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Abstract

To address the challenge of policy learning in
open-domain multi-turn conversation, we pro-
pose to represent prior information about di-
alog transitions as a graph and learn a graph
grounded dialog policy, aimed at fostering a
more coherent and controllable dialog. To this
end, we first construct a conversational graph
(CG) from dialog corpora, in which there are
vertices to represent “what to say” and “how
to say”, and edges to represent natural transi-
tion between a message (the last utterance in
a dialog context) and its response. We then
present a novel CG grounded policy learning
framework that conducts dialog flow planning
by graph traversal, which learns to identify a
what-vertex and a how-vertex from the CG at
each turn to guide response generation. In this
way, we effectively leverage the CG to facili-
tate policy learning as follows: (1) it enables
more effective long-term reward design, (2) it
provides high-quality candidate actions, and
(3) it gives us more control over the policy. Re-
sults on two benchmark corpora demonstrate
the effectiveness of this framework.

1 Introduction

How to effectively learn dialog strategies is an en-
during challenge for open-domain multi-turn con-
versation generation. To address this challenge,
previous works investigate word-level policy mod-
els that simultaneously learn dialog policy and lan-
guage generation from dialog corpora (Li et al.,
2016b; Zhang et al., 2018b). But these word-level
policy models often lead to a degeneration issue
where the utterances become ungrammatical or
repetitive (Lewis et al., 2017). To alleviate this
issue, utterance-level policy models have been pro-
posed to decouple policy learning from response
generation, and they focus on how to incorporate
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今天晚上要通宵加班

I have to work overnight tonight.

辛苦了，好辛苦，注意身体

Take care of yourself when doing a 
very hard work.

还不能打盹，领导也在

I can’t take a nap yet, as the leaders 
are also here.

这么晚了，不 犯困 啊 ？

It's so late. Don’t you get sleepy?

哈哈，那也会 犯困 吧

Ha-ha, that will make you sleepy.

我以为你会犯困的，这么晚了

I thought you’d be sleepy, as it's late.

Context Mechanisms Responses

犯困/sleepy
+

Message

Response

Figure 1: Our system (1) understands the user message
by linking it to CG. We call the linked vertices as hit
what-vertices (green color) ; (2) selects a what-vertex
(“sleepy”) and a how-vertex (responding mechanism
M3, a MLP network) from one-hop neighbors of hit
vertices; (3) generates a coherent response with two
sub-steps: firstly, obtains a response representation r̄
using both M3 and a message representation (from a
message-encoder); Next, produces a response “It’s so
...” with “sleepy” and r̄ as input. Notice all the how-
vertices are from the same set rather than completely
independent of each other.

high-level utterance representations, e.g., latent
variables or keywords, to facilitate policy learning
(He et al., 2018; Yao et al., 2018; Zhao et al., 2019).

However, these utterance-level methods tend to
produce less coherent multi-turn dialogs since it
is quite challenging to learn semantic transitions
in a dialog flow merely from dialog data without
the help of prior information. In this paper, we
propose to represent prior information about dialog
transition (between a message and its response) as
a graph, and optimize dialog policy based on the
graph, to foster a more coherent dialog.

To this end, we propose a novel conversa-
tional graph (CG) grounded policy learning frame-
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work for open-domain multi-turn conversation
generation (CG-Policy). It consists of two key
components, (1) a CG that captures both local-
appropriateness and global-coherence information,
(2) a reinforcement learning (RL) based policy
model that learns to leverage the CG to foster a
more coherent dialog. In Figure 1, given a user mes-
sage, our system selects a what-vertex (“sleepy”)
and a how-vertex(responding mechanism M3) to
produce a coherent response.1

We first construct the CG based on dialog data.
We use vertices to represent utterance content, and
edges to represent dialog transitions between utter-
ances. Specifically, there are two types of vertices:
(1) a what-vertex that contains a keyword, and (2) a
how-vertex that contains a responding mechanism
(from a multi-mapping based generator in Section
3.1) to capture rich variability of expressions. We
also use this multi-mapping based method to build
edges between two what-vertices to capture the
local-appropriateness between the two keywords
as a message and a response respectively. It can be
seen that the what-vertices from the same highly
connected region are more likely to constitute co-
herent dialog.

