
LiLT volume 18, issue 4 July 2019

Adding linguistic information to parsed

corpora

Susan Pintzuk, University of York

Abstract
No matter how comprehensively corpus builders design their annota-
tion schemes, users frequently find that information is missing that
they need for their research. In this methodological paper I describe
and illustrate five methods of adding linguistic information to corpora
that have been morphosyntactically annotated (=parsed) in the style
of Penn treebanks. Some of these methods involve manual operations;
some are executed by CorpusSearch functions; some require a combi-
nation of manual and automated procedures. Which method is used
depends almost entirely on the type of information to be added and
the goals of the user. Of course the main goal, regardless of method, is
to record within the corpus additional information that can be used for
analysis and also retained through further searches and data processing.

Introduction
No matter how comprehensively corpus builders design their annota-
tion schemes, users frequently find that information is missing that
they need for their research, and so they must add it on their own.
In this methodological paper I discuss and illustrate five methods of
adding linguistic information of all types (lexical, phonological, mor-
phological, syntactic, semantic, discourse) to corpora that have been
morphosyntactically annotated (=parsed) in the style of Penn tree-
banks, and the advantages and disadvantages of each method. These
five methods are the following: 1) adding information to the ur-text;
2) inserting CODE nodes into the token structure; 3) embedding in-

1

-

2 / LiLT volume 18, issue 4 July 2019

formation in coding strings; 4) modifying node labels and structure;
and 5) importing token information and other corpus data from the
corpus into spreadsheets. Method 1 is necessarily manual, while meth-
ods 2 through 5 may involve a combination of manual and automated
procedures, functions and tools. Of course the main goal, regardless
of method, is to record within the corpus additional information that
can be used for analysis and also retained through further searches and
data processing. The search engine used for many treebanks, and the
one used for the searches and the automated annotation described in
this paper, is CorpusSearch (CS).1

The manual addition of information may be the simplest procedure
but, being manual, it is the most prone to error. Information can be
added to the two areas of CS output that are reproduced each time CS
is run under default conditions: 1) the token ur-text, which contains the
token text and ID without any annotation, and 2) the token structure,
including the lexical items. The main difference between the two loca-
tions is that material internal to the ur-text is not searchable by CS,
while the token structure is the object that is searched and modified
by CS queries.

A word of warning is appropriate here: annotation that is added
manually cannot be reproduced except by repeating the same man-
ual procedure. Annotation added by CS (i.e. coding strings, structure
changes, label changes) can easily be reproduced – unless it is based
on annotation that was previously added manually. The availability of
automated reproduction is important for three reasons:

1) Files can be lost or damaged. Automated reproduction of anno-
tation is relatively simple; manual reproduction is painful and
time-consuming.

2) For most users, whenever we look at the output of a new CS
query, we find problems, either in the query or else in the corpus;
we then must find and fix the source of the problem and run CS
again. One way to facilitate this repetition is to use annotated
batch files so that the same processes can be documented and
repeated. The use of batch files permits the effortless repetition
of what may be a long and complex string of searches. An example
of a batch file is given in Appendix.

3) We want other scholars to be able to reproduce our research. With
this end in mind, it is encouraging to see that many researchers
are making their CS queries available, either in an appendix or

1The CS software and manual can be downloaded from its sourceforge site:
http://corpussearch.sourceforge.net/.

Adding linguistic information to parsed corpora / 3

on the web, along with their search results.
In the remainder of this paper, I describe and evaluate the five meth-

ods listed above, presenting case studies for each method from my own
recent collaborative research.2 For readers who are not familiar with
CS, some details of the search methodology will be given where space
permits; interested readers are referred to the online CS manual. Be-
cause of space limitations, the background information and results for
each case study are necessarily brief; interested readers are referred to
the publications themselves for details and clarifications.

1 Method 1: Adding information manually to the
ur-text.

The ur-text consists of the words of the token and the token ID without
morphosyntactic annotation; CS outputs the ur-text above the struc-
ture for each token in the output file. As mentioned above, adding
information manually to the ur-text is arguably the simplest proce-
dure, at least in concept, but it has (at least) three major drawbacks:
1) because it is manual, it is prone to error; 2) it must be applied to CS
output, not to the original corpus, because the original corpus does not
contain ur-text to accompany the token structure; and 3) the ur-text is
not searchable by CS, and therefore any added information can be used
only by looking directly at the individual tokens in the data file, one
by one.3 This method was used for some of the tokens in the database
for Haeberli et al. 2017, described as Case study 1 below.

Case study 1: Haeberli et al. 2017, investigating verb second (V2) in
Old English, looked at fronted pronominal objects to determine whether
they can be analyzed as the result of Formal Movement (Frey 2006a,b;
Light 2012). CS was used to retrieve all clauses with fronted pronominal
objects, but the preceding context was needed to determine the topic
type (familiar, aboutness, contrastive, as in Frascarelli and Hinterhölzl
2007). Examples (1) and (2) below show text manually inserted in the
ur-text (the text in the area between ‘/ *’ and ‘* /’). In (1) below, the
ur-text is enclosed in a box, and the information added manually is in
red. The original Old English token, including the token ID, is in black.
In (1), the added information is the preceding context and its gloss and
the gloss of the token itself.

2In some cases the procedures documented in the case studies have been simpli-
fied for clarification purposes.

3Of course CS output, being straight ASCII text, can be read by word-processing
software such as Word and TextEdit, so these manual additions can be searched for

4 / LiLT volume 18, issue 4 July 2019

(1)
/~*

Preceding context:
+Ta cw+a+d Iulianus +te +t+at eal wyste . to martine . mid micelre blisse.
Then said Julianus who that all knew . to Martianus . with great joy.

Gang into +tinum godum
Go unto your gods

+te hi clypia+d to him.
You they summon to themselves.
(coaelive,+ALS_[Julian_and_Basilissa]:160.1036)

*~/
((1 IP-MAT-SPE (2 NP (3 PRO +te))

(5 NP-NOM (6 PRO^N hi))
(8 VBPI clypia+d)
(10 PP (11 P to)

(13 NP-DAT-RFL (14 PRO^D him)))
(16 . .))

(18 ID coaelive,+ALS_[Julian_and_Basilissa]:160.1036))

In (2), the added information is the gloss of the token and a comment
about structure and word order in the token.

(2)
/~*

Min modor Claudia, me h+af+d gebroht min h+alend Crist to his halgena blysse,
my mother Claudia, me has brought my lord Christ to his holy bliss
(coaelive,+ALS_[Eugenia]:415.445)
Note low subject with transitive verb

*~/
((1 IP-MAT-SPE (4 NP-NOM-VOC (5 PRO$^N Min) (7 N^N modor)

(9 NP-NOM-PRN (10 NR^N Claudia)))
(12 , ,)
(14 NP (15 PRO me))
(17 HVPI h+af+d)
(19 VBN gebroht)
(21 NP-NOM (22 PRO$^N min) (24 N^N h+alend)

(26 NP-NOM-PRN (27 NR^N Crist)))
(29 PP (30 P to)

(32 NP (33 NP-GEN (34 PRO$ his) (36 N^G halgena))
(38 N blysse)))

(40 . ,))
(42 ID coaelive,+ALS_[Eugenia]:415.445))

Haeberli et al. 2017 used the preceding context to determine the topic
type and then manually added it to the coding string for each token.
The counts of the different topic types are shown in Table 1 below;
it is clear from these data that non-contrastive object pronouns that
serve as familiar topics can be found clause-initially in early English,

in this way.

