
How Transformer Revitalizes Character-based Neural Machine Translation:
An Investigation on Japanese-Vietnamese Translation Systems

Thi-Vinh Ngo1, Thanh-Le Ha2, Phuong-Thai Nguyen3, Le-Minh Nguyen4

1University of Information and Communication Technology, TNU, Vietnam
2Institute of Anthropomatics and Robotics, KIT, Germany

3University of Engineering and Technology, VNU, Vietnam
4School of Information Science, JAIST, Japan

ntvinh@ictu.edu.vn,thanh-le.ha@kit.edu,thainp@vnu.edu.vn,nguyenml@jaist.ac.jp

Abstract

While translating between East Asian languages, many
works have discovered clear advantages of using characters
as the translation unit. Unfortunately, traditional recurrent
neural machine translation systems hinder the practical us-
age of those character-based systems due to their architec-
tural limitations. They are unfavorable in handling extremely
long sequences as well as highly restricted in parallelizing
the computations. In this paper, we demonstrate that the new
transformer architecture can perform character-based trans-
lation better than the recurrent one. We conduct experiments
on a low-resource language pair: Japanese-Vietnamese. Our
models considerably outperform the state-of-the-art systems
which employ word-based recurrent architectures.

1. Introduction
Neural machine translation (NMT) has achieved the state-
of-the-art performances in recent machine translation cam-
paigns for many language pairs due to its fluent and accu-
rate outputs [1–3]. Yet often those outputs from NMT are
over-translated, where words or phrases are redundantly re-
peated in the translations, thus affecting their readability.
One reason leading to over-translation in NMT is, unlike
the traditional statistical machine translation (SMT), basic
NMT architectures and their beam search do not explicitly
model coverage. Furthermore, their content-based attention
mechanism, which effectively aligns an arbitrary number of
source words to the only target word at a time when de-
coding without any length control, intensifies the problem.
Consequently, the best and simplest strategy to avoid over-
translation when translating between two languages having
lots of length mismatches might be to segment the texts in
some way so that the systems could work with one-to-one
alignments as many as possible1. On the other hand, given
sufficiently large data, a well-designed NMT architecture is
capable of automatically learning good alignments with its
attention mechanism.

1By terming one-to-one alignment, we mean that one translation unit of
the source sentence corresponds to one translation unit of the target sentence
and vice versa.

For translation systems between Romance, Balto-Slavic
and Germanic languages, unsupervised subword segmenta-
tion methods, such as Byte-Pair Encoding [4], are often used
and they show great improvements. Subword-based transla-
tion systems possess two important advantages. First, they
reduce the vocabulary size, hence, making the model mem-
ory and performance-efficient. Second, they are able to com-
petently deal with unknown and rare words. For many other
languages in East, South and South-East Asia, however, the
preprocessing frequently requires more complicated and ex-
pensive supervised tokenization methods to segment the texts
into decent translation units, since in those languages, word
boundaries are not signaled by the whitespaces.

In order to liberate the whole translation system from the
dependencies on those non-trivial tokenization methods (in-
cluding subword segmentation) while still effectively deal-
ing with the out-of-vocabulary (OOV) problem, character-
level approaches2 have been investigated. However, those
approaches have not enjoyed much success in machine trans-
lation as when they are applied in other natural language
processing tasks, since it is difficult for the conventional
recurrent-based neural translation architecture to properly
model the relationship between characters and their mean-
ings due to the inherent limitations of recurrent neural net-
works (RNN) in handling long sequence.

A more-recently-proposed neural machine translation ar-
chitecture, the transformer, owns an important characteristic:
via its self-attention blocks, it allows modeling arbitrarily-
long-distance relationships with a constant number of oper-
ations during training. Thus, the transformer could allevi-
ate the limitations of RNN-based architectures and make the
character-level translation become effective and practical.

The paper is structured as follows. We start with a de-
tailed discussion about character-level translation in compar-
ison with word and subword counterparts (Section 2). Then
we revise the recurrent architecture as well as the transformer
architecture in Section 3. Section 4 describes our experi-
ments and our analysis about how the transformer revitalizes
character-based machine translation. Finally, the paper ends

2Here we mean the pure character-level, in which the basic translation
unit is a character, not the subword or the n-gram-character ones.



with conclusion and future work.

2. Character-Level Translation
In general, most of the neural machine translation systems
prefer word and subword as the translation unit than charac-
ter due to the following limitations of character-level transla-
tion approach:

1. Unlike words or subwords that bear some meaning, a
character in many languages simply represents an or-
thographical symbol, and the relationship between that
symbol and its meaning are arbitrary from the linguis-
tic point of view. For example, it is unfeasible to in-
duce any meaning from the English character "c" or the
Japanese hiragana characterガ when they stay alone.

