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Abstract
We evaluate three simple, normalization-centric changes to
improve Transformer training. First, we show that pre-norm
residual connections (PRENORM) and smaller initializations
enable warmup-free, validation-based training with large
learning rates. Second, we propose `2 normalization with a
single scale parameter (SCALENORM) for faster training and
better performance. Finally, we reaffirm the effectiveness of
normalizing word embeddings to a fixed length (FIXNORM).
On five low-resource translation pairs from TED Talks-based
corpora, these changes always converge, giving an average
+1.1 BLEU over state-of-the-art bilingual baselines and a
new 32.8 BLEU on IWSLT '15 English-Vietnamese. We ob-
serve sharper performance curves, more consistent gradient
norms, and a linear relationship between activation scaling
and decoder depth. Surprisingly, in the high-resource setting
(WMT '14 English-German), SCALENORM and FIXNORM
remain competitive but PRENORM degrades performance.

1. Introduction
The Transformer [1] has become the dominant architecture
for neural machine translation (NMT) due to its train-time
parallelism and strong downstream performance. Various
modifications have been proposed to improve the efficiency
of its multi-head attention and feedforward sublayers [2, 3].
Our work focuses on layer normalization (LAYERNORM)
[4], which we show has an outsized role in the convergence
and performance of the Transformer in two ways:

Placement of normalization. The original Transformer uses
post-norm residual units (POSTNORM), where layer normal-
ization occurs after the sublayer and residual addition. How-
ever, [5] found that pre-norm residual units (PRENORM),
where layer normalization occurs immediately before the
sublayer, were instrumental to their model’s performance.
[6] compares the two, showing that PRENORM makes back-
propagation more efficient over depth and training Trans-
formers with deep, 30-layer encoders.

Our work demonstrates additional consequences in the
base (≤6-layer encoder) Transformer regime. We show that
PRENORM enables warmup-free, validation-based training
with large learning rates even for small batches, in contrast
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to past work on scaling NMT [7]. We also partly reclaim
POSTNORM’s stability via smaller initializations, although
PRENORM is less sensitive to this magnitude and can im-
prove performance. However, despite PRENORM’s recent
adoption in many NMT frameworks, we find it degrades base
Transformer performance on WMT '14 English-German.

Choice of normalization. [8] shows that batch normaliza-
tion’s effectiveness is not from reducing internal covariate
shift, but from smoothing the loss landscape. They achieve
similar or better performance with non-variance-based nor-
malizations in image classification. Hence, we propose re-
placing LAYERNORM with the simpler scaled `2 normal-
ization (SCALENORM), which normalizes activation vectors
to a single learned length g. This is both inspired by and
synergistic with jointly fixing the word embedding lengths
(FIXNORM) [9]. These changes improve the training speed
and low-resource performance of the Transformer without
affecting high-resource performance.

On five low-resource pairs from the TED Talks [10]
and IWSLT '15 [11] corpora, we first train state-of-the-
art Transformer models (+4.0 BLEU on average over the
best published NMT bitext-only numbers). We then apply
PRENORM, FIXNORM, and SCALENORM for an average to-
tal improvement of +1.1 BLEU, where each addition con-
tributes at least +0.3 BLEU (Section 3), and attain a new
32.8 BLEU on IWSLT '15 English-Vietnamese. We validate
our intuitions in Section 4 by showing sharper performance
curves (i.e., improvements occur at earlier epochs) and more
consistent gradient norms. We also examine the per-sublayer
g’s learned by SCALENORM, which suggest future study.

2. Background
2.1. Identity mappings for transformers

Residual connections [12] were first introduced to facilitate
the training of deep convolutional networks, where the output
of the `-th layer F` is summed with its input:

x`+1 = x` + F`(x`). (1)

The identity term x` is crucial to greatly extending the depth
of such networks [13]. If one were to scale x` by a scalar
λ`, then the contribution of x` to the final layer FL is
(
∏L−1

i=` λi)x`. For deep networks with dozens or even hun-
dreds of layers L, the term

∏L−1
i=` λi becomes very large if



λi > 1 or very small if λi < 1, for enough i. When back-
propagating from the last layer L back to `, these multiplica-
tive terms can cause exploding or vanishing gradients, re-
spectively. Therefore they fix λi = 1, keeping the total resid-
ual path an identity map.

