
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 312–319
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

312

Penman: An Open-Source Library and Tool for AMR Graphs

Michael Wayne Goodman
Nanyang Technological University

Singapore
goodmami@uw.edu

Abstract

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a framework for se-
mantic dependencies that encodes its rooted
and directed acyclic graphs in a format called
PENMAN notation. The format is simple
enough that users of AMR data often write
small scripts or libraries for parsing it into
an internal graph representation, but there is
enough complexity that these users could ben-
efit from a more sophisticated and well-tested
solution. The open-source Python library Pen-
man provides a robust parser, functions for
graph inspection and manipulation, and func-
tions for formatting graphs into PENMAN no-
tation. Many functions are also available in a
command-line tool, thus extending its utility to
non-Python setups.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a framework for encoding
English language1 meaning as structural-semantic
graphs using a fork of Propbank (Kingsbury and
Palmer, 2002; O’Gorman et al., 2018) for its seman-
tic frames with additional AMR-specific roles. The
graphs are connected, directed, with node and edge
labels, and may have multiple roots but always
have exactly one distinguished top node. AMR
corpora, such as the recent AMR Annotation Re-
lease 3.0 (LDC2020T02),2 encode the graphs in
a format called PENMAN notation (Matthiessen
and Bateman, 1991). PENMAN notation is a text
stream and is thus linear, but it first uses brack-
eting to capture a spanning tree over the graph,
then inverted edge labels and references to node
IDs to capture re-entrancies. Proper interpretation

1Variations exist for other languages (e.g., Li et al., 2016;
Cabezudo and Pardo, 2019), but AMR is primarily English
and is not an interlingua (Xue et al., 2014).

2https://catalog.ldc.upenn.edu/
LDC2020T02

of the “pure” graph therefore requires the deinver-
sion of inverted edges and the resolution of node
IDs. Some tools that work with AMR use the in-
terpreted pure graph (Cai and Knight, 2013; Song
and Gildea, 2019; Chiang et al., 2013), but many
others work at the tree level for surface alignment
(Flanigan et al., 2014), for transformations from
syntax trees (Wang et al., 2015), or to make use
of tree-based algorithms (Pust et al., 2015; Takase
et al., 2016). Others, particularly sequential neural
systems (Konstas et al., 2017; van Noord and Bos,
2017), use the linear form directly.

Furthermore, while AMRs ostensibly describe
semantic graphs abstracted away from any particu-
lar sentence’s surface form, human annotators tend
to “leak information” (Konstas et al., 2017) about
the source sentence. This means that an annotator
might be expected to produce the AMR in Fig. 1 for
sentence (1), but then swap the relative order of the
adjunct relations :location and :time for (2).3

Van Noord and Bos (2017) embraced these biases
and intentionally reordered relations, even frame ar-
guments such as :ARG0 and :ARG1, by their surface
alignments, leading to a boost in their evaluation
scores.

(1) I swam in the pool today.

(2) Today I swam in the pool.

(s / swim-01
:ARG0 (i / i)
:location (p / pool)
:time (t / today))

Figure 1: An AMR for (1) or (2)

As illustrated above, work involving AMR may
use the PENMAN string, the tree structure, or the

3Graphically there is no difference, and a metric like
smatch (Cai and Knight, 2013) would return a perfect score
when comparing the two.

https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2020T02

313

pure graph, or possibly multiple representations.
This paper therefore describes and demonstrates
Penman, a Python library and command-line util-
ity for working with AMR data at both the tree
and graph levels and for encoding and decoding
these structures using PENMAN notation. Con-
verting a tree into a graph loses information that
the tree implicitly encodes, so Penman introduces
the epigraph:4 optional information that exists on
top of the graph and controls how the pure graph
is expressed as a tree. Penman is freely avail-
able under a permissive open-source license at
https://github.com/goodmami/penman/.

