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Abstract
Massively multilingual models for neural ma-
chine translation (NMT) are theoretically at-
tractive, but often underperform bilingual mod-
els and deliver poor zero-shot translations.
In this paper, we explore ways to improve
them. We argue that multilingual NMT re-
quires stronger modeling capacity to support
language pairs with varying typological char-
acteristics, and overcome this bottleneck via
language-specific components and deepening
NMT architectures. We identify the off-target
translation issue (i.e. translating into a wrong
target language) as the major source of the
inferior zero-shot performance, and propose
random online backtranslation to enforce the
translation of unseen training language pairs.
Experiments on OPUS-100 (a novel multilin-
gual dataset with 100 languages) show that
our approach substantially narrows the perfor-
mance gap with bilingual models in both one-
to-many and many-to-many settings, and im-
proves zero-shot performance by ∼10 BLEU,
approaching conventional pivot-based meth-
ods.1

1 Introduction

With the great success of neural machine transla-
tion (NMT) on bilingual datasets (Bahdanau et al.,
2015; Vaswani et al., 2017; Barrault et al., 2019),
there is renewed interest in multilingual translation
where a single NMT model is optimized for the
translation of multiple language pairs (Firat et al.,
2016a; Johnson et al., 2017; Lu et al., 2018; Aha-
roni et al., 2019). Multilingual NMT eases model
deployment and can encourage knowledge transfer
among related language pairs (Lakew et al., 2018;
Tan et al., 2019), improve low-resource transla-
tion (Ha et al., 2016; Arivazhagan et al., 2019b),

1We release our code at https://github.
com/bzhangGo/zero. We release the OPUS-100
dataset at https://github.com/EdinburghNLP/
opus-100-corpus.

Source Jusqu’à ce qu’on trouve le moment clé, celui
où tu as su que tu l’aimais.

Reference
Bis wir den unverkennbaren Moment gefun-
den haben, den Moment, wo du wusstest, du
liebst ihn.

Zero-Shot Jusqu’à ce qu’on trouve le moment clé, celui
où tu as su que tu l’aimais.

Source Les États membres ont été consultés et ont
approuvé cette proposition.

Reference Die Mitgliedstaaten wurden konsultiert und
sprachen sich für diesen Vorschlag aus.

Zero-Shot Les Member States have been consultedés
and have approved this proposal.

Table 1: Illustration of the off-target translation issue with
French→German zero-shot translations with a multilingual
NMT model. Our baseline multilingual NMT model often
translates into the wrong language for zero-shot language
pairs, such as copying the source sentence or translating into
English rather than German.

and enable zero-shot translation (i.e. direct trans-
lation between a language pair never seen in train-
ing) (Firat et al., 2016b; Johnson et al., 2017; Al-
Shedivat and Parikh, 2019; Gu et al., 2019).

Despite these potential benefits, multilingual
NMT tends to underperform its bilingual coun-
terparts (Johnson et al., 2017; Arivazhagan et al.,
2019b) and results in considerably worse transla-
tion performance when many languages are accom-
modated (Aharoni et al., 2019). Since multilin-
gual NMT must distribute its modeling capacity
between different translation directions, we ascribe
this deteriorated performance to the deficient capac-
ity of single NMT models and seek solutions that
are capable of overcoming this capacity bottleneck.
We propose language-aware layer normalization
and linear transformation to relax the representa-
tion constraint in multilingual NMT models. The
linear transformation is inserted in-between the
encoder and the decoder so as to facilitate the in-
duction of language-specific translation correspon-

https://github.com/bzhangGo/zero
https://github.com/bzhangGo/zero
https://github.com/EdinburghNLP/opus-100-corpus
https://github.com/EdinburghNLP/opus-100-corpus
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dences. We also investigate deep NMT architec-
tures (Wang et al., 2019a; Zhang et al., 2019) aim-
ing at further reducing the performance gap with
bilingual methods.

Another pitfall of massively multilingual NMT
is its poor zero-shot performance, particularly com-
pared to pivot-based models. Without access to
parallel training data for zero-shot language pairs,
multilingual models easily fall into the trap of off-
target translation where a model ignores the given
target information and translates into a wrong lan-
guage as shown in Table 1. To avoid such a trap, we
propose the random online backtranslation (ROBT)
algorithm. ROBT finetunes a pretrained multi-
lingual NMT model for unseen training language
pairs with pseudo parallel batches generated by
back-translating the target-side training data.2 We
perform backtranslation (Sennrich et al., 2016a)
into randomly picked intermediate languages to
ensure good coverage of ∼10,000 zero-shot direc-
tions. Although backtranslation has been success-
fully applied to zero-shot translation (Firat et al.,
2016b; Gu et al., 2019; Lakew et al., 2019), whether
it works in the massively multilingual set-up re-
mained an open question and we investigate it in
our work.

