representations and propose an encoder-decoder
model for the task. Zhao et al. (2018) integrate
paraphrasing rules with the Transformer model for
text simplification. Zhao et al. (2019) proposes a
method for English grammar correction using a
Transformer and copy mechanism.

Another approach to text editing is to view the
problem as sequential tagging instead of encoder-
decoder. In this way, the efficiency of learning
and prediction can be significantly enhanced. Vu
and Haffari (2018) and Dong et al. (2019) con-
duct automatic post-editing and text simplification
on the basis of edit operations and employ Neu-
ral Programmer-Interpreter (Reed and De Freitas,
2016) to predict the sequence of edits given a se-
quence of words, where the edits include KEEP,
DROP, and ADD. Malmi et al. (2019) propose a se-
quential tagging model that assigns a tag (KEEP
or DELETE) to each word in the input sequence
and also decides whether to add a phrase before
the word. Our proposed approach is also based
on sequential tagging of actions. It is designed for
fact-based text editing, not text-to-text generation,
however.

2.2 Table-to-Text Generation

Table-to-text generation is the task which aims to
generate a text from structured data (Reiter and
Dale, 2000; Gatt and Krahmer, 2018), for exam-
ple, a text from an infobox about a term in biol-
ogy in wikipedia (Lebret et al., 2016) and a de-
scription of restaurant from a structured represen-
tation (Novikova et al., 2017). Encoder-decoder
models can also be employed in table-to-text gen-
eration with structured data as input and gener-
ated text as output, for example, as in (Lebret
et al., 2016). Puduppully et al. (2019) and Iso et al.
(2019) propose utilizing an entity tracking module
for document-level table-to-text generation.

One issue with table-to-text is that the style of
generated texts can be diverse (Iso et al., 2019). Re-

https://github.com/isomap/factedit
https://github.com/isomap/factedit
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y′ AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission that was operated by PATIENT-2 .
x̂′ AGENT-1 served as PATIENT-3 was a crew member of the BRIDGE-1 mission .
x′ AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission .

(a) Example for insertion. The revised template y′ and the reference template x̂′ share subsequences. The set of triple templates
T \T̂ is {(BRIDGE-1, operator, PATIENT-2)}. Our method removes “that was operated by PATIENT-2” from the revised
template y′ to create the draft template x′.

y′ AGENT-1 was created by BRIDGE-1 and PATIENT-2 .
x̂′ The character of AGENT-1 , whose full name is PATIENT-1 , was created by BRIDGE-1 and PATIENT-2 .
x′ AGENT-1 , whose full name is PATIENT-1 , was created by BRIDGE-1 and PATIENT-2 .

(b) Example for deletion. The revised template y′ and the reference template x̂′ share subsequences. The set of triple templates
T̂ \T is {(AGENT-1, fullName, PATIENT-1)}. Our method copies “whose full name is PATIENT-1” from the reference template
x′ to create the draft template x′.

Table 2: Examples for insertion and deletion, where words in green are matched, words in gray are not matched,
words in blue are copied, and words in orange are removed. Best viewed in color.

searchers have developed methods to deal with the
problem using other texts as templates (Hashimoto
et al., 2018; Guu et al., 2018; Peng et al., 2019).
The difference between the approach and fact-
based text editing is that the former is about table-
to-text generation based on other texts, while the
latter is about text-to-text generation based on struc-
tured data.

3 Data Creation

In this section, we describe our method of data
creation for fact-based text editing. The method
automatically constructs a dataset from an existing
table-to-text dataset.

3.1 Data Sources

There are two benchmark datasets of table-to-
text, WEBNLG (Gardent et al., 2017)2 and RO-
TOWIRE(Wiseman et al., 2017)3. We create two
datasets on the basis of them, referred to as WEBE-
DIT and ROTOEDIT respectively. In the datasets,
each instance consists of a table (structured data)
and an associated text (unstructured data) describ-
ing almost the same content.4.

