
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language Processing, pages 258–268

December 4 - 7, 2020. c©2020 Association for Computational Linguistics

258

Unsupervised KB-to-Text Generation with Auxiliary Triple Extraction
using Dual Learning∗

Zihao Fu1, Bei Shi2, Lidong Bing3, Wai Lam1

1Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong

2Tencent AI Lab 3DAMO Academy, Alibaba Group
zhfu@se.cuhk.edu.hk; beishi@tencent.com;

l.bing@alibaba-inc.com; wlam@se.cuhk.edu.hk

Abstract

The KB-to-text task aims at generating texts
based on the given KB triples. Traditional
methods usually map KB triples to sentences
via a supervised seq-to-seq model. However,
existing annotated datasets are very limited
and human labeling is very expensive. In
this paper, we propose a method which trains
the generation model in a completely unsuper-
vised way with unaligned raw text data and KB
triples. Our method exploits a novel dual train-
ing framework which leverages the inverse re-
lationship between the KB-to-text generation
task and an auxiliary triple extraction task. In
our architecture, we reconstruct KB triples or
texts via a closed-loop framework via linking
a generator and an extractor. Therefore the
loss function that accounts for the reconstruc-
tion error of KB triples and texts can be used
to train the generator and extractor. To re-
solve the cold start problem in training, we
propose a method using a pseudo data gen-
erator which generates pseudo texts and KB
triples for learning an initial model. To resolve
the multiple-triple problem, we design an allo-
cated reinforcement learning component to op-
timize the reconstruction loss. The experimen-
tal results demonstrate that our model can out-
perform other unsupervised generation meth-
ods and close to the bound of supervised meth-
ods.

1 Introduction

Knowledge Base (KB)-to-text task focuses on gen-
erating plain text descriptions from given knowl-
edge bases (KB) triples which makes them accessi-
ble to users. For instance, given a KB triple <101
Helena, discoverer, James Craig Watson>, it is ex-
pected to generate a description sentence such as

∗The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Codes: 14204418).

“101 Helena is discovered by James Craig Watson.”.
Recently, many research works have been proposed
for this task. For example, Gardent et al. (2017a,b)
create the WebNLG dataset to generate descrip-
tion for triples sampled from DBPedia (Auer et al.,
2007). Lebret et al.’s (2016) method generates
people’s biographies from extracted Wikipedia in-
fobox. Novikova et al. (2017) propose to generate
restaurant reviews by some given attributes and
Fu et al. (2020a) create the WikiEvent dataset to
generate text based on an event chain. However,
the works mentioned above usually map structured
triples to text via a supervised seq-to-seq (Sutskever
et al., 2014) model, in which large amounts of an-
notated data is necessary and the annotation is very
expensive and time-consuming.

We aim to tackle the problem of completely un-
supervised KB-to-text generation which only re-
quires a text corpus and a KB corpus and does not
assume any alignment between them. We propose
a dual learning framework based on the inverse re-
lationship between the KB-to-text generation task
and the triple extraction task. Specifically, the KB-
to-text task generates sentences from structured
triples while the task of triple extraction extracts
multiple triples from plain texts. Such a relation-
ship enables the design of a closed-loop learning
framework in which we link KB-to-text generation
and its dual task of triple extraction so as to re-
construct the unaligned KB triples and texts. The
non-differentiability issue of picking words from
our neural model before reconstruction makes it
hard to train the extractor or generator effectively
using backpropagation. To solve this issue, we ap-
ply Reinforcement Learning (RL) based on policy
gradients into our dual learning framework to op-
timize our extractor or generator according to the
rewards.

Some semi-supervised works (He et al., 2016;
Cao et al., 2019) have been proposed to generate

259

101 Helena is discovered by James Craig Watson who was born in Canada.

<101 Helena, discoverer, James Craig Watson>҅

<James Craig Watson, nationality, Canada>,

<James Craig Watson, profession, Writer>,

<James Craig Watson, deathPlace, Australia>

101 Helena is discovered
by James Craig Watson
who was born in Canada
and died in Australia .

E

G

101 Helena is discovered by James Craig Watson.

James Craig Watson was born in Canada.

James Craig Watson is a writer.

James Craig Watson died in Australia.

1.0
1.0
0.5
0.5

0.9

GTraditional RL Our Proposed ARL

Figure 1: Illustration of the multiple-triple problem, in
which E and G are extractor and generator respectively.
The left part is the traditional RL methods and the right
is our proposed ARL method. Four triples are extracted
by the extractor. The top two triples are right and the
others are wrong. Traditional RL methods give a single
reward (0.9) for all the four triples while our proposed
ARL gives each triple a different reward. Then the right
triples and the wrong triples will be distinguished and
optimized differently.

plain texts from data of certain forms in other do-
mains (e.g., translation, semantic parsing) with lim-
ited annotated resources. These models contain two
major steps. Firstly, they pre-train a weak model
based on the labeled data. Secondly, they use an
iterative model whose aim is to improve the weak
model using the unlabeled data. In each iteration,
the input sequence of the original data form is trans-
formed into another form by the original model.
Then, it is transformed back to the original data
form by an inverse model. However, there are still
some challenges applying the existing methods into
KB-to-text directly: (1) Cold start problem. Ex-
isting approaches pre-train the model with labeled
data and then fine-tune their models via unlabelled
data. Such a mechanism still needs annotated data
which is more difficult and expensive to obtain in
KB-to-text task. (2) Multiple-triple problem. As
shown in Fig. 1, multiple triples might be extracted
from a text example, and inevitably, the neural
extractor could extract some wrong triples. The tra-
ditional dual learning approaches (He et al., 2016;
Cao et al., 2019), if directly applied, will regard
all these triples as one unit and calculate a single
reward for all the triples regardless of whether they
are correct or not. It not only results in the slow
convergence of RL, but also leads to unsatisfactory
model performance.