2. Since the sequence lengths when the translation unit is
character are 3 to 10 times bigger than those of word-
based translation3, the neural architecture needs to be
able to capture longer-distance dependencies in order
to produce reasonable translation. However, the recur-
rent architectures often fail to handle such long-term
dependencies even when they employ gated recurrent
units like long short-term memories (LSTMs) or gated
recurrent units (GRUs).

3. The same reason prohibits the usage of recurrent ar-
chitectures in practice. The number of model parame-
ters increases proportionally with the number of time
steps (i.e. the sequence length). Thus, the training
and inference processes are slowed down as well as
the demand of memory footprint escalates just to get
a similar modeling power on the same sentence being
represented as a sequence of words or subwords.

In contrast, there are handful of languages in which
character-based translation is clearly favorable. Chinese, for
example, is a logo-syllabic language where the graphemes
represent morphemes. Each concept in Chinese often com-
prises of two characters and each of those characters bears
some meaning (morpheme in morphology), similar to the
amount of semantic information that a subword or even a
word conveys in other languages. For instance, the word
“遊” (travel) is constituted by two characters “遊” (move)
and “歴” (experience), meaning “moving and experiencing”.
This holds true with Japanese kanji scripts4, one among three
scripts in Japanese (kanji, hiragana and katakana). A Viet-
namese word, on the other hand, is written as a sequence
of Latin characters and white-spaces, thus, each character
hardly carries any meaning as in case of other Latin-based
languages. However, if we consider each morpheme, which
is separated from others by white-spaces, to be a Chinese-
like character as there are almost one-to-one mappings be-

3This factor depends on the languages.
4Kanji means Chinese character and a large number of kanji characters

are the same as their Chinese counterpart.

tween a morpheme in Vietnamese and a character in Chi-
nese, character-based approaches work almost analogously
between the two languages. Let us take the Vietnamese cor-
respondence of the Chinese word “遊歴” above: “du lịch”
(travel) is made up of from two morphemes “du” (move) and
“lịch” (experience), while each morpheme is a sequence of
Latin-based characters. Due to this reason, in the context
of this work, from here onwards we would like to consider
a Vietnamese morpheme a character. Table 1 shows some
examples of such character-based mappings among Chinese,
Japanese kanji and Vietnamese. The mappings help when
translating between those languages at the character level.

A unique characteristic of Japanese compared to Chi-
nese and Vietnamese is that in written Japanese, kanji, hi-
ragana and katakana scripts are often mixed. As a con-
sequence, when translating from Vietnamese or Chinese to
Japanese, each source character is mapped to a kanji charac-
ter or to a short sequence of hiragana or katakana characters
in the target side. To avoid this length mismatch problem
which affects greatly to recurrent architectures, the studies
opt to either word-based translation using tokenization meth-
ods or sub-character translation. To the best of our knowl-
edge, state-of-the-art translation systems from Chinese and
Vietnamese to Japanese follow those two directions in a re-
current framework instead of utilizing pure charecter-based
approaches. The first direction, word-based approaches, re-
quires good supervised tokenization or word segmentation
tools which might be expensive for some languages and do-
mains [5]. The later demands external knowledge resources
of sub-character level, such as Chinese character radicals or
how to convert from a character to several strokes [6]. Fur-
thermore, this direction is not applicable for non-logographic
languages like Vietnamese or Korean.

In this work, we seek for a simple solution featuring
character-level translation, since it does not require external
tools and resources, but capable of alleviating the typical dif-
ficulties of long distance modeling, both in theory and prac-
tice, of recurrent-based architectures. We hypothesized that
transformer architecture is well suited to address or at least
reduce the problem, thus, improves the bar performance of
character-level translations between Japanese and other lan-
guages.

3. Neural Machine Translation Architectures
In this section, we describe two NMT architectures which
are the most popular instances of the general neural encoder-
decoder framework applied in sequence-to-sequence prob-
lems: recurrent-based and transformer.

Given a source sentence x = {x1, ..., xn}, the encoder
is a neural architecture which reads every words xi and en-
codes a representation of the sentence into a fixed-length vec-
tor, called the context vector. The context vector is often
time-specific, representing the source sentence at different

5“người Nhật” (Japanese people) is the short form but a more popular
version of “người Nhật Bản” (“người”≡“人”, “Nhật”≡“日”, “Bản”≡“本”).