We then present a novel graph grounded policy
model to plan a long-term success oriented vertex
sequence to guide response generation. Specifi-
cally, as illustrated by the three pink lines in Figure
1, given a user message, CG-Policy first links its
keywords to CG to obtain hit what-vertices. Next,
the policy model learns to select a what-vertex
from one-hop what-vertex neighbors of all hit what-
vertices, and then select a how-vertex from how-
vertex neighbors of the chosen what-vertex. Fi-
nally, the two selected vertices are utilized to guide
response generation. Thus we leverage the prior
dialog-transition information (as graph edges) to
narrow down candidate response content for more
effective policy decision, instead of using the whole
set of keywords as candidate actions. Moreover,
to facilitate the modeling of long-term influence
of policy decisions in an ongoing dialog, we first
present novel CG based rewards to better mea-
sure the long-term influence of selected actions.
We then employ a graph attention mechanism and
graph embedding to encode global structure in-
formation of CG into dialog state representations,
enabling global information aware decisions.

1Each mechanism is a MLP network to model how to
express response content (Chen et al., 2019).

This paper makes the following contributions:

• This work is the first attempt that represents
dialog transitions as a graph, and conducts
graph grounded policy learning with RL. Sup-
ported by CG and this policy learning frame-
work, CG-Policy can respond better in terms
of local appropriateness and global coherence.

• Our study shows that: (1) one-hop what-
vertex neighbors of hit what-vertices provide
locally-appropriate and diverse response con-
tent; (2) the CG based rewards can super-
vise the policy model to promote a globally-
coherent dialog; (3) the use of how-vertices
in CG can improve response diversity; (4) the
CG can help our system succeed in the task of
target-guided conversation, indicating that it
gives us more control over the dialog policy.

2 Related Work

Policy learning for chitchat generation To ad-
dress the degeneration issue of word-level policy
models (Li et al., 2016b; Zhang et al., 2018b),
previous works decouple policy learning from re-
sponse generation, and then use utterance-level la-
tent variables (Zhao et al., 2019) or keywords (Yao
et al., 2018) as RL actions to guide response gener-
ation. In this work, we investigate how to use prior
dialog-transition information to facilitate dialog
policy learning.

Knowledge aware conversation generation
There are growing interests in leveraging knowl-
edge bases for generation of more informative re-
sponses (Dinan et al., 2019; Ghazvininejad et al.,
2018; Moghe et al., 2018; Zhou et al., 2018; Liu
et al., 2019; Bao et al., 2019; Xu et al., 2020). In
this work, we employ a dialog-modeling oriented
graph built from dialog corpora, instead of a exter-
nal knowledge base, in order to facilitate multi-turn
policy learning, instead of dialog informativeness
improvement.

Specifically, we are motivated by (Xu et al.,
2020). The method in (Xu et al., 2020) has the
issue of cross-domain transfer since it relies on
labor-intensive knowledge graph grounded multi-
turn dialog datasets for model training. Compared
with them, our conversational graph is automati-
cally built from dialog datasets, which introduces
very low cost for training data construction. Fur-
thermore, we decouple conversation modeling into
two parts: “what to say” modeling and “how to
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Figure 2: The architecture of our CG-Policy that
consists of NLU, state/action, policy, and NLG. We
first construct conversational graph from dialog corpus.
Then we train CG-Policy with RL. The upper-right part
shows the details of input/output of each module.

say” modeling. It is reasonable to only adjust the
“what-” part when transfer to different domains
which further reduces the domain transfer cost.

3 Our Approach

The overview of CG-Policy is presented in Figure
2. Given a user message, to obtain candidate ac-
tions, the NLU module attempts to retrieve contex-
tually relevant subgraphs from CG. The state/action
module maintains candidate actions, history key-
words that selected by policy at previous turns or
mentioned by user, and the message. The policy
module learns to select a response keyword and a
responding mechanism from the above subgraphs.
The NLG module first encodes the message into
a representation using a message encoder and the
selected mechanism, and then employs a Seq2BF
model2 (Mou et al., 2016) to produce a response

2It decodes a response starting from the input keyword,
and generates the remaining previous and future words subse-
quently. In this way, the keyword will appear in the response.
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Figure 3: The Multi-mapping based generator for NLG
in which we use a Seq2BF based model (Mou et al.,
2016) as the decoder.

with the above representation and the selected key-
word as input. The models used in CG construc-
tion/policy/NLG/reward are trained separately.

3.1 Background: Multi-mapping Generator
for NLG

To address the “one-to-many” semantic map-
ping problem for conversation generation, Chen
et al.(2019) proposed an end-to-end multi-mapping
model in which each responding mechanism (a
MLP network) models how to express response
content (e.g. responding with a specific sentence
function). In test procedure, they randomly select
a mechanism for response generation.