We propose a novel Extractor-Generator Dual
(EGD) framework which exploits the inverse rela-
tionship between KB-to-text generation and auxil-
iary triple extraction. Our model can resolve the
KB-to-text task in a totally unsupervised way. To
cope with the cold start problem, we propose a

pseudo data generator (PDG) which can generate
pseudo text and pseudo KB triples based on the
given unaligned KB triples and text respectively
with prior knowledge. The extractor and the gener-
ator are then pre-trained with the generated pseudo
data. To resolve the multiple-triple problem, we
propose a novel Allocated Reinforcement Learning
(ARL) component. Different from traditional RL
methods in which one reward is calculated for the
whole sequence, ARL allocates different rewards
to different sub-parts of the sequence (Fig. 1 right).
Therefore, our model can distinguish the quality of
each triple and optimize the extractor and the gener-
ator more accurately. We compare our framework
with existing dual learning methods and the ex-
perimental results demonstrate that our model can
outperform other unsupervised generation methods
and close to the bound of supervised methods.

2 Related Works

Recently many tasks and methods have been
proposed to transform existing data into human-
readable text. WebNLG (Gardent et al., 2017a,b) is
proposed to describe a list of triples sampled from
DBPedia (Auer et al., 2007). Except for the KB
triples, many other types of data have also been
investigated for how to generate text from them.
For example, E2E (Novikova et al., 2017) aims at
generating text from some restaurants’ attributes.
Wikibio (Lebret et al., 2016) proposes to gener-
ate biographies for the Wikipedia infobox while
WikiEvent (Fu et al., 2020a) proposes to generate
text based on an event chain. Besides, Chen and
Mooney (2008); Wiseman et al. (2017) propose
to generate a summarization of a match based on
the scores and Liang et al. (2009) propose to gen-
erate weather reports based on the records. All
these tasks require an elaborately annotated dataset
which is very expensive to prepare.

Many methods have been proposed to tackle the
dataset insufficiency problem in other tasks. Fu
et al. (2020c) propose to directly train the model
on partially-aligned data in which the data and the
text are not necessarily exactly math, and it can
be built automatically. He et al. (2016); Sennrich
et al. (2016); Yi et al. (2017) propose dual learning
frameworks. They pre-train a weak model with
parallel data and refine the model with monolin-
gual data. This strategy has been applied in many
related tasks including semantic parsing (Cao et al.,
2019), summarization (Baziotis et al., 2019) and

260

KB1 KB2 KBn… Text

Text KB

G

Eθ

PDG

Gφ

E

Eθ

E

Gφ

PDG

Eθ

G

Gφ

pre-train

kb2kb
ARLG

txt2txt
ARLE

Text Text1 Text2 Textn…

KB KB1 KB2 KBn
…

KB
split

KB KB1 KB2 KBn…

Text Text1 Text2 Textn…

KB

split

LE
<latexit sha1_base64="Y8Oe2xpmNErGDbs8P67Jf4pRbrs=">AAAB+XicbVDLSsNAFJ3UV62vVFfSzWARXJWkRZuCi4IILly0YGuhCWEynbZDJw9mJoUS8iduXCji1v9w4U6/xknbhVYPDBzOuZd75ngRo0IaxqeWW1vf2NzKbxd2dvf2D/TiYVeEMcekg0MW8p6HBGE0IB1JJSO9iBPke4zce5OrzL+fEi5oGNzJWUQcH40COqQYSSW5um77SI4xYslt6ibXacHVy0alYRm1RhUaFcu6qNbPFTHmgOaSlJtFu/TVPn5vufqHPQhx7JNAYoaE6JtGJJ0EcUkxI2nBjgWJEJ6gEekrGiCfCCeZJ0/hqVIGcBhy9QIJ5+rPjQT5Qsx8T01mOcWql4n/ef1YDi0noUEUSxLgxaFhzKAMYVYDHFBOsGQzRRDmVGWFeIw4wlKVlZVgrn75L+lWK2atUm2b5eYlWCAPSuAEnAET1EET3IAW6AAMpuABPIFnLdEetRftdTGa05Y7R+AXtLdvgOyWgw==</latexit>

LARLG
<latexit sha1_base64="kU43c7Im1Fe8lkxpEhyB0d0rxeA=">AAAB/HicdVBNSwJBGJ61L7OvNU/hZUiCTsuuZiZ0MDrUwYNGmqCyzI6zOjj7wcxsIIv9lS4diujaz+jQrX5Ns1pQUQ8M78Pzvi/vM48TMiqkab5pqYXFpeWV9GpmbX1jc0vPbrdFEHFMWjhgAe84SBBGfdKSVDLSCTlBnsPIlTM+TfpX14QLGviXchKSvoeGPnUpRlJJtp7reUiOMGJxfWrHJxf1s2nG1gumUS1ViuUyNI2kHlQVOVTFLELLMGco1LK9/Htz56Vh66+9QYAjj/gSMyRE1zJD2Y8RlxQzMs30IkFChMdoSLqK+sgjoh/PzE/hnlIG0A24er6EM/X7Row8ISaeoyYTq+J3LxH/6nUj6R71Y+qHkSQ+nh9yIwZlAJMk4IBygiWbKIIwp8orxCPEEZYqrySEr5/C/0m7aFglo9i0CrVjMEca5MEu2AcWqIAaOAcN0AIYTMAtuAcP2o12pz1qT/PRlPa5kwM/oD1/AHTjl5Y=</latexit>