For each instance, we take the table as triples
of facts and the associated text as a revised text,
and we automatically create a draft text. The set
of triples is represented as T = {t}. Each triple t
consists of subject, predicate, and object, denoted

2The data is available at https://github.com/
ThiagoCF05/webnlg. We utilize version 1.5.

3We utilize the ROTOWIRE-MODIFIED data provided
by Iso et al. (2019) available at https://github.com/
aistairc/rotowire-modified. The authors also pro-
vide an information extractor for processing the data.

4In ROTOWIRE, we discard redundant box-scores and un-
related sentences using the information extractor and heuristic
rules.

as t = (subj, pred, obj). For simplicity, we refer
to the nouns or noun phrases of subject and object
simply as entities. The revised text is a sequence
of words denoted as y. The draft text is a sequence
of words denoted as x.

Given the set of triples T and the revised text y,
we aim to create a draft text x, such that x is not in
accordance with T , in contrast to y, and therefore
text editing from x to y is needed.

3.2 Procedure

Our method first creates templates for all the sets of
triples and revised texts and then constructs a draft
text for each set of triples and revised text based on
their related templates.

Creation of templates
For each instance, our method first delexical-
izes the entity words in the set of triples T and
the revised text y to obtain a set of triple tem-
plates T ′ and a revised template y′. For exam-
ple, given T ={(Baymax, voice, Scott Adsit)} and
y =“Scott Adsit does the voice for Baymax”, it
produces the set of triple templates T ′ ={(AGENT-
1, voice, PATIENT-1)} and the revised template
y′ =“AGENT-1 does the voice for PATIENT-1”.
Our method then collects all the sets of triple tem-
plates T ′ and revised templates y′ and retains them
in a key-value store with y′ being a key and T ′

being a value.

Creation of draft text
Next, our method constructs a draft text x using a
set of triple templates T ′ and a revised template y′.
For simplicity, it only considers the use of either
insertion or deletion in the text editing, and one can
easily make an extension of it to a more complex

https://github.com/ThiagoCF05/webnlg
https://github.com/ThiagoCF05/webnlg
https://github.com/aistairc/rotowire-modified
https://github.com/aistairc/rotowire-modified
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setting. Note that the process of data creation is
reverse to that of text editing.

Given a pair of T ′ and y′, our method retrieves
another pair denoted as T̂ ′ and x̂′, such that y′ and
x̂′ have the longest common subsequences. We
refer to x̂′ as a reference template. There are two
possibilities; T̂ ′ is a subset or a superset of T ′.
(We ignore the case in which they are identical.)
Our method then manages to change y′ to a draft
template denoted as x′ on the basis of the relation
between T ′ and T̂ ′. If T̂ ′ ( T ′, then the draft
template x′ created is for insertion, and if T̂ ′ ) T ′,
then the draft template x′ created is for deletion.

For insertion, the revised template y′ and the
reference template x̂′ share subsequences, and the
set of triples T \T̂ appear in y′ but not in x̂′. Our
method keeps the shared subsequences in y′, re-
moves the subsequences in y′ about T \T̂ , and
copies the rest of words in y′, to create the draft
template x′. Table 2a gives an example. The shared
subsequences “AGENT-1 performed as PATIENT-
3 on BRIDGE-1 mission” are kept. The set of
triple templates T \T̂ is {(BRIDGE-1, operator,
PATIENT-2)}. The subsequence “that was oper-
ated by PATIENT-2” is removed. Note that the
subsequence “served” is not copied because it is
not shared by y′ and x̂′.

For deletion, the revised template y′ and the
reference template x̂′ share subsequences. The
set of triples T̂ \T appear in x̂′ but not in y′.
Our method retains the shared subsequences in
y′, copies the subsequences in x̂′ about T̂ \T ,
and copies the rest of words in y′, to create
the draft template x′. Table 2b gives an exam-
ple. The subsequences “AGENT-1 was created by
BRIDGE-1 and PATIENT-2” are retained. The
set of triple templates T̂ \T is {(AGENT-1, full-
Name, PATIENT-1)}. The subsequence “whose
full name is PATIENT-1” is copied. Note that the
subsequence “the character of” is not copied be-
cause it is not shared by y′ and x̂′.