2 Decoding and Encoding Graphs

Penman uses three-stage processes to decode PEN-
MAN notation to a graph and to encode a graph to
PENMAN, as illustrated in Fig. 2. Parsing is the
process of getting a tree from a PENMAN string,
and interpretation is getting a graph from a tree,
while decoding is the whole string-to-graph pro-
cess. Going the other way, configuration is the
process of getting a tree from a graph and format-
ting is getting a string from a tree, while encoding
is the whole graph-to-string process. Splitting the
decoding and encoding processes into two steps
each allows one to work with AMR data at any
stage. The variant of PENMAN notation used by
Penman is described in §2.1. The tree, graph, and
epigraph data structures are described in §2.2. Get-
ting a tree from a string (and vice-versa) depends
only on understanding PENMAN notation, but get-
ting a graph from a tree (and vice-versa) requires
an understanding of the semantic model. Semantic
models are described in §2.4.

2.1 PENMAN Notation

The Penman project uses a less-strict variant of
PENMAN notation than is used by AMR in order
to robustly handle some kinds of erroneous output
by AMR parsers. The syntactic and lexical rules for
PENMAN notation in PEG syntax5 are shown in
Fig. 3. Optional whitespace (not shown) is allowed
around expressions in the syntactic rules.

In AMR, the Concept expression on Node,
the Atom expression on Concept, and the
(Node / Atom) expression on Reln are obligatory,
but they are optional for Penman and will get a

4A different sense than for an inscription on a building or
a short passage at the start of a book.

5See https://bford.info/packrat/

null value when missing. Also in AMR, the ini-
tial Symbol on Node may be further constrained
with a specific Variable pattern for node iden-
tifiers and the Symbol in Atom would become a
choice: Variable / Symbol. How Penman han-
dles variables is discussed in §2.2.

AMR corpora conventionally use blank lines to
delineate multiple graphs, but Penman relies on
bracketing instead and whitespace is not signifi-
cant. Penman also parses comments (not described
in Fig. 3), which are lines prefixed with # charac-
ters, and extracts metadata where keys are tokens
prefixed with two colons (e.g., ::id) and values
are anything after the key until the next key or a
newline.

2.2 Decoding: Trees, Graphs, and Epigraphs

In Penman, a tree data structure is a 〈n,B〉 tuple
where n is the node’s identifier (variable) and B
is a list of branches. Each branch is a 〈l, b〉 tuple
where l is a branch label (a possibly inverted role)
and b is a (sub)tree or an atom. The first branch on
B is the node’s concept, thus a tree is a near-direct
conversion of the Node rule in Fig. 3 where B is
the concatenation of Concept and Reln. The tree
corresponding to the AMR in Fig. 2 is shown in
Fig. 4.

A graph is a tuple 〈v, T 〉 where v is the top
variable and T is a flat list of triples. For each triple
〈s, r, t〉, the source s is always the head variable of
a dependency, r is the normalized role, and t is the
dependent. When interpreting a triple from a tree
branch, n becomes s and t comes from b unless
the branch label l is deinverted according to the
semantic model (described in §2.4) to produce r,
in which case s and t are swapped. In the graph, t
is designated a variable if it appears as the source
of any other triple; otherwise it is an atom. Triples
where t is a variable are called edge relations. If
t is an atom and r is the special role :instance,
then t is the node’s concept and the triple is an
instance relation. All other triples are attribute
relations. Fig. 5 shows the graph corresponding to
the AMR in Fig. 2.

Conversion from a PENMAN string to a tree
is straightforward: the only information lost in
parsing is formatting details like the amount of
whitespace. The interpretation of a graph from a
tree, however, loses information about the specific
tree configuration for the graph, as there are often
many possible configurations for the same graph.

https://github.com/goodmami/penman/
https://bford.info/packrat/

314

PENMAN Tree Graph

(a / alpha
:ARG0 (b / beta)
:ARG0-of (g / gamma

:ARG1 b))

top

a

b g

b

:ARG0 :ARG0-of

:ARG1

top

a

b

g

:ARG0
:ARG0

:ARG1

parse interpret

configureformat

decode

encode

Figure 2: The three-stage decoding/encoding processes

Syntactic rules
Start <- Node
Node <- ’(’ Symbol Concept? Reln* ’)’
Concept <- ’/’ Atom?
Reln <- Role Algn? (Node / Atom)?
Atom <- (String / Symbol) Algn?

