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Abstract

WikiSQL and Spider, the large-scale cross-
domain text-to-SQL datasets, have attracted
much attention from the research commu-
nity. The leaderboards of WikiSQL and Spider
show that many researchers propose their mod-
els trying to solve the text-to-SQL problem.
This paper first divides the top models in these
two leaderboards into two paradigms. We then
present details not mentioned in their original
paper by evaluating the key components, in-
cluding schema linking, pretrained word em-
beddings, and reasoning assistance modules.
Based on the analysis of these models, we
want to promote understanding of the text-to-
SQL field and find out some interesting future
works, for example, it is worth studying the
text-to-SQL problem in an environment where
it is more challenging to build schema linking
and also worth studying combing the advan-
tage of each model toward text-to-SQL.

1 Introduction

Text-to-SQL is a task to translate the natural lan-
guage query (input) written by users into the SQL
query (output) automatically. For example, in Ta-
ble 3, we want to input the question in the table
into the model to get the SQL output. Early work
on text-to-SQL focused on small-scale domain-
specific databases such as Restaurants, GeoQuery,
ATIS, IMDB, and Yelp (Yaghmazadeh et al., 2017;
Li and Jagadish, 2014; Iyer et al., 2017; Zelle and
Mooney, 1996; Tang and Mooney, 2000; Popescu
et al., 2003; Giordani and Moschitti, 2012). More
recently, Zhong et al. (2017) proposed the first
large-scale cross-domain text-to-SQL dataset, Wik-
iSQL, which attracted much attention from the re-
search community (Xu et al., 2017; Yu et al.; Dong
and Lapata, 2018). Now, some models (He et al.,
2019; Lyu et al., 2020; Anonymous, 2020) for Wik-
iSQL have achieved over 90% execution accuracy,

leading to the impression that the text-to-SQL prob-
lem has been solved. However, WikiSQL’s com-
plexity is limited: its SQL queries only cover a
single SELECT column and aggregation, together
with relatively simple selection predicates in the
WHERE clauses, thus lacking in terms of complex
SQL queries. To facilitate the study of complex
SQL generation, Yu et al. (2018b) introduced Spi-
der, a large-scale cross-domain text-to-SQL bench-
mark with complex SQL queries. Experiments on
Spider show previous models designed for Wik-
iSQL suffer a significant performance drop.

In this paper, we discuss the top models for the
WikiSQL and Spider benchmarks. Since relatively
high generation accuracy has already been achieved
for the WikiSQL benchmark, and the SQL struc-
tures in Spider cover all SQL structures in Wik-
iSQL, we focus more on models designed for Spi-
der. This paper starts from the comparison of the
overall paradigms of the models and then discusses
the key modules used by most models. Overall, our
contributions are as follows:

• We divide existing text-to-SQL models into
two paradigms:
1) Generate SQL structure⇒ Fill schema
2) Label the question⇒ Generate SQL.

• We study that pretrained embeddings improve
performance by improving schema linking
and SQL structure generation.

• We evaluate the applicability and advantages
of the reasoning assistance modules of previ-
ous work.

• We suggest three directions for the future.
1) How to generate SQL if it is more challeng-
ing to build the schema linking.
2) How to combine the different paradigms
(in section 3) toward text-to-SQL.
3) How to use graph neural networks to im-
prove SQL structure generation.



109

Question: What airports don’t have departing or arriving flights?
SQL: SELECT AirportName FROM Airports

WHERE AirportCode NOT IN (
SELECT SourceAirport FROM Flights UNION
SELECT DestAirport FROM Flights )

Table 1: A complex nested SQL with set operator

2 WikiSQL and Spider

Differences: The most significant difference be-
tween WikiSQL and Spider is that SQL queries
in Spider are more complex than in WikiSQL. Ta-
ble 1 presents a complex SQL example from Spider,
in which the question seems conceptually simple
but involves several different pieces of database
structure and SQL clause. Besides this, the Spi-
der database contains several tables while there is
only one table in the WikiSQL database. The pres-
ence of multiple tables introduces column and table
name disambiguation problems to Spider, where
none exist in WikiSQL. For example, suppose that
the table ‘student’, ‘course’, and ‘studentship’ all
contain a ‘student id’ column in a database. You
would need to choose one ‘student id’ column from
these tables when the question is ‘Show the student
id who choose math’. Multiple tables in Spider also
cause the number of columns to be dozens of times
more massive than WikiSQL, which increases the
difficulty of choosing the correct column.

