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Abstract

We propose a newly annotated dataset
for information extraction on recipes.
Unlike previous approaches to machine
comprehension of procedural texts, we avoid a
priori pre-defining domain-specific predicates
to recognize (e.g., the primitive instructions
in MILK) and focus on basic understanding
of the expressed semantics rather than
directly reduce them to a simplified state
representation (e.g., ProPara). We thus frame
the semantic comprehension of procedural text
such as recipes, as fairly generic NLP subtasks,
covering (i) entity recognition (ingredients,
tools and actions), (ii) relation extraction
(what ingredients and tools are involved in
the actions), and (iii) zero anaphora resolution
(link actions to implicit arguments, e.g.,
results from previous recipe steps). Further,
our Recipe Instruction Semantic Corpus
(RISeC) dataset includes textual descriptions
for the zero anaphora, to facilitate language
generation thereof. Besides the dataset itself,
we contribute a pipeline neural architecture
that addresses entity and relation extraction
as well as identification of zero anaphora.
These basic building blocks can facilitate
more advanced downstream applications (e.g.,
question answering, conversational agents).

1 Introduction

Recently, several efforts have aimed at
understanding recipe instructions (see Section 2).
We consider such recipes as prototypical for
procedural texts, for which processing is complex
due to the need to (i) understand the ordering of
steps (not unlike, e.g., event ordering in news),
(ii) solve frequent ellipsis (i.e., zero anaphora)
and coreference resolution, and (iii) track the
state changes they involve (e.g., ingredients
processed/combined to new entities). Especially
the latter distinguishes procedural text processing

from more traditional information extraction (e.g.,
from news).

Most existing works on recipes focus on
recognizing pre-defined predicates, typically in the
form of a limited set of instruction types (e.g.,
to convert the recipe to robot instructions) with
predefined argument slots to fill. Further, they
often rely on an available starting list of ingredients
(which may not be available in other procedural
text). Hence, current approaches towards recipe
understanding make assumptions that are rather
domain specific. In contrast, we aim for a
more basic and generic structured representation
of the procedural text, limiting domain-specific
knowledge and building on more general semantic
concepts. In particular, we build on semantic
concepts as defined in PropBank (Kingsbury and
Palmer, 2002), which are not domain-specific.

Note that our proposed form of structured
representations not necessarily allows directly
solving informational queries that require explicit
reasoning and/or state tracking (e.g., “Where are
the tomatoes after step 5?”). We however pose
that properly detecting the various entities (e.g.,
ingredients and their derivations) and the actions
that are executed on them (as described by verbs),
with the appropriate coreference and zero anaphora
resolution, would enable constructing a graph that
facilitates such tracking. Thus, while our proposed
representation based on the idea of joint entity and
relation extraction (Bekoulis et al., 2018), provides
useful input for it, such explicit state tracking and
representation (e.g., as in ProPara, Dalvi et al.,
2018) is left out of scope here.

In summary, this paper reports on our work-in-
progress and makes two main contributions. First,
we present our newly annotated Recipe Instruction
Semantic Corpus (RISeC) dataset (Section 3),
following the frame-semantic representation of
PropBank (Kingsbury and Palmer, 2002). Since
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PropBank is domain-agnostic, the approach should
be largely generalizable1 to other procedural
text settings. Second, we introduce a baseline
framework (Section 4) to solve (i) entity
recognition (ingredients, tools and actions),
(ii) relation extraction (ingredients and tools linked
to the actions), (iii) zero anaphora identification.
Experimental evaluation thereof on RISeC is
provided (Section 5).

2 Related work

From the perspective of structured
representation, Tasse and Smith (2008) define the
Minimal Instruction Language for the Kitchen
(MILK), which is based on first-order logic to
describe the evolution of ingredients throughout
a recipe, and use it for annotation in the CURD
dataset. Building on this effort, Jermsurawong and
Habash (2015) extend CURD toward ingredient-
instruction dependency tree parsing in SIMMR:
they present an ingredient-instruction dependency
tree representation of the recipe, but do not model
instruction semantics. This contrasts with Maeta
et al. (2015), who propose a pipeline framework
for information extraction on Japanese recipes
from the the recipe flow graph (r-FG) dataset (Mori
et al., 2014). Maeta et al. use word segmentation,
named entity recognition and syntactic analysis to
extract predicate-argument structures and build a
recipe flow graph that is conceptually similar to a
SIMMR tree. Their work is conceptually closest to
ours, in that they propose a chain of NLP subtasks
(but we do not need word boundary identification
in our English corpus). Yet, we build on a more
elaborate and generic semantic relation scheme,
PropBank (Kingsbury and Palmer, 2002). Further,
methodologically we adopt neural network models
as opposed to their logistic regression for NER and
a maximum spanning tree (MST) parser for the
relations (i.e., graph arcs). Tracking state changes
is another key to understanding recipe language.
Bosselut et al. (2018) predict the dynamics of
action and entity attributes in recipes by employing
a recurrent memory network. Their work includes
sentence generation, but does not address the zero
anaphora problem (see further) directly.