After getting the draft template x′, our method
lexicalizes it to obtain a draft text x, where the
lexicons (entity words) are collected from the cor-
responding revised text y.

We obtain two datasets with our method, referred
to as WEBEDIT and ROTOEDIT, respectively. Ta-
ble 3 gives the statistics of the datasets.

In the WEBEDIT data, sometimes entities only
appear in the subj’s of triples. In such cases, we
also make them appear in the obj’s. To do so, we

WEBEDIT ROTOEDIT

TRAIN VALID TEST TRAIN VALID TEST

#D 181k 23k 29k 27k 5.3k 4.9k
#Wd 4.1M 495k 624k 4.7M 904k 839k
#Wr 4.2M 525k 649k 5.6M 1.1M 1.0M
#S 403k 49k 62k 209k 40k 36k

Table 3: Statistics of WEBEDIT and ROTOEDIT, where
#D is the number of instances, #Wd and #Wr are the to-
tal numbers of words in the draft texts and the revised
texts, respectively, and #S is total the number of sen-
tences.

introduce an additional triple (ROOT, IsOf, subj)
for each subj, where ROOT is a dummy entity.

4 FACTEDITOR

In this section, we describe our proposed model for
fact-based text editing referred to as FACTEDITOR.

4.1 Model Architecture

FACTEDITOR transforms a draft text into a revised
text based on given triples. The model consists
of three components, a buffer for storing the draft
text and its representations, a stream for storing the
revised text and its representations, and a memory
for storing the triples and their representations, as
shown in Figure 1.

FACTEDITOR scans the text in the buffer, copies
the parts of text from the buffer into the stream
if they are described in the triples in the mem-
ory, deletes the parts of the text if they are not
mentioned in the triples, and inserts new parts of
next into the stream which is only presented in the
triples.

The architecture of FACTEDITOR is inspired by
those in sentence parsing Dyer et al. (2015); Watan-
abe and Sumita (2015). The actual processing of
FACTEDITOR is to generate a sequence of words
into the stream from the given sequence of words
in the buffer and the set of triples in the memory.
A neural network is employed to control the entire
editing process.

4.2 Neural Network

Initialization
FACTEDITOR first initializes the representations of
content in the buffer, stream, and memory.

There is a feed-forward network associated with
the memory, utilized to create the embeddings of
triples. Let M denote the number of triples. The
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embedding of triple tj , j = 1, · · · ,M is calculated
as

tj = tanh(W t · [esubjj ; epredj ; eobjj ] + bt),

where W t and bt denote parameters,
esubjj , epredj , eobjj denote the embeddings
of subject, predicate, and object of triple tj , and
[ ; ] denotes vector concatenation.

There is a bi-directional LSTM associated with
the buffer, utilized to create the embeddings of
words of draft text. The embeddings are obtained as
b = BILSTM(x), where x = (x1, . . . ,xN ) is the
list of embeddings of words and b = (b1, . . . , bN )
is the list of representations of words, where N
denotes the number of words.

There is an LSTM associated with the stream for
representing the hidden states of the stream. The
first hidden state is initialized as

s1 = tanh

(
W s ·

[∑N
i=1 bi
N

;

∑M
j=1 tj

M

]
+ bs

)

whereW s and bs denotes parameters.

Action prediction
FACTEDITOR predicts an action at each time t us-
ing the LSTM. There are three types of action,
namely Keep, Drop, and Gen. First, it composes
a context vector t̃t of triples at time t using atten-
tion

t̃t =

M∑
j=1

αt,jtj

where αt,j is a weight calculated as

αt,j ∝ exp
(
v>α · tanh (W α · [st; bt; tj ])

)
where vα andW α are parameters. Then, it creates
the hidden state zt for action prediction at time t

zt = tanh
(
W z · [st; bt; t̃t] + bz

)
where W z and bz denote parameters. Next, it
calculates the probability of action at

P (at | zt) = softmax(W a · zt)

where W a denotes parameters, and chooses the
action having the largest probability.