Similarities: Although WikiSQL and Spider are
cross-domain settings, most SQL queries do not
need domain knowledge during generation. The
domain knowledge is a consensus that only exists
in a specific field and will not be clearly stated in
the question. For example, in a scenario where
domain knowledge is needed, ask for ‘good restau-
rant’ can correspond to a WHERE condition ‘star >
3.5’ since this domain rates the restaurants ranging
from 0 to 5 stars.

Some different domain examples only replace
the words related to schema item names, keep-
ing the same sentence structure. Besides, most
sentences directly use words related to schema
item names instead of synonyms, which allows the
model to locate the schema items by word match-
ing. For example, in Table 2, the question rarely
uses ‘income’ or other synonyms to replace ‘salary’
since the schema table word is ‘salary’.

3 The Paradigms of Text-to-SQL

We only discuss two paradigms achieving relatively
high performance in the text-to-SQL task, shown

in Figure 1, ignoring the paradigms such as directly
using a seq2seq to generate SQL. Most models fol-
low the Paradigm One but are based on different
neural network architecture, while IE-SQL (Anony-
mous, 2020) brings a new paradigm achieving the
SOTA result in WikiSQL benchmark.

3.1 Paradigm One (Generate SQL structure
⇒ Fill schema)

The most common text-to-SQL paradigm is to gen-
erate the SQL structure first and then fill the schema
items (schema columns and tables). In WikiSQL,
because the dataset only contains simple SQL, most
models decompose the SQL synthesis into several
independent classification sub-tasks. Each sub-task
employs an independent classifier taking the en-
tire sentence as input. For example, one classifier
would be used to determine which column is the
column in SELECT clause, and another separate
classifier to determine which aggregation function
is correct. These models include: SQLNet (Xu
et al., 2017), TypeSQL (Yu et al.), SQLova (Hwang
et al., 2019), HydraNet (Lyu et al., 2020), X-SQL
(He et al., 2019), Coarse2Fine (Dong and Lapata,
2018) and others.

Among them, the SQLNet and TypeSQL mod-
els designed for WikiSQL have been transferred
to Spider; however, their performance drops sig-
nificantly. SyntaxSQLNet (Yu et al., 2018a) is the
first model designed for Spider and, based on a
similar idea, uses independent modules to predict
different clauses. However its performance is less
effective than some later models based on one uni-
fied grammar-based decoder modules (Guo et al.,
2019; Bogin et al., 2019a).

Although these later models are based on one
unified module, they also treat SQL structure gen-
eration and filling the schema items as separate
processes. SQL structure generation depends on
analysis of the sentence, while filling the schema
items depends on the similarity between schema
items and sentence tokens. For example, in Table
2, we test the top models (RAT-SQL (Wang et al.,
2020), IRNET (Guo et al., 2019), and GNN (Bogin
et al., 2019a)) in the Spider leaderboard, and all
these models tend to generate wrong predictions of
the type shown. This type of example can be found
in the Spider development set where the database
id is ‘concert singer’. The example shows that
although based on a unified module, there is no
strong interaction between generating SQL struc-
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Natural Language Question: 
What is the average miles per gallon of the cars with 4 cylinders?

Paradigm One:
Step 1) Generate SQL Structure ‘SELECT avg( ) FROM WHERE = ’
Step 2) Fill the schema items mpg cars_data cylinder

Paradigm Two:
Step 1) Label the question: ‘What is the average miles per gallon of the cars with 4 cylinders ?’

O O O avg COL-1 COL-1 COL-1 O O TABLE O VALUE COL-2 O

Step 2) Generate SQL from labels: ‘ SELECT avg( COL-1 ) FROM TABLE WHERE COL-2 = VALUE ’
mpg cars_data cylinder 4

Figure 1: An example of different paradigms

Question: What is the average salary.
Gold SQL: SELECT average FROM salary

Wrong prediction: SELECT avg(average) FROM salary

Table 2: A common prediction error

ture (generating the error ‘avg’ function) and filling
the schema item (filling ‘average’ column) in the
models.