The original Transformer applies LAYERNORM after the
sublayer and residual addition:

POSTNORM : x`+1 = LAYERNORM(x` + F`(x`)). (2)

We conjecture this has caused past convergence failures
[14, 15], with LAYERNORMs in the residual path acting sim-
ilarly to λi 6= 1; furthermore, warmup was needed to let
LAYERNORM safely adjust scale during early parts of train-
ing. Inspired by [13], we apply LAYERNORM immediately
before each sublayer:

PRENORM : x`+1 = x` + F`(LAYERNORM(x`)). (3)

This is cited as a stabilizer for Transformer training [5, 6]
and is already implemented in popular toolkits [16, 17,
18], though not necessarily used by their default recipes.
[6] makes a similar argument to motivate the success of
PRENORM in training very deep Transformers. Note that one
must append an additional normalization after both encoder
and decoder so their outputs are appropriately scaled. We
compare POSTNORM and PRENORM throughout Section 3.

2.2. Weight initialization

Xavier normal initialization [19] initializes a layer’s weights
W` ∈ Rd`+1×d` (d` is the hidden dimension) with samples
from a centered normal distribution with layer-dependent
variance:

(W`)i,j ∼ N

(
0,

√
2

d` + d`+1

)
. (4)

Our experiments with this default initializer find that POST-
NORM sometimes fails to converge, especially in our low-
resource setting, even with a large number of warmup steps.
One explanation is that Xavier normal yields initial weights
that are too large. In implementations of the Transformer,
one scales the word embeddings by a large value (e.g.,

√
d =

22.6 for d = 512), giving vectors with an expected square
norm of d. LAYERNORM’s unit scale at initialization pre-
serves this same effect. Since feedforward layers already
have their weights initialized to a smaller standard deviation,

i.e.,
√

2
d+4d , we propose reducing the attention layers’ ini-

tializations from
√

2
d+d to

√
2

d+4d as well (SMALLINIT), as
a corresponding mitigation. We evaluate the effect of this on
POSTNORM vs. PRENORM in Section 3.1.

2.3. Scaled `2 normalization and FIXNORM

LAYERNORM is inspired by batch normalization [20], both
of which aim to reduce internal covariate shift by fixing the

mean and variance of activation distributions. Both have
been applied to self-attention [1, 21]. However, [8] shows
that batch normalization’s success has little to do with co-
variate shift, but comes instead from smoothing the loss land-
scape. For example, they divide by the pre-centered `p norm
instead of the variance and achieve similar or better results in
image classification.

Hence, we propose replacing LAYERNORM with scaled
`2 normalization:

SCALENORM(x; g) = g
x

||x||
. (5)

This can be viewed as projecting d-dimensional vectors onto
a (d − 1)-dimensional hypersphere with learned radius g.
This expresses the inductive bias that each sublayer’s acti-
vations has an ideal “global scale,” a notion we empirically
validate in Section 4.2. SCALENORM replaces the 2d scale
and shift parameters of LAYERNORM with a single learned
scalar, improving computational and parameter efficiency
while potentially regularizing the loss landscape.

This bias has an explicit interpretation at the final layer:
large inner products sharpen the output distribution, causing
frequent words to disproportionately dominate rare words.
This led [9] to introduce FIXNORM(w) = g w

||w|| with fixed
g at the last linear layer, to maximize the angular differ-
ence of output representations and aid rare word transla-
tion. By making g learnable, we can apply SCALENORM
and FIXNORM jointly, which means applying the following
at the final linear layer:

(SCALENORM + FIXNORM)(x,w; g) = g
w · x
||w||||x||

. (6)

Note that this combination at the last layer is equivalent to
cosine normalization [22] with a learned scale.