Lexical rules
Symbol <- NameChr+
Role <- ’:’ NameChr*
Algn <- ’~’ Prefix? Indices
Prefix <- [a-zA-Z] ’.’?
Indices <- Digit+ (’,’ Digit+)*
String <- ’"’ (!’"’ (’\\’ . / .))* ’"’
NameChr <- ![\n\t\r\f\v()/:~] .
Digit <- [0-9]

Figure 3: Syntactic and lexical rules of PENMAN

(’a’, [
(’/’, ’alpha’),
(’:ARG0’, (’b’, [

(’/’, ’beta’)])),
(’:ARG0-of’, (’g’, [

(’/’, ’gamma’),
(’:ARG1’, ’b’)]))])

Figure 4: Tree structure for the AMR in Fig. 2

(’a’,
[(’a’, ’:instance’, ’alpha’),
(’a’, ’:ARG0’, ’b’),
(’b’, ’:instance’, ’beta’),
(’g’, ’:ARG0’, ’a’),
(’g’, ’:instance’, ’gamma’),
(’g’, ’:ARG1’, ’b’)])

Figure 5: Graph structure for the AMR in Fig. 2

Therefore, upon interpretation, Penman stores in
two places the information that would be lost: in
the order of triples (meaning the graph’s triples are
a sequence, not an unordered bag or set), and in the
epigraph, which is a mapping of triples to lists of
epigraphical markers. The choice of the term epi-
graph is by analogy to the epigenome: just as epi-
genetic markers control how genes are expressed
in an organism, epigraphical markers control how
triples are expressed in a tree. In interpreting a
graph from a tree, when a branch’s target is another
subtree (e.g., when (is encountered in the string),
a Push marker is assigned to the triple resulting
from the branch, indicating that that triple pushed a
new node context onto a stack representing the tree
structure. The final triple resulting from branches
in the subtree, even considering further nested sub-
trees (e.g., at the point where) is encountered in
the string), gets a Pop marker indicating the end of
the node context. In addition to tree-layout mark-
ers, the epigraph is also where surface alignment
information is stored, as these alignments are not
part of the pure graph. Fig. 6 shows the epigraph
for the AMR in Fig. 2.

{
(’a’, ’:instance’, ’alpha’):[],
(’a’, ’:ARG0’, ’b’): [Push(’b’)],
(’b’, ’:instance’, ’beta’): [Pop],
(’g’, ’:ARG0’, ’a’): [Push(’g’)],
(’g’, ’:instance’, ’gamma’):[],
(’g’, ’:ARG1’, ’b’): [Pop]
}

Figure 6: Epigraph structure for the AMR in Fig. 2

315

2.3 Encoding: No Surprises

When configuring a tree from a graph, the epigraph
is used to control where triples occur in the tree.
If at each step the layout markers in the epigraph
allow the configuration process to navigate a tree
with no surprises (that is, when the source or target
of each triple is the current node on a node-context
stack), then it will produce the same tree that was
decoded to get the graph.6 Otherwise, such as
when a graph is modified or constructed without
an epigraph, the algorithm will switch to another
procedure that repeatedly passes over the list of re-
maining triples and configures those whose source
or target are already in the tree under construction.
If no triples are inserted in a pass, the remaining
triples are discarded and a warning is logged that
the graph is disconnected. The semantic model
is used to properly configure inverted branches as
necessary.

Once a tree is configured, formatting it to a string
is simple, and users may customize the formatter
to adjust the amount of whitespace used. The de-
fault indentation width is an adaptive mode that
indents based on the initial column of the current
node context; otherwise an explicit width is mul-
tiplied by the nesting level, or a user may select
to print the whole AMR on one line. Another cus-
tomization option is a “compact” mode which joins
any attribute relations, but not edges, that immedi-
ately follow the concept onto the same line as the
concept.