LG
<latexit sha1_base64="y/LVboRZvPiT5759n9zigPQZrw8=">AAAB+XicdVDLSsNAFJ34rPWV6kq6CRbBVUjqoy5cFFzowkUL9gFNCJPppB06mYSZSaGE/IkbF4q49T9cuNOvcdJWsKIHLhzOuZd7OH5MiZCW9aEtLa+srq0XNoqbW9s7u3ppry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+50x5oJE7E5OYuyGcMBIQBCUSvJ03QmhHCJI09vMS6+zoqdXbNOawrDMs9r5ac1WZK58W5V6ySl/Ng/eGp7+7vQjlISYSUShED3biqWbQi4JojgrOonAMUQjOMA9RRkMsXDTafLMOFJK3wgiroZJY6r+vEhhKMQk9NVmnlP89nLxL6+XyODCTQmLE4kZmj0KEmrIyMhrMPqEYyTpRBGIOFFZDTSEHCKpyloo4X/Srpr2iVlt2pX6JZihAMrgEBwDG9RAHdyABmgBBMbgHjyCJy3VHrRn7WW2uqTNb/bBArTXL07GlmE=</latexit>

LARLE
<latexit sha1_base64="pL0RyuW8v2vDVjBk9FKEysQokYo=">AAAB/HicdVDLSgMxFM3UV62vqV1JN8EiuBoyLfQBLioiuOiiFfuAtpRMmrahmQdJRihD/RU3LhRx62e4cKdfY6ZVUNEDgcM593JPjhNwJhVCb0ZiZXVtfSO5mdra3tndM9P7LemHgtAm8bkvOg6WlDOPNhVTnHYCQbHrcNp2pmex376mQjLfu1KzgPZdPPbYiBGstDQwMz0XqwnBPKrNB9HpZe18nhqYOWQVUQyILFQpo0JFk0KxXMyXoG0tHJSrpnvZ98bBS31gvvaGPgld6inCsZRdGwWqH2GhGOF0nuqFkgaYTPGYdjX1sEtlP1qEn8MjrQzhyBf6eQou1O8bEXalnLmOnoyjyt9eLP7ldUM1Kvcj5gWhoh5ZHhqFHCofxk3AIROUKD7TBBPBdFZIJlhgonRfcQlfP4X/k1besgtWvmHnqidgiSTIgkNwDGxQAlVwAeqgCQiYgVtwDx6MG+POeDSelqMJ43MnA37AeP4AU8SXgA==</latexit>

Data from corpus

E / G Extractor / generator model

Eθ / Gφ Model with updatable parameters
Calculate with gradient
back-propagation
Calculate without gradient

Figure 2: The extractor-generator dual (EGD) framework. It contains three processes namely a pre-train process,
a kb2kb process and a txt2txt process.

information narration (Sun et al., 2018). However,
as indicated in Hoang et al. (2018), the dual learn-
ing approach is not easy to train. Moreover, these
methods still need some aligned data to pre-train
the weak model. Another line of research pro-
poses to use some extra annotations instead of us-
ing aligned data. Lample et al. (2018a,b) propose
to train an unsupervised NMT system based on few
annotated word pairs (Conneau et al., 2018). Luo
et al. (2019) propose to generate pseudo data with
a rule-based template (Li et al., 2018). However,
these models cannot be directly applied in our sce-
nario since our dataset is too complicated to make
these annotations. Fu et al. (2020b) propose to uti-
lize topic information from a dynamic topic tracker
to solve the dataset insufficiency problem. Cheng
et al. (2020) propose to generate better text descrip-
tion for a few entities by exploring the knowledge
from KB and distill the useful part. In the field
of computer vision, Zhu et al. (2017) propose cy-
cleGAN which uses a cycled training method that
transforms the input into another data form and
then transforms it back, minimizing the recover
loss. The method works well in the image domain
but has some problems in text generation consider-
ing the non-differentiable discrete layer. We follow
the ideas of cycleGAN to train the whole model
without supervised data and adopt the RL method
proposed in dual learning methods.

Reinforcement Learning (RL) has been uti-
lized to solve the infeasibility of backpropagation
through discrete tokens layer. Li et al. (2016) pro-
pose to use RL to focus on the long term target
and thus improve the performance. Yu et al. (2017)
propose to use the RL in generative adversarial net-
works to solve the discrete tokens problem. He
et al. (2016); Sun et al. (2018) propose to use RL
in dual training. As far as we know, no studies of
RL have been conducted for KB triples in which

the reward is different for each triple considering
multiple-triple problem.

3 Method

3.1 Problem Definition

Formally, we denote the KB corpus as K =

{Ki|∀i} in which Ki = [k
(i)
1 , k

(i)
2 , · · · , k(i)ni] is the

ith KB triple list containing ni triples. k
(i)
j =

(h
(i)
j , r

(i)
j , t

(i)
j) represents the jth KB triple in Ki

containing the head, relation and tail entity respec-
tively. We denote the texts corpus as T = {Ti|∀i}
in which Ti = [t

(i)
1 , t

(i)
2 , · · · , t(i)ni] is the ith sen-

tence and t(i)j is the jth word in the sentence. In
our problem, we are only given a collection of KB
triples Kt ⊂ K and a collection of text Tt ⊂ T
without any alignment information between them.
The ultimate goal is to train a model that generates
the corresponding text in T describing the given
triple list from K.