Adding linguistic information to parsed corpora / 5

contra Light 2012; Haeberli et al. 2017 showed that this pattern could
be analysed as in Walkden 2017.

Topic type N %
contrastive 18 14.4%
aboutness 42 33.6%
familiar 65 52.0%
Total 125 100.0%

TABLE 1: Topic type of fronted pronominal objects in Old English
main clauses

2 Method 2: Inserting CODE nodes into the token
structure

Since inserting nodes is a change in the structure of the token, it can
be done at least partially by CS,4 and the information added can be
accessed by CS in subsequent queries.
Case study 2: Crisma and Pintzuk 2016, building on research devel-
oped in Crisma 2015, investigated the development of the indefinite
article in Middle English. Table 2 lists the codes and their definitions;
Middle English examples are given in Appendix B.
(3) Three-step process for coding and counting NP types
Step 1: Add CODE node with a CS corpus-revision query:
Step 1 Query: This query inserts a CODE node as the first constituent
of an NP object
node: NP-OB*
query: (NP-OB* idomsfirst {1}*)

add_leaf_before{1}: (CODE <NPTYPE:>)

4In fact, while the research for this project was carried out, both the CODE
nodes and their contents were inserted manually; it would have been less work if CS
had been used to insert the nodes and to determine whether or not the relevant NP
contained the lexeme an ‘one’. In the procedure presented below, the CODE node
is inserted by CS, while all other information is inserted manually.

6 / LiLT volume 18, issue 4 July 2019

TABLE 2: Coding for CODE-NPTYPE node

Step 1 Input:
((IP-MAT (NP-SBJ (NPR Eue))

(VBD heold)
(PP (P+NPR iparais))
(NP-OB1 (ADJ long) (N tale))
(PP (P wi+d)

(NP (D +te) (N neddre)))
(E_S .)) (ID CMANCRIW-1,II.54.519))

Step 1 Output:
/~*
Eue heold iparais long tale wi+d +te neddre.
(CMANCRIW-1,II.54.519)
*~/
(0 (1 IP-MAT (2 NP-SBJ (3 NPR Eue))

(5 VBD heold)
(7 PP (8 P+NPR iparais))
(10 NP-OB1 (11 CODE <NPTYPE:>)

(13 ADJ long)
(15 N tale))

(17 PP (18 P wi+d)
(20 NP (21 D +te) (23 N neddre)))

(25 E_S .))
(27 ID CMANCRIW-1,II.54.519))

Step 2: Add NP characteristics manually to CODE node
/~*
Eue heold iparais long tale wi+d +te neddre.
Eve held in-paradise (a) long conversation with the serpent
(CMANCRIW-1,II.54.519)
*~/
(0 (1 IP-MAT (2 NP-SBJ (3 NPR Eue))

(5 VBD heold)
(7 PP (8 P+NPR iparais))
(10 NP-OB1 (11 CODE <NPTYPE:BSG-EXS>)

(13 ADJ long)

Adding linguistic information to parsed corpora / 7

(15 N tale))
(17 PP (18 P wi+d)

(20 NP (21 D +te) (23 N neddre)))
(25 E_S .))

(27 ID CMANCRIW-1,II.54.519))

In Crisma and Pintzuk 2016, all nominal objects were coded in this
way. Each type of NP was then ‘counted’ by searching for each type of
CODE node; an example is given in Step 3 Query below. The quanti-
tative results are shown in Table 3.

Step 3: Count NP types
Step 3 Query:
node: IP*
query: (NP-OB* idoms CODE)
AND (CODE idoms <NPTYPE:*GNR*>)

TABLE 3: The distribution of bare singular (BSG) nominals and
nominals with an (AN) in Middle English

(Crisma and Pintzuk 2016: Table 1)

The texts in Table 3 are arranged in chronological order. The
columns are arranged left to right in order of increasing saliency of
presupposition of existence: there is no presupposition of existence
with GNR, NPE, EXS-SCOPE-nrw; there is a clear presupposition of
existence with EXS-SCOPE-wd, EXS-SPC; and finally there is a ‘gray’
area in the middle: EXS-SCOPE-amb, EXS, AMB.

According to Crisma 2015, an develops in three stages in the history
of English. In Stage 1, an is the numeral ‘one’; in Stage 2, an is an overt

8 / LiLT volume 18, issue 4 July 2019

existential operator used when an indefinite noun phrase is interpreted
as specific or when it takes wide scope over another operator; in Stage
3, an is an expletive used with all singular noun phrases. Crisma notes
that in Stages 1 and 2, an is never used with generics.

The numbers are quite small in most of the cells in Table 3; pre-
senting frequencies would be misleading. Nevertheless, clear patterns
emerge. We can see that in the M1 period, an acts as an overt existen-
tial operator in the following types of nominals: 1) indefinite nominals
that are interpreted as specific (EXS-SPC: 0 BSG, 14 AN); 2) nomi-
nals that take wide scope over some other operator (EXS-SCOPE-wd:
0 BSG, 1 AN). For nominals in the absence of other logical operators,
an is favoured by about 2 to 1 over BSG (EXS: 17 BSG, 35 AN). For
NPE nominals, either generic or narrow scope existential, as well as for
existential nominatives taking narrow scope, BSG is favoured by about
2 to 1 over an (EXS SCOPE-nrw: 19 BSG, 11 AN; NPE: 26 BSG, 11
AN). In addition, we also see the first sign of change: in two texts,
Ancrene Riwle and Hali Meidhad, there are two examples each of an
used with generics (GNR).

In the M3 period, we see a number of changes: 1) for generics (GNR),
a sharp reversal in the distribution of BSG (6 BSG, 47 AN); 2) for
nominals with no presupposition of existence (NPE), there is also a
reversal, with only 3 BSG and 55 AN; 3) similarly for existential nomi-
nals with narrow scope (EXS-SCOPE-nrw) and existential nominals in
the absence of other logical operators (EXS), with all 11 and 17 tokens,
respectively, using AN. Our conclusion is that in this period, the use of
an with singular nouns has generalised to all contexts, with very few
exceptions.

3 Method 3: Embedding information in coding strings

Coding strings are strings of characters, each character representing a
linguistic or extralinguistic variable, which are inserted as nodes in the
tokens of a corpus file. Method 3, the construction of coding strings, is
the traditional and perhaps most widely used method of adding infor-
mation to corpus data. Coding strings had their origin in quantitative
sociolinguistic research and were used decades before the creation of
parsed corpora. The CODING function of CS is used to construct cod-
ing strings based on the morphosyntactic annotation and the lexical
content of the token; once created, coding strings may be manually
extended to encode information that is not represented in the cor-
pus. Since coding strings are part of the token structure, they may
be searched and manipulated by CS. Coding strings may also be used

Adding linguistic information to parsed corpora / 9

as input to software for statistical analysis, like R; this is perhaps their
most important function.
Case study 3: Taylor and Pintzuk 2015 (T&P 2015) examine the po-
sition of objects in Old English and look at the effect of verb order
and the length and information structure of the object to support their
conclusion that there are two sources for post-verbal objects in Old En-
glish, object postposition and base-generation. As shown in (4) below,
objects can appear both before and after the verb cluster in clauses
with non-finite main verbs before finite auxiliaries (O V Aux and V
Aux O), and before and after non-finite verbs in clauses with auxiliary
– main verb order (Aux O V and Aux V O). In these examples, fi-
nite auxiliaries are underlined, non-finite main verbs are italicised, and
objects are in bold face.