Stream Bufferst bt

poppush

tt
~

(a) The Keep action, where the top embedding of the buffer
bt is popped and the concatenated vector [̃tt; bt] is pushed
into the stream LSTM.

Stream Bufferst bt

pop

(b) The Drop action, where the top embedding of the buffer
bt is popped and the state in the stream is reused at the next
time step t+ 1.

Stream Buffer

tt

st bt

Wp yt
~

push

(c) The Gen action, where the concatenated vector
[t̃t;W pyt] is pushed into the stream, and the top embed-
ding of the buffer is reused at the next time step t+ 1.

Figure 1: Actions of FACTEDITOR.

Action execution

FACTEDITOR takes action based on the prediction
result at time t.

For Keep at time t, FACTEDITOR pops the top
embedding bt in the buffer, and feeds the combina-
tion of the top embedding bt and the context vector
of triples t̃t into the stream, as shown in Fig. 1a.
The state of stream is updated with the LSTM
as st+1 = LSTM([̃tt; bt], st). FACTEDITOR also
copies the top word in the buffer into the stream.

For Drop at time t, FACTEDITOR pops the top
embedding in the buffer and proceeds to the next
state, as shown in Fig. 1b. The state of stream
is updated as st+1 = st. Note that no word is
inputted into the stream.

For Gen at time t, FACTEDITOR does not pop
the top embedding in the buffer. It feeds the
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Draft text x Bakewell pudding is Dessert that can be served Warm or cold .

Revised text y Bakewell pudding is Dessert that originates from Derbyshire Dales .

Action sequence a
Keep Keep Keep Keep Gen(originates) Gen(from) Gen(Derbyshire Dales)
Drop Drop Drop Drop Keep

Table 4: An example of action sequence derived from a draft text and revised text.

combination of the context vector of triples t̃t
and the linearly projected embedding of word w
into the stream, as shown in Fig. 1c. The state
of stream is updated with the LSTM as st+1 =
LSTM([̃tt;W pyt], st), where yt is the embed-
ding of the generated word yt and W p denotes
parameters. In addition, FACTEDITOR copies the
generated word yt into the stream.

FACTEDITOR continues the actions until the
buffer becomes empty.

Word generation
FACTEDITOR generates a word yt at time t, when
the action is Gen,

Pgen(yt | zt) = softmax(W y · zt)

whereW y is parameters.
To avoid generation of OOV words, FACTEDI-

TOR exploits the copy mechanism. It calculates the
probability of copying the object of triple tj

Pcopy(oj | zt) ∝ exp (v>c · tanh(W c · [zt; tj ]))

where vc andW c denote parameters, and oj is the
object of triple tj . It also calculates the probability
of gating

pgate = sigmoid(w>
g · zt + bg)

where wg and bg are parameters. Finally, it cal-
culates the probability of generating a word wt
through either generation or copying,

P (yt | zt) = pgatePgen(yt | zt)

+ (1− pgate)
M∑

j=1:oj=yt

Pcopy(oj | zt),

where it is assumed that the triples in the memory
have the same subject and thus only objects need
to be copied.

4.3 Model Learning
The conditional probability of sequence of actions
a = (a1, a2, · · · , aT ) given the set of triples T and

the sequence of input words x can be written as

P (a | T ,x) =
T∏
t=1

P (at | zt)

where P (at | zt) is the conditional probability of
action at given state zt at time t and T denotes the
number of actions.

The conditional probability of sequence of gen-
erated words y = (y1, y2, · · · , yT ) given the se-
quence of actions a can be written as

P (y | a) =
T∏
t=1

P (yt | at)

where P (yt | at) is the conditional probability of
generated word yt given action at at time t, which
is calculated as

P (yt | at) =

{
P (yt | zt) if at = Gen

1 otherwise

Note that not all positions have a generated word.
In such a case, yt is simply a null word.