As shown in Figure 3, the generator consists of
a RNN based message encoder, a set of responding
mechanisms, and a decoder. First, given a dialog
message, the message-encoder represents it as a
vector x. Second, the generator uses a respond-
ing mechanism (selected by policy) to convert x
into a response representation r̄. Finally, r̄ and a
keyword (selected by policy) are fed into the de-
coder for response generation. To ensure that the
given keyword will appear in generated responses,
we introduce another Seq2BF based decoder (Mou
et al., 2016) to replace the original RNN decoder.
Moreover, this generator is trained on a dataset with
pairs of [the message, a keyword extracted from a
response]-the response.3

3.2 CG Construction

Given a dialog corpusD, we construct the CG with
three steps: what-vertex construction, how-vertex
construction, and edge construction.

3If multiple keywords are extracted from the response,
we randomly choose one; and if no keyword exists in the
response, we randomly sample a word from the response to
serve as “keyword”.
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What-vertex construction To extract content
words fromD as what-vertices, we use a rule-based
keyword extractor to obtain salient keywords from
utterances in D.4 After removing stop words, we
obtain all the keywords as what-vertices.

How-vertex construction We obtain a set of
Nr responding mechanisms from the generator de-
scribed in Section 3.1. Then they are used as how-
vertices. Notice that all the how-vertices in CG
share the same set of responding mechanisms.

Edge construction There are two types of edges
in CG. One is to join two what-vertices and the
other is to join a what-vertex and a how-vertex.
To build the first type of edges, we first construct
another dataset that consists of keyword pairs,
where each pair consists of any two keywords ex-
tracted from the message and the response respec-
tively in D. To capture natural transitions between
keywords, we train another multi-mapping based
model on this new dataset.5 For each what-vertex
vw, we find appropriate keywords as its responses
by selecting top five keywords decoded (decoding
length is 1) by each responding mechanism, and
then connect vw to vertices of these keywords.

To build the second type of edges, for the
[message-keyword]-response pair in D (described
in Section 3.1), we use the ground-truth response
to select the most suitable mechanism for each key-
word. Then, given a what-vertex vw, we select top
five mechanisms that are frequently selected for
vw’s keyword. Then we build edges to connect vw

to each of the top ranked how-vertices. These edges
lead to responding mechanisms that are suitable to
generate vw.

3.3 NLU

To obtain subgraphs to provide high-quality candi-
date actions, we first extract keywords in the last
utterance of the context (message) using the same
tool in CG construction, and then link each key-
word to the CG through exact string matching, to
obtain multiple hit what-vertices. Then we retrieve
a subgraph for each keyword, and use vertices (ex-
clude hit what-vertices) in these subgraphs as can-
didate actions. Each subgraph consists of three
parts: the hit what-vertex, its one-hop neighboring

4github.com/squareRoot3/Target-Guided-Conversation
5We ever tried other methods for edge construction, e.g.,

PMI (Yao et al., 2018). Finally we found that our method can
provide more diverse response keyword candidates, while PMI
tends to provide high-frequency keyword candidates. Here we
use a RNN based decoder to replace the Seq2BF.

0. Prepare dataset D and pretrained embedding.
1. Construct the what-vertex set. (3.2)
2. Train a multi-mapping based generator for NLG. (3.1)

Responding mechanisms constitute the how-vertex set.
3. Construct edges between two what-vertices or

a what-vertex and a how-vertex. (3.2)
4. Train a scoring model for local relevance. (3.6)
5. Train TransE based embedding and PageRank

scores for what-vertices. (3.6)
6. Calculate shortest path distances between

any two what-vertices. (3.6)
7. Train a original multi-mapping based with a RNN

decoder on D for user-simulator. (4.3)
8. Optimize policy with reinforcement learning, where

parameters in other modules stay intact. (3.7)

Table 1: The training procedure of CG-Policy.

what-vertices, and how-vertices being connected to
the above neighbors. If there are no keywords to be
extracted from the message or to be linked to CG,
we reuse the retrieved subgraphs at the last time.6

Thus we leverage the CG to provide high-quality
candidate actions, instead of using the whole set
of candidates as done in previous work (Yao et al.,
2018).

3.4 State/Action

This module maintains candidate actions, history
keywords that selected by the policy or mentioned
by user, and the message. Moreover, we use the
message-encoder from Section 3.1 to represent the
message as a vector x, and then we use all the
responding mechanisms from Section 3.1 to con-
vert x into Nr candidate response representations
{rj}Nr

j=1, which will be used in the policy.