For experiments, we collect OPUS-100, a
massively multilingual dataset sampled from
OPUS (Tiedemann, 2012). OPUS-100 consists of
55M English-centric sentence pairs covering 100
languages. As far as we know, no similar dataset
is publicly available.3 We have released OPUS-
100 to facilitate future research.4 We adopt the
Transformer model (Vaswani et al., 2017) and eval-
uate our approach under one-to-many and many-
to-many translation settings. Our main findings are
summarized as follows:

• Increasing the capacity of multilingual NMT
yields large improvements and narrows the
performance gap with bilingual models. Low-
resource translation benefits more from the
increased capacity.
• Language-specific modeling and deep NMT

architectures can slightly improve zero-shot

2Note that backtranslation actually converts the zero-shot
problem into a zero-resource problem. We follow previous
work and continue referring to zero-shot translation, even
when using synthetic training data.

3Previous studies (Aharoni et al., 2019; Arivazhagan et al.,
2019b) adopt in-house data which was not released.

4https://github.com/EdinburghNLP/
opus-100-corpus

translation, but fail to alleviate the off-target
translation issue.
• Finetuning multilingual NMT with ROBT

substantially reduces the proportion of off-
target translations (by ∼50%) and delivers
an improvement of ∼10 BLEU in zero-shot
settings, approaching the conventional pivot-
based method. We show that finetuning with
ROBT converges within a few thousand steps.

2 Related Work

Pioneering work on multilingual NMT began with
multitask learning, which shared the encoder for
one-to-many translation (Dong et al., 2015) or the
attention mechanism for many-to-many transla-
tion (Firat et al., 2016a). These methods required
a dedicated encoder or decoder for each language,
limiting their scalability. By contrast, Lee et al.
(2017) exploited character-level inputs and adopted
a shared encoder for many-to-one translation. Ha
et al. (2016) and Johnson et al. (2017) further suc-
cessfully trained a single NMT model for multi-
lingual translation with a target language symbol
guiding the translation direction. This approach
serves as our baseline. Still, this paradigm forces
different languages into one joint representation
space, neglecting their linguistic diversity. Several
subsequent studies have explored different strate-
gies to mitigate this representation bottleneck, rang-
ing from reorganizing parameter sharing (Black-
wood et al., 2018; Sachan and Neubig, 2018; Lu
et al., 2018; Wang et al., 2019c; Vázquez et al.,
2019), designing language-specific parameter gen-
erators (Platanios et al., 2018), decoupling multi-
lingual word encodings (Wang et al., 2019b) to lan-
guage clustering (Tan et al., 2019). Our language-
specific modeling continues in this direction, but
with a special focus on broadening normalization
layers and encoder outputs.

Multilingual NMT allows us to perform zero-
shot translation, although the quality is not guaran-
teed (Firat et al., 2016b; Johnson et al., 2017). We
observe that multilingual NMT often translates into
the wrong target language on zero-shot directions
(Table 1), resonating with the ‘missing ingredient
problem’ (Arivazhagan et al., 2019a) and the spuri-
ous correlation issue (Gu et al., 2019). Approaches
to improve zero-shot performance fall into two cate-
gories: 1) developing novel cross-lingual regulariz-
ers, such as the alignment regularizer (Arivazhagan
et al., 2019a) and the consistency regularizer (Al-

https://github.com/EdinburghNLP/opus-100-corpus
https://github.com/EdinburghNLP/opus-100-corpus
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Shedivat and Parikh, 2019); and 2) generating arti-
ficial parallel data with backtranslation (Firat et al.,
2016b; Gu et al., 2019; Lakew et al., 2019) or pivot-
based translation (Currey and Heafield, 2019). The
proposed ROBT algorithm belongs to the second
category. In contrast to Gu et al. (2019) and Lakew
et al. (2019), however, we perform online back-
translation for each training step with randomly
selected intermediate languages. ROBT avoids de-
coding the whole training set for each zero-shot
language pair and can therefore scale to massively
multilingual settings.

Our work belongs to a line of research on mas-
sively multilingual translation (Aharoni et al., 2019;
Arivazhagan et al., 2019b). Aharoni et al. (2019)
demonstrated the feasibility of massively multilin-
gual NMT and reported encouraging results. We
continue in this direction by developing approaches
that improve both multilingual and zero-shot perfor-
mance. Independently from our work, Arivazhagan
et al. (2019b) also find that increasing model ca-
pacity with deep architectures (Wang et al., 2019a;
Zhang et al., 2019) substantially improves multi-
lingual performance. A concurrent related work
is (Bapna and Firat, 2019), which introduces task-
specific and lightweight adaptors for fast and scal-
able model adaptation. Compared to these adaptors,
our language-aware layers are jointly trained with
the whole NMT model from scratch without rely-
ing on any pretraining.