2.4. Learning rates

Despite using an adaptive optimizer, Adam [23], Trans-
former training uses a learning rate (LR) schedule with
a linear warmup and an inverse square root decay
(INVSQRTDECAY):

LR(n) =
λ√
d

min

(
1√
n
,

n

n1.5warmup

)
, (7)

where d is the hidden dimension of the self-attention layers,
and λ, nwarmup are hyperparameters that determine the high-
est learning rate achieved and the number of steps to reach it,
respectively. These two hyperparameters have been the sub-
ject of much empirical study [14, 7]. In light of our modifi-
cations however, we revisit various aspects of this schedule:

Warmup-free training. We conjectured that warmup is pri-
marily needed when using POSTNORM to gradually learn
LAYERNORM parameters without gradient explosion/van-
ishing (Section 2.1). Hence, we evaluate both PRENORM
and POSTNORM without warmup in Section 3.3.



# egs. # src. + tgt. tokens # iters./epoch max. epoch # enc./dec. layers # heads/layer dropout # BPE

gl→en 10k 0.37M 100 1000 4 4 0.4 3k
sk→en 61k 2.32M 600 200 6 8 0.3 8k
en→vi 133k 5.99M 1500 200 6 8 0.3 8k
en→he 212k 7.88M 2000 200 6 8 0.3 8k
ar→en 214k 8.09M 2000 200 6 8 0.3 8k

Table 1: Data and model properties for low-resource NMT. en→vi is from IWSLT 2015; the rest are from the TED Talks corpus.

Large learning rates. To speed up training, one often ex-
plores using larger learning rates. In the context of Trans-
former, [7, 24] take λ ∈ {2, 3} instead of the conventional
λ = 1. [7] showed that one can scale up Adam’s learning
rate to 10−3 with an extremely large batch (400k tokens).
However, the improved convergence provided by our modi-
fications could enable higher learning rates with much small
batch sizes (4k tokens), as examined in Section 3.3.

Validation-based decay. For similar reasons, one might
wish to adopt a classic validation-based decay, i.e., training at
a high learning rate for as long as tenable, decaying rapidly
when development scores flatline. This has inspired usage
of fixed decay schemes upon convergence with INVSQRT-
DECAY [25, 26]. We revisit VALDECAY under our modi-
fications, where we still perform a linear warmup but then
multiply by a scale αdecay < 1 when performance on a devel-
opment set does not improve over patience evaluations.

3. Experiments & results
We train Transformer models for a diverse set of five low-
resource translation pairs from the TED Talks [10] and the
IWSLT '15 [11] corpora. Details are summarized in Table 1.
For more information motivating our choice of pairs and for
exact training details, refer to Appendix A.

3.1. Large vs. small initialization

To see the impact of weight initialization, we run training on
the en→vi dataset using warmup steps of 4k, 8k, 16k (Ta-
ble 2). With default initialization, POSTNORM fails to con-
verge on this dataset even with a long warmup of 16k steps,
only reaching 5.76 BLEU.

Xavier normal # warmup steps
4k 8k 16k

Baseline POSTNORM fail fail 5.76
PRENORM 28.52 28.73 28.32

SMALLINIT
POSTNORM 28.17 28.20 28.62
PRENORM 28.26 28.44 28.33

Table 2: Development BLEU on en→vi using Xavier normal
initialization (baseline versus SMALLINIT).

The second row shows that taking a smaller standard de-
viation on the attention weights (SMALLINIT) restores con-
vergence to POSTNORM. Though the

√
2/5 ≈ 0.63 adjust-

ment used here seems marginal, operations like residual con-
nections and the products between queries and keys can com-
pound differences in scale. Though both models now achieve
similar performance, we note that PRENORM works in all
setups, suggesting greater stability during training. For all
remaining experiments, we use POSTNORM and PRENORM
with SMALLINIT. We find this choice does not affect the
performance of PRENORM.

3.2. Scaled `2 normalization and FIXNORM

To compare SCALENORM and LAYERNORM, we take 8k
warmup steps for all further experiments. Since we tie
the target input word embedding and the last linear layer’s
weight (Appendix A), FIXNORM is implemented by ap-
plying `2 normalization to the word embedding, with each
component initialized uniformly in [−0.01, 0.01]. For non-
FIXNORM models, word embeddings are initialized with
mean 0 and standard deviation

√
1/d so they sum to unit

variance. All g’s in SCALENORM are initialized to
√
d.