3.5 Policy

State representation The state representation st
at the t-th time step is obtained by concatenating a
message representation sMt and a history keywords
representation sVt that are encoded by two RNN
encoders respectively. Formally,

st = [sMt ; sVt ]. (1)

To enable global information aware policy de-
cisions, we employ a graph attention mechanism
and graph embedding to encode global structure
information into state representation.

Recall that we have a subgraph for each key-
word in the message obtained by NLU. Here
each subgraph gi consists of a hit what-vertex,

6If we encounter this case at the first time step, hit what-
vertices are set as what-vertices that contain the top-5 high-
frequency keywords in D.
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its what-vertex neighbors (here we remove how-
vertices) and edges between them. Formally,
gi = {τk}

Ngi
k=1, where each τk is a triple with

τk = (headk, relk, tailk), and Ngi is the number
of triples in gi. For non keywords in the message,
a NULL subgraph is used.

Then we calculate a subgraph vector gi as a
weighted sum of head vectors and tail vectors in
the triples.

gi =

Ngi∑
k=1

αk[eheadk ; etailk ],

αk =
exp(βk)∑Ngi

m=1 exp(βm)
,

βk = eTrelk tanh(Wheheadk + Wtetailk).

(2)

Here e∗ represents pretrained graph embedding
(TransE (Bordes et al., 2013)) that are not updated
during RL training. Wh and Wt are parameters.
sMt is obtained by recursively feeding a concate-

nated vector ei = [wc
i ;gi] into a vanilla RNN unit,

where wc
i (as model parameters) is the embedding

of the keyword wc
i . Thus we encode the global

graph structure information into RL state represen-
tations, enabling a global-information aware policy
model. Moreover, we calculate sVt in a similar way.

Policy decision Each decision consists of two
sequential sub-decisions. First the what-policy se-
lects a what-vertex from candidate what-vertices,
and then the how-policy selects a how-vertex from
how-vertex neighbors of the selected what-vertex.

With st as the state representation, the what-
policy µwhat is defined by:

µwhat(st,v
w
j ) =

exp(sTt v
w
j )∑Nw act

l=1 exp(sTt v
w
l )
, (3)

where vw
j (as model parameters, different from

both wc
i and e∗) is the embedding of the j-th can-

didate what-vertices, and Nw act is the number of
candidate what-vertices.

The how-policy µhow is defined by:

µhow(st, ri) =
λi exp(sTt ri)∑Nr
j=1 λj exp(sTt rj)

, (4)

where ri is a candidate response representation in
the state module, and λi is mechanism mask. λi is
set as 1 if the i-th responding mechanism is one of
neighbors of the selected what-vertex, otherwise 0.

3.6 Rewards

Following previous works, we consider these
utterance-level rewards:

Local relevance We use a state-of-the-art multi-
turn response selection model, DualEncoder in
(Lowe et al., 2015), to calculate local relevance.

Repetition Repetition penalty is 1 if the gener-
ated response shares more than 60% words with
any contextual utterances, otherwise 0.

Target similarity For target-guided conversa-
tion, we calculate cosine similarity between the
chosen keyword and the target word in pretrained
word embedding space as target similarity.7

To leverage the global graph structure informa-
tion of CG to facilitate policy learning, we propose
the following rewards:

Global coherence We calculate the average co-
sine distance between the chosen what-vertex and
one of history what-vertices (selected or mentioned
previously) in TransE based embedding space (also
used in Equation 2) as coherence reward.

Sustainability It is reasonable to promote what-
vertices with a large number of neighbors to gener-
ate more sustainable, coherent, and diverse dialogs.
For this reward, we calculate a PageRank score
(calculated on the full CG) for the chosen what-
vertex.

Shortest path distance to the target For target-
guided conversation, if the chosen what-vertex is
closer to the target what-vertex in terms of shortest
path distance when compared to the previously
chosen what-vertex, then this reward is 1, or 0 if
the distance does not change, otherwise -1.

Moreover, we define the final reward as a
weighted sum of the above-mentioned factors,
where the weight of each factor is set as [0.5, -5,
0, 3, 8000, 0] by default.8 We see that our rewards
can fully leverage dialog transition information in
training data by using not only utterance based re-
wards (e.g., local relevance), but also graph based
rewards (e.g., coherence, sustainability).

3.7 Policy Optimization

To make training process more stable, we employ
the A2C method (Sutton and Barto, 2018) for op-
timization. Moreover, we only update policy pa-

7If no keyword is chosen, as in baseline models, we calcu-
late target similarity for each word in response and select the
closest one.