3 Multilingual NMT

We briefly review the multilingual approach (Ha
et al., 2016; Johnson et al., 2017) and the Trans-
former model (Vaswani et al., 2017), which are
used as our baseline. Johnson et al. (2017) rely on
prepending tokens specifying the target language
to each source sentence. In that way a single NMT
model can be trained on the modified multilingual
dataset and used to perform multilingual translation.
Given a source sentence x=(x1, x2, . . . , x|x|), its
target reference y=(y1, y2, . . . , y|y|) and the tar-
get language token t5, multilingual NMT translates
under the encoder-decoder framework (Bahdanau
et al., 2015):

H = Encoder([t,x]), (1)

S = Decoder(y,H), (2)

5t is in the form of “<2X>” where X is a language name,
such as <2EN> meaning translating into English.

where H ∈ R|x|×d/S ∈ R|y|×d denote the en-
coder/decoder output. d is the model dimension.

We employ the Transformer (Vaswani et al.,
2017) as the backbone NMT model due to its
superior multilingual performance (Lakew et al.,
2018). The encoder is a stack of L = 6 identical
layers, each containing a self-attention sublayer
and a point-wise feedforward sublayer. The de-
coder follows a similar structure, except for an
extra cross-attention sublayer used to condition the
decoder on the source sentence. Each sublayer
is equipped with a residual connection (He et al.,
2015), followed by layer normalization (Ba et al.,
2016, LN(·)):

ā = LN(a | g,b) =
a− µ
σ
� g + b, (3)

where � denotes element-wise multiplication, µ
and σ are the mean and standard deviation of the
input vector a ∈ Rd, respectively. g ∈ Rd and
b ∈ Rd are model parameters. They control the
sharpness and location of the regularized layer out-
put ā. Layer normalization has proven effective in
accelerating model convergence (Ba et al., 2016).

4 Approach

Despite its success, multilingual NMT still suf-
fers from 1) insufficient modeling capacity, where
including more languages results in reduction in
translation quality (Aharoni et al., 2019); and 2)
off-target translation, where models translate into a
wrong target language on zero-shot directions (Ari-
vazhagan et al., 2019a). These drawbacks become
severe in massively multilingual settings and we
explore approaches to alleviate them. We hypoth-
esize that the vanilla Transformer has insufficient
capacity and search for model-level strategies such
as deepening Transformer and devising language-
specific components. By contrast, we regard the
lack of parallel data as the reason behind the off-
target issue. We resort to data-level strategy by
creating, in online fashion, artificial parallel train-
ing data for each zero-shot language pair in order
to encourage its translation.

Deep Transformer One natural way to improve
the capacity is to increase model depth. Deeper
neural models are often capable of inducing more
generalizable (‘abstract’) representations and cap-
turing more complex dependencies and have shown
encouraging performance on bilingual transla-
tion (Bapna et al., 2018; Zhang et al., 2019; Wang
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et al., 2019a). We adopt the depth-scaled initial-
ization method (Zhang et al., 2019) to train a deep
Transformer for multilingual translation.

Language-aware Layer Normalization Re-
gardless of linguistic differences, layer normaliza-
tion in multilingual NMT simply constrains all
languages into one joint Gaussian space, which
makes learning more difficult. We propose to relax
this restriction by conditioning the normalization
on the given target language token t (LALN for
short) as follows:

ā = LN(a | gt,bt). (4)

We apply this formula to all normalization layers,
and leave the study of conditioning on source lan-
guage information for the future.

Language-aware Linear Transformation Dif-
ferent language pairs have different translation cor-
respondences or word alignments (Koehn, 2010).
In addition to LALN, we introduce a target-
language-aware linear transformation (LALT for
short) between the encoder and the decoder to en-
hance the freedom of multilingual NMT in express-
ing flexible translation relationships. We adapt Eq.
(2) as follows:

S = Decoder(y,HWt), (5)

where Wt ∈ Rd×d denotes model parameters.
Note that adding one more target language in LALT

brings in only one weight matrix.6 Compared to ex-
isting work (Firat et al., 2016b; Sachan and Neubig,
2018), LALT reaches a better trade-off between
expressivity and scalability.

Random Online Backtranslation Prior studies
on backtranslation for zero-shot translation decode
the whole training set for each zero-shot language
pair (Gu et al., 2019; Lakew et al., 2019), and scala-
bility to massively multilingual translation is ques-
tionable – in our setting, the number of zero-shot
translation directions is 9702.

We address scalability by performing online
backtranslation paired with randomly sampled in-
termediate languages. Algorithm 1 shows the de-
tail of ROBT, where for each training instance
(xk,yk, tk), we uniformly sample an intermedi-
ate language t′k (tk 6= t′k), back-translate yk into

6We also attempted to factorize Wt into smaller matri-
ces/vectors to reduce the number of parameters. Unfortunately,
the final performance was rather disappointing.