Besides recipes, other works focus on different
procedural tasks. The ProPara2 project aims at

1While some of our entity types are specific to the cooking
domain (e.g., “food”, “temperature”), the relations that link
action verbs to them are not (cf. PropBank).

2http://data.allenai.org/propara

Preheat oven to 350 degrees F.

In a casserole, combine soup mix, artichoke hearts, cheese and crab meat.

Bake [the crab mixture] for 30 minutes; then serve [the baked crab] immediately.

ACTION TOOL TEMPERATURE
Arg_PPT

ArgM_MNR

TOOL ACTION FOOD FOOD FOOD FOOD
Arg_PPTArgM_LOC

Arg_PPT
Arg_PPT

Arg_PPT

ACTION DUR ACTION

ArgM_TMP
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ZAV ZAV

Figure 1: An annotated recipe. The fragments between
brackets are manually added anaphora descriptions.

comprehending scientific processes and tracking
the status of entities in them: Dalvi et al. (2018)
focus on tracking entity locations (as well as their
creation/destruction) using a specific matrix state
representation (with a row per step, a column per
entity). The proposed models however do not
incorporate entity recognition and are specifically
filling the chosen state representation. In our work,
we rather stick to a more “basic” understanding,
which is broader in scope than location tracking.
In terms of datasets beyond the recipe domain,
the work of Mysore et al. (2019) is noteworthy:
it focuses on material synthesis and annotates
domain-specific entities (materials, operations,
conditions, etc.) and relations. The latter in our
case are rather domain-agnostic (using PropBank).

3 The RISeC Dataset

The following paragraphs describe our dataset
and the annotations underlying the presented
extraction task3.

3.1 Dataset Collection

Recipes in our RISeC dataset are those from
the SIMMR dataset.4 Unlike SIMMR, we only
use the instruction text of each recipe, and rather
detect ingredients (as well as derived entities) from
the text itself. We annotate the dataset using
BRAT (Stenetorp et al., 2012), which eventually
creates a directed acyclic graph where (i) vertices
are entities (text spans) such as ingredients, tools,
actions, intermediate products, and (ii) edges
denote relations between entity spans. An example
of our annotation is given in Fig. 1. Three expert
annotators are involved in this task, who were are in
close communication during the entire annotation
process to maximize annotation consistency.

3The annotated data is available for research at https://
github.com/YiweiJiang2015/RISeC

4https://camel.abudhabi.nyu.edu/simmr/

http://data.allenai.org/propara
https://github.com/YiweiJiang2015/RISeC
https://github.com/YiweiJiang2015/RISeC
https://camel.abudhabi.nyu.edu/simmr/
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3.2 Annotation Structure

Entity Types
Action: Most verbs, their present/past participles
and verb phrases fall in this category. In addition
to the Action label, specific verbs also carry a Zero
Anaphora Verb (ZAV) label (see further).
Food: Ingredients, spices (salt, sugar, etc.),
intermediate products (e.g., “the meat mixture”). If
a sequence of ingredients is involved in an action,
we label each of them individually, as in Fig. 1.
Tool: Appliances (e.g., oven), recipients (e.g.,
bowl), utensils (e.g., fork) used to perform an
action involved in the cooking process.
Duration: Time interval for which an action
lasts (e.g., ‘20 minutes’, ‘half an hour’).
Temperature: E.g., “400 degrees F”.
Other: This label is used for entities that cannot
be attributed to any entity label above.
Further, we also annotate subclauses that provide
information on certain actions as “entities”. Thus,
we abuse entity labeling to indicate them and thus
limit their annotation to shallow parsing:
Condition Clause: Sub-clauses led by
conjunctions like “until”, “till”, “when”, “before”,
usually expressing timing.
Purpose Clause: Infinitives and sub-clauses
led by for example “so that”, “to make sure that”.
Relation Types
Following the methodology of PropBank, we
define a set of relations for the semantic roles in
recipe instructions. These relations have the verb as
origin and link an action to its arguments (Arg *)
or modifiers (ArgM *). For details on their
meanings, see PropBank’s annotation guidelines
(Babko-Malaya, 2005). However, to make the
annotating schema self-consistent and adaptive to
the cooking domain, we create (or extend) verb
frames that are not (yet) included by PropBank.
E.g., for the verb phrase “beat in”, we borrow the
argument structure from its main verb, i.e., “beat”.
Arg PPT: Participant, used for the argument
which undergoes a change of state or is being
affected by an action.
Arg GOL: Goal, destination where an action ends.
Arg DIR: Direction, the source where an action
starts from. E.g., “Remove the pan from oven to
a rack” where “oven” is Arg DIR of the action
“remove”.
Arg PRD: Predicate, used for the end product of
an action. E.g., “Roll the cool dough into 3-inch
ball” where the dough is transformed into “3-inch