The learning of the model is carried out via super-
vised learning. The objective of learning is to min-
imize the negative log-likelihood of P (a | T ,x)
and P (y | a)

L(θ) = −
T∑
t=1

{logP (at | zt) + logP (yt | at)}

where θ denotes the parameters.
A training instance consists of a pair of draft

text and revised text, as well as a set of triples,
denoted as x, y, and T respectively. For each
instance, our method derives a sequence of actions
denoted as a, in a similar way as that in (Dong
et al., 2019). It first finds the longest common sub-
sequence between x and y, and then selects an
action of Keep, Drop, or Gen at each position,
according to how y is obtained from x and T (cf.,
Tab. 4). Action Gen is preferred over action Drop
when both are valid.
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Table Encoder Decoder

yT

(a) Table-to-Text

T

Text Encoder Decoder

yx

(b) Text-to-Text

Table Encoder Text Encoder Decoder

yxT

(c) ENCDECEDITOR

Figure 2: Model architectures of the baselines. All models employ attention and copy mechanism.

4.4 Time Complexity

The time complexity of inference in FACTEDITOR

isO(NM), whereN is the number of words in the
buffer, and M is the number of triples. Scanning
of data in the buffer is of complexity O(N). The
generation of action needs the execution of atten-
tion, which is of complexity O(M). Usually, N is
much larger than M .

4.5 Baseline

We consider a baseline method using the encoder-
decoder architecture, which takes the set of triples
and the draft text as input and generates a revised
text. We refer to the method as ENCDECEDITOR.
The encoder of ENCDECEDITOR is the same as
that of FACTEDITOR. The decoder is the standard
attention and copy model, which creates and uti-
lizes a context vector and predicts the next word at
each time.

The time complexity of inference in ENCDE-
CEDITOR isO(N2+NM) (cf.,Britz et al. (2017)).
Note that in fact-based text editing, usually N is
very large. That means that ENCDECEDITOR is
less efficient than FACTEDITOR.

5 Experiment

We conduct experiments to make comparison be-
tween FACTEDITOR and the baselines using the
two datasets WEBEDIT and ROTOEDIT.

5.1 Experiment Setup

The main baseline is the encoder-decoder model
ENCDECEDITOR, as explained above. We further
consider three baselines, No-Editing, Table-to-Text,
and Text-to-Text. In No-Editing, the draft text is
directly used. In Table-to-Text, a revised text is
generated from the triples using encoder-decoder.
In Text-to-Text, a revised text is created from the
draft text using the encoder-decoder model. Figure
2 gives illustrations of the baselines.

We evaluate the results of revised texts by the
models from the viewpoint of fluency and fidelity.

We utilize ExactMatch (EM), BLEU (Papineni
et al., 2002) and SARI (Xu et al., 2016) scores5

as evaluation metrics for fluency. We also utilize
precision, recall, and F1 score as evaluation metrics
for fidelity. For WEBEDIT, we extract the entities
from the generated text and the reference text and
then calculate the precision, recall, and F1 scores.
For ROTOEDIT, we use the information extraction
tool provided by Wiseman et al. (2017) for calcula-
tion of the scores.

For the embeddings of subject and object for
both datasets and the embedding of the predicate
for ROTOEDIT, we simply use the embedding
lookup table. For the embedding of the predi-
cate for WEBEDIT, we first tokenize the predicate,
lookup the embeddings of lower-cased words from
the table, and use averaged embedding to deal with
the OOV problem (Moryossef et al., 2019).

We tune the hyperparameters based on the BLEU

score on a development set. For WEBEDIT, we
set the sizes of embeddings, buffers, and triples
to 300, and set the size of the stream to 600. For
ROTOEDIT, we set the size of embeddings to 100
and set the sizes of buffers, triples, and stream to
200. The initial learning rate is 2e-3, and AMS-
Grad is used for automatically adjusting the learn-
ing rate (Reddi et al., 2018). Our implementation
makes use of AllenNLP (Gardner et al., 2018).

