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Abstract

Abstract Meaning Representations (AMRs)
are broad-coverage sentence-level semantic
graphs. Existing approaches to generating text
from AMR have focused on training sequence-
to-sequence or graph-to-sequence models on
AMR annotated data only. In this paper, we
propose an alternative approach that combines
a strong pre-trained language model with cy-
cle consistency-based re-scoring. Despite the
simplicity of the approach, our experimental
results show these models outperform all pre-
vious techniques on the English LDC2017T10
dataset, including the recent use of transformer
architectures. In addition to the standard eval-
uation metrics, we provide human evalua-
tion experiments that further substantiate the
strength of our approach.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a rooted, directed, acyclic
graph with labeled edges (relations) and nodes
(concepts) expressing “who is doing what to
whom”. AMR-to-text generates sentences repre-
senting the semantics underlying an AMR graph.

Initial works in AMR-to-text used transduc-
ers (Flanigan et al., 2016), phrase-based ma-
chine translation (Pourdamghani et al., 2016) and
neural sequence-to-sequence (seq2seq) models
with linearized graphs (Konstas et al., 2017). Cao
and Clark (2019) leverage constituency parsing
for generation. Beck et al. (2018) improve upon
prior RNN graph encoding (Song et al., 2018) with
Levi Graph Transformations. Damonte and Co-
hen (2019) compare multiple representations and
find graph encoders to be the best. Guo et al.
(2019) use RNN graph encoders with dense graph
convolutional encoding. Ribeiro et al. (2019)

∗ This research was done during an internship at IBM
Research AI.

use RNN encoders with dual graph representa-
tions. Transformer-based seq2seq (Vaswani
et al., 2017) was first applied to AMR-to-text in
(Sinh and Le Minh, 2019). Zhu et al. (2019)
greatly improve over the prior state-of-the-art
by modifying self-attention to account for AMR
graph structure. Using transformers has also been
recently explored by Wang et al. (2020) who pro-
pose a mutli-head graph attention mechanism.

Pre-trained transformer representations (Rad-
ford et al., 2018; Devlin et al., 2019; Radford
et al., 2019) use transfer learning to yield pow-
erful language models that considerably outper-
form the prior art. They have also shown great
success when fine-tuned to particular text gener-
ation tasks (See et al., 2019; Zhang et al., 2019;
Keskar et al., 2019). Given their success, it would
be desirable to apply pre-trained transformer mod-
els to a graph-to-text task like AMR-to-text, but
the need for graph encoding precludes in princi-
ple that option. Feeding the network with some
sequential representation of the graph, such as a
topological sorting, looses some of the graphs rep-
resentational power. Complex graph annotations,
such as AMR, also contain many special symbols
and special constructs that departure from natural
language and may by not interpretable by a pre-
trained language model.

In this paper we explore the possibility of di-
rectly fine-tuning a pre-trained transformer lan-
guage model on a sequential representation of
AMR graphs, despite the expected difficulties
listed above. For this we re-purpose a GPT-2 lan-
guage model (Radford et al., 2019) to yield an
AMR-to-text system. We show that it is surpris-
ingly easy to fine-tune GPT-2 to learn AMR graph
to text mapping that outperforms the previous
state-of-the-art on automatic evaluation metrics.
Since a single graph AMR, graph corresponds to
multiple sentences with the same meaning, we
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also provide human evaluation and semantic simi-
larity metric results (Zhang et al., 2020) which are
less dependent on reference text. Human evalua-
tion and semantic similarity results highlight the
positive impact of a strong language model strat-
egy. Finally we also introduce a simple re-scoring
technique based on cycle-consistency that further
improves performance.