2.4 Semantic Models

In order to interpret a tree into a graph, a se-
mantic model is used to get normalized, or
deinverted, triples. Penman provides a default
model which only checks if the role ends in
-of (the conventional indicator of role inver-
sion in PENMAN notation). Ideally this would
be all that is needed, but AMR defines sev-
eral primary (non-inverted) roles ending in -of,
such as :consist-of and :prep-on-behalf-of,
where the inverted forms are :consist-of-of

and :prep-on-behalf-of-of, respectively. The
model therefore first checks if a role is listed as a
primary role; if not and if it ends in -of, it is in-
verted, otherwise it is not. When the role of a triple

6There is currently one known situation where this is not
the case: when a graph has duplicate triples with the same
source, role, and target, as the epigraph cannot uniquely map
the triple to its epigraphical markers. These, however, are
likely bad graphs in AMR.

is deinverted, Penman also swaps its source and
target so the dependency relation remains intact.

The model has other uses, such as inverting
triples (useful when encoding), defining transfor-
mations as described in §3, and checking graphs
for compliance with the model. In addition to the
default model, Penman includes an AMR model
with the roles and transformations defined in the
AMR documentation.7

3 Graph and Tree Transformations

Goodman (2019a) described four transformations
of AMR graphs and trees—namely, role canonical-
ization, edge reification (including dereification),
attribute reification, and tree structure indica-
tion8—and how they could be used to improve
the comparability of parser-produced AMR cor-
pora by normalizing differences that are meaning-
equivalent in AMR and by allowing for partial
credit when, for example, a relation has a correct
role but an incorrect target value. Penman incorpo-
rates all of those transformations but it (a) depends
on the semantic model to define canonical roles and
reifications, whereas Goodman 2019a used hard-
coded transformations; and (b) inserts layout mark-
ers for a “no-surprises” configuration that results in
the expected tree. A separately-defined model al-
lows Penman to use the same transformation meth-
ods with different versions of AMR, for different
tasks, or even with non-AMR representations, by
creating different models. For the implementation
details of these transformations, refer to Goodman
2019a.

In addition to those four transformations, Pen-
man adds a few more methods. The rearrange
method operates on a tree and sorts the order of
branches by their branch labels. Besides changing
the order of branches, their structure is unchanged
by this method. Van Noord and Bos (2017) sim-
ilarly rearranged tree branches based on surface
alignments. The reconfigure method configures a
tree from a graph after discarding the layout mark-
ers in the epigraph and sorting the triples based
on their roles. Unlike the rearrange method, re-
configure affects the entire structure of the graph
except for which node is the graph’s top. For both
of these, the sorting methods are defined by the

7https://isi.edu/~ulf/amr/lib/roles.
html

8With the introduction of the epigraph, tree structure indi-
cation is somewhat redundant, however it differs in that the
transformation puts this information in the graph triples.

https://isi.edu/~ulf/amr/lib/roles.html
https://isi.edu/~ulf/amr/lib/roles.html

316

model, and Penman includes three such methods:
original order, random order, and canonical order.
For rearrange there are additional sorting methods
applicable to trees: alphanumeric order, attributes-
first order, and inverted-last order. Since node vari-
ables in AMR are conventionally assigned in order
of their appearance and the above methods can
change this order, the reset-variables method reas-
signs the variables based on the new tree.

4 Use Cases

Here I describe a handful of use cases that motivate
the use of Penman.

4.1 Graph Construction
Users of the Penman library can programmati-
cally construct graphs and then encode them to
PENMAN notation. Penman allows users to di-
rectly append to the list of triples and assign epi-
graphical markers, or to assemble small graphs
and use set-union operations to combine them to-
gether. Another option is to assemble the tree di-
rectly, which may make more sense for some sys-
tems. Once the tree is configured or constructed,
users can use transformations such as rearrange
and reset-variables to make the PENMAN string
more canonical in form. Fig. 7 illustrates using the
Python API to construct and encode a graph.