8We optimize these values on Weibo dataset by grid search.
The weights of the third/sixth factors are set as 0 by default
because they are proposed for target-guided conversation.
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rameters, and the parameters of other modules stay
intact during RL training.

3.8 NLG

As described in Section 3.1, we use the mechanism
selected by how-policy to convert x into a response
representation r̄. Then we feed the keyword in the
selected what-vertex and r̄ into a Seq2BF decoder
(Mou et al., 2016) for response generation.

4 Experiments and Results9

4.1 Datasets

We conduct experiments on two widely used open-
domain dialog corpora.

Weibo corpus (Shang et al., 2015). This is a
large micro-blogging corpora. After data clean-
ing, we obtain 2.6 million pairs for training, 10k
pairs for validation and 10k pairs for testing. We
use publicly-available lexical analysis tools10 to ob-
tain POS tag features for this dataset and then we
further use this feature to extract keywords from ut-
terances. We use Tencent AI Lab Embedding11for
embedding initialization in models.

Persona dialog corpus (Zhang et al., 2018a).
This ia a crowd-sourced dialog corpora where each
participant plays the part of an assigned persona.
To evaluate policy controllability brought by CG-
Policy, we conduct an experiment for target-guided
conversation on the Persona dataset as done in
(Tang et al., 2019). The training set / validation
set / testing set contain 101,935 / 5,602 / 5,371 ut-
terances respectively. Embeddings are initialized
with Glove (Pennington et al., 2014).

Conversational Graph The constructed CG on
Weibo corpus contains 4,000 what-vertices and
74,362 edges among what-vertices, where 64%
edges are evaluated as suitable for chatting by
three human annotators.12 The constructed CG
on Persona corpus contains 1,500 what-vertices
and 21,902 edges among what-vertices, where 67%
edges are evaluated as suitable for chatting by three
human annotators.

4.2 Methods

We carefully select three SOTA methods that focus
on dialog policy learning as baselines.

9Please see the supplemental material for more details.
10ai.baidu.com/
11ai.tencent.com/ailab/nlp/embedding.html
12We randomly sample 500 edges for evaluation.

LaRL It is a latent variable driven dialog policy
model (Zhao et al., 2019). We use their released
codes and choose the multivariate categorical la-
tent variables as RL actions since it performs the
best. For target-guided conversation, we imple-
ment another model LaRL-Target, where we add
the “target similarity” factor into RL rewards, and
its weight is set as 4 by grid search.

ChatMore We implement the keyword driven
policy model (Yao et al., 2018) by following their
original design. For target-guided conversation, we
implement ChatMore-Target, where we add the
“target similarity” factor into RL rewards, and its
weight is set as 4 by grid search.

TGRM It is a retrieval based model for target-
guided conversation, where the keyword chosen
at each turn must move strictly closer (in embed-
ding space) to a given target word (Tang et al.,
2019). For target-guided conversation, we use the
codes released by the original authors, denoted as
TGRM-Target, and we use their kernel version
since it performs the best.13 To suit the task of
open-domain conversation on Weibo, we remove
the unnecessary constraint on keyword’s similarity
with the target word, denoted as TGRM.

CG-Policy It is our system presented in Section
3. For target-guided conversation, we implement
another system CG-Policy-Target, where we use
an additional feature, the “shortest path distance
to the target” factor, to augment the original what-
vertex representation vw

j in the what-policy µwhat.
Formally, v̄w

j = W1 ∗ [vw
j ; edj ], where v̄w

j is the
augmented representation, W1 is a weighting ma-
trix, edj is an embedding for the distance value dj ,
and v̄w

j has the same size with vw
j . We also use

this factor in reward estimation and its weight is
set as 5 by grid search, and we don’t use the “tar-
get similarity” factor. Moreover, we use the same
dialog corpora to construct CG, train user simu-
lator, reward functions, and the NLG module for
CG-Policy.

4.3 User Simulator

We use the same user simulator for RL training of
LaRL, ChatMore and CG-Policy. The user simula-
tor is the original multi-mapping based generator
with a RNN decoder, which is pretrained on dia-
log corpus and not updated during policy training.
Please refer to (Chen et al., 2019) for more details.
During testing, all the systems share this simulator.