Algorithm 1: Algorithm for Random Online
Backtranslation
Input :Multilingual training data, D;

Pretrained multilingual model, M ;
Maximum finetuning step, N ;
Finetuning batch size, B;
Target language set, T ;

Output: Zero-shot enabled model, M
1 i← 0
2 while i ≤ N ∧ not converged do
3 B ← sample batch from D
4 for k ← 1 to B do
5 (xk,yk, tk)← Bk
6 t′k ∼ Uniform(T ) such that t′k 6= tk
7 x′k ←M([t′k,yk])

// backtrans tk → t′k to
produce training example
for t′k → tk

8 B ← B ∪ (x′k,yk, tk)

9 Optimize M using B
10 i← i+ 1

11 return M

t′k to obtain x′k, and train on the new instance
(x′k,yk, tk). Although x′k may be poor initially
(translations are produced on-line by the model
being trained), ROBT still benefits from the trans-
lation signal of t′k → tk. To reduce the compu-
tational cost, we implement batch-based greedy
decoding for line 7.

5 OPUS-100

Recent work has scaled up multilingual NMT from
a handful of languages to tens or hundreds, with
many-to-many systems being capable of transla-
tion in thousands of directions. Following Aharoni
et al. (2019), we created an English-centric dataset,
meaning that all training pairs include English on
either the source or target side. Translation for
any language pair that does not include English is
zero-shot or must be pivoted through English.

We created OPUS-100 by sampling data from
the OPUS collection (Tiedemann, 2012). OPUS-
100 is at a similar scale to Aharoni et al. (2019)’s,
with 100 languages (including English) on both
sides and up to 1M training pairs for each language
pair. We selected the languages based on the vol-
ume of parallel data available in OPUS.

The OPUS collection is comprised of multiple
corpora, ranging from movie subtitles to GNOME
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ID Model Architecture L #Param BLEU94 WR BLEU4

1 Transformer, Bilingual 6 106M - - 20.90
2 Transformer, Bilingual 12 150M - - 22.75

3 Transformer 6 106M 24.64 ref 18.95
4 3 + MATT 6 99M 23.81 20.2 17.95
5 4 + LALN 6 102M 24.22 28.7 18.50
6 4 + LALT 6 126M 27.11 72.3 20.28
7 4 + LALN + LALT 6 129M 27.18 75.5 20.08

8 4 12 137M 25.69 81.9 19.13
9 7 12 169M 28.04 91.5 19.93
10 7 24 249M 29.60 92.6 21.23

Table 2: Test BLEU for one-to-many translation on OPUS-100 (100 languages). “Bilingual”: bilingual NMT, “L”: model
depth (for both encoder and decoder), “#Param”: parameter number, “WR”: win ratio (%) compared to ref ( 3©), MATT: the
merged attention (Zhang et al., 2019). LALN and LALT denote the proposed language-aware layer normalization and linear
transformation, respectively. “BLEU94/BLEU4”: average BLEU over all 94 translation directions in test set and En→De/Zh/Br/Te,
respectively. Higher BLEU and WR indicate better result. Best scores are highlighted in bold.

documentation to the Bible. We did not curate the
data or attempt to balance the representation of
different domains, instead opting for the simplest
approach of downloading all corpora for each lan-
guage pair and concatenating them. We randomly
sampled up to 1M sentence pairs per language pair
for training, as well as 2000 for validation and 2000
for testing.7 To ensure that there was no overlap
(at the monolingual sentence level) between the
training and validation/test data, we applied a filter
during sampling to exclude sentences that had al-
ready been sampled. Note that this was done cross-
lingually, so an English sentence in the Portuguese-
English portion of the training data could not occur
in the Hindi-English test set, for instance.

OPUS-100 contains approximately 55M sen-
tence pairs. Of the 99 language pairs, 44 have
1M sentence pairs of training data, 73 have at least
100k, and 95 have at least 10k.

To evaluate zero-shot translation, we also sam-
pled 2000 sentence pairs of test data for each of the
15 pairings of Arabic, Chinese, Dutch, French, Ger-
man, and Russian. Filtering was used to exclude
sentences already in OPUS-100.

6 Experiments

6.1 Setup

We perform one-to-many (English-X) and many-
to-many (English-X ∪ X-English) translation on
OPUS-100 (|T | is 100). We apply byte pair en-
coding (BPE) (Sennrich et al., 2016b; Kudo and
Richardson, 2018) to handle multilingual words
with a joint vocabulary size of 64k. We randomly

7For efficiency, we only use 200 sentences per language
pair for validation in our multilingual experiments.

shuffle the training set to mix instances of different
language pairs. We adopt BLEU (Papineni et al.,
2002) for translation evaluation with the toolkit
SacreBLEU (Post, 2018)8. We employ the langde-
tect library9 to detect the language of translations,
and measure the translation-language accuracy for
zero-shot cases. Rather than providing numbers for
each language pair, we report average BLEU over
all 94 language pairs with test sets (BLEU94). We
also show the win ratio (WR), counting the propor-
tion where our approach outperforms its baseline.

Apart from multilingual NMT, our baselines also
involve bilingual NMT and pivot-based transla-
tion (only for zero-shot comparison). We select
four typologically different target languages (Ger-
man/De, Chinese/Zh, Breton/Br, Telugu/Te) with
varied training data size for comparison to bilin-
gual models as applying bilingual NMT to each
language pair is resource-consuming. We report av-
erage BLEU over these four languages as BLEU4.
We reuse the multilingual BPE vocabulary for bilin-
gual NMT.