3.2 Extractor-Generator Dual Framework

Our proposed Extractor-Generator Dual (EGD)
framework is composed of a generator G and an
extractor E that translate data in one form to an-
other. We denote all trainable parameters in E
and G as θ and φ, respectively. The generator
generates text representation for each KB triple
as T ′ = G(K),K ∈ K, T ′ ∈ T while the ex-
tractor extracts KB triples from raw text as K ′ =
E(T), T ∈ T ,K ′ ∈ K. Our EGD framework is
trained in an unsupervised manner and it contains
three processes, as shown in Fig. 2. The first pro-
cess is a pre-train process in which both E and G
are trained with the pseudo data generated by the
pseudo generator. The second process is the kb2kb
process which generates description text based on
the given KB triples with G and then recovers the
KB triples from the generated text with E. The

261

third process is called txt2txt which extracts KB
triples from the given text withE and then recovers
the text from the generated KB triples with G. In
order to overcome the multiple-mapping problem,
we propose a novel allocated reinforcement learn-
ing component in kb2kb and txt2txt, respectively.

The EGD framework firstly pre-trains the ex-
tractor and generator with the data generated by
the pseudo data generator (PDG). For the text cor-
pus Tt, we generate corresponding pseudo KB
triples as K′t = {K = PK(T)|∀T ∈ Tt}, in
which PK is the pseudo KB generator. We pre-
train the generator G to transform K ∈ K′t to
T ∈ Tt. Similarly, we generate pseudo text as
T ′t = {T = PT (K)|∀K ∈ Kt}, in which PT is
the pseudo text generator. Then, we train the ex-
tractor to transform T ∈ T ′t to K ∈ Kt. After G
and E have been pre-trained, the kb2kb process
and the txt2txt process are conducted alternately to
further improve the performance.

In the kb2kb process, the input KB triples are
firstly flattened and concatenated one by one as
K = [k1, k2, · · · , knk

] = [w1, w2, · · · , wnw] in
which ki is the ith triple in K while wi denotes
the ith words in the concatenated word list. nk
is the number of triples while nw is the number
of the words. K is then sent into the generator
G to get a text description Tm = [t1, t2, · · · , tnt],
where ti is the ith word in the sentence Tm and
nt is the length of Tm. Afterwards, The extractor
takes the sentences Tm as input and outputs the
triple sequence K ′ = [w′1, w

′
2, · · · , w′n′w], in which

w′i is the ith word in K ′ while n′w is the length
of K ′. The target is to make K ′ as close to K as
possible. Therefore, in the training step, the loss
function for the extractor is defined as the negative
log probability of each word in K:

LE = −
nw∑
i=1

log pθ(w
′
i = wi|Tm, w1, · · · , wi−1).

We can also use the output to improve the gener-
ator. Since Tm is discrete, the gradient cannot be
passed to the generator as the cycleGAN (Zhu et al.,
2017) does. To tackle this problem, we propose
an Allocated Reinforcement Learning for Gener-
ator (ARLG) component to utilize the extractor’s
result to optimize the generator. Different rewards
are allocated to different parts of the generator out-
put. The gradient for the generator is denoted as
∇φLARLG which will be introduced in the later
section.

In the txt2txt process, the input text T =
[t1, t2, · · · , tnt] is transformed into its KB represen-
tation Km = [k1, k2, · · · , knm] by the extractor E.
Km is then transformed to T ′ = [t′1, t

′
2, · · · , t′nt

]
by the generator and the loss is defined as:

LG = −
nt∑
i=1

log pφ(t
′
i = ti|Km, t1, · · · , ti−1).

Similarly, we also propose an Allocated Reinforce-
ment Learning for Extractor (ARLE) to utilize the
generator’s result to optimize the extractor. Dif-
ferent rewards are allocated to different parts of
the extractor output. Let the gradient for the ex-
tractor be denoted as ∇θLARLE . The final gradi-
ent for extractor’s parameters θ is formulated as
∇θLE +∇θLARLE while the gradient for genera-
tor’s parameters φ is ∇φLG +∇φLARLG. We use
the Adam (Kingma and Ba, 2014) as the optimizer
to optimize all the parameters.

3.3 Background of Transformer
The extractor and the generator are both backboned
by the prevalent Transformer (Vaswani et al., 2017)
model, which is a variant of the seq-to-seq model.
It takes a sequence as input and generates another
sequence as output. The Transformer model con-
tains two parts, namely an encoder and a decoder.
Both of them are built with several attention lay-
ers. We refer readers to the original paper (Vaswani
et al., 2017) for more details.

3.4 Pseudo Data Generator
To handle the cold start problem, we propose a
novel pseudo data generator (PDG) to generate
pseudo data. It contains two components, namely a
pseudo text generator and a pseudo KB generator.