5.2 Experimental Results

Quantitative evaluation
We present the performances of our proposed
model FACTEDITOR and the baselines on fact-
based text editing in Table 5. One can draw several
conclusions from the results.

First, our proposed model, FACTEDITOR,
achieves significantly better performances than the
main baseline, ENCDECEDITOR, in terms of al-
most all measures. In particular, FACTEDITOR

5We use a modified version of SARI where β equals
1.0, available at https://github.com/tensorflow/
tensor2tensor/blob/master/tensor2tensor/
utils/sari_hook.py

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
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Model FLUENCY FIDELITY

BLEU SARI KEEP ADD DELETE EM P% R% F1%

Baselines
No-Editing 66.67 31.51 78.62 3.91 12.02. 0. 84.49 76.34 80.21
Table-to-Text 33.75 43.83 51.44 27.86 52.19 5.78 98.23 83.72 90.40
Text-to-Text 63.61 58.73 82.62 25.77 67.80 6.22 81.93 77.16 79.48

Fact-based text editing
ENCDECEDITOR 71.03 69.59 89.49 43.82 75.48 20.96 98.06 87.56 92.51
FACTEDITOR 75.68 72.20 91.84 47.69 77.07 24.80 96.88 89.74 93.17

(a) WEBEDIT

Model FLUENCY FIDELITY

BLEU SARI KEEP ADD DELETE EM P% R% F1%

Baselines
No-Editing 74.95 39.59 95.72 0.05 23.01 0. 92.92 65.02 76.51
Table-to-Text 24.87 23.30 39.12 14.78 16.00 0. 48.01 24.28 32.33
Text-to-Text 78.07 60.25 97.29 13.04 70.43 0.02 63.62 41.08 49.92

Fact-based text editing
ENCDECEDITOR 83.36 71.46 97.69 44.02 72.69 2.49 78.80 52.21 62.81
FACTEDITOR 84.43 74.72 98.41 41.50 84.24 2.65 78.84 52.30 63.39

(b) ROTOEDIT

Table 5: Performances of FACTEDITOR and baselines on two datasets in terms of Fluency and Fidelity. EM stands
for exact match.

obtains significant gains in DELETE scores on both
WEBEDIT and ROTOEDIT.

Second, the fact-based text editing models
(FACTEDITOR and ENCDECEDITOR) significantly
improve upon the other models in terms of fluency
scores, and achieve similar performances in terms
of fidelity scores.

Third, compared to No-Editing, Table-to-Text
has higher fidelity scores, but lower fluency scores.
Text-to-Text has almost the same fluency scores,
but lower fidelity scores on ROTOEDIT.

Qualitative evaluation
We also manually evaluate 50 randomly sampled
revised texts for WEBEDIT. We check whether the
revised texts given by FACTEDITOR and ENCDE-
CEDITOR include all the facts. We categorize the
factual errors made by the two models. Table 6
shows the results. One can see that FACTEDITOR

covers more facts than ENCDECEDITOR and has
less factual errors than ENCDECEDITOR.

FACTEDITOR has a larger number of correct edit-
ing (CQT) than ENCDECEDITOR for fact-based
text editing. In contrast, ENCDECEDITOR often in-
cludes a larger number of unnecessary rephrasings
(UPARA) than FACTEDITOR.

Covered facts Factual errors
CQT UPARA RPT MS USUP DREL

ENCDECEDITOR 14 7 16 21 3 12
FACTEDITOR 24 4 9 19 1 3

Table 6: Evaluation results on 50 randomly sampled re-
vised texts in WEBEDIT in terms of numbers of correct
editing (CQT), unnecessary paraphrasing (UPARA),
repetition (RPT), missing facts (MS), unsupported facts
(USUP) and different relations (DREL)

There are four types of factual errors: fact repe-
titions (RPT), fact missings (MS), fact unsupported
(USUP), and relation difference (DREL). Both
FACTEDITOR and ENCDECEDITOR often fail to
insert missing facts (MS), but rarely insert unsup-
ported facts (USUP). ENCDECEDITOR often gen-
erates the same facts multiple times (RPT) or facts
in different relations (DREL). In contrast, FACTE-
DITOR can seldomly make such errors.