(4) a. O V Aux
gif
if

heo
she

þæt
that

bysmor
disgrace

forberan
tolerate

wolde
would

‘if she would tolerate that disgrace’
(coaelive,+ALS_[Eugenia]:185.305)

b. V Aux O
þæt
that

he
he

friðian
make-peace-with

wolde
would

þa
the

leasan
false

wudewan
widow

‘that he would make peace with the false widow’
(coaelive,+ALS_[Eugenia]:209.315)

c. Aux O V
þurh
through

þa
which

heo
it

sceal
must

hyre
its

scippend
creator

understandan
understand

‘through which it must understand its creator’
(coaelive,+ALS_[Christmas]:157.125)

d. Aux V O
swa
so

þæt
that

heo
it

bið
is

forloren
lost

þam
the

ecan
eternal

life
life

‘so that it is lost to the eternal life’
(coaelive,+ALS_[Christmas]:144.117)

Table 4 shows the distribution of objects in Old English texts that
have more than 100 clauses with finite auxiliaries, non-finite main verbs

5There are additional constraints on the object; see T&P 2015.

10 / LiLT volume 18, issue 4 July 2019

and non-pronominal objects.5

Text VAux AuxV
N %VO N %VO

Orosius 66 4.5 47 31.9
Bede 58 6.9 46 10.9
Boethius 74 8.1 49 53.1
Cura Pastoralis 51 21.6 72 55.6
Catholic Homilies I 49 10.2 95 47.4
Catholic Homilies II 42 7.1 80 46.3
Lives of Saints 33 45.5 91 62.6
Gregory’s Dialogues (C) 36 27.8 66 68.2
total 409 13.9 546 49.5

TABLE 4: Frequency of VO order by verb order in texts with more
than 100 tokens

(T&P 2015, Table 1)

T&P 2015 present the following analysis of these data. They assume
that in the Old English period, there was variation in underlying struc-
ture: head-initial/final IPs (AuxV/VAux) and VPs (VO/OV). V Aux
O can be derived only from head-final IP/VP structure by postposition
of O from preverbal position, as shown in (5)a-b. In contrast, Aux V O
order can be derived in two different ways: a) head-initial IP, head-final
VP structure with postposition of O, as shown in (5)c-d; b) head-initial
IP/VP structure (i.e. O is merged in post-verbal position), as shown in
(5)e.

(5) a. O V Aux: [TP ... [T0 [VP1 [VP2 O V] tAux] Aux+T]]
b. V Aux O: [TP ... [T0 [VP1 [VP2 tO V] tAux] Aux+T] O]
c. Aux O V: [TP ... [T0 Aux+T [VP1 tAux [VP2 O V]]]]
d. Aux V O: [TP ... [T0 Aux+T [VP1 tAux [VP2 tO V]]] O]
e. Aux V O: [TP ... [T0 Aux+T [VP1 tAux [VP2 V O]]]]

If all post-verbal objects were derived by postposition in both V
Aux and Aux V clauses, i.e. if structure (5)e didn’t exist, we would
expect the factors influencing post-verbal position to be the same in
both clause types. To test this null hypothesis, T&P 2015 looked at the
influence of weight (as measured by the length of the object in words)
and informational status (given vs. new) on the position of objects in
AuxV and VAux clauses. This was a four-step process. As a first step,
CS was used to code each token for three factors: the order of finite

Adding linguistic information to parsed corpora / 11

auxiliary and non-finite main verb (auxv vs. vaux); the position of the
object with respect to the non-finite main verb (ov vs. vo); the length
of the object in words (1 . . . 11). The coding query file is given below
in (6);6 an example of a token coded for the first three factors is given
in (7).

(6) Coding Query:
node: IP*

coding_query:

1: {
auxv: (IP* idoms verb-finite)

AND (IP* idoms verb-non-finite)
AND (verb-finite precedes verb-non-finite)

vaux: (IP* idoms verb-finite)
AND (IP* idoms verb-non-finite)
AND (verb-non-finite precedes verb-finite)

1x: ELSE7

}

2: {
ov: (IP* idoms verb-non-finite)

AND (IP* idoms oblique-argument)
AND (oblique-argument precedes verb-non-finite)

vo: (IP* idoms verb-non-finite)
AND (IP* idoms oblique-argument)
AND (verb-non-finite precedes oblique-argument)

2x: ELSE
}

3: {
\1: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 1)
\2: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 2)
\3: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 3)
\4: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 4)
\5: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 5)
\6: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 6)
\7: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 7)
\8: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 8)
\9: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 9)
\10: (IP* idoms oblique-argument)

AND (oblique-argument idomswords 10)
\11: (IP* idoms oblique-argument)

AND (oblique-argument idomswords> 10)
3x: ELSE

6The terms ‘verb-finite’, ‘verb-non-finite’, and ‘oblique-argument’ are defined in
a condition file, available to CS when queries are run.

12 / LiLT volume 18, issue 4 July 2019

}

(7)
/~*
+t+at we god don sceolon
that we good do should
(coaelive,+ALS_[Auguries]:245.3644)
*~/

(0 (1 IP-SUB-SPE (2 CODING vaux:ov:1)
(4 NP-NOM (5 PRO^N we))
(7 NP-ACC (8 N^A god))
(10 VB don)
(12 MDPI sceolon))

(14 ID coaelive,+ALS_[Auguries]:245.3644))

The second step was to manually code the informational status of
the object (given vs. new). Examples of tokens coded for all four factors
are given in (8) through (11); (8) is the token in (7) with informational
status added as the fourth factor.

(8)
/~*
+t+at we god don sceolon
that we good do should
(coaelive,+ALS_[Auguries]:245.3644)
*~/

(0 (1 IP-SUB-SPE (2 CODING vaux:ov:1:new)
(4 NP-NOM (5 PRO^N we))
(7 NP-ACC (8 N^A god))
(10 VB don)
(12 MDPI sceolon))

(14 ID coaelive,+ALS_[Auguries]:245.3644))

(9)
/~*
Gif +du +t+as ecan lifes ges+al+te habban wylt
If you the eternal life’s happiness have will
(coaelive,+ALS_[Alban]:65.4038)
*~/

(0 (1 IP-SUB-SPE (2 CODING vaux:ov:4:new)
(4 NP-NOM (5 PRO^N +du))
(7 NP (8 NP-GEN (9 D^G +t+as) (11 ADJ^G ecan)

(13 N^G lifes))
(15 N ges+al+te))

(17 HV habban)
(19 MDPI wylt))

(21 ID coaelive,+ALS_[Alban]:65.4038))

7An elsewhere condition is frequently used to find unexpected conditions and
data in the corpus.

