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Abstract

Gender recognition in speech processing is
one of the most challenging tasks. While many
studies rely on extracting features and design-
ing enhancement classifiers, classification ac-
curacy is still not satisfactory. The remark-
able improvement in performance achieved
through the use of neural networks for auto-
matic speech recognition has encouraged the
use of deep neural networks in other voice
techniques such as speech, emotion, language
and gender recognition. An earlier study
showed a significant improvement in the gen-
der recognition of pictures and videos. In
this paper, speech is used to create a gender
recognition scheme based on neural networks.
Attention-based BiLSTM architecture is pro-
posed to discover the best approach for gender
identification in Yorùbá. Acoustic features, in-
cluding time, frequency, and cepstral features
are extracted to train the model. The model
obtained the state-of-the-art performance in
speech-based gender recognition with 99% ac-
curacy and F1 score.

1 Introduction

Gender recognition is an important topic in signal
processing and can be applied in mobile health-
care system (Alhussein et al., 2016), facial recog-
nition (Hwang et al., 2009), and age classification
(Chen et al., 2011). Applications of gender recog-
nition system includes tasks such as (Mukherjee
and Liu, 2010): (i) Verifying a customer when
making telephone bank transaction, (ii) Security
measure when retrieving confidential information,
(iii) Forensic, (iv) Surveillance, (v) and Blog au-
thorship. Recognition of gender from the speech is
a challenging task with these increasing number of
systems in real-life. Recent hardware and software
development allowed new techniques and meth-
ods to be explored to improve the efficiency of
gender recognition systems. Gender classification

systems from speech signal are affected by the per-
formance of the recording tools, the language of
the speaker, and noisy recording settings. As a re-
sult, to obtain adequate classification results, gen-
der recognition from speech signals requires valid
classifiers and feature extractors. In the areas of
machine learning and computer vision, deep neu-
ral networks (DNNs) have shown notable achieve-
ments (Moghaddam and Ming-Hsuan Yang, 2000;
Hwang et al., 2009). Deep neural networks, af-
ter thorough training, can effectively extract and
classify different feature sets. DNNs are most ef-
fective when the training set contains a compli-
cated feature space that needs high-level represen-
tation. In this paper, deep recurrent neural net-
works (DRNNs) are used as classifiers and gender-
recognition extractors. Bidirectional long-short
term memory (BiLSTM) is combined with an at-
tention mechanism to learn the features. Because
gender recognition is a binary classification, a sig-
moid activation function has been used to classify
the gender.

1.1 Motivation

Gender recognition systems for well-resourced
languages like English are available, but for
African languages like Yorùbá are not available.
Yorùbá is a Niger-Congo language related to Igala,
Edo, Ishan, and Igbo amongst others. It is one
of the official languages of Nigeria and spoken in
a couple of countries on the West African coast.
An estimated 20+ million people speak Yorùbá as
their first language in southwestern Nigeria and
more in the Republics of Benin and Togo. Yorùbá
is also spoken by diaspora communities of traders
in Cote d’Ivoire, Ghana, Senegal and the Gambia,
and it used to be a vibrant language in Freetown,
Sierra Leone. Outside West Africa, millions of
people have Yorùbá language and culture as part
of their heritage; Yorùbá religion being one of the



means of survival in Cuba during the obnoxious
slave trade. Many who did not have Yorùbá as
their heritage bought into Yorùbá identity through
religious transformation. Yorùbá language, cul-
ture and religion survived since then until now
in Brazil and various other New World countries
(Atanda et al., 2013; Pulleyblank et al., 2017).
Yorùbá is identified as one of the under-resourced
languages (Besacier et al., 2014), few systems for
under-resourced African languages has been de-
veloped (Sefara et al., 2016; Sefara et al., 2019;
Sefara et al., 2017; Sefara and Manamela, 2016;
Sefara et al., 2016; Van Niekerk and Barnard,
2012; Modipa and Davel, 2015; Manamela et al.,
2018; Mokgonyane et al., 2019). While the de-
velopment of speech-based systems for Yorùbá is
an open research, it is essential to continue to cre-
ate a Yorùbá gender recognition system that may
later help other researchers and to strengthen the
cultural identify of the language.