Japanese kanji & Chinese Tokenized Japanese kanji Vietnamese
“校長(headmaster)” “校(school)” and “長(head/lead)” “hiệu trưởng” (“hiệu”≡“校”, “trưởng”≡“長”)
“村民(villager)” “村”(village) and “民”(citizen) “dân làng” (“dân”≡“民”, “làng”≡“村”)
“同時(simultaneous)” “同(same)” and “時(time)” “đồng thời” (“đồng”≡“同”, “thời”≡“時”)
“日本人” (Japanese people) “日本”(Japan) and “人”(human) “người Nhật” (“người”≡“人”, “Nhật”≡“日”)5

Table 1: Some examples of words in Japanese kanji (Chinese characters) and their character mapping in Vietnamese.

time steps. It is calculated via attention mechanism, which
is essentially a weighted combination of the source hidden
states hi. The decoder, which is another neural architecture,
generates one target word every time step to form a trans-
lated target sentence y = (y1, ..., ym) in the end. In ad-
dition to the information from previous generated sequence
y1:j−1 = (y1, ..., yj−1), the decoder is also conditioned on
the context vector cj , which contains the source sentence in-
formation, to produce the next target word yj at the time step
j. In practice, this is modeled a probabilistic distribution over
the target vocabulary by applying a softmax layer on the de-
coder representation zj :

p(yj |y1:j−1, cj) = Softmax(Wzj + b)

The main difference between the recurrent-based and the
transformer is how the encoder and decoder model the se-
quence, which is shortly described in the section below.

3.1. Recurrent Architecture

As the name suggested, recurrent architectures employ
recurrent-based units as the main part of its encoder and de-
coder. In the encoder, the hidden state hi is modeled by a
bidirectional recurrent unit (e.g. LSTM [7] or GRU [8]),
taking into account the current word’s embeddings si and
the hidden state of the previous word hi−1. hi encodes the
source sentence up to the time i from both forward and back-
ward directions:

hi = [
−→
h i,
←−
h i]

−→
h i = Recurrent(

−→
h i−1, si)

←−
h i = Recurrent(

←−
h i+1, si)

Similarly the decoder uses recurrent units to calculate the
target hidden state zj based on the previous hidden state of
the decoder zj−1, the embeddings of the previous target word
tj−1 and the time-specific context vector cj :

zj = Recurrent(zj−1, tj−1, cj)

In recent NMT architectures, the encoder and decoder are
constructed by stacking several recurrent layers, and resid-
ual connections [9] are added between layers in order to
make the training of the deep network feasible. The atten-
tion mechanism is originally applied in the recurrent-based
architecture, as mentioned before, then plays a more impor-
tant role in the transformer architectures.

3.2. Transformer Architecture

Transformer architectures based on the concept of attention,
which is a generalized version of the attention mechanism
used in recurrent architectures6:

Attention(Q,K,V) = Softmax(
QKT

d
V) (1)

where d is the scaling factor, depending on the size of the
input to that attention layer.

Basically, this attention mechanism models the relation-
ships between queries Q and tuples of keys and values
(K,V). In the original attention used in between the en-
coder and the decoder of recurrent architectures (and also
between those of the transformer architectures), the queries
come from the decoder’s hidden states, and the keys, that
each of them is also the corresponding value, are all the hid-
den states coming from the encoder. The transformer, how-
ever, also features a special kind of attention in its encoder
and decoder, called self-attention. In self-attention encoders,
the queries, keys and values all come from the representa-
tion of the source sentence. This allows each position attend
to every other position, automatically figuring out some re-
lationship among source words. Similarly, self-attention is
applied in the decoder, with a small modification: the future
positions are masked out since the future information (future
target words) are not available at the inference time.

Transformer architectures employ multi-head attention,
each head is the result of Formula 1, and each head mod-
els a relationship among source or target sentences. They
are then concatenated and linearly combined into the multi-
head attention. Due to the fact that all of the attention heads
and multi-head attentions are calculated by feed-forward lay-
ers, parallel calculations of the whole architecture7 across
time steps is straightforward, constant to the length of the
sequence. Furthermore, each state in the self-attention en-
coder or decoder is connected directly to all other states, no
matter how far in the order they are introduced. In other

6More precisely, the attention mechanism mentioned here is the general-
ized version of the dot attention [10], which is the most popular implement-
ing way of attention.

7Transformer consists of several stacked encoder and decoder blocks.
In each encoder or decoder block, besides self-attention layers, there are
position-wide feed-forward layers as well as residual and normalization lay-
ers. Since the encoder and decoder using self-attention does not explicitly
encode the information of the sequence order like the recurrent ones, a posi-
tional encoding is injected along the word embeddings of both the encoder
and decoder. For more details, please refer to [11].



Figure 1: Recurrent and self-attention architectural differences.

words, long distance relationships are modeled better in self-
attention mechanism than in recurrent architectures which
rely on forget mechanism. So multi-head self-attention in
theory allows us to model various aspects of the extremely
long source and target sequences. In practice, the context
that self-attention can effectively model is often beyond ev-
ery sentence. This is the key answer for what we questioned
our character-based translation systems in Section 2. Figure1
summarizes the main architectural differences between the
recurrent-based and the transformer.