Adding linguistic information to parsed corpora / 13

(10)
/~*
+t+at se l+ace sceolde asceotan +t+at geswell
that the leech should lance the tumour
(coaelive,+ALS_[+Athelthryth]:61.4177)
*~/

(0 (1 IP-SUB (2 CODING auxv:vo:2:given)
(4 NP-NOM (5 D^N se) (7 N^N l+ace))
(9 MDD sceolde)
(11 VB asceotan)
(13 NP-ACC (14 D^A +t+at) (16 N^A geswell)))

(18 ID coaelive,+ALS_[+Athelthryth]:61.4177))

(11)
/~*
for +tan +te he sylf sceal sw+arran witu +trowian
because he himself shall heavier torments suffer
(coaelive,+ALS_[Vincent]:89.7849)
*~/

(0 (1 IP-SUB-SPE (2 CODING auxv:ov:2:new)
(4 NP-NOM (5 PRO^N he)

(7 ADJP-NOM (8 ADJ^N sylf)))
(10 MDPI sceal)
(12 NP-ACC (13 ADJR^A sw+arran) (15 N^A witu))
(17 VB +trowian))

(19 ID coaelive,+ALS_[Vincent]:89.7849))

The third step was to use the print_only function of CS to create an
output file containing only the coding strings of the data file. The file is
shown in (12) below. CS separates the factors by ‘:’, and the user must
manually insert a header naming the factors for input to statistical
processing, the last step. The results for this study are shown in Table
5.
(12) file of coding strings
AUXV|VAUX:OBJ_POS:OBJ_LEN:OBJ_IS
vaux:ov:1:new
vaux:ov:4:new
auxv:vo:2:given
auxv:ov:2:new
...

As shown in Table 5, the effect of weight is significant in both clause
types, but slightly weaker in AuxV clauses: each additional word in
VAux clauses increases the likelihood of VO order by 2.68, in AuxV
clauses by 2.43. Informational status is significant only in VAux clauses:
the distance between given and new is .9 in VAux clauses, but only .08
in AuxV clauses. T&P 2015 interpret these results as follows: VAuxO
clauses are derived only by postposition of the object, and postposition
is strongly influenced by weight and informational status: heavy objects

14 / LiLT volume 18, issue 4 July 2019

TABLE 5: Results of multivariate analysis, effects in log odds and odds
ratios. Shaded cells indicate non-significant results

(from T&P 2015, Table 5)

and new objects are much more likely to postpose than light objects
and given objects. Since AuxVO clauses are derived by two different
processes, postposition and base-generation, the effects of weight and
informational status are weakened; this is why the effect of weight is
weaker in AuxV clauses and the effect of informational status is reduced
to non-significance.

4 Method 4: Modifying corpus annotation (node
labels and structure)

Method 4, the modification of corpus annotation, may be done manu-
ally, but it is much more efficient (and safer) to use the corpus-revision
tool of CS. This tool enables the addition, deletion, and modification
of annotation in the corpus, including not only node labels but also
structure. Any search that can be made using CS can act as the basis
for corpus revision; the output of corpus revision is a new version of the
corpus – i.e., the original version of the corpus is not deleted, in case of
catastrophic errors. Corpus revision can be used to build an annotated
corpus starting from a straight text corpus with only part-of-speech. I
frequently find it useful to mark particular structures so that they are
easy to identify, and also to evade some CS restrictions, as will be seen
in Case study 4 below.
Case study 4: Haeberli and Pintzuk 2017 (H&P) look at verb place-
ment in ‘true V2’ contexts in Old English. H&P analyse in detail one
particular clause type: clauses with an initial gif/þa/þonne ‘if/when/
when’ subordinate clause, followed by a resumptive adverb (e.g. þa/
þonne ‘then’) and the rest of the main clause; an example is given in
(13). Note that initial þa/þonne in Old English main clauses is con-
sidered a ‘true V2’ context: 97.4% (6546/6719) of these clauses exhibit
strict V2 order, with the verb in second position followed by the subject.

Adding linguistic information to parsed corpora / 15

(13) [IP-MAT [CP-ADV þa
When

[IP-SUB þæt
that

Placidas
Placidas

geseah]],
saw,

þa
then

gewilnode
wanted

he
he

[CP-THT þæt
that

[IP-SUB he
he

hine
it

gefenge]
took

]]

‘When Placidas saw that, then he wanted to take it’
(coeust,LS_8_[Eust]:31.26)

In order to simplify the searches for and coding of these clauses, I
wanted to flag the relevant IP-MATs and CP-ADVs by modifying the
label. In addition, I wanted to ‘remove’8 the subtrees of all subordinate
clauses other than the IP-SUB dominated by the relevant CP-ADV.
Three steps were necessary, as shown below; a red font is used for
highlighting.

Step 1: Flag the relevant IP-MAT, CP-ADV, and IP-SUB using the
query file below. The IP-MAT and CP-ADV are flagged by appending
‘-z’ to the label; the IP-SUB is flagged by prepending ‘x-’ to the label.
Notice that the first token (coeust . . . 26) contains an IP-SUB that is
not dominated by the clause-initial CP-ADV; the second token (cobede
. . . 3530) contains an IP-MAT that does not dominate a CP-ADV as
the first constituent; and the third token (cocanedgX . . . 82) contains
both a CP-ADV that is not the first constituent of the IP-MAT and
an IP-SUB that is not dominated by the relevant CP-ADV. These are
all nodes that are irrelevant to the investigation.
Step 1 Query:
node: IP-MAT*
nodes_only: t
remove_nodes: f
query: ({1}IP-MAT* idoms {2}CP-ADV*)
AND (CP-ADV* idoms P)
AND (P idoms GIF|THA|THONNE9)
AND (CP-ADV* idoms {3}IP*SUB*)
...
append_label{1}: -z
append_label{2}: -z
prepend_label{3}: x-

8Setting the CS command-file option ‘remove_nodes’ to true results in removing
recursive structure by removing the subtrees of all nodes that are a) embedded
within an instance of the ‘node’ setting and b) are of the same type as the ‘node’
setting. The subtrees are replaced by the label ‘RMV’ and the first three lexical
words of the node.

9GIF, THA and THONNE are defined in a condition file as all of the variant
spellings of these lexemes.

16 / LiLT volume 18, issue 4 July 2019

Step 1 Input:
(0 (1 IP-MAT (2 CP-ADV (3 P +Ta)

(5 C 0)
(7 IP-SUB (8 NP-ACC (9 D^A +t+at))

(11 NP-NOM (12 NR^N Placidas))
(14 VBDI geseah)))

(16 , ,)
(18 ADVP-TMP (19 ADV^T +ta))
(21 VBD gewilnode)
(23 NP-NOM (24 PRO^N he))
(26 CP-THT (27 C +t+at)
(29 IP-SUB (30 NP-NOM (31 PRO^N he))

(33 NP-ACC (34 PRO^A hine))
(36 VBDS gefenge)))

(38 . ,))
(40 ID coeust,LS_8_[Eust]:31.26))

((3 IP-MAT (4 CP-ADV (5 P +Ta)
(7 C 0)
(9 IP-SUB (10 NP-NOM (11 PRO^N he))

(13 ADVP-TMP (14 ADV^T +da))
(16 NP (17 PRO$ his) (19 N scylde))
(21 VBD gehyrde)))

(23 , ,)
(25 ADVP-TMP (26 ADV^T +ta))
(28 VBDI cw+a+d)
(30 NP-NOM (31 PRO^N he))
(33 , :)
(35 IP-MAT-SPE (36 NP-NOM (37 Q^N Micel) (39 N^N wund))

(41 VBPI behofa+d)
(43 NP-GEN (44 Q^G micles) (46 N^G l+acedomes)))

(48 . :))
(50 ID cobede,Bede_4:26.350.19.3530))