The main contributions of this paper can be
listed as below.

• A new classifier architecture is proposed. A
BiLSTM architecture with attention mecha-
nism is used.

• Acoustic features such as Time, Frequency,
and Cepstral-domain features are used for
gender recognition.

• We release the code1 used in this paper.

The rest of the paper is organized as follows:
Section 2 gives the literature review on gender
recognition. Section 3 details the features, learn-
ing models, and evaluation methods. Section 4
discusses the experimental results, and the paper
is concluded in Section 5.

2 Literature Review

Gender recognition can be approached from text
(Mukherjee and Liu, 2010), images (Moghaddam
and Ming-Hsuan Yang, 2000; Hwang et al., 2009;
Kumar et al., 2019; Qawaqneh et al., 2017a),
videos (Ding and Ma, 2011; Chen et al., 2017),
accelerometers (Bales et al., 2016), wearables
(Gümüşçü et al., 2018), and speech (Harb and
Chen, 2003; Azghadi et al., 2007; Meena et al.,
2013) to train machine learning models and neural
networks for classification. Meena et al. (2013)

1https://github.com/SefaraTJ/
yoruba-gender-recognition/

proposed a novel gender classification technique
in speech processing using neural network and
fuzzy logic. Authors used acoustic features such
as short time energy, zero crossing rate and en-
ergy entropy. Their work can be expanded by
not only using time domain features but also
to include frequency and cepstral domain fea-
tures. An example of cepstral-domain features are
Mel Frequency Cepstral Coefficients (MFCCs).
Qawaqneh et al. (2017a) used MFCCs, fundamen-
tal frequency (F0) and the shifted delta cepstral co-
efficients (SDC) to train a jointly fine-tuned deep
neural networks. Their model obtained accuracy
of 64%. Conversely, Harb and Chen (2003) did
not use MFCCs but used Mel Frequency Spec-
tral Coefficients (MFSC) to train a gender iden-
tification system using neural networks. Authors
showed that smoothing improves the accuracy of
the model and MFSC features were better than
MFCC features. Azghadi et al. (2007) used acous-
tic features and pitch features to train a gender
classification system based on feed-forward back-
propagation neural network. Their model obtained
an accuracy of 96%. Qawaqneh et al. (2017b)
introduced shared class labels among misclassi-
fied labels to regularize the DNN weights and
to generate transformed MFCCs feature set us-
ing Backus-Naur Form (BNF). Authors used DNN
and i-vector models to build age and gender clas-
sification system. The BNF-DNN obtained accu-
racy of 58.98 and BNF-I-vector obtained 56.13

Machine learning algorithm are used for gen-
der recognition. Chaudhary and Sharma (2018)
used support vector machines (SVMs) to train a
gender identification system based on voice sig-
nal by extracting the features such as pitch, en-
ergy and MFCC. Their model obtained accuracy
of 96.45%. Gaussian mixture models (GMMs)
and multilayer perceptrons (MLPs) are used in
(Djemili et al., 2012) to create a gender identifi-
cation system. The models obtained accuracy of
96.4% using MFCCs as features. Jadav (2018)
proposed a voice-based gender identification us-
ing machine learning. Author extracted acoustic
features to train a SVM which obtained testing ac-
curacy of 97%.

3 Methodology

The architecture of a gender recognition system
is shown in Figure 1. The system consists of the
training and prediction phases.

https://github.com/SefaraTJ/yoruba-gender-recognition/
https://github.com/SefaraTJ/yoruba-gender-recognition/


• In the training phase, the speech signal is in-
putted to the system, and pre-processing oc-
curs (noise removal, dimensionality reduc-
tion). Acoustic features are extracted. Then
a machine learning model is built and trained
on the extracted features.

• In recognition phase, an unlabelled or un-
known speech signal is inputted to the sys-
tem. The model predicts and outputs the gen-
der of the inputted signal.