3.2 Paradigm Two (Label the question⇒
Generate SQL)

The WikiSQL SOTA model, IE-SQL (Anonymous,
2020), brings a new paradigm for text-to-SQL. At
the time of writing this paper, the paper of IE-
SQL is still anonymous. IE-SQL is an information
extraction-based text-to-SQL method that tackles
the task via sequence labeling, relation extraction,
and text matching. IE-SQL first automatically la-
bels the questions by analyzing its corresponding
SQL, then trains a neural model to learn how to
label a question without a SQL. Finally, IE-SQL
can synthesize a SQL from the sequence labeling
results in a deterministic way.

Although this approach seems to avoid the prob-
lem in Table 2, generating the correct annotation
and synthesizing a SQL from the sequence label-
ing for Spider requires much more work than for
WikiSQL because the sentences and SQL queries
in the Spider are much more complicated than in
the WikiSQL. The same name column that has
not appeared in WikiSQL also restricts applying
this method on Spider. While it is difficult to use
this method on Spider directly, this method brings
a new idea to solve the text-to-SQL problem. A
method that combines Paradigm One and Paradigm
Two is therefore worth thinking about in future.

Question: What are the names of houses properties?
SQL: SELECT name FROM Properties

WHERE type code = ‘House’

Table 3: An example of requirements for DB content

4 Schema Linking

Schema Linking is a key module used by all the
models in these two paradigms. It helps fill the
schema items in Paradigm One and generate the
‘COL(-∗)’ and ‘TABLE’ label in Paradigm Two.

4.1 Schema Linking Definition

Schema linking is to establish a link between the
question token and schema items. There must be a
value or weight that guide a model to choose one
schema item but not others. We name this value or
weight as schema linking value. Any text-to-SQL
model with decent performance needs a schema
linking value. In Paradigm One approaches, only
the schema items strongly related to the question
tokens (with high schema linking value) will be
filled into the SQL structure. In Paradigm Two,
schema linking helps to generate the schema related
labels.

4.2 Schema Linking Construction

There are different ways to construct a schema link-
ing. The most common method is to train a neural
network model that gives a higher similarity score
to the link between a word token in a question and
a schema item when they have the same meaning
(Iyer et al., 2017). This method is widely used but
may have different implementation details.

Some works implement extra schema linking by
recognizing the columns and the tables mentioned
in a question before training the model (Guo et al.,
2019; Bogin et al., 2019a; Wang et al., 2020). It
should be noted that Guo et al. (2019) and Wang
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et al. (2020) name the extra schema linking as
schema linking in the paper while Bogin et al.
(2019a) do not mention this extra schema linking
but implement it in the code. Extra schema linking
is essential in these models because in the ablation
study of IRNet and RAT-SQL based on Spider, re-
moving the extra schema linking causes the biggest
performance decline compared to removing other
removable modules. Since the GNN paper did not
present the ablation study on the extra schema link-
ing, we conduct it in Spider and present the results
in Table 4. When removing the extra schema link-
ing from the GNN approach we observe a bigger
performance decline than when removing the graph
neural network component highlighted in the paper.
It should be noted that some papers use the abbrevi-
ations ‘GNN’ or ‘GNNs’ refer to the graph neural
networks, but in this paper, ‘GNN’ only represents
the GNN model presented by Bogin et al. (2019a).

Besides, we can improve the extra schema link-
ing through the database (DB) contents where the
IRNet, RAT-SQL, GNN models all improve their
performance by using the DB contents. For ex-
ample, in Table 3, without inspecting the con-
tent of the database, it is hard to construct a link-
ing between the word houses and the column
‘property type code’, even by manual, since the
word houses maybe a redundant word that often
appears in questions.