Pseudo Text Generator generates pseudo text
for each KB and forms a pseudo supervised training
data for pre-training the extractor and thus solving
the cold start problem. We compute a statistics of
the word count in the training set Tt and calculate
the empirical distribution for each word as:

p(w) =
#w∑

w′∈Tt #w
′ ,

where #w stands for the total word
count for w in Tt. For a list of
KB triples K = [k1, k2, · · · , knk

] =
[h1, r1, t1, h2, r2, t2, · · · , hnk

, rnk
, tnk

], we
firstly sample head entities and tail entities
as Ks = [h1, t1, h2, t2, · · · ;hn, tn]. The final

262

sequence is generated by sampling from both
Ks and p(w). When generating each word T̃i,
a random number generator is used to generate
a random number ri uniformly. ri is used to
compare with a threshold parameter α. If ri > α,
T̃i is sampled with the word distribution p(w),
otherwise, it is sampled form the next token in Ks.
This process can be expressed mathematically as:

T̃i =

w ∼ p(w) ri > α

Ks[1 +
i−1∑
j=1

1(T̃j ∈ Ks)] otherwise
,

in which 1(C) = 1 if condition C is true and 0
otherwise. T̃j ∈ Ks indicates whether the word T̃j
is sampled from Ks. This pseudo text data is used
to solve the cold start problem when training the
extractor.

Pseudo KB Generator generates pseudo KB
triples for each text and form a pseudo supervised
training data. This data is used to solve the cold
start problem when pre-training the generator. Sim-
ilar with the work of Freitag and Roy (2018), for
an input sequence T we randomly remove words
in the input text with a probability β1 and sample
new words by sampling words from a distribution
with a probability β2. The generated sequence K̃
is the pseudo KB sequence for each text. Similar to
the Pseudo Text Generator, we randomly add some
words by sampling from the distribution p(w). We
do not use the probability calculated from Kt since
it may sample some wrong relations or wrong entity
names which undermines the performance. Mathe-
matically, it can be expressed as:

K̃i =

w ∼ p(w) ri < β2

Ts[1 +
i−1∑
j=1

1(K̃j ∈ Ts)] otherwise
,

in which Ts = s(T) and s(·) is a sample function
defined as:

s(T) =

T ‖T‖ = 0

[T1; s(T2:‖T‖)] r < β1, ‖T‖ 6= 0

s(T2:‖T‖) otherwise

,

where ‖T‖ denotes the length of the sequence T
while T2:‖T‖ stands for the sub-sequence from the
second to the last of T .

3.5 Allocated Reinforcement Learning
Traditional reinforcement learning for sequence
generation calculates a reward for the whole se-
quence (He et al., 2016; Hoang et al., 2018; Ke-
neshloo et al., 2018) and uses the policy gradient
(Sutton et al., 2000) algorithm to optimize the pa-
rameters. It suffers from the multiple-triple prob-
lem as discussed above. We propose an allocated
reinforcement learning method to allocate different
rewards for different KB triples and thus alleviate
this problem. In the kb2kb process, the RL model
is called the Allocated Reinforcement Learning for
Generator (ARLG) since it optimizes the parame-
ters in the generator while in the txt2txt process,
it is called Allocated Reinforcement Learning for
Extractor (ARLE) accordingly.

ARLE is shown in Fig. 2. The main idea is to re-
cover and evaluate the KB triples separately which
inherently has the following benefits: 1) Each triple
is given a distinct reward as discussed above; 2)
Traditional RL is more likely to ignore some triples
(e.g., 3rd triple in Fig. 1) since it handles sev-
eral triples at once while our method alleviates
such problem by handling triples one by one. It
firstly sends the input text T = [t1, t2, · · · , tnt]
into the extractor and get the extracted triples:
Km = E(T) = [k

(1)
m , k

(2)
m , · · · , k(nk)

m]. The cor-
responding probability for each token is denoted
as p(i)j , in which i denotes the ith triple and j
denotes the jth word in the triple. Afterwards,
the generator is applied on each triple in Km

to recover the corresponding text, which denotes
as: T ′ = [G(k

(1)
m), G(k

(2)
m), · · · , G(k(nk)

m)] =
[t′1, t

′
2, · · · , t′nk

]. We calculate the reward for each

k
(i)
m as the recall for each corresponding t′i referring

to T :

R(k(i)m) =

∑‖t′i‖
j=1 1(t

′(j)
i ∈ T)

‖t′i‖
,

in which ‖t′i‖ denotes the length of t′i and
t
′(j)
i is the jth word in t′i. The reward for

each sentence in Km is denoted as: Re =
[R(k

(1)
m), R(k

(2)
m), · · · , R(k(nk)

m)]. Different from
the traditional policy gradient algorithm (Sutton
et al., 2000), our RL uses a different reward for
each generated triple. The gradient is calculated
as:

∇θLARLE = −E[
nk∑
i=1

R(k(i)m)

‖k′i‖∑
j=1

∇θ log p(i)j].

263

Since the RL model only guides the model with
some reward scores which is only one aspect of the
result. It misleads the model into generating some
sequences which have a high reward while actually
perform worse. To prevent this, we propose to con-
duct the gradient descent together with the kb2kb
process simultaneously in which the extractor is
trained with a supervised sequence.

ARLG is applied in the kb2kb process. The in-
put KB triples is firstly splitted into nk triples K =
[k1, k2, · · · , knk

] which is then sent into the genera-
tor separately and get the corresponding description
sentences: Tm = [G(k1), G(k2), · · · , G(knk

)] =

[t
(1)
m , t

(2)
m , · · · , t(nk)

m]. The corresponding probabil-
ity for the jth word in the ith sentence is denoted
as p(i)j . Afterwards, the text is sent into the ex-
tractor to recover the input KB triple for each
t
(i)
m : K ′ = [E(t

(1)
m), E(t

(2)
m), · · · , E(t

(nk)
m)] =

[k′1, k
′
2, · · · , k′nk

]. We calculate the reward for each

t
(i)
m as the precision for each corresponding k′i re-

ferring to ki in K:

P (t(i)m) =

∑‖k′i‖
j=1 1(k

′(j)
i ∈ ki)

‖k′i‖
,

in which ‖k′i‖ denotes the total word number count
of k′i. The reward for each sentence in Tm is de-
noted as: Rg = [P (t

(1)
m), P (t

(2)
m), · · · , P (t(nk)

m)].
We use RL to maximize the expected reward for
each KB triple t(i)m with corresponding reward. The
gradient is:

∇φLARLG = −E[
nk∑
i=1

P (t(i)m)

‖t′i‖∑
j=1

∇θ log p(i)j].