Table 3 shows our results along with some published
baselines. First, note that our Transformer baselines with
POSTNORM + LAYERNORM (1) are very strong non-
multilingual NMT models on these pairs. They outper-
form the best published numbers, which are all Transformer
models in the past year, by an average margin of +4.0
BLEU. Then, we see that PRENORM (2) achieves compa-
rable or slightly better results than POSTNORM on all tasks.
FIXNORM (3) gives an additional gain, especially on ar→en
(p < 0.01).

Finally, we replace LAYERNORM with SCALENORM
(4). SCALENORM significantly improves on LAYERNORM
for two very low-resource pairs, gl→en and sk→en. On the
other tasks, it performs comparably to LAYERNORM. Upon
aggregating all changes, our final model with SCALENORM
and FIXNORM improves over our strong baseline with POST-
NORM on all tasks by an average of +1.1 BLEU (p < 0.01),
with each change contributing an average of at least +0.3
BLEU. In Section 4.2 and Appendix B, we further examine
where the performance gains of SCALENORM come from.

Moreover, SCALENORM is also faster than LAYER-
NORM. Recall that for each vector of size d, LAYERNORM



gl→en sk→en en→vi en→he ar→en average ∆

POSTNORM + LAYERNORM [27, 28, 24] 16.2 24.0 29.09 23.66 27.84 -4.05

POSTNORM + LAYERNORM (1) 18.47 29.37 31.94 27.85 33.39 +0.00
PRENORM + LAYERNORM (2) 19.09 29.45 31.92 28.13 33.79 +0.27

PRENORM + FIXNORM + LAYERNORM (3) 19.38 29.50 32.45 28.39 34.35† +0.61
PRENORM + FIXNORM + SCALENORM (4) 20.91‡∗ 30.25‡∗ 32.79∗ 28.44∗ 34.15∗ +1.10

Table 3: Test BLEU using POSTNORM or PRENORM and different normalization techniques. †, ‡ and ∗ indicate significant
improvement of (3) over (2), (4) over (3), and (4) over (1), respectively; p < 0.01 via bootstrap resampling [29].

gl→en sk→en en→vi en→he ar→en

NOWARMUP 18.00 28.92 28.91 30.33 35.40
INVSQRTDECAY 22.18 29.08 28.84 30.30 35.33
VALDECAY 21.45 29.46 28.67 30.69 35.46
INVSQRTDECAY + 2×LR 21.92 29.03 28.76 30.50 35.33
VALDECAY + 2×LR 21.63 29.49 28.46 30.13 34.95

Table 4: Development BLEU for PRENORM + FIXNORM + SCALENORM, trained with different learning rate schedulers.

needs to compute mean, standard deviation, scaling, and
shifting, which costs O(7d) operations. For SCALENORM,
we only needO(3d) operations to perform normalization and
global scaling. This does not account for further gains due
to reduction in parameters. In our implementation, training
with SCALENORM is around 5% faster than with LAYER-
NORM, similar to the speedups on NMT observed by [30]’s
RMSNORM (which can be viewed as SCALENORM with
per-unit scales; see Section 4.2).

3.3. Learning rates

We compare the original learning rate schedule in equa-
tion 7 (INVSQRTDECAY) with validation-based decay
(VALDECAY), possibly with no warmup (NOWARMUP). We
use λ = 1, nwarmup = 8k for INVSQRTDECAY and
VALDECAY. For NOWARMUP, we instead use a learning
rate of 3 · 10−4 for all datasets. For both VALDECAY and
NOWARMUP, we take αdecay = 0.8 and patience = 3. For
experiments with high learning rate, we use either VALDE-
CAY or INVSQRTDECAY with λ = 2 (giving a peak learn-
ing rate of ≈ 10−3). All experiments use PRENORM +
FIXNORM + SCALENORM.

In Table 4, we see that NOWARMUP performs compara-
bly to INVSQRTDECAY and VALDECAY except on gl→en.
We believe that in general, one can do without warmup,
though it remains useful in the lowest resource settings. In
our 2×LR experiments, we can still attain a maximum learn-
ing rate of 10−3 without disproportionately overfitting to
small datasets like gl→en.