However, most models in WikiSQL do not im-
plement extra schema linking but achieve good
performance. We conjecture that this is because
the schema items in WikiSQL are much less than
in Spider and top models use BERT (Devlin et al.,
2019) to build a better schema linking than using
other embedding methods. To test this conjecture,
we conducted an ablation study on the GNN model
and present the results in Table 4. We can see that
the performance gap between GNN+BERT and
GNN+BERT-ESL is smaller than between GNN
and GNN-ESL. We believe BERT can compen-
sate for part of the functionality of extra schema
linking. EditSQL (Zhang et al., 2019) is another
example that does not use the extra schema link-
ing and achieves a similar improvement (around
20%) as GNN-ESL by extending BERT. It is also
the highest improvement done by BERT for the
models in the Spider leaderboard.

Model Exact Match:
GNN 47.6%
GNN - ESL 24.9%
GNN - Graph Neural Networks 41.7%
GNN + BERT 49.3%
GNN + BERT - ESL 47.1%

Table 4: Ablation study results. ESL means extra
schema linking.

Question: What are the names of French singer?
SQL: SELECT name FROM singer

WHERE country = ‘France’

Table 5: An example of requirements for pretrained
word embeddings

5 Pretrained Word Embeddings

Pretrained word embeddings are also a key module
widely used by most models in the two paradigms
and two benchmarks. The SOTA models of the
two benchmarks, belonging to different paradigms
separately, are all based on BERT (Anonymous,
2020; Wang et al., 2020).

It is not surprising that BERT can improve the
text-to-SQL models (Wang et al., 2020; Guo et al.,
2019). As discussed in the last section, BERT
provides a better embedding for schema linking
than the original embeddings in the GNN model.
Table 5 presents an example to illustrate why we
need BERT to construct schema linking. The word
‘French’ in the question cannot be constructed a
schema linking through DB content since there
is only ‘France’ in the database. A proper pre-
trained word embeddings can make the distance
between ‘French’ and ‘country’ shorter than non-
pretrained embeddings.

To better understand the contribution of BERT,
we list the component F1 score of RAT-SQL
with and without BERT in Table 6. Spider met-
rics define these breakdown components accord-
ing to SQL clause keywords. Among them, the
‘select(no AGG)’ component represent the SE-
LECT clause without aggregation function, which
only include schema columns. So the F1 score
of ‘select(no AGG)’ depends on the accuracy of
schema items appearing in SELECT clause. The
score improvement in ‘select(no AGG)’ is one
more evidence that BERT can improve the schema
linking. The improvement on ‘keywords’ illus-
trate that BERT also improves the accuracy of SQL
structure generation since the ‘keywords’ represent
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Figure 2: A challenging text-to-SQL task from the Spider dataset. (Wang et al., 2020)

the SQL structure without schema items.
Although BERT can improve the schema link-

ing and SQL structure generation, boosting the
performance by extending BERT is computational
resource consuming. For example, in Table 4, we
simply add the BERT to the GNN model without
searching the best hyperparameter, and the perfor-
mance only improves a little. The SOTA model
RAT-SQL in Spider benchmark train 100 times to
search the best hyperparameter for extending the
BERT, which needs running about 500 days in a
single TITAN RTX 24G GPU.

6 Reasoning Assistance Module

Some SQL clauses in Spider need reasoning to gen-
erate, but WikiSQL has almost no such clauses. For
example, we cannot make out the JOIN ON clause
directly from the question in Figure 2. Existing
models mainly implement reasoning through graph
neural networks and intermediate representation.

6.1 Graph Neural Networks

Graph Neural Networks in Existing Models
To our knowledge, there is no WikiSQL model
using graph neural networks, but some Spider mod-
els use it. The reason is that there is only one table
in the WikiSQL databases. Every node that came
from columns is equivalent in a graph built by only
one table. Graph neural networks can not give dif-
ferent information or values to the equivalent nodes,
which restrict the usage of graph neural networks
in WikiSQL. However, if we build a graph from
the table and question tokens, it may work well in
WikiSQL, such as the RAT-SQL.

