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Abstract
Traditionally, industry solutions for building
a task-oriented dialog system have relied on
helping dialog authors define rule-based di-
alog managers, represented as dialog flows.
While dialog flows are intuitively interpretable
and good for simple scenarios, they fall short
of performance in terms of the flexibility
needed to handle complex dialogs. On the
other hand, purely machine-learned models
can handle complex dialogs, but they are con-
sidered to be black boxes and require large
amounts of training data. In this demonstra-
tion, we showcase Conversation Learner, a
machine teaching tool for building dialog man-
agers. It combines the best of both approaches
by enabling dialog authors to create a dialog
flow using familiar tools, converting the dia-
log flow into a parametric model (e.g., neural
networks), and allowing dialog authors to im-
prove the dialog manager (i.e., the parametric
model) over time by leveraging user-system di-
alog logs as training data through a machine
teaching interface.

1 Introduction

The proliferation of messaging applications and
hardware devices with personal assistants has
spurred the imagination of many in the technol-
ogy industry to create task-oriented dialog systems
that help users complete a wide range of tasks
through natural language conversations. Tasks in-
clude customer support, IT helpdesk, information
retrieval, appointment booking, etc. The wide va-
riety of tasks has created the need for a flexible
task-oriented dialog system development platform
that can support many different use cases, while re-
maining simple for developers to use and maintain.

A task-oriented dialog system is typically built
as a combination of three discrete systems, per-
forming language understanding (for identifying

∗Equal contribution.

user intent and extracting associated information),
dialog management (for guiding users towards task
completion), and language generation (for convert-
ing agent actions to natural-language system re-
sponses). The Dialog Manager (DM) contains two
sub-systems: the Dialog State Tracker (DST) for
keeping track of the current dialog state, and the
Dialog Policy (DP) for determining the next action
to be taken in a given dialog instance. The DP re-
lies on the internal state provided by DST to select
an action, which can be a response to the user, or
some operation on the back-end database (DB). In
this paper, we present a novel approach to building
dialog managers (DMs).
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Figure 1: An architecture for a task-oriented dialog sys-
tem.

In a typical industrial implementation of a task-
oriented dialog system, the DM is expressed as a
dialog flow, which is often a finite state machine,
with nodes representing dialog activities (system
actions) and edges representing conditions (dialog
states that represent the previous user-system inter-
actions). Since a dialog flow can be viewed as a set
of rules that specify the flow between dialog states,
it may also be called a rule-based DM.

There has been an increasing need for tools to
help dialog authors1 develop and maintain rule-

1In this paper, “author” may refer to developers, business
owners, or domain experts who define and maintain the con-
versational aspects of a task-oriented dialog system.
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based DMs. These tools are often implemented as
drag-and-drop WYSIWYG tools that allow users
to specify and visualize all the details of the dialog
flow. They often have deep integration with popu-
lar Integrated Development Environments (IDEs)
as editing frontends. Examples of rule-based or par-
tially rule-based DMs include Microsoft’s Power
Virtual Agents (PVA) 2 and Bot Framework (BF)
Composer 3, Google’s Dialog Flow 4, IBM’s Wat-
son Assistant 5, Facebook’s Wit.ai 6 and Amazon’s
Lex 7. It should be noted that most of these tools
have some built-in machine-learned NLU capabil-
ities, i.e. intent classification and entity detection,
that can be leveraged to trigger different rule-based
dialog flows, e.g. asking appropriate questions
based on missing slots from the dialog state.

However, a rule-based DM suffers from two ma-
jor problems. First, these systems can have diffi-
culty handling complex dialogs. Second, updat-
ing a rule-based DM to handle unexpected user
responses and off-track conversations is often diffi-
cult due to the rigid structure of the dialog flow, the
long-tail (sparseness) of user-system dialogs, and
the complexity in jumping to unrelated parts of the
flow.

In end-to-end approaches proposed recently
(Madotto et al., 2018; Lei et al., 2018), the DM
is implemented as a neural network model that is
trained directly on text transcripts of dialogs. Gao
et al. (2019) presents a survey of recent approaches.
One benefit provided by using a neural network
model is that the network infers a latent repre-
sentation of dialog state, eliminating the need for
explicitly specifying dialog states. Neural-based
DMs has been an area of active development for
the research community as well as in industry; Py-
Dial (Ultes et al., 2017), ParlAI (Miller et al., 2017),
Plato (Papangelis et al., 2020), Rasa (Bocklisch
et al., 2017), DeepPavlov (Burtsev et al., 2018),
and ConvLab (Lee et al., 2019) are a few examples.
However, these machine-learned neural DMs are
often viewed as black boxes from which dialog
authors have difficulty interpreting why individual
use cases succeed or fail. Further, these approaches
often lack a general mechanism for accepting task-

2https://powervirtualagents.microsoft.
com/

3https://github.com/microsoft/
BotFramework-Composer

4https://dialogflow.com/
5https://www.ibm.com/watson/
6https://wit.ai/
7https://aws.amazon.com/lex/

specific knowledge and constraints, thus requiring
a large number of validated dialog transcripts for
training. Collection and curation of this type of
corpus is often infeasible.