13github.com/squareRoot3/Target-Guided-Conversation
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4.4 Evaluation Settings
Conversation with user simulator Following pre-
vious work (Li et al., 2016b; Tang et al., 2019), we
use a user simulator to play the role of human and
let each of the models converse with it. Given a
randomly selected model, we randomly select an
utterance from all the utterances (at the starting
position of sessions) in test set for the model to
start a conversation. Moreover, we set a maximum
allowed number of turns, which is 8 in our exper-
iment. Finally, we collect 100 model-simulator
dialogs for evaluation. For single-turn level evalua-
tion, we randomly sample 100 message-response
pairs from the dialogs for each model.

Conversation with human Following previous
work (Tang et al., 2019), we also perform human
evaluation for a more reliable system comparison.
Given a model to be evaluated, we randomly select
a dialogue from test set and pick its first utterance
for the model to start a conversation with a hu-
man. Then the conversation will continue till 8
turns are reached. Finally, we obtain 50 dialogs
for evaluation. For single-turn level evaluation, we
randomly sample 100 message-response pairs from
the dialogs for each model.

4.5 Evaluation Metrics
Metrics such as BLEU and perplexity have been
widely used for dialog evaluation (Li et al., 2016a;
Serban et al., 2016), but it is widely debated how
well these automatic metrics are correlated with
true response quality (Liu et al., 2016). Since the
proposed system does not aim at predicting the
highest-probability response at each turn, but rather
the long-term success of a dialog (e.g., coherence),
we do not employ BLEU or perplexity for evalua-
tion, and we propose the following metrics.

4.5.1 Multi-turn Level Metrics
Global coherence We define incoherence prob-
lems as follows: (1) Inconsistent dialogs where
the model contradicts with itself, e.g., the model
says he is a driver before and then says he is a
doctor; (2) One-side dialogs in which the model
ignores the user’s topics with two or more consecu-
tive turns. A session will be rated “0” if it contains
more than three incoherence cases, or “+1” if a
session contains 2 or 3 cases, otherwise “+2”.

Distinct The metric Dist-i calculates the ratio of
distinct i-gram in generated responses (Li et al.,
2016a). We use Dist-2 to measure the diversity of
generated responses.

Methods Cohe. Dist-2 Appr. Infor.
LaRL 0.85 0.12 0.55 0.77
ChatMore 0.95 0.05 0.58 0.93
TGRM 0.79 0.42 0.68 1.00
CG-Policy 1.33 0.31 0.73 1.00

Table 2: Results for dialogs with simulator on Weibo.

Dialog-target success rate For target-guided
conversation, we measure the success rate of gen-
erating the target word within 8 turns.

4.5.2 Single-turn Level Metrics
Local appropriateness14 A response will be rated
“0” if it is inappropriate as an reply to the given
message, otherwise “1”.

Informativeness “0” if a response is a “safe”
response, e.g. “I don’t know”, otherwise “1”.

4.6 Evaluation Results

4.6.1 Setting
We ask three annotators to judge the quality of
each dialog (at multi-turn level) or utterance pair
(at single-turn level) for each model. Notice that
model identifiers are masked during evaluation.

4.6.2 Conversation with simulator
As shown in Table 2, CG-Policy significantly out-
performs (sign test, p-value < 0.01) baselines in
terms of global coherence and local appropriate-
ness. It indicates that the CG can effectively facili-
tate policy learning (see the ablation study for fur-
ther analysis). For LaRL, its single-turn response
quality is worse than other models. It might be
explained by that their latent variables are not fine-
grained enough to provide sufficient information to
guide response generation. ChatMore tends to se-
lect high-frequency or generic keywords, resulting
in its worst performance in terms of Dist-2. TGRM
performs the best in terms of Dist-2 and informa-
tiveness, indicating that retrieval-based models can
produce more diverse responses than generation
based models. It is consistent with the conclu-
sions in previous work (Chen et al., 2017; Zhang
et al., 2018a). However, TGRM performs the worst
in terms of coherence, since TGRM does not use
RL framework. It indicates the importance of RL
framework for multi-turn dialog modeling. Here
the Kappa value for inter-annotater agreement is
above 0.4, indicating moderate agreement.

14We do not consider if a response is appropriate or not for
the selected responding mechanism.
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Methods Cohe. Dist-2 Appr. Infor.
LaRL 0.82 0.22 0.52 0.74
ChatMore 0.88 0.15 0.54 0.94
TGRM 0.77 0.63 0.61 1.00
CG-Policy 1.26 0.47 0.67 1.00

Table 3: Results for dialogs with human on Weibo.