2 Fine-tuning GPT-2 for conditional
language generation

In order to fine-tune a generative model
(GPT-2; Radford et al. (2019)) for condi-
tional text generation, prior works fine-tune the
language model to predict target text starting
from the additional source text as context. In our
experiments, we found it beneficial to fine-tune
on the joint distribution of AMR and text instead
i.e. also reconstruct the source. Given a tokenized
sentence w1 · · ·wN and the sequential AMR
representation a1 · · · aM we maximized the joint
probability

pGPT-2(w,a) =
N∏
j=1

pGPT-2(wj | w1:j−1, a1:M )

·
M∏
i=1

pGPT-2(ai | a1:i−1)

A special separator token is added to mark the
end of the sequential AMR representation. Spe-
cial AMR symbols that should not be interpreted
literally are assigned tokens from the GPT-2 un-
used token list. In addition to this, we also ob-
served that freezing the input embeddings when
fine-tuning had positive impact in performance.

At test time, we provide the AMR as context as
in conventional conditional text generation:

ŵj = argmax
wj

{pGPT-2(wj | w1:j−1, a1:M )}

3 Re-scoring via Cycle Consistency

The general idea of cycle consistency is to assess
the quality of a system’s output based on how well
an external ‘reverse’ system can reconstruct the in-
put from it. In previous works, cycle-consistency
based losses have been used as part of the training
objective in machine translation (He et al., 2016)
and speech recognition (Hori et al., 2019). It has

also been used for filtering synthetic training data
for question answering (Alberti et al., 2019). Here
we propose the use of a cycle consistency measure
to re-score the system outputs.

In particular, we take the top k sentences gen-
erated by our system from each gold AMR graph
and parse them using an off-the-shelf parser to ob-
tain a second AMR graph. We then re-score each
sentence using the standard AMR parsing metric
Smatch (Cai and Knight, 2013) by comparing the
gold and parsed AMRs.

4 Experimental setup

Following Previous works on AMR-to-text, we
Use the standard LDC2017T10 AMR corpus for
evaluation of the proposed model. This Corpus
contains 36,521 training instances of AMR graphs
in PENMAN notation and the corresponding texts.
It also includes 1368 and 1371 development and
test instances, respectively. We tokenize each in-
put text using The JAMR toolkit (Flanigan et al.,
2014). The concatenation of an AMR graph and
the corresponding text is split into words, special
symbols and sub-word units using the GPT-2 to-
kenizer. We add all arc labels seen in the train-
ing set and the root node :root to the vocabu-
lary of the GPT-2model, but we freeze the em-
bedding layer for training. We use the Hugging
Face implementation of (Wolf et al., 2019) for
GPT-2 small (GPT-2S), medium (GPT-2M) and
large (GPT-2L). Fine-tuning converges after 6
epochs, which takes just a few hours on a V100
GPU1. For cycle-consistency re-scoring we use an
implementation of Naseem et al. (2019) in Py-
Torch. For re-scoring experiments, we use a beam
size of 15.

AMR input representation. we test three vari-
ants of AMR representation. First, a depth-first
search (DFS) through the graph following Konstas
et al. (2017), where the input sequence is the path
followed in the graph. Second, to see if GPT-2 is
in fact learning from the graph structure, we re-
move all the edges from the DFS, keeping only
the concept nodes. This has the effect of removing
the relation information between concepts, such as
subject/object relations. As a third option, we use
the PENMAN representation without any modifi-
cation. The three input representations are illus-
trated below:

1Code for this paper is available at: https://
github.com/IBM/GPT-too-AMR2text

https://github.com/IBM/GPT-too-AMR2text
https://github.com/IBM/GPT-too-AMR2text
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Nodes recommend advocate-01 it
vigorous

DFS recommend :ARG1 advocate-01
:ARG1 it :manner vigorous

Penman (r / recommend-01 :ARG1 (a /
advocate-01 :ARG1 (i / it)
:manner (v / vigorous)))

Decoding. For generation, we experiment with
greedy decoding, beam search, and nucleus sam-
pling (Holtzman et al., 2019). For beam search,
we explore beam sizes of 5, 10 and 15. As the
system, in some cases, produces repetitive output
at the end of the text, we additionally perform a
post-processing step to remove these occurrences.