One might hypothesize that VALDECAY converges more
quickly to better minima than INVSQRTDECAY by staying
at high learning rates for longer. However, both schedulers
achieve similar results with or without doubling the learning

rate. This may be due to the tail-end behavior of VALDECAY
methods, which can involve multiplicative decays in rapid
succession. Finally, our 2×LR experiments, while not yield-
ing better performance, show that PRENORM allows us to
train the Transformer with a very high learning rate despite
small batches (4k tokens).

Since PRENORM can train without warmup, we won-
der if POSTNORM can do the same. We run experiments
on en→vi with NOWARMUP, varying the number of en-
coder/decoder layers. As seen in Table 5, POSTNORM of-
ten fails without warmup even with 5 or 6 layers. Even at 4
layers, one achieves a subpar result compared to PRENORM.
This reaffirms Section 3.1 in showing that PRENORM is more
stable than POSTNORM under different settings.

4 layers 5 layers 6 layers

POSTNORM 18.31 fails fails
PRENORM 28.33 28.13 28.32

Table 5: Development BLEU on en→vi using NOWARMUP,
as number of encoder/decoder layers increases.

3.4. High-resource setting

Since all preceding experiments were in low-resource set-
tings, we examine if our claims hold in a high-resource set-
ting. We train the Transformer base model on WMT '14
English-German using FAIRSEQ and report tokenized BLEU
scores on newstest2014. Implementation of our methods in
FAIRSEQ can be found in Appendix C.

In Table 6, SCALENORM and FIXNORM achieve equal
or better results than LAYERNORM. Since SCALENORM
is also faster, we recommend using both as drop-in replace-



ments for LAYERNORM in all settings. Surprisingly, in this
task POSTNORM works notably better than PRENORM; one
observes similar behavior in [6]. We speculate this is related
to identity residual networks acting like shallow ensembles
[31] and thus undermining the learning of the longest path;
further study is required.

newstest2014

POSTNORM + LAYERNORM [1] 27.3

PRENORM + LAYERNORM 26.83
PRENORM + FIXNORM + SCALENORM 27.07

POSTNORM + LAYERNORM 27.58
POSTNORM + FIXNORM + SCALENORM 27.57

Table 6: BLEU scores from WMT '14 English-to-German.

4. Analysis
4.1. Performance curves

Figure 1 shows that PRENORM not only learns faster than
POSTNORM, but also outperforms it throughout training.
Adding FIXNORM also gives faster learning at first, but only
achieves close performance to that with PRENORM and no
FIXNORM. However, once paired with SCALENORM, we
attain a better BLEU score at the end. Because of the slow
warmup period, SCALENORM with warmup learns slower
than SCALENORM without warmup initially; however, they
all converge at about the same rate.
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Figure 1: Development BLEU on en→vi with POSTNORM
or PRENORM, and with LAYERNORM or SCALENORM.

To visualize how PRENORM helps backpropagation,
we plot the global gradient norms from our runs in Fig-
ure 2. POSTNORM produces noisy gradients with many
sharp spikes, even towards the end of training. On the other
hand, PRENORM has fewer noisy gradients with smaller

sizes, even without warmup. LAYERNORM has lower global
norms than SCALENORM + FIXNORM but it has more gra-
dient components corresponding to normalization.
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SCALENORM and FIXNORM. Best viewed in color.

4.2. Activation scaling and the role of g

One motivation for SCALENORM was that it expressed a
good inductive bias for the global scaling of activations, inde-
pendent of distributional stability (Section 2.3). In contrast, a
contemporaneous work [30] proposes root mean square layer
normalization (RMSNORM), which still follows layer nor-
malization’s motivation but reduces overhead by forgoing ad-
ditive adjustments, using only a scaling gi per activation ai.
Despite their differing motives, tying the gi of RMSNORM
and dividing by

√
d retrieves SCALENORM.

Hence we can frame our comparisons in terms of num-
ber of learnable parameters. We rerun our PRENORM experi-
ments with RMSNORM. We also consider fixing g =

√
d for

SCALENORM, where only FIXNORM has learnable g. Ta-
ble 7 shows that SCALENORM always performs comparably
or better than RMSNORM. Surprisingly, the fixed-g model
performs comparably to the one with learnable g. How-
ever, at higher learning rates (VALDECAY with and with-
out 2×LR), fixed-g models perform much worse on ar→en,
en→he and en→vi. We conjecture that learning g is required
to accommodate layer gradients.