4.6.3 Conversation with human
As shown in Table 3, CG-Policy outperforms base-
lines in terms of both global coherence and local
appropriateness (sign test, p-value < 0.01) , which
is consistent with the results in Table 2. The Kappa
value is above 0.4, indicating moderate agreement.

4.6.4 Ablation study
We conduct an ablation study for CG-Policy on
Weibo corpus to investigate why CG-Policy per-
forms better. First, to evaluate the contribution
of CG, we remove the CG from CG-Policy, de-
noted as CG-Policy-noCG, where we do not use
graph structure information for action space prun-
ing and reward design. Moreover, we attempt to
use the CG (without how-vertices) to augment the
ChatMore model for action space pruning and re-
ward design, denoted as Chatmore-CG. As shown
in Table 4, the performance of CG-Policy-noCG
drops dramatically in terms of coherence, Dist-2
and appropriateness when compared to the original
model. Moreover, CG can boost the performance
of ChatMore in terms of most of metrics. It indi-
cates that the use of CG is crucial to the superior
performance of CG-Policy, and it can also help
other models, e.g., ChatMore. Second, to evaluate
the contribution of CG for action space pruning or
reward design respectively, we implement two sys-
tem variants: (1) we use all the what-vertices in CG
as action candidates at each turn, denoted as CG-
Policy-noCGact; (2) we remove all the CG-based
factors from RL rewards, denoted as CG-Policy-
noCGrwd. As shown in Table 4, the performance
of CG-Policy-noCGact drops significantly in terms
of Dist-2 as it tends to select high-frequency key-
words like ChatMore, indicating the importance of
graph paths to provide both locally-appropriate and
diverse response keywords. Moreover, the perfor-
mance of CG-Policy-noCGrwd drops significantly
in terms of coherence, indicating that CG based re-
wards can effectively guide CG-Policy to promote
coherent dialogs. Third, we remove how-vertices
from CG, denoted as CG-Policy-noCGhow. As
shown in Table 4, how-vertex removal hurts its per-

Methods Cohe. Dist-2 Appr. Infor.
CG-Policy 1.33 0.31 0.73 1.00
ChatMore 0.95 0.05 0.58 0.93
ChatMore-CG 1.15 0.14 0.65 0.91
CG-Policy-noCG 1.03 0.07 0.62 1.00
CG-Policy-noCGact 1.11 0.08 0.68 1.00
CG-Policy-noCGrwd 1.06 0.19 0.64 1.00
CG-Policy-noCGhow 1.21 0.13 0.65 1.00

Table 4: Ablation study for CG-Policy on Weibo.

formance in Dist-2, indicating the importance of
how-vertices for response diversity.

4.7 The Task of Target-guided Conversation

Besides maintaining coherence, CG grounded pol-
icy learning can enable more control over dialog
models, which is important to achieve certain goals
for chatbot, e.g. proactive leading to certain chat-
ting topics (keywords) or certain products.

4.7.1 Setting
Following the setting in (Tang et al., 2019), where
we randomly sample a keyword as the target word
for each session in testing procedure. Here we use
a multi-mapping based user simulator trained on
the Persona dataset for evaluation.

Methods Succ.(%) Cohe. Appr. Infor.
LaRL-Target 1 0.91 0.62 0.91
ChatMore-Target 6 0.93 0.65 0.97
TGRM-Target 69 0.96 0.67 1.00
CG-Policy-Target 98 1.17 0.75 1.00

Table 5: Results for target-guided dialogs on Persona.

4.7.2 Results
Table 5 presents the results on 100 dialogs for each
model. We see that CG-Policy-Target can signif-
icantly outperform baselines in terms of dialog-
target success rate (sign test, p-value < 0.01). It
can be seen that that CG-Policy can successfully
lead the dialog to a given target word by learning to
walk over the CG, indicating that this graph gives
us more control over the policy. LaRL-Target and
ChatMore-Target perform badly in terms of suc-
cess rate. It may be explained by that they lack the
ability of proactive dialog content planning.

4.8 Analysis of Responding Mechanisms

Figure 4 provides representative words of each
mechanism.15 For example, for Mech-1, its key-
words are mainly subjective words (e.g. think) for

15We select words that occur frequently in responses guided
by this mechanism but rarely occur with other mechanisms.
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generation of responses with respect to personal
opinion or intention. For Mech-2, it tends to re-
spond with a specific type of mood.

Mech-1 Mech-2 Mech-3 Mech-4 Mech-5

以为
think

哈哈
haha

哪
where

漂亮
beautiful

别
no

想
want

哇
wow

什么
what

可爱
cute

还是
or else

信
believe

好吧
alright ？

萌
cuddly

没有
no

Figure 4: Representative words of responding mecha-
nisms.