Table 7 shows an example of results given by
ENCDECEDITOR and FACTEDITOR. The revised
texts of both ENCDECEDITOR and FACTEDITOR

appear to be fluent, but that of FACTEDITOR

has higher fidelity than that of ENCDECEDITOR.
ENCDECEDITOR cannot effectively eliminate the
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Set of triples

{(Ardmore Airport, runwayLength, 1411.0),
(Ardmore Airport, 3rd runway SurfaceType, Poaceae),
(Ardmore Airport, operatingOrganisation, Civil Aviation Authority of New Zealand),
(Ardmore Airport, elevationAboveTheSeaLevel, 34.0),
(Ardmore Airport, runwayName, 03R/21L)}

Draft text
Ardmore Airport , ICAO Location Identifier UTAA . Ardmore Airport 3rd runway
is made of Poaceae and Ardmore Airport . 03R/21L is 1411.0 m long and Ardmore Airport
is 34.0 above sea level .

Revised text
Ardmore Airport is operated by Civil Aviation Authority of New Zealand . Ardmore Airport
3rd runway is made of Poaceae and Ardmore Airport name is 03R/21L . 03R/21L is 1411.0 m long
and Ardmore Airport is 34.0 above sea level .

ENCDECEDITOR

Ardmore Airport , ICAO Location Identifier UTAA , is operated by
Civil Aviation Authority of New Zealand . Ardmore Airport 3rd runway is made of Poaceae and
Ardmore Airport . 03R/21L is 1411.0 m long and Ardmore Airport is 34.0 m long .

FACTEDITOR

Ardmore Airport is operated by Civil Aviation Authority of New Zealand . Ardmore Airport
3rd runway is made of Poaceae and Ardmore Airport . 03R/21L is 1411.0 m long and
Ardmore Airport is 34.0 above sea level .

Table 7: Example of generated revised texts given by ENCDECEDITOR and FACTEDITOR on WEBEDIT. Entities
in green appear in both the set of triples and the draft text. Entities in orange only appear in the draft text. Entities
in blue should appear in the revised text but do not appear in the draft text.

WEBEDIT ROTOEDIT

Table-to-Text 4,083 1,834
Text-to-Text 2,751 581

ENCDECEDITOR 2,487 505
FACTEDITOR 3,295 1,412

Table 8: Runtime analysis (# of words/second). Table-
to-Text always shows the fastest performance (Bold-
faced). FACTEDITOR shows the second fastest runtime
performance (Underlined).

description about an unsupported fact (in orange)
appearing in the draft text. In contrast, FACTEDI-
TOR can deal with the problem well. In addition,
ENCDECEDITOR conducts an unnecessary substi-
tution in the draft text (underlined). FACTEDITOR

tends to avoid such unnecessary editing.

Runtime analysis
We conduct runtime analysis on FACTEDITOR and
the baselines in terms of number of processed
words per second, on both WEBEDIT and RO-
TOEDIT. Table 8 gives the results when the batch
size is 128 for all methods. Table-to-Text is the
fastest, followed by FACTEDITOR. FACTEDITOR

is always faster than ENCDECEDITOR, apparently
because it has a lower time complexity, as ex-
plained in Section 4. The texts in WEBEDIT are rel-
atively short, and thus FACTEDITOR and ENCDE-
CEDITOR have similar runtime speeds. In contrast,
the texts in ROTOEDIT are relatively long, and thus
FACTEDITOR executes approximately two times
faster than ENCDECEDITOR.

6 Conclusion

In this paper, we have defined a new task referred
to as fact-based text editing and made two contri-
butions to research on the problem. First, we have
proposed a data construction method for fact-based
text editing and created two datasets. Second, we
have proposed a model for fact-based text editing,
named FACTEDITOR, which performs the task by
generating a sequence of actions. Experimental
results show that the proposed model FACTEDI-
TOR performs better and faster than the baselines,
including an encoder-decoder model.
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