Similar to ARLE, we also train the model with
the txt2txt process to give a targeted sequence to
guide the training together with the reward score.

4 Experiments

4.1 Dataset
We adopt the WebNLG v2 dataset (Gardent et al.,
2017a)1. It samples KB triples from DBpedia and
annotates corresponding texts by crowdsourcing.
In order to show that our model can work under the
unsupervised setting, we split the original dataset
into two parts, namely the KB part and the text
part. We do not assume any alignment between

1https://gitlab.com/shimorina/webnlg-dataset

#triples 1 2 3 4 5 6 7 Total
train 7,429 6,717 7,377 6,888 4,982 488 471 34,352
dev 924 842 919 877 632 64 58 4,316
test 931 831 903 838 608 58 55 4,224

Table 1: Statistics for the dataset. The number of in-
stances with different number of triples are listed.

KB and text. Table 1 shows the statistics of in-
stances with different number of triples. In this
dataset, one sentence can be mapped to at most
seven triples. We use the same dev and test set as
the original WebNLG. The training set has 34,352
samples in total while the dev set and the test set
have 4,316 and 4,224 samples respectively. It can
be observed that there are 78.2% sentences mapped
with multiple-triple.

4.2 Comparison Models

We compare our model against the following base-
line methods:

PDG uses the Pseudo Data Generator to gener-
ate the pseudo data for pre-training both extractor
and generator. PDG does not conduct the subse-
quent dual learning process and thus illustrates the
capability of PDG.

DL uses the dual learning process proposed in
He et al. (2016); Zhu et al. (2017). It is fine-tuned
on the PDG model and iterates alternatively be-
tween txt2txt and kb2kb processes. Here, we do
not use any reinforcement learning component.

DL-RL1 uses the dual learning process together
with an RL component. It is similar to the dual
learning method proposed in He et al. (2016); Zhu
et al. (2017). We use the PDG’s data to train the
weak model. It uses the log-likelihood of the re-
cover process’s output sequence as the reward.

DL-RL2 follows the settings of Sun et al. (2018).
Different from DL-RL1, this model uses the
ROUGEL (Lin, 2004) score of the recovered se-
quence instead of using the log-likelihood as the
reward.

SEG is a Supervised Extractor-Generator using
the original setting of WebNLG for both generator
and extractor. It utilizes all the alignment infor-
mation between KB and text and thus provides an
upper bound for our experiment.

4.3 Experimental settings

We evaluate the performances of the generator
and the extractor with several metrics including
BLEU (Papineni et al., 2002), NIST (Dodding-

264

Generator Extractor
BLEU NIST METEOR ROUGEL CIDEr BLEU NIST METEOR ROUGEL CIDEr Precision Recall F1

PDG 0.322 7.06 0.349 0.505 2.63 0.489 6.01 0.351 0.618 3.97 0.635 0.465 0.510
DL 0.352 7.71 0.347 0.528 2.96 0.735 10.4 0.502 0.743 5.67 0.644 0.691 0.646
DL-RL1 0.356 7.73 0.350 0.532 3.00 0.760 10.8 0.501 0.755 5.92 0.670 0.687 0.658
DL-RL2 0.356 7.75 0.350 0.533 2.99 0.757 10.7 0.503 0.755 5.90 0.668 0.691 0.659
EGD 0.369 7.77 0.364 0.541 3.13 0.775 11.1 0.503 0.772 6.25 0.704 0.691 0.680
EGD w/o ARLE 0.351 7.72 0.347 0.529 2.97 0.770 10.9 0.501 0.764 6.11 0.683 0.682 0.665
EGD w/o ARLG 0.353 7.77 0.348 0.531 2.99 0.729 10.4 0.505 0.746 5.61 0.639 0.695 0.645
EGD w/o PDG 0.010 0.82 0.037 0.119 0.02 0.020 0.42 0.026 0.042 0.08 0.011 0.008 0.007
SEG 0.406 8.31 0.385 0.585 3.66 0.848 11.8 0.595 0.867 7.43 0.783 0.830 0.796

Table 2: Results for generator (left) and extractor (right), which are evaluated with generation metrics. For the
extractor, precision, recall, and F1 scores are also calculated at triple’s level. The performances of our EGD
method without different components and the supervised method SEG are shown in the bottom.