We train all NMT models with the Transformer
base settings (512/2048, 8 heads) (Vaswani et al.,
2017). We pair our approaches with the merged
attention (MATT) (Zhang et al., 2019) to reduce
training time. Other details about model settings
are in the Appendix.

6.2 Results on One-to-Many Translation

Table 2 summarizes the results. The inferior per-
formance of multilingual NMT ( 3©) against its

8Signature: BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.1

9https://github.com/Mimino666/
langdetect

https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
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ID Model Architecture L #Param w/o ROBT w/ ROBT

BLEU94 WR BLEU4 BLEU94 WR BLEU4

1 Transformer, Bilingual 6 110M - - 20.28 - - -

2 Transformer 6 110M 19.50 ref 15.35 18.75 4.3 14.73
3 2 + MATT 6 103M 18.49 5.3 14.90 17.85 6.4 14.38
4 3 + LALN + LALT 6 133M 21.39 78.7 18.13 20.81 69.1 17.45

5 3 12 141M 20.77 94.7 16.08 20.24 84.0 15.80
6 4 12 173M 22.86 97.9 19.25 22.39 97.9 18.23
7 4 24 254M 23.96 100.0 19.83 23.36 97.9 19.45

Table 3: English→X test BLEU for many-to-many translation on OPUS-100 (100 languages). “WR”: win ratio (%) compared
to ref ( 2© w/o ROBT). ROBT denotes the proposed random online backtranslation method.

ID Model Architecture L #Param w/o ROBT w/ ROBT

BLEU94 WR BLEU4 BLEU94 WR BLEU4

1 Transformer, Bilingual 6 110M - - 21.23 - - -

2 Transformer 6 110M 27.60 ref 23.35 27.02 14.9 22.50
3 2 + MATT 6 103M 26.90 2.1 22.78 26.28 4.3 21.53
4 3 + LALN + LALT 6 133M 27.50 37.2 23.05 27.22 23.4 23.30

5 3 12 141M 29.15 98.9 24.15 28.80 91.5 24.03
6 4 12 173M 29.49 97.9 24.53 29.54 96.8 25.43
7 4 24 254M 31.36 98.9 26.03 30.98 95.7 26.78

Table 4: X→English test BLEU for many-to-many translation on OPUS-100 (100 languages). “WR”: win ratio (%) compared
to ref ( 2© w/o ROBT).

bilingual counterpart ( 1©) reflects the capacity is-
sue (-1.95 BLEU4). Replacing the self-attention
with MATT slightly deteriorates performance (-
0.83 BLEU94 3©→ 4©); we still use MATT for more
efficiently training deep models.

Our ablation study ( 4©- 7©) shows that enrich-
ing the language awareness in multilingual NMT
substantially alleviates this capacity problem. Re-
laxing the normalization constraints with LALN

gains 0.41 BLEU94 with 8.5% WR ( 4©→ 5©). De-
coupling different translation relationships with
LALT delivers an improvement of 3.30 BLEU94

and 52.1% WR ( 4©→ 6©). Combining LALT and
LALN demonstrates their complementarity (+3.37
BLEU94 and +55.3% WR, 4©→ 7©), significantly
outperforming the multilingual baseline (+2.54
BLEU94, 3©→ 7©), albeit still behind the bilingual
models (-0.82 BLEU4, 1©→ 7©).

Deepening the Transformer also improves the
modeling capacity (+1.88 BLEU94, 4©→ 8©). Al-
though deep Transformer performs worse than
LALN+LALT under a similar number of model
parameters in terms of BLEU (-1.49 BLEU94,
7©→ 8©), it shows more consistent improvements
across different language pairs (+6.4% WR). We
obtain better performance when integrating all ap-
proaches ( 9©). By increasing the model depth to

24 (10©), Transformer with our approach yields a
score of 29.60 BLEU94 and 21.23 BLEU4, beat-
ing the baseline ( 3©) on 92.6% tasks and outper-
forming the base bilingual model ( 1©) by 0.33
BLEU4. Our approach significantly narrows the
performance gap between multilingual NMT and
bilingual NMT (20.90 BLEU4 → 21.23 BLEU4,
1©→10©), although similarly deepening bilingual
models surpasses our approach by 1.52 BLEU4

(10©→ 2©).

6.3 Results on Many-to-Many Translation

We train many-to-many NMT models on the con-
catenation of the one-to-many dataset (English→X)
and its reversed version (X→English), and evaluate
the zero-shot performance on X→X language pairs.
Table 3 and Table 4 show the translation results for
English→X and X→English, respectively.10 We
focus on the translation performance w/o ROBT in
this subsection.