balls”, Arg PRD of the action “roll”.
Arg PAG: Agent, the subject that performs an
action.
ArgM MNR: Manner, describing how or in what
condition we execute an action. E.g., in“Preheat
the oven at 340 degrees”, the relation ArgM MNR
links Action “preheat” to Temperature “340
degrees F”.
ArgM LOC: Location where an action takes
place. This notion is not restricted to physical
locations, but abstract locations are being marked
as ArgM LOC as well. E.g., in “Beat 2 eggs in the
flour”, ArgM LOC links Action “beat” to Food
“the flour”
ArgM TMP: Temporal relation between action and
timing nodes (Duration, Condition clause).
ArgM PRP: Purpose relation between action and
purpose clause nodes.
ArgM INT: Instrument, e.g., the utensil to
accomplish the action.
ArgM SIM: Simultaneous, linking two actions
performed at the same time. E.g., in “Broil the
lamb, moving pan so entire surface browns evenly”,
ArgM SIM links “broil” to “moving”.
Zero Anaphora Rephrasing
Zero anaphora is the phenomenon of implicit,
unmentioned references to earlier concepts.
Figure 1 gives two examples where explicit
anaphors are manually added inside the brackets.
The last sentence in Fig. 1 would be ungrammatical
without the unmentioned “the crab mixture” and
“the baked crab”. In our annotations, we annotated
1,526 Zero Anaphora Verbs with candidate
expressions for the zero anaphora, providing at
least two alternatives: a succinct noun, as well as a
more detailed noun phrase.

4 Model

We focus on two tasks: (1) joint entity
recognition, relation extraction and zero anaphora
identification, and (2) zero anaphora description
generation. Next we present our models for each.

4.1 Entity recognition, relation extraction &
zero anaphora identification

We use a span-based model, taking the input
sequence of words as input, and passing it
through 4 components: (i) word representation,
(ii) span representation, (iii) entity recognition, and
(iv) relation identification.

Word Representation: We use a BiLSTM as the
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base encoder. The inputs are vector representations
of the sentence tokens obtained by concatenating
pre-trained GLoVe embeddings (Pennington et al.,
2014) and character representations (using a CNN,
ReLU and max pooling, as proposed by dos
Santos and Guimarães, 2015). Further, we
also experimented with pre-trained BERT models
(Devlin et al., 2019) instead of Glove embeddings.

Span Representation: We enumerate all
possible word spans from the input sentence
and concatenate the aforementioned BiLSTM
(hleft, hright) encoder outputs at first (f ) and last
(l) end-point tokens of each span, together with
its length (elen) to obtain a span representation
(si = (hleft,f , hright,f , hleft,l, hright,l, elen)).

Entity Recognition & Zero Anaphora Verb
Identification: We pass the selected span
representations si through a feed-forward neural
network (FFNN) yielding per-class scores for
predicting entity types as well as binary Zero
Anaphora Verb labels (with k entity classes, the
FFNN thus has k + 1 outputs).

Relation Identification: The concatenation of
two span representations (si, sj) is passed through
another FFNN to derive per-class relation scores.
Since this is quadratic, we only pass the top 20%
highest scored spans to the Relation FFNN: every
span pair (si, sj) is first passed through a pruning
FFNN, and only its top-scored pairs are pushed
through the Relation FFNN.

Training: For each recipe instance, the objective
is to optimize the weighted sum of the negative
log likelihood of span representation, entity
classification and relation identification. We use
Adam to optimize the model with learning rate
0.001.