This paper presents Conversation Learner, a ma-
chine teaching tool for building DMs, which com-
bines the strengths of both rule-based and machine-
learned approaches. Conversation Learner is based
on Hybrid Code Networks (HCNs) (Williams et al.,
2017) and the machine teaching discipline (Simard
et al., 2017). Conversation Learner allows dialog
authors to (1) import a dialog flow developed us-
ing popular dialog composers, (2) convert the di-
alog flow to an HCN-based DM, (3) continuously
improve the HCN-based DM by reviewing user-
system dialog logs and providing updates via a
machine teaching UI, and (4) convert the (revised)
HCN-based DM back into a dialog flow for further
editing and verification.

Section 2 describes the architecture and main
components of Conversation Learner. Section 3
demonstrates Conversation Learner features. Sec-
tion 4 presents a case study of using Conversation
Learner as the DM of a text-based customer support
dialog system.

2 Conversation Learner

Development of any DM follows an iterative pro-
cess of generation, testing, and revision. Conversa-
tion Learner follows a three-stage DM development
process:

1. Dialog authors develop a rule-based DM (dia-
log flow) using a dialog composer.

2. The DM is imported into a HCN dialog sys-
tem. Users (or human subjects recruited for
system fine-tuning) interact with the system
and generate user-system dialog logs.

3. Dialog authors revise the DM by selecting
representative failed dialogs from the logs and
teaching the system to complete these dialogs
successfully. Run regression testing. Return
to step 2.

This development process is illustrated in Fig-
ure 2 (Bottom). The overall architecture of Con-
versation Learner is shown in Figure 2 (Top). It
consists of four components: (1) a DM converter
that converts a dialog flow between rule-based
and HCN-based DM representations; (2) an HCN-
based DM engine; (3) a machine teaching module

https://powervirtualagents.microsoft.com/
https://powervirtualagents.microsoft.com/
https://github.com/microsoft/BotFramework-Composer
https://github.com/microsoft/BotFramework-Composer
https://dialogflow.com/
https://www.ibm.com/watson/
https://wit.ai/
https://aws.amazon.com/lex/
https://www.microsoft.com/en-us/research/project/conversation-learner/
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Figure 2: The architecture of Conversation Learner
(Top) and the development of DMs using Conversation
Learner (Bottom).

that allows dialog authors to revise the HCN-based
DM; and (4) an evaluation module that allows side-
by-side comparison of the dialogs generated by
different DMs. We describe each component in
detail below.

2.1 HCN-based DM

The Conversation Learner HCN consists of a set of
task-specific action templates, an entity module, a
set of action masks, and a Recurrent Neural Net-
work (RNN). Each action template can be a textual
communicative action, rich card, or an API call.
The entity module detects entity mentions in user
utterances, grounds the entity mentions (e.g., by
mapping an entity mention to a specific row in a
dataset), and performs entity substitution in a se-
lected action template to produce a fully-formed
action (e.g., by mapping the template “the weather
of [city]?” to “the weather of Seattle?”

Each action mask represents an “if-then” rule
that determines the set of valid actions for some
conditions (i.e., particular dialog states or user in-
puts).

The RNN maintains dialog states and selects sys-
tem actions. For each turn in a training dialog, a
combination of features, including the user utter-
ance embedding, its bag of words vector, and the
set of extracted entities are concatenated to form
a feature vector that is passed to the RNN, specifi-
cally a Long Short Term Memory (LSTM) network.
The RNN computes a hidden state vector, which
is retained for the next timestep. Next, a softmax
activation layer is used to calculate a probability
distribution over the available system action tem-

plates. An action mask is then applied, and the re-
sult is normalized to select the highest-probability
action as the best response for the current turn.

The HCN can be trained on a collection of user-
system dialogs. For each system response in a dia-
log, the action template is labeled. The training of
HCN takes two steps. First, all unique action tem-
plates are imported into the HCN. Then, the RNN,
which maps states to action templates, is optimized
for minimizing the categorical cross-entropy on
training data. More specifically, each dialog forms
one minibatch, and updates of the RNN are done
via non-truncated back-propagation through time.

Readers are referred to Williams et al. (2017) for
a detailed description of HCN. It should be noted
that CL leverages the same network architecture
as HCN with enhancements and modifications to
generate context features from training samples.

2.2 DM converter

The DM converter converts a rule-based DM, de-
veloped using a dialog composer, to an HCN-based
DM, which can then be improved via training di-
alogs and machine teaching.