>>> import penman
>>> g = penman.Graph(
... [(’s’, ’:instance’, ’swim-01’),
... (’s’, ’:ARG0’, ’i’),
... (’i’, ’:instance’, ’i’),
... (’s’, ’:location’, ’p’),
... (’p’, ’:instance’, ’pool’)])
>>> print(penman.encode(g))
(s / swim-01

:ARG0 (i / i)
:location (p / pool))

Figure 7: Example of using Penman’s Python API for
graph construction

Another possibility is for graph augmentation,
where users rely on Penman to parse a string to a
graph which they then modify, e.g., to add surface
alignments or wiki links, then serialize to a string
again. This allows them to focus on their primary
task without worrying about the details of parsing
and formatting.

4.2 Graph Validation
Whether one is generating AMR graphs with hand
annotation or by automatic means, the end result

is not guaranteed to be valid with respect to the
model, so Penman offers a function to check for
compliance. Currently, this check evaluates three
criteria:

1. Is each role defined by the model?

2. Is the top set to a node in the graph?

3. Is the graph fully connected?

To facilitate both library and tool usage, the li-
brary function returns a dictionary mapping triples
(for context) to error messages, as shown in Fig. 8,
while the tool encodes the errors as metadata com-
ments and has a nonzero exit-code on errors.

>>> from penman.models.amr import model
>>> g = penman.decode(
... ’(s / swim-01’
... ’ :ARG0 (i / i)’
... ’ :stroke (b / butterfly))’)
>>> model.errors(g)
{(’s’, ’:stroke’, ’b’): [’invalid role’]}

Figure 8: Example of using Penman’s Python API for
checking model compliance

4.3 Formatting for a Consistent Style
The official AMR corpora, such as the AMR Anno-
tation Release 3.0, are distributed with the graphs
serialized in a human-readable style that uses in-
creasing levels of indentation to show the nesting of
subgraphs. Furthermore, relations on a node appear
in a canonical order depending on their roles (e.g.,
ARG1 appears before ARG2) or their surface align-
ments, where the appearance of a node roughly
follows the order of corresponding words in a sen-
tence. The rearrange and reconfigure transforma-
tions can change the order of relations in the graph
to be more canonical, the reset-variables method
can ensure variable forms are as expected, and the
whitespace options of tree formatting can emulate
the same indentation style as the official corpora.
These features may be useful for users distributing
new AMR corpora.

4.4 Normalization for Fairer Evaluation
The normalization options in §3 can be useful when
evaluating the results of AMR parsing, as described
in Goodman 2019a. Penman is thus well-situated
as a preprocessor to an evaluation step using, e.g.,
smatch (Cai and Knight, 2013), SemBLEU (Song
and Gildea, 2019), or SEMA (Anchiêta et al., 2019).

317

Fig. 9 shows the command-line tool performing
role canonicalization.

$ echo ’(c / chapter :domain-of 7)’ \
> | penman --amr --canonicalize-roles
(c / chapter

:mod 7)

Figure 9: Example of using Penman’s command-line
tool for normalization

4.5 Preprocessing for Machine Learning

Sequential neural models which use linearized
AMR graphs have been popular for both parsing
and generation (Barzdins and Gosko, 2016; Peng
et al., 2017; Konstas et al., 2017; van Noord and
Bos, 2017; Song et al., 2018; Damonte and Cohen,
2019; Zhang et al., 2019), but data sparsity is a
significant issue (Peng et al., 2017). One way to
address data sparsity is to remove senses on con-
cepts (Lyu and Titov, 2018). Fig. 10 shows how the
Python API can remove these senses in the tree.

>>> import re
>>> sense = re.compile(r’-\d+($|~)’)
>>> def desense(branch):
... role, tgt = branch
... if role == ’/’:
... tgt = sense.sub(r’\1’, tgt)
... return role, target
...
>>> t = penman.parse(
... ’(s / swim-01~e.1’
... ’ :ARG0 (i / i))’)
>>> for _, branches in t.nodes():
... branches[:] = map(desense,
... branches)
...
>>> print(penman.format(t))
(s / swim~e.1

:ARG0 (i / i))

Figure 10: Example of using Penman’s Python API to
remove concept senses

Other techniques include, but are not limited to,
normalizing linear forms, as discussed in §4.4; rear-
ranging graphs with alignments to match the input
string (van Noord and Bos, 2017); or randomiz-
ing branch orders to avoid overfitting to annotator
biases, as suggested by (Konstas et al., 2017). Pen-
man supports all these use cases via commands, as
in Fig. 9, without any coding required.