4.2 Zero anaphora description generation

For the generation task, we build a baseline
model corresponding to the sequence-to-sequence
architecture used in Bahdanau et al. (2015). The
input is the entire recipe, which we pass to
an LSTM encoder taking the pre-trained GloVE
embedding, concatenated with a binary label
indicating whether it is a zero anaphora verb (ZAV),
and (optionally) an entity type embedding if the
token is of a given type. Since usually the target
description that the decoder needs to generate is
much shorter than the full recipe, we adopt bi-
linear attention (Luong et al., 2015). The model is
trained to minimize the negative log likelihood of

Glove Bertbase Bertlarge

Entity 89.8 91.7 92.6
Zero Anaphora Verb 89.1 89.0 89.8
Relation 65.5 67.1 67.5

Table 1: Micro-F1 scores of models with Glove,
Bertbase and Bertlarge on the test set.

Full Test set

Count Prec. Recall F1

Food 3,232 92.5 95.9 94.2
Action 3,061 96.6 97.4 97.0
Tool 1,138 92.9 86.8 89.8
Condition clause 487 93.0 71.1 80.5
Duration 411 85.7 87.4 86.5
Temperature 381 87.4 89.3 88.4
Other 270 54.2 34.7 41.9
Purpose clause 147 78.0 59.2 67.2

Table 2: Entity counts in full dataset and extraction
results with Bertlarge on test set.

an emitted token given the full input and predicted
tokens.

5 Experiments and results

We split our RISeC dataset into 50% training,
20% development and 30% test sets, using
the same splits as SIMMR (Jermsurawong and
Habash, 2015). We tune hyperparameters on the
development set. Reported performance metrics
are obtained on the test set.

In general, our span-based model shows good
performance in the extraction task, as shown in
Table 1. We obtain micro-F1 scores for the
joint entity, zero anaphora verbs and relation
identification tasks of respectively 89.8, 89.1 and
65.5 when using Glove word embeddings. With
Bertlarge word encodings, performance consistently
improves by 2.8, 0.7 and 2.0 percentage points
respectively, indicating the applicability of the
general linguistic knowledge from Bert on a
cooking-domain task.

Individual entity and relation type performance
is reported in Tables 2–3. As expected,
Table 2 shows that entity F1 scores are positively
correlated with the occurrence frequency, except
for Duration and Temperature, of which
the fixed pattern is easy to learn. The high
precision and recall of important entities like Food
and Action shows promising potential of our
model for downstream applications like a question
answering system in smart kitchen settings. The F1
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Full Test set

Count Prec. Recall F1

Arg PPT 3,196 94.1 69.3 79.8
Argument Arg GOL 557 79.6 35.8 49.1
Relations Arg DIR 91 93.9 34.5 50.4

Arg PRD 74 77.8 27.4 40.0
Arg PAG 25 0.0 0.0 0.0

ArgM TMP 884 91.7 33.2 48.7
ArgM LOC 515 87.8 49.7 63.3

Modifier ArgM MNR 432 86.7 35.6 50.1
Relations ArgM PRP 137 85.2 9.1 15.8

ArgM SIM 92 66.7 11.1 18.6
ArgM INT 73 77.4 20.3 31.8

Table 3: Relation counts in full dataset and extraction
results with Bertlarge on test set.

scores of relation predictions in Table 3 show that
the imbalanced distribution of relation types causes
detection of several relations to be difficult, e.g.,
the low recall rates for Arg PAG and ArgM PRP.
Future work should address this, e.g., using a larger
dataset (or pretraining on non-recipe corpora).

While the detection of zero anaphora verbs
(ZAV) performs well, our Seq2seq based
description generation largely failed, with very low
performance and oftentimes outputting the same
descriptions (e.g., “mixture” or “chicken”). In
hindsight, given the limited dataset size (order of
1.5k ZAV occurences in the full dataset) and the
typically large training dataset needed for seq2seq
models, this is not entirely unexpected. Further
work on this task is clearly required.

6 Conclusion and Future Work

This paper introduced RISeC, a dataset for
extracting structural information and resolving zero
anaphora from unstructured recipes. The corpus
consists of 260 recipes from SIMMR and provides
semantic graph annotations of (i) recipe-related
entities, (ii) generic verb relations (from PropBank)
connecting these entities, (iii) zero anaphora
verbs having implicit arguments, and (iv) textual
descriptions of those implicit arguments. We
reported on our work-in-progress with two baseline
models using our corpus: (i) a neural span-based
model extracting entities, zero anaphora verbs and
relations, and (ii) a sequence-to-sequence attention
model generating noun phrases for zero anaphora
verbs.

We plan to continue working in this direction,
making the dataset larger and more fine-
grained, and especially, to investigate how it

can be leveraged for human-machine interaction
experiments.

Acknowledgments

The first author was supported by China
Scholarship Council (201806020194). This
research received funding from the Flemish
Government under the “Onderzoeksprogramma
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