The models in the Spider leaderboard using
graph neural networks include GNN (Bogin et al.,
2019a), Global-GNN (Bogin et al., 2019b), and
RAT-SQL (Wang et al., 2020). The GNN repre-
sents a schema as a graph and uses graph neural
networks to embed each schema item. There are
only schema item embeddings in the graph node

RAT-SQL RAT-SQL(BERT)
select 85.3% 90.7%
select(no AGG) 86.4% 92.1%
where 71.7% 77.1%
where(no OP) 76.0% 82.2%
group(no Having) 77.8% 83.0%
group 73.0% 80.0%
order 75.9% 83.9%
and/or 97.9% 97.7%
IUEN 47.6% 53.8%
keywords 85.3% 89.8%

Table 6: F1 scores of component matching of RAT-
SQL and RAT-SQL(BERT) on dev set.

of GNN, but the graph node in Global-GNN and
RAT-SQL contains embeddings and extra schema
linking data. The difference between the graph in
Global-GNN and RAT-SQL is that the graph nodes
in RAT-SQL include the schema items and question
tokens, while nodes in Global-GNN only contain
the schema items.

Benefit of Using Graph Figure 2 copied from
RAT-SQL (Wang et al., 2020) illustrates the chal-
lenge of ambiguity in schema linking while ‘model’
in the question refers to car_names.model rather
than model_list.model. Graph neural networks
can give a bigger schema linking value to the
car_names.model than model_list.model by the
uniquely matched horsepower column propagat-
ing its weight through the schema relations (e.g.
foreign keys).

The other benefit of using a graph is to give the
schema items that are not mentioned in the question
a more significant schema linking value. Examples
are often seen in JOIN ON clause and subqueries.
In Figure 2, it is hard to construct the schema link-
ing from question to the column cars_data.id

and cars_names.make_id that appear in the JOIN
ON clause of the SQL. The graph neural networks
can construct the schema linking value for these
two columns from the propagation of other linked
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columns.

6.2 Intermediate Representation

Yu et al. (2018a) introduces an intermediate repre-
sentation (IR) SQL that dispense with JOIN ON
and FROM clauses. This IR can generate full SQL
containing JOIN ON in a deterministic way by ana-
lyzing the schema structure. However, this IR may
not generate the correct JOIN ON clause when
there are more than one available JOIN ON clauses
or facing the self-join. The RAT-SQL uses both
graph neural networks and IR, whose IR only dis-
pense with JOIN ON clauses from SQL.

Guo et al. (2019) further proposes an intermedi-
ate representation, named SemQL that removes the
GROUP BY clause and merges the HAVING and
WHERE clauses. SemQL reduces the reasoning
work from SQL structure generation that does not
significantly benefit from graph neural networks.
However, about 20% of the generated GROUP BY
clauses from SemQL are different from the origi-
nal, which restricts its performance in Spider exact
match metrics. Although most different GROUP
BY clauses do not affect the accuracy of Spider
execution match metrics, SemQL can not generate
executable SQL in the current version. IR research
still has room for improvement.

7 Conclusion

We discuss the existing cross-domain SOTA text-
to-SQL models from the whole to the detailed
modules to give a clear picture of the current text-
to-SQL research progress. We illustrate that pre-
trained embeddings improve the models by con-
structing a better schema linking and a more accu-
rate SQL structure through experiments. This paper
also provide many details that are not mentioned
in the original papers, such as . However, due to
space limitations, this paper cannot cover all the
details of these SOTA models. We hope this paper
will help you understand the key connections and
differences between the previous models and have
a comprehensive understanding of the text-to-SQL
field.

8 Future Work

Most questions in Spider and WikiSQL directly use
the words related to schema item names instead of
synonyms, which means all existing models can
build a schema linking by locating the same words.
If you want to use these models to implement a

natural language interface for database systems,
you need to avoid synonyms. However, in some
cases, synonyms cannot be avoided, so it is worth
studying the text-to-SQL problem in an environ-
ment where it is more challenging to build schema
linking.

Although only following the Paradigm Two step
toward text-to-SQL in Spider needs a lot of works,
a method of combining the advantages of two
paradigms may boost the performance. For ex-
ample, we can generate a label to every word token
and then use a machine learning model to learn the
word tokens with the label to generate SQL.

To improve the text-to-SQL reasoning ability,
designing a new IR to simplify SQL structure gen-
eration is also a good research topic. Besides, the
graph neural networks are all focused on improv-
ing the schema linking. How to use graph neural
networks to improve SQL structure generation is
also worth looking forward to.
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