Metrics. We considered the three automatic
evaluation metrics commonly used in previous
works. We compute BLEU (Papineni et al., 2002)
using SacreBLEU (Ma et al., 2019). We compute
chrF++ (Popović, 2017) using both SacreBLEU
and the scripts used by authors of the baseline
systems. We compute METEOR (Banerjee and
Lavie, 2005) with the default values for English
of the CMU implementation.2

In addition to the standard automatic metrics,
we also carry out human evaluation experiments
and use the semantic similarity metric BERTScore
(Zhang et al., 2020). Both metrics arguably have
less dependency on the surface symbols of the ref-
erence text used for evaluation. This is particu-
larly relevant for the AMR-to-text task, since one
single AMR graph corresponds to multiple sen-
tences with the same semantic meaning. Conven-
tional metrics for AMR-to-text are are strongly in-
fluenced by surface symbols and thus do not cap-
ture well the ability of the system to produce a di-
verse sentences with same underlying semantics.

Human evaluations are carried out by three pro-
fessional annotators on 51 randomly selected sen-
tences from the 1371 test sentences, on a 6 point
scale, ranging from 0 to 5.

• 0=Exceptionally poor (No useful information is con-

veyed at all.)

• 1=Poor (Fundamental errors in grammar and vocabu-

lary make it difficult to understand the meaning.)

• 2=Not good enough (Errors in grammar, vocabulary

and style make it difficult to understand the meaning.)

• 3=Good enough (There are errors in the text, but I am

reasonably confident that I understand the meaning.)

2https://www.cs.cmu.edu/˜alavie/METEOR

Model Input BLEU chrF++
GPT-2S Rec. Only nodes AMR 9.45 41.59
GPT-2S Rec. Lin. AMR w/o edges. 11.35 43.25
GPT-2S Rec. Lin. AMR w/edges. 20.14 53.12
GPT-2S Rec. Penman AMR 22.37 53.92
GPT-2M Rec. Lin. AMR w/edges. 22.86 55.04
GPT-2M Rec. Penman AMR 27.99 61.26

Table 1: Results on the LDC2017T10 develop-
ment set using GPT-2 S(mall) and M(edium) with
Rec(onstruction) loss (see §2) for different AMR rep-
resentations (see §4).

Approach Decoding BLEU chrF++
GPT-2M Conditional Greedy 25.73 57.2

GPT-2M Rec. Greedy 30.41 61.36
GPT-2M Rec. BEAM 31.8 62.56
GPT-2M Rec. BEAM 10 32.32 62.79
GPT-2M Rec. Sampling 28.75 61.19

Table 2: Results on the LDC2017T10 development set.
Rec(onstruction) uses the AMR reconstruction term
(see §2) whereas Conditional does not.

• 4=Very good (There may be minor errors in the text,

but I am very confident that I understand the meaning.)

• 5=Excellent (The information is presented clearly and

with appropriate grammar, vocabulary and style.)

For each system, scores from all annotators are av-
eraged to compute a single score. Inter-annotator
agreement was 0.7 when measured by Pearson
correlation coefficient.

Our system produces de-tokenized cased out-
put after BPE decoding, whereas previous systems
produce traditional tokenized lower-cased output.
Therefore, we lowercase and tokenize our system
outputs to have fair comparisons with previous
systems.

4.1 Results
Regarding the type of AMR representation, as
shown in Table 1, using directly the PENMAN no-
tation for AMR representation leads to the best re-
sults outperforming DFS. Edge information, indi-
cating relations between concepts, seems also to
play a fundamental role since its absence strongly
decreases performance in both DFS and PEN-
MAN representations. Penman notation was cho-
sen for the rest of the experiments.