5 Conclusion

In this paper we present a novel graph grounded
policy learning framework for open-domain multi-
turn conversation, which can effectively leverage
prior information about dialog transitions to foster
a more coherent and controllable dialog. Exper-
imental results demonstrate the effectiveness of
this framework in terms of local appropriateness,
global coherence and dialog-target success rate. In
the future, we will investigate how to extend the
CG to support hierarchical topic management in
conversational systems.
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A Appendices

Training Details and Two Conversation Cases
For fair comparison, all models share the same vo-
cab (maximum size is 50000 for the Weibo corpus
or 20000 for the Persona corpus), initialized word
embedding (size is 200), and keyword set. Further,
One layer bidirectional GRU-RNN (hidden size is
512) is utilized for all encoders. Dropout rate is 0.3,
and optimizer is Adam(lr=2le-3) for all models.

We initialize each session with a starting utter-
ance chosen from the training dataset randomly.
Maximum turns is set as 8 and the discounting
weight for rewards is set as 0.95.

LaRL
Categorical z M=10,K=20
β 0.01
CG-Policy
TransE Embedding Size 100
Number of Responding Mechanisms Nr 10

Table 6: Training details for models.



1845

B： 晚饭吃了么 [Did you have dinner?]

U： 我想吃排骨了，晚上炖排骨吃吧 [I want to have spareribs. Let's stew spareribs in the evening.]

B： 我请你吃猪蹄吧，我也要吃 [I'll treat you to pig hooves. I'll eat them, too.]

U： 炸猪蹄很好吃啊 [Fried pig hooves are delicious.]

B： 这是什么类型啊，你吃过么？[What kind of food is it? Have you eaten it?]

U： 我还是吃炸酱面吧，最近减肥 [I'd better eat fried sauce noodles. I've lost weight recently.]

B： 正宗了，我也想吃 [It's authentic. I want to eat it, too.]

U： 我想跟你一起跳舞 [I want to dance with you.]

B： 好萌啊，好可爱，好喜欢 [how budding! You are lovely and I like it.]

U： 我想起我家那条狗了，泰迪狗，给你看看照片 [I think of my dog, Teddy. Show you the picture.]

B： 我想养狗了，我也要养一只 [I want to have a dog. I want to have one, too.]

U： 我想回家吃狗肉 [I want to go home and eat dog meat.]

B： 可怜的泰迪啊，哈哈哈 [Poor Teddy, haha]

U： 我不是要回家吃我的泰迪！[I'm not going home to eat my Teddy!]

Figure 5: Case 1: One conversation between CG-Policy and human, where “B” is CG-Policy and “U” is human.
The red words are keywords. We translate the original Chinese utterances into English.

B： 昨天去菜市场买了一大袋土豆，累死我了
[Yesterday I went to the vegetable market and bought a big bag of potatoes. I am exhausted.]

U： 话说楼下新开了个超市 [I heard that there is a new supermarket downstairs.]

B： 我去了，不打折了，哈哈 [I've been there. No discount yet, haha.]

U： 里面的水果新鲜么 [Is the fruit fresh?]

B： 我都没看出是有多难吃 [It’s untasty, even more than I expected.]

U： 刚开业就不打折,真抠门,我去淘宝买吧
[It’s really stingy that have no discount just after opening. I'll go to Taobao to buy fruit.]

B： 在哪里买啊，低价代购？求地址 [Which shop? Substitute purchase at low price? Give me the link address.]

U： 很多店铺吧, 搜一下就好了 [A lot of shops can be your choice. Just search them.]

B： 万能的淘宝网店，天猫要火啊
[Taobao shops are really omnipotent, TianMao is becoming more and more famous]

U： 双十一要到了，马云赚钱好开心
[The Double Eleventh Shopping Festival is coming. Ma Yun is happy to earn lots of money.]

B： 我去年双十一购买了5件商品 [I bought five items last year in the Double Eleventh Shopping Festival.]

U： 美死了,哈哈,好可爱,哈哈 [Haha, you are lovely, haha]

B： 你也很可爱 [You're lovely, too]

U： 我想买一只萨摩耶，好可爱 [I want to buy a Samoa. It's cute.]

Figure 6: Case 2: One conversation between CG-Policy and human, where “B” is CG-Policy and “U” is human.
The red words are keywords. We translate the original Chinese utterances into English.