Compared to the one-to-many translation, the
many-to-many translation must accommodate
twice as many translation directions. We observe
that many-to-many NMT models suffer more se-

10Note that the one-to-many training and test sets were not
yet aggressively filtered for sentence overlap as described in
Section 5, so results in Table 2 and Table 3 are not directly
comparable.
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ID Model Architecture L #Param English→X X→English

High Med Low High Med Low

1 Transformer 6 110M 20.69 20.82 15.18 26.99 28.60 27.49
2 1 + MATT 6 103M 19.70 19.77 14.17 26.32 27.81 26.84
3 2 + LALN + LALT 6 133M 21.07 22.88 19.99 27.03 28.60 26.97

4 2 12 141M 21.67 22.17 16.95 28.39 30.24 29.26
5 3 12 173M 22.48 24.38 21.58 28.66 30.73 29.50
6 3 24 254M 23.69 25.61 22.24 30.29 32.58 31.90

Table 5: Test BLEU for High/Medium/Low (High/Med/Low) resource language pairs in many-to-many setting on OPUS-100
(100 languages). We report average BLEU for each category.

ID Model Architecture L #Param w/o ROBT w/ ROBT

BLEUzero ACCzero BLEUzero ACCzero

1 Transformer, Pivot & Bilingual 6 110M 12.98 84.87 - -

2 Transformer 6 110M 3.97 36.04 10.11 86.08
3 2 + MATT 6 103M 3.49 31.62 9.67 85.87
4 3 + LALN + LALT 6 133M 4.02 45.43 11.23 87.40

5 3 12 141M 4.71 39.40 11.87 87.44
6 4 12 173M 5.41 51.40 12.62 87.99
7 4 24 254M 5.24 47.91 14.08 87.68

8 7 + Pivot 24 254M 14.71 84.81 14.78 85.09

Table 6: Test BLEU and translation-language accuracy for zero-shot translation in many-to-many setting on OPUS-100 (100
languages). “BLEUzero/ACCzero”: average BLEU/accuracy over all zero-shot translation directions in test set, “Pivot”: the
pivot-based translation that first translates one source sentence into English (X→English NMT), and then into the target language
(English→X NMT). Lower accuracy indicates severe off-target translation. The average Pearson correlation coefficient between
language accuracy and the corresponding BLEU is 0.93 (significant at p < 0.01).

rious capacity issues on English→X tasks (-4.93
BLEU4, 1©→ 2© in Table 3 versus -1.95 BLEU4 in
Table 2), where the deep Transformer with LALN +
LALT effectively reduces this gap to -0.45 BLEU4

( 1©→ 7©, Table 3), resonating with our findings
from Table 2. By contrast, multilingual NMT
benefits X→English tasks considerably from the
multitask learning alone, outperforming bilingual
NMT by 2.13 BLEU4 ( 1©→ 2©, Table 4). Enhanc-
ing model capacity further enlarges this margin to
+4.80 BLEU4 ( 1©→ 7©, Table 4).

We find that the overall quality of English→X
translation (19.50/23.96 BLEU94, 2©/ 7©, Table 3)
lags far behind that of its X→English counterpart
(27.60/31.36 BLEU94, 2©/12©, Table 4), regardless
of the modeling capacity. We ascribe this to the
highly skewed training data distribution, where
half of the training set uses English as the target.
This strengthens the ability of the decoder to trans-
late into English, and also encourages knowledge
transfer for X→English language pairs. LALN

and LALT show the largest benefit for English→X
(+2.9 BLEU94, 3©→ 4©, Table 3), and only a small
benefit for X→English (+0.6 BLEU94, 3©→ 4©, Ta-
ble 4). This makes sense considering that LALN

and LALT are specific to the target language, so
capacity is mainly increased for English→X. Deep-
ening the Transformer yields benefits in both di-
rections (+2.57 BLEU94 for English→X, +3.86
BLEU94 for X→English; 4©→ 7©, Tables 3 and 4).

6.4 Effect of Training Corpus Size

Our multilingual training data is distributed un-
evenly across different language pairs, which
could affect the knowledge transfer delivered by
language-aware modeling and deep Transformer in
multilingual translation. We investigate this effect
by grouping different language pairs in OPUS-100
into three categories according to their training data
size: High (≥ 0.9M, 45), Low (< 0.1M, 18) and
Medium (others, 31). Table 5 shows the results.

Language-aware modeling benefits low-resource
language pairs the most on English→X transla-
tion (+5.82 BLEU, Low versus +1.37/+3.11 BLEU,
High/Med, 2©→ 3©), but has marginal impact on
X→English translation as analyzed in Section 6.3.
By contrast, deep Transformers yield similar ben-
efits across different data scales (+2.38 average
BLEU, English→X and +2.31 average BLEU,
X→English, 2©→ 4©). We obtain the best perfor-
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mance by integrating both ( 1©→ 6©) with a clear
positive transfer to low-resource language pairs.