((3 IP-MAT (4 CP-ADV (5 P Gyf)
(7 C 0)
(9 IP-SUB (10 NP-NOM (11 PRO^N he))

(13 NP-ACC (14 PRO$ his) (16 N^A lif))
(18 VBPS misfadige)))

(20 , ,)
(22 VBPS wanige)
(24 NP-NOM (25 PRO$ his) (27 N^N wyr+dscipe))
(29 CP-ADV (30 P be)

(32 D^D +dam)
(34 C +te)
(36 IP-SUB (37 NP-NOM (38 D^N seo))

(40 ADJP-NOM-PRD (41 ADJ^N d+ad))
(43 BEPS sy)))

(45 . .))
(47 ID cocanedgX,WCan_1.1.2_[Fowler]:68.82))

Step 1 Output:
(0 (1 IP-MAT-z (2 CP-ADV-z (3 P +Ta)

(5 C 0)
(7 x-IP-SUB (8 NP-ACC (9 D^A +t+at))

(11 NP-NOM (12 NR^N Placidas))
(14 VBDI geseah)))

(16 , ,)
(18 ADVP-TMP (19 ADV^T +ta))
(21 VBD gewilnode)
(23 NP-NOM (24 PRO^N he))

Adding linguistic information to parsed corpora / 17

(26 CP-THT (27 C +t+at)
(29 IP-SUB (30 NP-NOM (31 PRO^N he))

(33 NP-ACC (34 PRO^A hine))
(36 VBDS gefenge)))

(38 . ,))
(40 ID coeust,LS_8_[Eust]:31.26))

((1 IP-MAT-z (2 CP-ADV-z (3 P +Ta)
(5 C 0)
(7 x-IP-SUB (8 NP-NOM (9 PRO^N he))

(11 ADVP-TMP (12 ADV^T +da))
(14 NP (15 PRO$ his) (17 N scylde))
(19 VBD gehyrde)))

(21 , ,)
(23 ADVP-TMP (24 ADV^T +ta))
(26 VBDI cw+a+d)
(28 NP-NOM (29 PRO^N he))
(31 , :)
(33 IP-MAT-SPE (34 NP-NOM (35 Q^N Micel) (37 N^N wund))

(39 VBPI behofa+d)
(41 NP-GEN (42 Q^G micles)

(44 N^G l+acedomes)))
(46 . :))

(48 ID cobede,Bede_4:26.350.19.3530))

((1 IP-MAT-z (2 CP-ADV-z (3 P Gyf)
(5 C 0)
(7 x-IP-SUB (8 NP-NOM (9 PRO^N he))

(11 NP-ACC (12 PRO$ his)
(14 N^A lif))

(16 VBPS misfadige)))
(18 , ,)
(20 VBPS wanige)
(22 NP-NOM (23 PRO$ his) (25 N^N wyr+dscipe))
(27 CP-ADV (28 P be)

(30 D^D +dam)
(32 C +te)
(34 IP-SUB (35 NP-NOM (36 D^N seo))

(38 ADJP-NOM-PRD (39 ADJ^N d+ad))
(41 BEPS sy)))

(43 . .))
(45 ID cocanedgX,WCan_1.1.2_[Fowler]:68.82))

Step 2: Remove the nodes of the embedded IPs using the query file
below; the output from Step 1 serves as the input to Step 2. Note that
the nodes of the IP-SUB embedded under CP-ADV-z are not removed
since its label begins with ‘x-’.
Step 2 Query:
node: IP-MAT*-z
remove_nodes: t
query: (IP-MAT*-z exists)

Step 2 Output:
((1 IP-MAT-z (2 CP-ADV-z (3 P +Ta)

(5 C 0)
(7 x-IP-SUB (8 NP-ACC (9 D^A +t+at))

(11 NP-NOM (12 NR^N Placidas))

18 / LiLT volume 18, issue 4 July 2019

(14 VBDI geseah)))
(16 , ,)
(18 ADVP-TMP (19 ADV^T +ta))
(21 VBD gewilnode)
(23 NP-NOM (24 PRO^N he))
(26 CP-THT (27 C +t+at)

(29 IP-SUB RMV:he_hine_gefenge...))
(38 . ,))

(40 ID coeust,LS_8_[Eust]:31.26))

((1 IP-MAT-z (2 CP-ADV-z (3 P +Ta)
(5 C 0)
(7 x-IP-SUB (8 NP-NOM (9 PRO^N he))

(11 ADVP-TMP (12 ADV^T +da))
(14 NP (15 PRO$ his) (17 N scylde))
(19 VBD gehyrde)))

(21 , ,)
(23 ADVP-TMP (24 ADV^T +ta))
(26 VBDI cw+a+d)
(28 NP-NOM (29 PRO^N he))
(31 , :)
(33 IP-MAT-SPE RMV:Micel_wund_behofa+d...)
(46 . :))

(48 ID cobede,Bede_4:26.350.19.3530))

((1 IP-MAT-z (2 CP-ADV-z (3 P Gyf)
(5 C 0)
(7 x-IP-SUB (8 NP-NOM (9 PRO^N he))

(11 NP-ACC (12 PRO$ his)
(14 N^A lif))

(16 VBPS misfadige)))
(18 , ,)
(20 VBPS wanige)
(22 NP-NOM (23 PRO$ his) (25 N^N wyr+dscipe))
(27 CP-ADV (28 P be)

(30 D^D +dam)
(32 C +te)
(34 IP-SUB RMV:seo_d+ad_sy...))

(43 . .))
(45 ID cocanedgX,WCan_1.1.2_[Fowler]:68.82))

Step 3: Remove ‘x-’ prepended to IP-SUB labels using the query file
below; the output from Step 2 serves as the input to Step 3.
Step 3 Query:
node: IP-MAT*-z
query: (1x-IP* exists)

pre_crop_label1: -

Step 3 Output:
((1 IP-MAT-z (2 CP-ADV-z (3 P +Ta)

(5 C 0)
(7 IP-SUB (8 NP-ACC (9 D^A +t+at))

(11 NP-NOM (12 NR^N Placidas))
(14 VBDI geseah)))

(16 , ,)
(18 ADVP-TMP (19 ADV^T +ta))
(21 VBD gewilnode)

Adding linguistic information to parsed corpora / 19

(23 NP-NOM (24 PRO^N he))
(26 CP-THT (27 C +t+at)

(29 IP-SUB RMV:he_hine_gefenge...))
(31 . ,))

(33 ID coeust,LS_8_[Eust]:31.26))

((1 IP-MAT-z (2 CP-ADV-z (3 P +Ta)
(5 C 0)
(7 IP-SUB (8 NP-NOM (9 PRO^N he))

(11 ADVP-TMP (12 ADV^T +da))
(14 NP (15 PRO$ his) (17 N scylde))
(19 VBD gehyrde)))

(21 , ,)
(23 ADVP-TMP (24 ADV^T +ta))
(26 VBDI cw+a+d)
(28 NP-NOM (29 PRO^N he))
(31 , :)
(33 IP-MAT-SPE RMV:Micel_wund_behofa+d...)
(35 . :))

(37 ID cobede,Bede_4:26.350.19.3530))

((1 IP-MAT-z (2 CP-ADV-z (3 P Gyf)
(5 C 0)
(7 IP-SUB (8 NP-NOM (9 PRO^N he))

(11 NP-ACC (12 PRO$ his)
(14 N^A lif))

(16 VBPS misfadige)))
(18 , ,)
(20 VBPS wanige)
(22 NP-NOM (23 PRO$ his) (25 N^N wyr+dscipe))
(27 CP-ADV (28 P be)

(30 D^D +dam)
(32 C +te)
(34 IP-SUB RMV:seo_d+ad_sy...))