5 Applicability beyond AMR

This paper has described PENMAN as a notation
for encoding AMR graphs, but it is also applicable
to other dependency graphs that share the same con-
straints (e.g., connected, directed). PENMAN no-
tation can encode Dependency Minimal Recursion
Semantics (DMRS; Copestake, 2009; Copestake
et al., 2016), such as for learning graph-to-graph
machine translation rules (Goodman, 2018) and
neural generation (Hajdik et al., 2019), and it can
encode Elementary Dependency Structures (EDS;
Oepen et al., 2004; Oepen and Lønning, 2006),
as shown in Fig. 11 using PyDelphin (Goodman,
2019b) for conversion. It is also useful for exten-
sions of AMR, such as Uniform Meaning Repre-
sentation (UMR; Pustejovsky et al., 2019).

$ echo ’{e: x:pron[]
> _1:pronoun_q[BV x]
> e:_swim_v_1[ARG1 x]}’ \
> | delphin convert --from eds \
> --to eds-penman \
> --indent 3
(e / _swim_v_1

:ARG1 (x / pron
:BV-of (_1 / pronoun_q)))

Figure 11: Example of EDS in Penman notation

6 Conclusion

In this paper I have presented Penman, a Python
library and command-line tool for working with
AMR and other graphs serialized in the PENMAN
format. Existing work on AMR has targeted the
PENMAN string, the parsed tree, or the interpreted
graph, and Penman accommodates all of these use
cases by allowing users to work with the tree or
graph data structures or to encode them back to
strings. Transformations defined at both the graph
and tree level make it applicable for pre- and post-
processing steps for corpus creation, evaluation,
machine learning projects, and more. Penman
is available under the MIT open-source license
at https://github.com/goodmami/penman. In-
teractive notebook demonstrations and informa-
tional videos are available at https://github.

com/goodmami/penman#demo.

Acknowledgments

Thanks to the three anonymous reviewers for their
helpful comments, and to the contributors and users
of the Penman project for their support.

https://github.com/goodmami/penman
https://github.com/goodmami/penman#demo
https://github.com/goodmami/penman#demo

318

References
Rafael Torres Anchiêta, Marco Antonio Sobrevilla

Cabezudo, and Thiago Alexandre Salgueiro Pardo.
2019. SEMA: an extended semantic evaluation for
AMR. In Proceedings of the 20th Computational
Linguistics and Intelligent Text Processing. Springer
International Publishing.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Guntis Barzdins and Didzis Gosko. 2016. RIGA at
SemEval-2016 task 8: Impact of Smatch extensions
and character-level neural translation on AMR pars-
ing accuracy. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1143–1147, San Diego, California. As-
sociation for Computational Linguistics.

Marco Antonio Sobrevilla Cabezudo and Thiago Pardo.
2019. Towards a general Abstract Meaning Repre-
sentation corpus for Brazilian Portuguese. In Pro-
ceedings of the 13th Linguistic Annotation Work-
shop, pages 236–244.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 748–752.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
924–932.

Ann Copestake. 2009. Invited Talk: slacker seman-
tics: Why superficiality, dependency and avoidance
of commitment can be the right way to go. In
Proceedings of the 12th Conference of the Euro-
pean Chapter of the ACL (EACL 2009), pages 1–9,
Athens, Greece. Association for Computational Lin-
guistics.

Ann Copestake, Guy Emerson, Michael Wayne Good-
man, Matic Horvat, Alexander Kuhnle, and Ewa
MuszyÅĎska. 2016. Resources for building ap-
plications with Dependency Minimal Recursion Se-
mantics. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), Paris, France. European Language Re-
sources Association (ELRA).