6.5 Results on Zero-Shot Translation
Previous work shows that a well-trained multilin-
gual model can do zero-shot X→Y translation di-
rectly (Firat et al., 2016b; Johnson et al., 2017). Our
results in Table 6 reveal that the translation quality
is rather poor (3.97 BLEUzero, 2©w/o ROBT) com-
pared to the pivot-based bilingual baseline (12.98
BLEUzero, 1©) under the massively multilingual
setting (Aharoni et al., 2019), although translations
into different target languages show varied perfor-
mance. The marginal gain by the deep Transformer
with LALN + LALT (+1.44 BLEUzero, 2©→ 6©,
w/o ROBT) suggests that weak model capacity is
not the major cause of this inferior performance.

In a manual analysis on the zero-shot NMT out-
puts, we found many instances of off-target transla-
tion (Table 1). We use translation-language accu-
racy to measure the proportion of translations that
are in the correct target language. Results in Table 6
show that there is a huge accuracy gap between the
multilingual and the pivot-based method (-48.83%
ACCzero, 1©→ 2©, w/o ROBT), from which we
conclude that the off-target translation issue is one
source of the poor zero-shot performance.

We apply ROBT to multilingual models by fine-
tuning them for an extra 100k steps with the same
batch size as for training. Table 6 shows that ROBT

substantially improves ACCzero by 35%∼50%,
reaching 85%∼87% under different model settings.
The multilingual Transformer with ROBT achieves
a translation improvement of up to 10.11 BLEUzero

( 2© w/o ROBT→ 7© w/ ROBT), outperforming
the bilingual baseline by 1.1 BLEUzero ( 1© w/o
ROBT→ 7© w/ ROBT) and approaching the pivot-
based multilingual baseline (-0.63 BLEUzero, 8©
w/o ROBT→ 7© w/ ROBT).11 The strong Pearson
correlation between the accuracy and BLEU (0.92
on average, significant at p < 0.01) suggests that
the improvement on the off-target translation issue
explains the increased translation performance to a
large extent.

Results in Table 3 and 4 show that ROBT’s suc-
cess on zero-shot translation comes at the cost
of sacrificing ∼0.50 BLEU94 and ∼4% WR on
English→X and X→English translation. We also
note that models with more capacity yield higher

11Note that ROBT improves all zero-shot directions due to
its randomness in sampling the intermediate languages. We
do not bias ROBT to the given zero-shot test set.
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Figure 1: Zero-shot average test BLEU for multilingual
NMT models finetuned by ROBT. ALL = MATT + LALN +
LALT. Multilingual models with ROBT quickly converge on
zero-shot directions.

Setting BLEUzero

6-to-6 11.98
100-to-100 11.23

Table 7: Zero-short translation quality for ROBT under dif-
ferent settings. “100-to-100”: the setting used in the above ex-
periments; we set T to all target languages. “6-to-6”: T only
includes the zero-shot languages in the test set. We employ
6-layer Transformer with LALN and LALT for experiments.

language accuracy (+7.78%/+13.81% ACCzero,
3©→ 5©/ 3©→ 4©, w/o ROBT) and deliver bet-
ter zero-shot performance before (+1.22/+0.53
BLEUzero, 3©→ 5©/ 3©→ 4©, w/o ROBT) and after
ROBT (+2.20/+1.56 BLEUzero, 3©→ 5©/ 3©→ 4©,
w/ ROBT). In other words, increasing the mod-
eling capacity benefits zero-shot translation and
improves robustness.

Convergence of ROBT. Unlike prior studies (Gu
et al., 2019; Lakew et al., 2019), we resort to an
online method for backtranslation. The curve in
Figure 1 shows that ROBT is very effective, and
takes only a few thousand steps to converge, sug-
gesting that it is unnecessary to decode the whole
training set for each zero-shot language pair. We
leave it to future work to explore whether different
back-translation strategies (other than greedy de-
coding) will deliver larger and continued benefits
with ROBT.

Impact of T on ROBT. ROBT heavily relies
on T , the set of target languages considered, to
distribute the modeling capacity on zero-shot direc-
tions. To study its impact, we provide a comparison
by constraining T to 6 languages in the zero-shot
test set. Results in Table 7 show that the biased
ROBT outperforms the baseline by 0.75 BLEUzero.
By narrowing T , more capacity is scheduled to the
focused languages, which results in performance
improvements. But the small scale of this improve-
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ment suggests that the number of zero-shot direc-
tions is not ROBT’s biggest bottleneck.

7 Conclusion and Future Work

This paper explores approaches to improve mas-
sively multilingual NMT, especially on zero-shot
translation. We show that multilingual NMT suf-
fers from weak capacity, and propose to enhance
it by deepening the Transformer and devising
language-aware neural models. We find that multi-
lingual NMT often generates off-target translations
on zero-shot directions, and propose to correct it
with a random online backtranslation algorithm.
We empirically demonstrate the feasibility of back-
translation in massively multilingual settings to
allow for massively zero-shot translation for the
first time. We release OPUS-100, a multilingual
dataset from OPUS including 100 languages with
around 55M sentence pairs for future study. Our
experiments on this dataset show that the proposed
approaches substantially increase translation perfor-
mance, narrowing the performance gap with bilin-
gual NMT models and pivot-based methods.