Ratio Generator Extractor
BLEU ROUGEL BLEU ROUGEL

0.10 0.235 0.439 0.335 0.557
0.15 0.281 0.49 0.655 0.708
0.20 0.308 0.506 0.746 0.757
0.25 0.347 0.524 0.71 0.764
PDG 0.322 0.505 0.489 0.618

Table 3: Compare our PDG framework with semi-
supervised models at different labeling ratios.

ton, 2002), METEOR (Banerjee and Lavie, 2005),
ROUGEL (Lin, 2004), and CIDEr (Vedantam et al.,
2015). These metrics are calculated with the eval-
uation code provided in Novikova et al. (2017).
Moreover, we also evaluate the performance of the
extractor with precision, recall, and F1 scores (Man-
ning et al., 2010). In PDG, we set α = 0.8, β1 =
0.2, β2 = 0.6. We firstly pre-train the extractor
and the generator in the PDG model with the data
generated by PDG until convergence. All other
models are fine-tuned on the PDG model. For the
DL model, we train the generator for 5 steps with
the txt2txt process and train the extractor with the
kb2kb process for another 5 steps with the new
generator. We iterate this process 10 times. For
all transformers, we set clip norm to 1.0, label
smoothing to 0.1, and dropout to 0.3. We use
Adam (Kingma and Ba, 2014) as our optimizer
and set the learning rate for the extractor to 2e-4
and generator to 5e-4. All hyper-parameters are
tuned on the dev dataset with grid search.

4.4 Experimental Results

The performances of our KB-to-text generator and
triple extractor are shown in the left and right of
Table 2 respectively. Both generator and extrac-
tor of our model outperform all baseline models
significantly and consistently. The comparison be-
tween our EGD model and the supervised SEG
model indicates that our unsupervised EGD model

2 4 6
0.4

0.6

0.8

Ex
tra

ct
or

BLEU

2 4 6

0.4

0.6

ROUGEL

2 4 6

0.3

0.4

0.5
Ge

ne
ra

to
r

2 4 6

0.35

0.40

0.45

0.50

PDG DL EGD SEG

Figure 3: The influence of KB triples count. The x-
axis represents the KB triples count while the y-axis
represents the scores.

is close to the bound of the supervised methods.
Compared with the PDG model, our EGD model
has a much better performance with the dual learn-
ing framework and the ARL component. Moreover,
Our EGD model outperforms the DL-RL1 and DL-
RL2 model, which indicates that our proposed ARL
component can handle the multiple-triple problem
between triples and texts. In the traditional RL
models, the reward is the same for a whole se-
quence including all the triples while in our ARL
model, the reward is calculated for several sub-
parts of the sequence, which is more accurate and
effective. By comparing PDG with SEG, we found
that the model trained with our proposed pseudo
data generator (PDG)’s output achieves acceptable
results. It indicates that using the PDG’s output is a
feasible alternative to initialize the model and can
handle the cold start problem.

Ablation Study. We also conduct some ablation
studies to show that each component contributes

265

Extractor Generator

Gold (1634 : The Ram Rebellion, mediaType, E - book) (1634 :
The Ram Rebellion, author, Virginia DeMarce)

Virginia DeMarce is the author of 1634 : The Ram Rebellion ,
which can be found as an e - book .

SEG (1634 : The Ram Rebellion, mediaType, E - book) (1634 :
The Ram Rebellion, author, Virginia DeMarce)

1634 : The Ram Rebellion was written by Virginia DeMarce and
has the ISBN number 1 - 4165 - 2060 - 0 .

PDG (1634 : The Ram Rebellion, mediaType, E - book) 1634 : The Ram Rebellion was followed by 1634 : The Galileo
Affair and its author is Virginia DeMarce .

DL
(1634 : The Ram Rebellion, mediaType, E - book) (1634 :
The Ram Rebellion, author, Virginia DeMarce) (1634 : The
Ram Rebellion, ISBN number, 1 - 4165 - 2060 - 0)

1634 : The Ram Rebellion is available as an E - Book .

EGD (1634 : The Ram Rebellion, mediaType, E - book) (1634 :
The Ram Rebellion, author, Virginia DeMarce)

Virginia DeMarce is the author of 1634 : The Ram Rebellion ,
currently in print .

Table 4: Case study. The input KB and text are listed in the first row.

to the final performance. The results are shown
at the bottom part of Table 2. By comparing the
model EGD w/o ARLE and EGD w/o ARLG with
the EGD model, we can see that both the ARLE
and ARLG components are effective to handle the
multiple-triple problem and help improve the per-
formance. It is interesting to see that the result
of EGD w/o PDG is extremely poor showing the
importance of our PDG component. The EGD w/o
PDG removes the pre-train stage with the pseudo
data generator and conducts the iterations between
txt2txt and kb2kb directly. Without PDG, we ob-
serve that the models trend to learn some “own
language” without a good initialization which is
incomprehensible to human.

The Influence of the KB triples Number. We
analyze the influence of the KB triples’ number on
the performance. The results are shown in Fig. 3.
As expected, the SEG model performs the best over
all numbers since it is fully supervised. The PDG
model performs the worst since it only uses pseudo
data to train. The DL model improves significantly
comparing with the PDG model over all numbers,
especially in the extractor model. It shows that
using dual learning’s iteration approach does im-
prove the model of training solely based on PDG’s
data. Our proposed EGD model outperforms the
DL model and the PDG model. This shows that
the ARL model does help to give more information
to train the model. Nearly all generators’ scores
decrease as the number increases. This is because
if the sequence is long, it has more ways to ex-
press those triples which may be different from the
gold standard sentence. However, when extracting
triples from the text, it only has one correct way
and thus the extractor’s scores are similar in all
lengths.