Train

Recognition

Preprocessing Feature 
Extraction

Model 
Training

Preprocessing Feature 
Extraction Classification

Database

Male or 
Female

Figure 1: Architecture of a gender recognition system.

3.1 Data

We obtained speech database from (van Niekerk
et al., 2015) used in (Van Niekerk and Barnard,
2012), where recordings consist of 16 female and
17 male recordings in Yorùbá. About 130 utter-
ances were read from short texts for each speaker.
The length of the recordings is 165 minutes. The
audios are 16 bit PCM at 16kHz sampling rate.

We use Principal Component Analysis (PCA)
(Moore, 1981; Ding and He, 2004) to explore the
data in Figure 2 by scaling to 2 dimension. The
centers are illustrated using k-means (Ding and
He, 2004) with k = 2. We observe the data can be
separated into males and females. This will sim-
plify the learning of the models.

3.2 Feature Extraction

Feature extraction is the transformation of original
data into a dataset that contains the most discrimi-
natory information, with reduced numbers of vari-
ables. The 34 acoustic features shown in Figure 3
are extracted from the short-term windows with
frame size of 50ms at a Hamming window of 25ms
using a library in (Giannakopoulos, 2015). The fi-
nal feature vector contains the mean and standard
deviation which sums to feature size of 68. The
features can be grouped into three categories:

−2 −1 0 1 2 3
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0.0

0.5
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Figure 2: PCA showing gender clusters and k-means
showing cluster centres.

• Time-domain features (Zero Crossing Rate,
Energy, and Entropy of Energy).

• Frequency-domain features (Spectral Spread,
Spectral Centroid, Spectral Flux, Spectral
Entropy, Spectral Rolloff, Chroma Deviation,
Chroma Vector).

• Cepstral-domain features - includes MFCCs
that has an ability to model the vocal tract fil-
ter.

Figure 3: Acoustic features (Giannakopoulos, 2015).

3.3 Feature Normalization
Is an crucial step for gender recognition using
speech. The goal is to remove speaker and record-



ing variability. We normalize features by remov-
ing the mean and scaling to a unit variance using
the following normalization equation. For normal-
ized feature ŷ:

ŷ =
x− µ
σ

(1)

where σ represents the variance and µ represents
the mean for each feature vector x.

3.4 The Classifier Model
This section explains the proposed BiLSTM
model. As shown in Figure 4, the first layer is the
input layer having the same size of the input vec-
tor. Followed by the BiLSTM layer having 128
units. Followed by the attention layer, followed
by LSTM layer, followed by 4 dense layers with
the last layer activated by the sigmoid function.

3.4.1 BiLSTM Layer
For this gender recognition problem, we model
the speech signal using recurrent neural network
(RNN), specifically BiLSTM. LSTM was intro-
duced by Hochreiter and Schmidhuber (1997), has
shown to be stable and accurately model long-
time dependencies in different tasks like speech
recognition, machine learning, and computer vi-
sion (Moghaddam and Ming-Hsuan Yang, 2000;
Hwang et al., 2009). BiLSTM trains two LSTMs
on the input sequence. The second LSTM is a re-
verse copy of the first one, the aim is to capture
past and future input features for a specific time
step.

3.4.2 Attention Layer
Attention is a mechanism allowing neural net-
works to examine specific areas of the input
speech signal in more detail to decrease the task
complexity and to exclude irrelevant information.
An attention layer is included for determining the
contribution of each signal frame to the whole
speech signal. The attention mechanism assigns
a weight wi to each frame feature hi. The hidden
state is lastly calculated by a weighted sum func-
tion to generate a hidden acoustic feature vector r.
Formally:

pj = tanh (Whhj + bh), pj ∈ [−1, 1] (2)

wj =
exp(pj)

ΣN
t=1exp(pt)

, ΣN
j=1wj = 1 (3)

r =ΣN
j=1wjhj , r ∈ R2L (4)

where Wh and bh are the weight and bias from the
attention layer.