Given a dialog flow, the DM converter automat-
ically generates a set of training dialogs that rep-
resent the dialog flow. This process is done by
performing an exhaustive set of walks over the di-
alog flow and generating training dialog instances
for each walk. Rules that determine transitions in
the dialog flow are represented as action masks in
the HCN. The HCN is trained on the generated
training dialogs as described in Section 2.1.

The DM converter can also convert a revised
HCN-based DM back to a dialog flow by aggre-
gating the individual training dialogs back into a
graph for further editing and verification using a
dialog composer.

2.3 Machine Teaching

The HCN-based DM can be improved via machine
teaching (Simard et al., 2017). “Machine teach-
ing” is an active learning paradigm that focuses
on leveraging the knowledge and expertise of do-
main experts as “teachers”. This paradigm puts a
strong emphasis on tools and techniques that en-
able teachers - particularly non-data scientists and
non-machine-learning experts - to visualize data,
find potential problems, and provide corrections or
additional training inputs in order to improve the
system’s performance.
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For Conversation Learner, we developed a UI for
visualizing and editing logged user-system dialogs
that had failed to complete their tasks successfully.
The teacher does not need to revise the DM directly
(e.g., via writing code or by modifying dialog struc-
ture in a hierarchical composer tool). The teacher
simply corrects cases where the dialog system re-
sponded poorly or incorrectly.

The teacher can make three types of corrections:
(1) correct entity detection and grounding errors;
(2) correct state-to-action mapping; or (3) create a
new action template.

In cases where a large number of logged dialogs
exists, we use active learning to provide a ranking
of the candidate dialogs most likely to benefit from
machine teaching intervention.

Our empirical tests show that machine teach-
ing requires considerably fewer training samples
than traditional machine learning approaches to im-
prove system performance. We commonly observe
significant improvements in DM performance by
providing a dozen or fewer teaching examples.

There are three main reasons the HCN + machine
teaching combination is so effective. First, dialog
authors are generally subject matter experts who
can make well-informed decisions about which ac-
tions the DM should perform in individual situ-
ations. If the DM has to automatically learn an
action policy from logs, a large corpus of data is
required. Second, the HCN allows dialog authors
to explicitly encode domain-specific knowledge as
action templates (bot activities or responses) and
action masks (when a given response should be
disallowed) without learning. Third, we can use in-
telligent filtering to select the most impactful failed
dialogs for teachers to review.

2.4 Regression Testing

To effectively compare the performance of various
dialog systems using different DMs, we developed
a regression testing module. The module replays
user utterances from transcripts of existing conver-
sations against the DMs being tested; each DM
then provides response action(s) for each turn. The
module displays side-by-side comparisons of the re-
sulting conversations from each DM, up to the point
where the DM responses diverge. Human judges
then rate the conversations as “left better”,“right
better” or “same”.

At the end of the rating session, a report is gener-
ated showing the performance of conversational

flow amongst the DMs, as rated by the human
judges.

3 System Demonstration

The system demonstration consists of the following
steps:

1. The dialog author creates a rule-based DM
using a dialog composer tool. We showcase
the usage of Microsoft Power Virtual Agent
system for this step.

2. The rule-based DM is exported to a com-
mon representation, e.g. Microsoft’s ‘.dialog’
schema8.

3. The dialog flow is then imported into the Con-
versation Learner system. The import pro-
cess involves traversing the dialog flow and
creating dialog transcript instances for each
traversal.

4. The generated dialog transcripts are run
through both the rule-based system and Con-
versation Learner to demonstrate the improve-
ment in dialog-handling flexibility provided
by Conversation Learner’s machine-learned
DM.

5. For transcripts containing failures to complete
the user’s desired task, we demonstrate the
machine teaching UI used to ‘correct’ errors
and generate new training examples for revis-
ing the DM.

4 Case Study

To evaluate Conversation Learner’s performance,
we used dialog transcripts from Microsoft’s text-
based customer support system9. This customer
support system uses a sophisticated rule-based DM
to handle various customer support scenarios. It
was created and is regularly updated by domain
experts. We chose to use transcripts of actual user-
system dialogs in order to measure the performance
of the DMs in a realistic setting.

The customer support system consists of hun-
dreds of “topics” out of which we selected three:
“language settings”, “installing or changing fonts”,

8https://github.com/microsoft/
botbuilder-dotnet/blob/master/schemas/
sdk.schema

9These transcripts were scrubbed of any personally identi-
fiable information.

https://github.com/microsoft/botbuilder-dotnet/blob/master/schemas/sdk.schema
https://github.com/microsoft/botbuilder-dotnet/blob/master/schemas/sdk.schema
https://github.com/microsoft/botbuilder-dotnet/blob/master/schemas/sdk.schema
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Turn Dialog

1 usr: How to reduce font size
agt: How can I help you with fonts today?