(36 . .))
(38 ID cocanedgX,WCan_1.1.2_[Fowler]:68.82))

The result of this three-step procedure is a file of tokens that are
simple to search further and code, since the relevant IP-MATs and CP-
ADVs have labels that end in ‘-z’ and the relevant IP-SUB is the only
IP-SUB in the token that has its content preserved intact.

5 Method 5: Copying coding strings from the corpus
into a spreadsheet

Finally, Method 5 copies coding strings from the corpus into a spread-
sheet, the content of which may be ordered, manipulated, and displayed
in ways that corpus data cannot be. For example, the data in the cells
of a spreadsheet can be interpreted as numbers and used for simple cal-
culations like totals, means, and frequencies; in contrast, the content
of coding strings within a corpus are characters, not numerical values,
and cannot be used as numbers. From the spreadsheet users can create
output, e.g. a csv file, that is formatted for statistical analysis. Method
5 provides perhaps the most flexible way of working with and analyzing
corpus data, but it should be used with caution, for at least two obvi-

20 / LiLT volume 18, issue 4 July 2019

ous reasons: it involves manual manipulation of the data, and therefore
is prone to error; in addition, it is not always possible to go from a
spreadsheet back to a corpus format.
Case study 5: Taylor and Pintzuk 2017 (T&P 2017) look at the effect
of weight, among other variables, on split coordination in Old English.
Almost all coordinated constituents in early stages of English can be
split, as illustrated in (14).

(14) a. DP subject
oðþæt
until

þæt
the

ad
pile

wæs
was

forburnen,
burned

and
and

ealle
all

þa
the

tunnan
casks

‘until the pile and all the casks were burned up’
(coaelive,+ALS_[Julian_and_Basilissa]:332.1143)

b. DP object
God
God

sende
sent

ða
then

fyr
fire

on
in

merigen
morning

and
and

fulne
foul

swefel
brimstone

him
him

to
to

‘God then sent fire and foul brimstone to him in the morning’
(coaelive,+ALS[Pr_Moses]:211.2976)

c. PP
&
and

on
in

sorhge
grief

leofodon
lived

&
and

on
in

geswincum
torment

siþþan
afterwards

‘and [they] lived afterwards in grief and torment’
(colsigewZ,+ALet_4_[SigeweardZ]:117.49)

T&P 2017 focus on subjects, aiming to measure the effect of length
(as measured in number of words) on splitting. They need the length
of the first conjunct, the length of the second conjunct (which includes
both the conjunction and the nominal), and the length of the entire
coordinated nominal in order to determine which of the three, if any, has
an effect on splitting. But because of the way coordination is annotated
in the corpus, these measurements are not at all straightforward.

If the nominal is not split and the coordinated nouns are bare, with
no modification, then the nominal is annotated as a flat structure, with
the two nouns and the conjunction immediately dominated by the NP,
as shown in (15). In these cases the length of the entire subject can be
measured, since it is a constituent (NP-NOM). Although the lengths
of the two conjuncts can’t be measured individually, since they are not

Adding linguistic information to parsed corpora / 21

constituents, it can be assumed that the length of the first conjunct
is 1. 10 The tokens in this section are coded as follows: file name :
token number : flat vs. non-flat : split vs. non.split : final vs. non.final
(position within the clause) : length of 1st conjunct : length of 2nd

conjunct: length of entire conjoined phrase. ‘/’ is used when it is not
possible to measure or assume the length.

(15) non-split flat structure
Þær
There

is
is

wop
weeping

and
and

wanung
wailing

(coaelive,+ALS_[Sebastian]:77.1254)

(0 (1 IP-MAT-SPE (2 CODING aelive:1254:flat:non.split:final:1:/:3)
(4 ADVP-LOC (5 ADV^L +T+ar))
(7 BEPI is)
(9 NP-NOM (10 N^N wop) (12 CONJ and) (14 N^N wanung)))

(16 ID coaelive,+ALS_[Sebastian]:77.1254))

In split flat structures, we can measure the length of the 1st conjunct
and the length of the 2nd conjunct, since each of these is a constituent;
but we cannot measure the length of the entire subject. An example is
given in (16).

(16) split ‘flat’ structure
ac
but

foxunga
foxlike-wiles

wæron
were

wunigende
dwelling

on
in

him,
him,

and
and

upahefednys
haughtiness,

swilce
like

healice
soaring

fugelas,
birds,

‘but foxlike wiles and haughtiness were dwelling in him, like soar-
ing birds’
(coaelive,+ALS_[Memory_of_Saints]:160.3418)

10The reader might think that the length of the 2nd conjunct could be estimated
as 2 (conjunction + noun). However, some conjoined constituents have more than
two conjuncts, as shown below in (i); in these cases, the length of the 2nd and fol-
lowing conjuncts cannot be assumed or measured.

(i)

(CP-ADV (P Gif)
(C 0)
(IP-SUB (NP-NOM (N^N fot) (CONJ o+d+de) (N^N cneow)

(CONJ o+d+de) (N^N scancan))
(VBPS swellan))

...

22 / LiLT volume 18, issue 4 July 2019

(0 (1 IP-MAT (2 CODING aelive:3418:flat:split:non.final:1:2:/)
(4 CONJ ac)
(6 NP-NOM (7 N^N foxunga)

(9 CONJP *ICH*-1))
(11 BEDI w+aron)
(13 VAG wunigende)
(15 PP (16 P on)

(18 NP-DAT (19 PRO^D him)))
(21 , ,)
(23 CONJP-1 (24 CONJ and) (26 N^N upahefednys))
(28 PP (29 P swilce)

(31 CPX-CMP (32 IPX-SUB RMV:healice_fugelas...)))
(34 . ,))

(36 ID coaelive,+ALS_[Memory_of_Saints]:160.3418))

In non-split non-flat structures, we can measure all three, since the
two conjuncts and also the entire conjoined structure is a constituent,
as shown in (17).

(17) non-split hierarchical structure
Eubolus
Eubolus

se
the

uðwyta
philosopher

and
and

þa
the

yldostan
principal

preostas
priests

stoden
stood

æt
at

þæra
the

dura
door . . .

(coaelive,+ALS_[Basil]:132.537)

(0 (1 IP-MAT (2 CODING aelive:537:non.flat:non.split:non.final:3:4:7)
(4 NP-NOM (5 NP-NOM (6 NR^N Eubolus)

(8 NP-NOM-PRN (9 D^N se)
(11 N^N u+dwyta)))

(13 CONJP (14 CONJ and)
(16 NP-NOM (17 D^N +ta)

(19 ADJS^N yldostan)
(21 N^N preostas))))

(23 VBDS stoden)
(25 PP (26 P +at)
(28 NP-DAT (29 D^D +t+ara) (31 N^D dura)))
...

(48 ID coaelive,+ALS_[Basil]:132.537))

And finally, in split hierarchical structures, we can measure the
length of the 1st conjunct and the length of the 2nd conjunct, since
each of these is a constituent; but we cannot measure the length of the
entire subject. An example is given in (18).