In the future, we will develop lightweight alter-
natives to LALT to reduce the number of model
parameters. We will also exploit novel strategies to
break the upper bound of ROBT and obtain larger
zero-shot improvements, such as generative mod-
eling (Zhang et al., 2016; Su et al., 2018; García
et al., 2020; Zheng et al., 2020).
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Table 8: Numbers of training, validation, and test sentence pairs in the English-centric multilingual dataset.

Language Train Valid Test Language Train Valid Test
af Afrikaans 275512 2000 2000 lv Latvian 1000000 2000 2000
am Amharic 89027 2000 2000 mg Malagasy 590771 2000 2000
an Aragonese 6961 0 0 mk Macedonian 1000000 2000 2000
ar Arabic 1000000 2000 2000 ml Malayalam 822746 2000 2000
as Assamese 138479 2000 2000 mn Mongolian 4294 0 0
az Azerbaijani 262089 2000 2000 mr Marathi 27007 2000 2000
be Belarusian 67312 2000 2000 ms Malay 1000000 2000 2000
bg Bulgarian 1000000 2000 2000 mt Maltese 1000000 2000 2000
bn Bengali 1000000 2000 2000 my Burmese 24594 2000 2000
br Breton 153447 2000 2000 nb Norwegian Bokmål 142906 2000 2000
bs Bosnian 1000000 2000 2000 ne Nepali 406381 2000 2000
ca Catalan 1000000 2000 2000 nl Dutch 1000000 2000 2000
cs Czech 1000000 2000 2000 nn Norwegian Nynorsk 486055 2000 2000
cy Welsh 289521 2000 2000 no Norwegian 1000000 2000 2000
da Danish 1000000 2000 2000 oc Occitan 35791 2000 2000
de German 1000000 2000 2000 or Oriya 14273 1317 1318
dz Dzongkha 624 0 0 pa Panjabi 107296 2000 2000
el Greek 1000000 2000 2000 pl Polish 1000000 2000 2000
eo Esperanto 337106 2000 2000 ps Pashto 79127 2000 2000
es Spanish 1000000 2000 2000 pt Portuguese 1000000 2000 2000
et Estonian 1000000 2000 2000 ro Romanian 1000000 2000 2000
eu Basque 1000000 2000 2000 ru Russian 1000000 2000 2000
fa Persian 1000000 2000 2000 rw Kinyarwanda 173823 2000 2000
fi Finnish 1000000 2000 2000 se Northern Sami 35907 2000 2000
fr French 1000000 2000 2000 sh Serbo-Croatian 267211 2000 2000
fy Western Frisian 54342 2000 2000 si Sinhala 979109 2000 2000
ga Irish 289524 2000 2000 sk Slovak 1000000 2000 2000
gd Gaelic 16316 1605 1606 sl Slovenian 1000000 2000 2000
gl Galician 515344 2000 2000 sq Albanian 1000000 2000 2000
gu Gujarati 318306 2000 2000 sr Serbian 1000000 2000 2000
ha Hausa 97983 2000 2000 sv Swedish 1000000 2000 2000
he Hebrew 1000000 2000 2000 ta Tamil 227014 2000 2000
hi Hindi 534319 2000 2000 te Telugu 64352 2000 2000
hr Croatian 1000000 2000 2000 tg Tajik 193882 2000 2000
hu Hungarian 1000000 2000 2000 th Thai 1000000 2000 2000
hy Armenian 7059 0 0 tk Turkmen 13110 1852 1852
id Indonesian 1000000 2000 2000 tr Turkish 1000000 2000 2000
ig Igbo 18415 1843 1843 tt Tatar 100843 2000 2000
is Icelandic 1000000 2000 2000 ug Uighur 72170 2000 2000
it Italian 1000000 2000 2000 uk Ukrainian 1000000 2000 2000
ja Japanese 1000000 2000 2000 ur Urdu 753913 2000 2000
ka Georgian 377306 2000 2000 uz Uzbek 173157 2000 2000
kk Kazakh 79927 2000 2000 vi Vietnamese 1000000 2000 2000
km Central Khmer 111483 2000 2000 wa Walloon 104496 2000 2000
kn Kannada 14537 917 918 xh Xhosa 439671 2000 2000
ko Korean 1000000 2000 2000 yi Yiddish 15010 2000 2000
ku Kurdish 144844 2000 2000 yo Yoruba 10375 0 0
ky Kyrgyz 27215 2000 2000 zh Chinese 1000000 2000 2000
li Limburgan 25535 2000 2000 zu Zulu 38616 2000 2000
lt Lithuanian 1000000 2000 2000

pairs of roughly 50k target tokens into one train-
ing/finetuning batch, except for bilingual models
where 25k target tokens are used. We train multilin-
gual and bilingual models for 500k and 100k steps,
respectively. We average the last 5 checkpoints for
evaluation, and employ beam search for decoding
with a beam size of 4 and length penalty of 0.6.