2 usr: Adjust font size
agt: Would you like to change the font size in an
app or the size of text on your screen?

3 usr: Change size of text on screen
agt: Change the size of text in Windows 10 using
Display settings or use Magnifier. <Link to
solution>

4 agt: Did that solve your problem?
usr: Yes

5 agt: Great! Glad that helped.

Table 1: A sample human-agent dialog from the cus-
tomer support logs

and “sign in problems”. Table 1 shows an example
of a user-system dialog for “change font” topic.
Figure 3 shows the representation of a specific
topic’s dialog flow in the Microsoft Power Virtual
Agents dialog composer. We exported the dialog
flow graph of the support system from this system,
then followed the process described in Section 2.2
to train our machine-learned HCN-based DM. Fig-
ure 4 shows an example of a generated train dialog.

Figure 3: An example of a rule-based dialog defined in
the Microsoft Power Virtual Agents system

After generating the HCN-based DM, we ran
the set of dialog transcripts against both rule-based
and HCN-based DMs. For the majority of conver-
sations, users followed the expected flow, so the
HCN-based DM produced the same results as the
rule-based DM. For those that differed, we used
human judges to do a blind qualitative evaluation
of the conversations and choose the conversation

Figure 4: An example train dialog generated by travers-
ing the different paths of a dialog tree (left), and DM
actions generated from the tree (right)

that provided the best task-completion result.

User Rating # of Convs. %
CL is same 2749 91.63%
CL is better 136 4.53%
CL is worse 115 3.83%
Overall variation 0.7% (better)

Table 2: Initial results of human evaluation of 3000
dialogs against Conversation Learner (CL) and a rule-
based dialog system.

As shown in Table 2, the HCN-based DM pro-
vided better results for many transcripts, but there
was an almost equal number of dialogs where the
rule-based DM was rated better. The rule-based
DM may perform better in cases where specialized
hard-coded logic was added to handle issues such
as input normalization or rewriting.

An example dialog comparison is shown in Fig-
ures 5 and 6. As seen in Figure 6, the HCN-based
DM handles cases where the user utterance does
not match a known phrase, better than the rules-
based system. The HCN is also able to handle
unexpected transitions between dialog nodes.

In a rule-based system, updating the DM to han-
dle unexpected user responses and off-track con-
versations is much harder due to the rigid structure
of the dialog flow graph, the long-tail nature of
user-system dialog transcripts (a large number of
sparse examples), and complexity in transitioning
between unrelated parts of the dialog flow.

Next, we demonstrate that the performance of
the HCN DM can be substantially improved by
adding just 3 to 5 teaching examples via the ma-
chine teaching UI presented in Section 2.3. For
this experiment, we chose dialog transcripts that
contained common patterns of conversational prob-
lems, like users switching context, repeating them-
selves or asking follow-up questions, and corrected
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Figure 5: A sample dialog from a rule-based sys-
tem. Notice that the system just repeats its previous
question (as a rule) since it did not understand the
user reply.

Figure 6: Same dialog as Figure 5 in Conversation
Learner. Notice that the user response is accurately
generalized to one of the available options when
possible.

Figure 7: Machine Teaching UI for correcting dialogs
to revise DM.

the dialog policy by creating or selecting the appro-
priate system action to resolve the problem. Once
these additional examples are added, as illustrated
in Figure 7 the HCN-based DM’s performance im-
provement over the rule-based DM nearly tripled,
from 4.53% to 13.8%.

User Rating # of Convs. %
CL is same 2562 85.4%
CL is better 414 13.8%
CL is worse 24 0.81%
Overall variation 12.99% (better)

Table 3: Results of human evaluation of 3000 dialogs
after improving Conversation Learner (CL) model with
machine teaching.

As shown in Table 3, minimal intervention from
a dialog author by providing a small number of
corrections to problematic user-system dialog logs

can have a significant impact on the performance of
the DM. As new users interact with the system and
new transcripts are generated, the dialog author can
continuously improve the HCN DM’s performance
by making corrections and adding new training
data.

5 Conclusion

In this paper, we presented Conversation Learner,
a machine teaching tool for building dialog policy
managers. We have shown that the CL HCN-based
DM can be bootstrapped from a rule-based DM
preserving the same behavior expected from the
rule-based system. Using the CL machine teaching
UI, the dialog author can provide corrections to
the logged user-system dialogs and further improve
the CL’s DM performance. We demonstrated this
through a case study based on dialog transcripts
from Microsoft’s text-based customer support sys-
tem where the gains were approximately 13%.

We are planning to extend this work by look-
ing into following problems: 1) Investigating ef-
fectiveness of different ranking algorithms for log
correction recommendation, 2) Optimizing num-
ber of training samples and action masks generated
from the rule-based DM, and 3) Improving predic-
tions of HCN-based DM by looking into alternative
network architectures.
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