In Figure 3, we plot the learned g values for pairs with
100k+ examples. For all but the decoder-encoder sublayers,
we observe a positive correlation between depth and g, giving
credence to SCALENORM’s inductive bias of global scaling.
This trend is clearest in the decoder, where g linearly scales
up to the output layer, perhaps in tandem with the discrimi-
nativeness of the hidden representations [32]. We also note
a negative correlation between the number of training exam-
ples and the magnitude of g for attention sublayers, which
may reflect overfitting.



gl→en sk→en en→vi en→he ar→en

RMSNORM + FIXNORM 20.92 30.36 32.54 28.29 33.67
SCALENORM + FIXNORM 20.91 30.25 32.79 28.44 34.15
SCALENORM (g =

√
d) + FIXNORM (learned g) 21.18 30.36 32.66 28.19 34.11

SCALENORM (g =
√
d) + FIXNORM (learned g) + VALDECAY 20.36 30.45 32.83 27.97 33.98

SCALENORM (g =
√
d) + FIXNORM (learned g) + VALDECAY + 2×LR 21.15 30.57 31.81 25.00 28.92

Table 7: Test BLEU of `2-based normalization techniques with different numbers of learned g: O(Ld) vs. O(L) vs. O(1).
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Finally, to affirm our intuition for interpreting g, we plot
g values with and without label smoothing (Figure 4). We
see a difference in later layers of the decoder; there, remov-
ing label smoothing results in lower g values except at the
output layer, where g increases sharply. This corresponds to
the known overconfidence of translation models’ logits, on
which label smoothing has a downscaling effect [33].

5. Conclusion

In this work, we presented three simple, normalization-
centric changes to the Transformer model, with a focus on
NMT. First, we show that while POSTNORM performs bet-
ter for high-resource NMT in the original base Transformer
regime, PRENORM is both more stable and more competent
in low-resource settings. Second, we propose replacing LAY-

ERNORM with SCALENORM, a fast and effective scaled `2
normalization technique which requires only a single learned
parameter. Finally, we reaffirm the effectiveness of fixing the
word embedding norm (FIXNORM). Altogether, PRENORM
+ FIXNORM + SCALENORM significantly improves NMT
on low-resource pairs, with the latter two performing com-
parably in the high-resource setting, but faster.

In the future, we would like to investigate the relation-
ship between POSTNORM and PRENORM when using other
optimizers such as RADAM [34], which has been shown to
improve Transformer training without warmup. We are also
interested in seeing if FIXNORM or SCALENORM at the final
linear layer remains effective when paired with an initializa-
tion method such as FIXUP [35], which enables the training
of deep neural networks without normalization. One could
also explore using other `p norms [8].
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A. Training details

Data and preprocessing. The pairs are English (en) to He-
brew (he), Vietnamese (vi), and Galician (gl), Slovak (sk),

Arabic (ar) to English (en). Because the data is already pre-
processed, we only apply BPE [36] with fastBPE1. De-
pending on the data size, we use different numbers of BPE
operations.

We wanted to compare with the latest low-resource works
of [28, 24] on the TED Talks corpus [10]. In particular, [24]
identified 4 very low-resource pairs (<70k); we took the two
(gl→en, sk→en) that were not extremely low (≤6k). They
then identified 4 low-resource pairs with 100k-300k exam-
ples; we took the top two (ar→en, en→he). To introduce
a second English-source pair and to showcase on a well-
understood task, we used the en→vi pair from IWSLT '15
with an in-between number of examples (133k). In this way,
we have examples of different resource levels, language fam-
ilies, writing directions, and English-source versus -target.

Model configuration. We set the hidden dimension of the
feedforward sublayer to 2048 and the rest to 512, match-
ing [1]. We use the same dropout rate for output of sublay-
ers, ReLU, and attention weights. Additionally, we also do
word-dropout [36] with probability 0.1. However, instead of
zeroing the word embeddings, we randomly replace tokens
with UNK. For all experiments, we use label smoothing of
0.1 [37, 38]. The source and target’s input and output em-
beddings are shared [39], but we mask out words that are
not in the target’s vocabulary at the final output layer before
softmax, by setting their logits to −∞.