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational

Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649–3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrimi-
native graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1426–1436.

Michael Wayne Goodman. 2018. Semantic Operations
for Transfer-based Machine Translation. Ph.D. the-
sis, University of Washington, Seattle.

Michael Wayne Goodman. 2019a. AMR normaliza-
tion for fairer evaluation. In Proceedings of the 33rd
Pacific Asia Conference on Language, Information,
and Computation, Hakodate.

Michael Wayne Goodman. 2019b. A Python library
for deep linguistic resources. In 2019 Pacific Neigh-
borhood Consortium Annual Conference and Joint
Meetings (PNC), Singapore.

Valerie Hajdik, Jan Buys, Michael Wayne Goodman,
and Emily M. Bender. 2019. Neural text genera-
tion from rich semantic representations. In Proceed-
ings of the 2019 Conference on the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT)), Minneapolis, Minnesota.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
bank to Propbank. In LREC, pages 1989–1993. Cite-
seer.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Bin Li, Yuan Wen, Weiguang Qu, Lijun Bu, and Nian-
wen Xue. 2016. Annotating the Little Prince with
Chinese AMRs. In Proceedings of the 10th Linguis-
tic Annotation Workshop held in conjunction with
ACL 2016 (LAW-X 2016), pages 7–15.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407.

Christian Matthiessen and John A Bateman. 1991. Text
generation and systemic-functional linguistics: ex-
periences from English and Japanese. Pinter Pub-
lishers.

Rik van Noord and Johan Bos. 2017. Neural semantic
parsing by character-based translation: Experiments

http://www.aclweb.org/anthology/W13-2322
http://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://www.aclweb.org/anthology/E09-1001
https://www.aclweb.org/anthology/E09-1001
https://www.aclweb.org/anthology/E09-1001
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014

319

with abstract meaning representations. Computa-
tional Linguistics in the Netherlands Journal, 7:93–
108.

Stephan Oepen, Dan Flickinger, Kristina Toutanova,
and Christopher D Manning. 2004. LinGO Red-
woods. Research on Language and Computation,
2(4):575–596.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings
of the 5th International Conference on Language
Resources and Evaluation, pages 1250–1255.

Tim O’Gorman, Sameer Pradhan, Martha Palmer, Ju-
lia Bonn, Katie Conger, and James Gung. 2018.
The new Propbank: Aligning Propbank with AMR
through POS unification. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the data sparsity is-
sue in neural AMR parsing. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 366–375, Valencia, Spain. Asso-
ciation for Computational Linguistics.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1143–1154.

James Pustejovsky, Ken Lai, and Nianwen Xue. 2019.
Modeling quantification and scope in abstract mean-
ing representations. In Proceedings of the First In-
ternational Workshop on Designing Meaning Repre-
sentations, pages 28–33, Florence, Italy. Association
for Computational Linguistics.

Linfeng Song and Daniel Gildea. 2019. SemBleu: A
robust metric for AMR parsing evaluation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4547–
4552.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616–
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu
Hirao, and Masaaki Nagata. 2016. Neural head-
line generation on abstract meaning representation.
In Proceedings of the 2016 conference on empiri-
cal methods in natural language processing, pages
1054–1059.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for AMR pars-
ing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 366–375, Denver, Colorado. Association
for Computational Linguistics.

Nianwen Xue, Ondrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not
an interlingua, but close: Comparison of English
AMRs to Chinese and Czech. In LREC, volume 14,
pages 1765–1772. Reykjavik, Iceland.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

https://www.aclweb.org/anthology/E17-1035
https://www.aclweb.org/anthology/E17-1035
https://doi.org/10.18653/v1/W19-3303
https://doi.org/10.18653/v1/W19-3303
https://www.aclweb.org/anthology/P18-1150
https://www.aclweb.org/anthology/P18-1150
https://doi.org/10.3115/v1/N15-1040
https://doi.org/10.3115/v1/N15-1040
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009