(ID colacnu,Med_3_[Grattan-Singer]:85.1.454))(CP-ADV (P Gif)

Adding linguistic information to parsed corpora / 23

(18) split hierarchical structure
oðþæt
until

þæt
the

ad
pile

wæs
was

forburnen,
burned-up,

and
and

ealle
all

þa
the

tunnan
tuns

(coaelive,+ALS_[Julian_and_Basilissa]:332.1143)

(0 (1 IP-SUB (2 CODING aelive:1143:non.flat:split:final:2:4:/)
(4 NP-NOM (5 NP-NOM (6 D^N +t+at) (8 N^N ad))

(10 CONJP *ICH*-1))
(12 BEDI w+as)
(14 VBN forburnen)
(16 , ,)
(18 CONJP-1 (19 CONJ and)

(21 NP-NOM (22 Q^N ealle)
(24 D^N +ta) (26 N^N tunnan))))

(28 ID coaelive,+ALS_[Julian_and_Basilissa]:332.1143))

Once the tokens are coded in this way, CS can be used to output the
coding strings to a file as shown below:

Query:

node: $ROOT11

print_only: CODING*

Input:

(0 (1 IP-MAT-SPE (2 CODING aelive:1254:flat:non.split:final:1:/:3)
(4 ADVP-LOC (5 ADV^L +T+ar))
(7 BEPI is)
(9 NP-NOM (10 N^N wop) (12 CONJ and) (14 N^N wanung)))

(16 ID coaelive,+ALS_[Sebastian]:77.1254))

(0 (1 IP-MAT (2 CODING aelive:3418:flat:split:non.final:1:2:/)
(4 CONJ ac)
(6 NP-NOM (7 N^N foxunga)

(9 CONJP *ICH*-1))
(11 BEDI w+aron)
(13 VAG wunigende)
(15 PP (16 P on)

(18 NP-DAT (19 PRO^D him)))
(21 , ,)
(23 CONJP-1 (24 CONJ and) (26 N^N upahefednys))
(28 PP (29 P swilce)

(31 CPX-CMP (32 IPX-SUB RMV:healice_fugelas...)))
(34 . ,))

(36 ID coaelive,+ALS_[Memory_of_Saints]:160.3418))

11The node $ROOT is used to refer to the highest node in the token.

24 / LiLT volume 18, issue 4 July 2019

(0 (1 IP-MAT (2 CODING aelive:537:non.flat:non.split:non.final:3:4:7)
(4 NP-NOM (5 NP-NOM (6 NR^N Eubolus)

(8 NP-NOM-PRN (9 D^N se)
(11 N^N u+dwyta)))

(13 CONJP (14 CONJ and)
(16 NP-NOM (17 D^N +ta)

(19 ADJS^N yldostan)
(21 N^N preostas))))

(23 VBDS stoden)
(25 PP (26 P +at)
(28 NP-DAT (29 D^D +t+ara) (31 N^D dura)))
...

(48 ID coaelive,+ALS_[Basil]:132.537))

(0 (1 IP-SUB (2 CODING aelive:1143:non.flat:split:final:2:4:/)
(4 NP-NOM (5 NP-NOM (6 D^N +t+at) (8 N^N ad))

(10 CONJP *ICH*-1))
(12 BEDI w+as)
(14 VBN forburnen)
(16 , ,)
(18 CONJP-1 (19 CONJ and)

(21 NP-NOM (22 Q^N ealle)
(24 D^N +ta) (26 N^N tunnan))))

(28 ID coaelive,+ALS_[Julian_and_Basilissa]:332.1143))

Output:
aelive:1254:flat:non.split:final:1:/:3
aelive:3418:flat:split:non.final:1:2:/)
aelive:537:non.flat:non.split:non.final:3:4:7)
aelive:1143:non.flat:split:final:2:4:/)

The output file can then be read into a spreadsheet, as shown
below in Excel spreadsheet 1, with the header (“TEXT | TOKEN |
(NON)FLAT | . . . ”) added manually as the first row. When the data
are sorted by the missing length, as shown in spreadsheet 2, then the
formulae for the missing lengths can be inserted manually in the empty
cells, as shown in spreadsheet 3.

Excel spreadsheet 1: coding strings read from the CS output file,
with header added

Adding linguistic information to parsed corpora / 25

Excel spreadsheet 2: coding strings sorted by which length is missing

Excel spreadsheet 3: coding strings with formulae for missing length

Once the missing lengths have been calculated in the Excel spread-
sheet 3 above, it is straightforward to calculate the average length of
the 1st conjunct, 2nd conjunct and complete subject by sorting on col-
umn D and then adding the lengths of the split / non-split subjects and
dividing by the total number of these tokens. T&P 2017 found that in
the Old English data, the average total length of the coordination was
6.88 for split subjects and 5.99 for non-split subjects, a statistically sig-
nificant difference. Similarly, the average length of the 2nd conjunct was
5.06 for split subjects and 4.08 for non-split subjects; again, a statisti-
cally significant difference. But for the 1st conjunct, the average length
of the split subjects was less than the average length of the non-split
subjects: 1.82 vs. 1.92.

6 Conclusions

In this article I have described and illustrated five methods for adding
information to corpora that have been parsed in the Penn treebank
style. These methods may involve manual operations, or they may be
executed by CS functions, or they may require a combination of manual
and automated procedures. Some of the methods overlap: for example,
method 2 (inserting CODE nodes) is functionally equivalent to method
3 (embedding information in coding strings). Which method is used
depends almost entirely on the type of information to be added and
the goals of the user.

26 / LiLT volume 18, issue 4 July 2019

Acknowledgements
This paper was presented at the international symposium entitled “Ex-
ploiting Parsed Corpora: Application in Research, Pedagogy, and Pro-
cessing” held at the National Institute for Japanese Language and Lin-
guistics (NINJAL) on December 9-10, 2017. I thank the organizers for
inviting me to that symposium, the audience for questions and com-
ments, two anonymous reviewers for helpful suggestions, and all of my
co-authors for giving me the opportunity to participate in so many
interesting research projects.

References
Crisma, P. 2015. The ‘indefinite article’ from cardinal to operator to exple-

tive. In A. J. Gianollo, C. and D. Penka, eds., Language Change at the
Syntax-Semantics Interface, 125–151. Berlin: De Gruyter Mouton.

Crisma, P. and S. Pintzuk. 2016. An from Old to Middle English. In S. Vikner,
H. Jørgensen, and E. van Gelderen, eds., Let Us Have Articles Betwixt Us:
Papers in Historical and Comparative Linguistics in Honour of Johanna L.
Wood , 31–53. Aarhus: Department of English, School of Communication
and Culture, Aarhus University.

Frascarelli, M. and R. Hinterhölzl. 2007. Types of topics in German and
Italian. In K. Schwabe and S. Winkler, eds., On Information Structure,
Meaning and Form: Generalizations across Languages, 87–116. Amster-
dam: John Benjamins.

Frey, W. 2006a. Contrast and movement to the German prefield. In V. Molnár
and S. Winkler, eds., The Architecture of Focus (Studies in Generative
Grammar 82), 235–264. Berlin, New York: Mouton de Gruyter.

Frey, W. 2006b. How to get an object-es into the German prefield. In
P. Brandt and E. Fuss, eds., Form, Structure, and Grammar - A Festschrift
Presented to Günther Grewendorf on Occasion of His 60th Birthday , 159–
185. Berlin: Akademie Verlag.