Training. We use a batch size of 4096 and optimize using
Adam [23] with the default parameters β1 = 0.9, β2 =
0.999, ε = 10−8. Gradients are clipped when global norm
exceeds 1.0 [40]. An epoch is a predefined number of it-
erations for each pair. We stop training when a maximum
number of epochs has been met or the learning rate becomes
too small (10−6). We also do early stopping when the de-
velopment BLEU has not improved for 20 evaluations. For
gl→en, this number is 50. When doing validation-based de-
cay, we use αdecay = 0.8 and patience = 3. For complete
data and model statistics, please refer to Table 1. The best
checkpoint is selected based on the development BLEU score
during training.

Evaluation. We report tokenized BLEU [41] with
multi-bleu.perl to be comparable with previous
works. We also measure statistical significance using boot-
strap resampling [29]. For WMT '14 English-German, note
that one needs to put compounds in ATAT format2 before
calculating BLEU score to be comparable with previous
works.

B. Further analysis
We ask if improvements from SCALENORM on our low-
resource tasks are due to improved regularization (a smaller

1https://github.com/glample/fastBPE
2https://github.com/tensorflow/tensor2tensor/

blob/master/tensor2tensor/utils/get_ende_bleu.sh



LAYERNORM SCALENORM
train test train test

gl→en 11.792 54.300 10.151 45.770
sk→en 14.078 20.460 14.004 19.080
en→vi 15.961 17.950 16.719 17.100
en→he 15.562 14.950 15.906 15.080
ar→en 14.372 13.450 14.165 13.290

Table 8: Label-smoothed train/test perplexities when using
LAYERNORM and SCALENORM.

generalization gap) or improved overall performance. We
record smoothed train and test perplexities of our PRENORM
models in Table 8. We see suggestive results but no con-
clusive trends. For ar→en, gl→en, and sk→en, train and
test drop slightly, with test more so than train. For en→vi,
train perplexity increases and test perplexity decreases an
equivalent amount. For en→he, our smallest change between
SCALENORM and LAYERNORM, train perplexity negligibly
increased and test perplexity remains the same.

C. Listings

SCALENORM

class ScaleNorm(nn.Module):
"""ScaleNorm"""
def __init__(self, scale, eps=1e-5):

super(ScaleNorm, self).__init__()
self.scale = Parameter(torch.

↪→ tensor(scale))
self.eps = eps

def forward(self, x):
norm = self.scale / torch.norm(x,

↪→ dim=-1, keepdim=True).clamp(
↪→ min=self.eps)

return x * norm

FAIRSEQ We follow FAIRSEQ’s tutorial3 and train a POST-
NORM Transformer base model using the following configu-
ration:

fairseq-train \
data-bin/wmt16_en_de_bpe32k/ \
--arch transformer_wmt_en_de \
--share-all-embeddings \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 1.0 \
--lr 0.001 \
--lr-scheduler inverse_sqrt \
--warmup-updates 4000 \

3https://github.com/pytorch/fairseq/blob/master/
examples/scaling_nmt/README.md

--warmup-init-lr 1e-07 \
--dropout 0.1 \
--weight-decay 0.0 \
--criterion

↪→ label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--max-tokens 8192 \
--update-freq 10 \
--attention-dropout 0.1 \
--activation-dropout 0.1 \
--max-epoch 40

For PRENORM, simply include the flags --encoder-
↪→ normalize-before --decoder-normalize-
↪→ before.

For SCALENORM, we replace all LAYERNORMs
in fairseq/models/transformer.py and
fairseq/modules/transformer layer.py
with SCALENORM (implemented above). For FIXNORM,
we change the word embedding initialization to uniform
with range [−0.01, 0.01] and normalize with torch.nn.
↪→ functional.normalize.

We note that FAIRSEQ uses Xavier uniform initialization,
which is big compared to our SMALLINIT (Section 3.1). We
conjecture that FAIRSEQ training remains stable thanks to its
large batch size, which gives more stable gradients.