The impact of the use of a reconstruction term
explained in §2 is shown in Table 2. The model
trained using this additional term achieves 30.41
BLEU and 61.36 chrF++, as opposed to 25.73

https://www.cs.cmu.edu/~alavie/METEOR
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System Performance
BLEU Meteor chrF++

Beck et al. (2018) 23.30 - 50.40
Damonte and Cohen (2019) 24.54 24.07 -

Guo et al. (2019) 27.60 - 57.30
Cao and Clark (2019) 26.80 - -

Sinh and Le Minh (2019) 18.36 - -
Ribeiro et al. (2019) 27.87 33.21 -
Cai and Lam (2020) 29.80 35.10 59.4

Zhu et al. (2019) 31.82 36.38 64.05
GPT-2M Rec. 32.10� 35.863 61.81�

GPT-2L Rec. 32.47� 36.803 62.88�

GPT-2M Rec. re-scoring 32.98� 37.333 63.09�

GPT-2L Rec. re-scoring 33.02� 37.683 63.892

Table 3: Results on the LDC2017T10 test set for best
performing models compared to other results reported
in the literature. � indicates statistical significance at
(P < .01), 3 at (P < 0.05) and 2, not significant. All
significance tests are with respect to (Zhu et al., 2019).

System LDC2017T10
Human Eval. SemSim
Avg. P45 F1

Guo et al. (2019) 2.48 15.69% 92.68
Ribeiro et al. (2019) 2.42 16.37% 92.63

Zhu et al. (2019) 2.61 20.26% 93.31
GPT-2M Rec. 3.03 37.91% 94.55
GPT-2L Rec. 3.04 41.83% 94.63

Table 4: Human evaluation and semantic similarity
(SemSim) results on the LDC2017T10 test set. Human
evaluations (Human Eval.) show the average (Avg.) of
scores (0 to 5) and the ratio of sentence evaluated be-
tween 4 and 5 (P45). All results for human evaluation
are on 51 randomly selected sentences and statistically
significant at (P < 0.05). SemSim results are signif-
icant at (P < 0.01). All significance tests refer to a
comparison with (Zhu et al., 2019).

BLEU and 57.2 chrF++ without the term. We
therefore use a reconstruction term training in the
rest of the experiments.

Beam search improves system performance
greatly over the greedy baseline with 1.91 BLEU
points (see Table 2). With beam size 10, we ob-
tain 32.32 BLEU and 62.79 chrF++. With nu-
cleus sampling at a cumulative probability mass of
0.9, performance drops to 28.75 BLEU and 61.19
chrF++. Finally, cycle-consistency re-ranking of
the beam search outputs improves performance
(33.57 BLEU, 64.86 chrF++) over the one best
output.

Table 3 compares the best GPT-2M and
GPT-2L results, fine-tuned using the reconstruc-

tion term and PENMAN notation. For all scores
we test statistical significance with a standard
two-tailed student t-test. Our model achieves a
large improvement of 1.2 BLEU and 1.3 ME-
TEOR scores over the previous state-of-the-art
model using GPT-2L and re-scoring. For chrF++,
we get different scores from SacreBLEU and the
scripts provided by the authors of our baseline sys-
tems, achieving comparable results with the for-
mer (63.89), and improving over the best score
with the latter (65.01) (P < .01).

Table 4 shows human Evaluation results
and semantic similarity scores of GPT-2L and
GPT-2M compared to (Zhu et al., 2019; Ribeiro
et al., 2019; Guo et al., 2019). Our approach
produces a large number of high-quality sen-
tences with 41.8%, a significant gain over the
previous best system (20.26%). Regarding se-
mantic similarity, prior art methods show rela-
tively close scores, a 0.9 points difference, while
GPT-2L Rec. improves 1.6 points over the best of
these models. It should be noted that differences
with (Zhu et al., 2019) for GPT-2L Rec. are sta-
tistically significantly with P < .05, while differ-
ences for GPT-2M Rec are not significant due to
the small sample size.

In Table 5 we show three nontrivial examples,
where we compare our system outputs with those
of previous work. In the first example, the refer-
ence sentence contains a grammatical error. Our
system not only generates the correct output, but
also corrects the error in the reference. The pro-
posed system can generate fluent long sentences
as shown in example 2. The third example shows
a sentence where all systems including ours fail to
generate a correct text.