Haeberli, E. and S. Pintzuk. 2017. V3 in true V2 contexts in Old English.
Presented at the workshop V3 and Resumptive Adverbials. Universiteit
Gent, 5 October 2017.

Haeberli, E., S. Pintzuk, and A. Taylor. 2017. Object pronoun fronting and
the nature of V2 in early English. Ms. University of Geneva, University of
York.

Light, C. 2012. The Syntax and Pragmatics of Fronting in Germanic. Ph.D.
thesis, University of Pennsylvania.

Taylor, A. and S. Pintzuk. 2015. Verb order, object position and information
status in Old English. In T. Biberauer and G. Walkden, eds., Syntax over
Time: Lexical, Morphological and Information-Structural Interactions. Ox-
ford: OUP.

Taylor, A. and S. Pintzuk. 2017. Split coordination in Early English. In

References / 27

B. Los and P. de Haan, eds., Word order change in acquisition and language
contact: Essays in honour of Ans van Kemenade, 155–183. Amsterdam:
John Benjamins.

Walkden, G. 2017. Language contact and V3 in Germanic varieties new and
old. JCGL 20:49–81.

Appendix

Partial batch file for Old English
data for Haeberli et al. 2017

Within a UNIX platform, batch files are run by typing ‘source [file-
name]’. Blank lines and lines that start with the hash character (#)
are ignored; in this way comments can be added to describe the proce-
dures and searches. In the file below, the executable lines are shown in
red.

0. remove old output files
rm *.out *.cmp *.cod

1. get all clauses with cp-adv xp sbj v and mark with ’z’
The cpadv must idom an IP-SUB with a finite verb.
corpussearch cpadv-sbj-v.q $york/*.psd
output: 4457 hits

2. flag embedded IP-SUB under relevant CP-ADV with x- at start of label
corpussearch flag.q cpadv-sbj-v.out
output: 4466 hits

3. remove (i.e. replace with RMV) all other embedded IP-SUBs
corpussearch remove-embedded-ips.q flag.out
output: 4475 hits

4. remove x- attached to IP-SUBs
corpussearch removex.q remove-embedded-ips.out
output: 4475 hits

the result is a clean output file with all irrelevant embedded IP-SUBs
removed

5. remove clauses with more than one constituent between cp-adv and sbj v
corpussearch cpadv1-sbj-v.q removex.out
output files: cpadv1-sbj-v.out (4346 hits)
cpadv1-sbj-v.cmp (129 hits)

6. create dummy coding string for perl script to use
corpussearch code1.c cpadv1-sbj-v.out

7. code text and token ID using perl script
codeTextOE-sp.prl code1.cod > code2-3.cod

29

30 / Adding linguistic information to parsed corpora

8. code P of CP-ADV, main|conjunct, order of verb and subject
corpussearch code4-6.c code2-3.cod

Appendix B

Examples of NP types from Crisma
and Pintzuk 2016

(II.1) a. existential interpretation (CODE: <NPTYPE:BSG-EXS>)
Eue
Eve

heold
held

iparais
in-paradise (a)

long
long

tale
conversation

wið
with

þe
the

neddre
serpent

(CMANCRIW-1,II.54.520)
b. existential interpretation (CODE: <NPTYPE:AN-EXS>)

As
When

ha
she

þeos
this

bone
plea

hefde
had

ibeden
made

com
came

a
a

kempe
champion

of
from

helle
hell

on
in

englene
angel’s

heowe
guise

‘When she had made this plea, a champion came from hell
in the guise of an angel’
(CMJULIA,107.187)

31

32 / Adding linguistic information to parsed corpora

(II.2) a. generic interpretation (CODE: <NPTYPE:BSG-GNR>)
þu
you

seist
say

þt
that

muche
much

confort
comfort

haueð
has (a)

wif
wife

of
from

hire
her

were
husband

‘you say that a wife has much comfort from her husband
. . . ’
(CMHALI,147.282)

b. generic interpretation (CODE: <NPTYPE:AN-GNR>)
Certes
Certainly

a
a

shadwe
shadow

hath
has

the
the

liknesse
likeness

of
of

the
the

thyng
thing

of
of

which
which

it
it

is
is (the)

shadwe
shadow

(CMCTPARS,292.C2.187)

(II.3) ambiguous between existential and generic
(CODE: <NPTYPE:AN-AMB>)
And
And

therfore
therefore

seith
says

a
a

philosophre
philosopher

in
in

this
this

wise
manner

‘And therefore a (particular) philosopher says / philosophers
say in this manner . . . ’
(CMCTMELI,224.C1.277)

(II.4) existential specific nominal
(CODE: <NPTYPE:AN-EXS-SPC>)
A
A

yong
young

man
man

called
called

Melibeus
Melibee

myghty
mighty

and
and

riche
rich

bigat
begat

upon
upon

his
his

wyf
wife

that
who

called
called

was
was

Prudence
Prudence

a
a

doghter
daughter

which
who

that
that

called
called

was
was

Sophie
Sophie

‘A young man called Melibee, mighty and rich, begat upon his
wife, who was called Prudence, a daughter who was called So-
phie.’
(CMCTMELI,217.C1b.5)

Appendix B: Examples of NP types from Crisma and Pintzuk 2016 / 33

(II.5) existential nominal with narrow scope
(CODE: <NPTYPE:AN-EXS-SCOPE-nrw>)
Ich
I

chulle
shall

lete
let

makie
make

þe
thee

of
of

golt
gold

an
an

ymage
image

as
as

cwen
queen

icrunet
crowned

‘I will have a golden image made of you as a crowned queen’
(CMKATHE,36.269)

(II.6) existential nominal with wide scope
(CODE: <NPTYPE:AN-SCOPE-wd>)
&
and

seide
said

to
to

hire
her

þus.
thus.

haue
have

cwen
queen

acrune
a-crown

isent
sent

te
to-you

of
from

heouene
heaven

‘and (he) said the following to her: Queen, have a crown, sent
to you from heaven’
(CMKATHE,38.308)

(II.7) existential nominal with ambiguous scope
(CODE: <NPTYPE:AN-SCOPE-amb>)
thanne
then

seketh
seeks

he
he

an
a

ydel
useless

solas
consolation

of
from

worldly
worldly

thynges
things

‘then he seeks a useless consolation from worldly things’
(CMCTPARS,313.C1.1073)

34 / Adding linguistic information to parsed corpora

(II.8) nominals that are ambiguous, either generic or narrow scope
existential
a. (CODE <NPTYPE:BSG-NPE>)

tis
this

put
pit

he
he

hat
commanded

þt
that

beo
be

ilided
covered

þt
that

beast
beast

þrin
therein

ne
NEG

falle
fall

‘he commanded that this pit be covered lest (a) beast fall
therein’
(CMANCRIW-1,II.48.446)

b. (CODE <NPTYPE:AN-NPE>)
whan
when

a
a

gret
great

lord
lord

haþ
has

no
no

child
child

he
he

may
may

chese
choose

a
a

pore
poor

mannes
man’s

sone
son

if
if

he
he

wole
will

and
and

make
make

of
of

hym
him

his
his

eir
heir

bi
by

adopcioun
adoption

‘when a great lord has no child, he may choose a poor man’s
son if he wants and make him his heir by adoption’
(CMVICES4,100.63)