Error Analysis. We conduct an error analysis
experiment for the top 20 mentioned relations in

Figure 4: Error analysis for top 20 mentioned relations.

the extractor which is shown in Fig. 4. We focus
on two kinds of errors. The first kind of error is
called “false negative” which means when extract-
ing, some correct triples are ignored. The second
kind of error is called “false positive” which means
that the extractor generates some incorrect triples
that the text does not mention. It can be observed
that the “false negative” problem is much more se-
vere than the “false positive” problem for the PDG
model, while the DL model and the EGD model
alleviate this problem a lot. This reason is that the
pseudo text data is made by sampling entities in
KB ignoring relation information. Iterating alter-
nately between txt2txt and kb2 solves the problem
since the missing information is supplemented. It
can also be observed that when comparing with
the DL model, our EGD model mainly solves the
“false positive” problem. The reason is that the RL
can penalize the wrong generated triples but cannot
give specific guidance on which missing triples the
model should generate.

Comparison with Semi-Supervised Learning.
To measure the quality of the initialization via PDG,
we compare our PDG method against the semi-
supervised learning method. We sample labeled
data from the original dataset with different ratios
to train the models and compare the results with
the PDG model. The result is shown in Table 3. It
can be concluded from the result that training the

266

extractor with the PDG’s data outperforms training
with 10% aligned data and it also outperforms 20%
aligned data for the generator. It shows that our
PDG component does provide usable data and it
can be boosted a lot in the subsequent dual iteration
process.

Case Study. Table 4 shows a case study for
4 models. For the extractor, the input is “Virginia
DeMarce is the author of 1634 : The Ram Rebellion
, which can be found as an e - book .”. For the
generator, the input is “(1634 : The Ram Rebellion,
mediaType, E - book) (1634 : The Ram Rebellion,
author, Virginia DeMarce)”. It can be observed
that for the PDG model, it omits the second triple.
It also shows that the PDG model has a severe false
negative problem which has been mentioned in the
error analysis sub-section. The DL model alleviates
this problem but it introduces more triples causing
the false positive problem. Our EGD model solves
the false positive problem by the RL component.
All models make some mistakes in the generation
process including the supervised SEG model. The
result of the generator shows that it is more difficult
to generate a sequence than extracting triples.

5 Conclusions

We propose a new challenging task, namely, unsu-
pervised KB-to-text generation. To solve this task,
we propose an extractor-generator dual framework
which exploits the inverse relationship between
the KB-to-text generation task and the auxiliary
triple extraction task. To handle the cold start prob-
lem and the multiple-triple problem respectively,
we propose a novel pseudo data generator and an
allocated reinforcement learning component. Ex-
perimental results show that our proposed method
successfully resolves the observed problems and
outperforms all the baseline models.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Confer-
ence, pages 722–735.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Eval-
uation Measures for Machine Translation and/or
Summarization, pages 65–72.

Christos Baziotis, Ion Androutsopoulos, Ioannis Kon-
stas, and Alexandros Potamianos. 2019. Seqˆ3: Dif-
ferentiable sequence-to-sequence-to-sequence au-
toencoder for unsupervised abstractive sentence
compression. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 673–681.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai
Yu. 2019. Semantic parsing with dual learning. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 51–64,
Florence, Italy. Association for Computational Lin-
guistics.

David L Chen and Raymond J Mooney. 2008. Learn-
ing to sportscast: a test of grounded language acqui-
sition. In Proceedings of the 25th international con-
ference on Machine learning, pages 128–135. ACM.

Liying Cheng, Dekun Wu, Lidong Bing, Yan Zhang,
Zhanming Jie, Wei Lu, and Luo Si. 2020. Ent-
desc: Entity description generation by exploring-
knowledge graph. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Inter-
national Conference on Learning Representations
(ICLR).

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the Second
International Conference on Human Language Tech-
nology Research, pages 138–145.

Markus Freitag and Scott Roy. 2018. Unsupervised
natural language generation with denoising autoen-
coders. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3922–3929.

Zihao Fu, Lidong Bing, and Wai Lam. 2020a. Open do-
main event text generation. In Thirty-Fourth AAAI
Conference on Artificial Intelligence, pages 7748–
7755.

Zihao Fu, Lidong Bing, Wai Lam, and Shoaib Jameel.
2020b. Dynamic topic tracker for kb-to-text genera-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics: Technical Pa-
pers (COLING).

Zihao Fu, Bei Shi, Wai Lam, Lidong Bing, and Zhiyuan
Liu. 2020c. Partially-aligned data-to-text generation
with distant supervision. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

267

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for nlg micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The webnlg
challenge: Generating text from rdf data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learn-
ing for machine translation. In Advances in Neural
Information Processing Systems, pages 820–828.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and
Chandan K Reddy. 2018. Deep reinforcement learn-
ing for sequence to sequence models. arXiv preprint
arXiv:1805.09461.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018a. Unsupervised
machine translation using monolingual corpora only.
In International Conference on Learning Represen-
tations (ICLR).

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1203–1213.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192–
1202.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), vol-
ume 1, pages 1865–1874.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. Workshop on Text Summa-
rization Branches Out.

Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao
Chang, Zhifang Sui, and Xu Sun. 2019. A dual rein-
forcement learning framework for unsupervised text
style transfer. In Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019.

Christopher Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2010. Introduction to information re-
trieval. Natural Language Engineering, 16(1):100–
103.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
Annual meeting on Association for Computational
Linguistics, pages 311–318.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96.

Mingming Sun, Xu Li, and Ping Li. 2018. Logician
and orator: Learning from the duality between lan-
guage and knowledge in open domain. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2119–2130.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradient
methods for reinforcement learning with function ap-
proximation. In Advances in neural information pro-
cessing systems, pages 1057–1063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

268

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 4566–4575.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2253–2263.

Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017.
Dualgan: Unsupervised dual learning for image-to-
image translation. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
2849–2857.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on
computer vision, pages 2223–2232.