3.4.3 Dense Layer
The attention layer is followed by four dense lay-
ers with different sizes of neurons. The output of
attention layer is fed into first dense layer with 128
hidden neurons activated by rectified linear unit.
And to avoid overfitting, we add a dropout layer
having probability of 0.5 between the first three
dense layers that have 128, 64, and 32 neurons re-
spectively. The last dense layer uses sigmoid acti-
vation function to create binary classification. The
sigmoid activation function is defined as follows:

σ(x) =
1

1 + e−x
(5)

3.5 Evaluation
This section describes the performance measure-
ments used to evaluate model quality. The per-
formance of the model is affected by the speech
signal quality, the training data size, and most im-
portantly the optimization of learning algorithm.
The following evaluation metrics are applied:

Accuracy represents all correctly predicted
samples, calculated as follows:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(6)

Binary cross entropy is a Sigmoid activation
plus a Cross Entropy loss. We use binary cross
entropy loss function since the labels of the data
are binary. It is calculated as follows:

−(y log(p) + (1− y)× log(1− p)) (7)

where p is the probability predicted by the model.

Precision is the total number of the positively
predicted examples that are relevant. It is calcu-
lated as follows:

Precision =
tp

tp+ fp
(8)

Recall measures how well a model is at predict-
ing the positives. It is calculated as follows:

Recall =
tp

tp+ fn
(9)

F1 score is the harmonic mean of precision and
recall. It is calculated as follows:

F1score = 2× precision× recall
precision+ recall

(10)

where:
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Figure 4: Architecture of the BiLSTM with Attention Mechanism.

• tp (true positive) is the number of males that
are predicted as males.

• tn (true negative) is the number of females
that are predicted as females.

• fp (false positive) is the number of females
examples that are predicted as males.

• fn (false negative) is the number of males ex-
amples that are predicted as females.

4 Results and Discussions

This section discusses model performance results
based on accuracy, F1 score and binary cross en-
tropy. The dataset is splitted into 90% for train-
ing, 10% for testing. The model is trained for 200
epochs and involved 3884 samples for training and
432 samples for testing.

4.1 Performance

Table 1 shows the testing results after evaluating
the model. We observe BiLSTM obtaining high
accuracy and F1 score of 99% after 200 epochs.
The BiLSTM outperformed the neural network
models in (Harb and Chen, 2003; Azghadi et al.,
2007; Meena et al., 2013; Qawaqneh et al.,
2017a,b). Even though Qawaqneh et al. (2017a)
used both images + audio files, their performance
does not beat the BiLSTM. Figure 5a shows the
accuracy curve of the BiLSTM model. The accu-
racy of model increased as the number of epochs
increase.

Table 1: Comparison with other models

Model Accuracy
MLP (Harb and Chen, 2003) 92
MLP (Azghadi et al., 2007) 96
ANN + Fuzy Logic (Meena et al., 2013) 65
DNN (Qawaqneh et al., 2017a) 64
DNN (Qawaqneh et al., 2017b) 59
BiLSTM-Attention 99

4.2 Overfitting

Overfitting happens when a model attempts to pre-
dict a trend in a noisy data. Overfitting is the con-
sequence of a complicated model with excessive
parameters. An overfitted model makes incorrect
predictions as the trend does not represent the real-
ity of the data. To show that overfitting is avoided,
Figure 5b shows the binary cross entropy loss
function curve. The loss function kept decreasing
as number of training iterations increased. We ob-
serve BiLSTM reaching the lowest loss of 0.1 after
200 epochs. Hence, the model did not overfit.

5 Conclusion

This paper presented a Yorùbá gender recognition
from speech using BiLSTM with attention mecha-
nism. We discussed the literature on gender recog-
nition. The acoustic features were explained to-
gether with normalization method. We explained
the architecture of the proposed model. We ob-
served BiLSTM achieving the state-of-the-art ac-
curacy of 99% for a low-resourced language.

The future work will focus on using transformer
models for gender recognition.
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