4.2 Discussion

Due to the large amounts of data they are trained
on, pre-trained transformer language models can
be expected to generate fluent and diverse text (See
et al., 2019). It should however be highlighted that
fine-tuned GPT-2 learns to produce not only flu-
ent but also adequate text, despite using a sequen-
tial representation of an AMR graph as input. As
shown in the experimental setup, encoding of re-
lations plays as well a fundamental role in AMR-
to-text performance, indicating that GPT-2 attains
a fine-grained understanding of the underlying se-
mantics to reach state of the art performance.

While a sequence of PENMAN notation to-
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System Generated text
(1) REF: the doctors gave her medication and it ’s made her much better .

G2S: the doctor gives her medications and they make her much better .
Transf: doctors give her medications and make her much better .

Our: the doctor gave her the medication and made her feel much better.
Our R.: the doctor gave her the medication and made her ” much better ” .

(2) REF: at the state scientific center of applied microbiology there is every kind of deadly bacteria
that was studied for use in the secret biological weapons program of the soviet union .

G2S: there are every kind of killing <unk> in the state scientific center of applied microbiology to
use themselves for soviet union ’s secret biological weapons programs .

Transf: there is every kind of bacterium , which is studied in using bacterium for the soviet union
secret biological weapons program .

Our: every kind of bacterium that was studied was found at the state scientific center of applied
microbiology and was used in soviet secret weapons programs for biological weapons of
biology .

Our R.: every kind of bacterium that has been studied and used in soviet secret programs for biological
weapons has been in the state scientific center of applied microbiology .

(3) REF: among the nations that have not signed the treaty only india and israel would qualify for
admission to the nsg under the israeli proposal .

G2S: only one of the nations who do not sign the treaty are qualified for their proposal to admit the
nsg .

Transf: india and israel are only qualified for the nations that do not sign the treaty , but they admitted
to the nsg .

Our: india and israel are the only countries eligible to admit to the nsg by proposing a treaty .
Our R.: only india and israel are eligible to admit to the nsg by proposing a treaty .

Table 5: Output examples from four systems of the LDC2017T10 dataset. REF stands for reference, G2S for
(Guo et al., 2019) and Transf. for (Zhu et al., 2019). Our is the top beam output for GPT-2L and Our R. is with
re-scoring.

kens is far from an optimal encoding of a graph,
it is noteworthy how far performance-wise cur-
rent strong language models can go. Furthermore,
It is likely that standard metrics (BLEU, Meteor,
chrF++) that rely on a reference text do not prop-
erly reflect AMR-to-text quality. An AMR graph
corresponds to multiple sentences with the same
semantics and these measures are likely biased to-
wards the single available reference. In metrics
that are less influenced by the reference text such
as human evaluation and semantic similarity, the
proposed system shows a larger improvement over
the previous systems with close to 50% of the gen-
erated sentences considered excellent or good.

Finally it is worth considering that leveraging
pre-trained transformers greatly expands the vo-
cabulary available on AMR-to-text systems. A
single AMR graph can correspond to multiple
sentences with markedly different surface realiza-
tions, but manual annotation of AMR is a time
consuming task. Approaches like the one pro-
posed may be a simple solution for generation of
diverse text data for AMR parser training or other
applications were diversity play a role.

5 Conclusions

In this work, we present a language model-based
approach for the AMR-to-text generation task. We
show that a strong pre-trained transformer lan-
guage model (GPT-2) can be fine-tuned to gen-
erate text directly from the PENMAN notation of
an AMR graph. Comparison with state-of-the-art
models in BLUE, chrF++, METEOR as well as
SemSim and human evaluation metrics show that
while simple, this approach can outperform ex-
isting methods including methods training trans-
formers from scratch. We also show that cycle
consistency-based re-scoring using a conventional
AMR parser and the Smatch metric can notably
improve the results. Future work will focus on
incorporating better encoding of the AMR graph
into the current system and exploring data aug-
mentation techniques leveraging the proposed ap-
proach.
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