3.3. Transformer vs. Recurrent in Character-based MT

With the differences between two architectures, we hy-
pothesize that transformer could address the problems
that character-based recurrent translation systems encounter.
Specifically, transformer is expected to offer more benefit
than the recurrent in those aspects:

Jointly Learn Tokenization and Representation. The
most complicated recurrent unit, LSTM, has three different
gates: input, output and forget gates, thus, it possesses excel-
lent memory mechanism. It is still unable, however, to jointly
learn word segmentation or tokenization and the relationship
between two words. On the other hand, the transformer can
have one attention head to learn how to combine possible
characters, even they are not consecutive, into a meaning unit
and other heads to learn different dependencies among words
in the sequence. Another possible scheme is that each head in
the multi-head attention can learn how to combine characters
in a specific way suitable for learning a specific relationship
in the sequence.

Long-distance Modeling. Transformer is better to cap-
ture information of long-distance dependencies in a sequence
than the recurrent one. While the relationship of two words
far from each others is modeled correspondingly far in the
recurrent, which is extremely difficult to be learned, that re-
lationship is directly modeled in the self-attention regardless
of the distance between them. A sentence in Japanese would
be three or four times longer if it is represented as a sequence

of characters compared to that as a sequence of words, and
that factor is around two times in Chinese and Vietnamese.

Highly Parallelization. Transformer allows parallel
computations not only over the stacked layers but also across
the time steps. In training, the number of computing opera-
tions in each layer of transformer is constant whereas they are
proportional to the sequence length in case of the recurrent
architecture. With the same training time, a transformer can
have much larger modeling capacity than a recurrent-based
model. Again, it is more effective and efficient in translating
a longer sequence of characters than a sequence of words.

4. Experiments and results

We would like to verify our hypotheses with
Japanese⇔Vietnamese translations. More specifically,
we set up the following experiments and conduct the
comparisons among them:

Word2WordRecurrent: Word-based translation system
using recurrent architecture with the best tokenizations. Fol-
lowing the description of [12], the best system performs to-
kenization and sub-word segmentation for Japanese and the
modified sub-word segmentation for Vietnamese. However,
in their paper, they also mentioned that the system using su-
pervised word segmentation achieved similar result to their
modified sub-word segmentation for Vietnamese and we de-
cided to take the supervised word segmentation system since
it is easier to replicate that system.

Word2WordTransformer: Word-based translation sys-
tem using transformer architecture with the best tokeniza-
tions (the same methods applied in the first system).

Char2CharRecurrent: Character-based system using
recurrent architecture without any tokenization. Note that on
the Vietnamese side, character here means morpheme, sep-
arated to others by white-spaces. Please refer to Section 2.

Char2CharTransformer: Character-based system us-
ing transformer architecture without any tokenization.



Japanese⇒Vietnamese
System BLEU ∆ BLEU RIBES ∆ RIBES

(1) Word2WordRecurrent 11.05 -2.29 0.663 -0.025
(2) Word2WordTransformer 11.72 -1.62 0.681 -0.007
(3) Char2CharRecurrent 10.06 -3.28 0.657 -0.031
(4) Char2CharTransformer 13.34 - 0.688 -

Vietnamese⇒Japanese
System BLEU ∆ BLEU RIBES ∆ RIBES

(1) Word2WordRecurrent 11.13 -3.92 0.593 -0.098
(2) Word2WordTransformer 13.07 -1.98 0.679 -0.012
(3) Char2CharRecurrent 9.61 -5.44 0.566 -0.125
(4) Char2CharTransformer 15.05 - 0.691 -

Table 2: Comparisons of Japanese⇔Vietnamese translation systems’ results on tst2010.

4.1. Data

We use four Japanese-Vietnamese parallel corpora collected
from various sources: (1) TED talks corpus in [12], (2) Asian
Language Treebank corpus in [13], (3) we extracted bilingual
sentences from the multilingual Tatoeba corpus8, and (4) we
crawled examples of bilingual sentences from Glosbe9, an
open multilingual online dictionary. After removing dupli-
cate lines and filtering noisy data in (4) we obtained 210K
sentence pairs10. To evaluate the translation quality on sev-
eral translation systems and also to compare with the first
published Japanese⇔Vietnamese translation systems [12],
we use dev2010 as the validation set and tst2010 for
testing in all experiments. dev2010 and tst2010 are sen-
tences extracted from TED talks, thus, we can consider (1)
is the in-domain training data. Comparing to [12], validation
and test sets are cleaned up to make sure that the length of all
sentences do not exceed 100 tokens.

4.2. Preprocessing

We used kytea11 [14] to tokenize Japanese texts and then
segmented into sub-words using BPE method [4]. For Viet-
namese texts, we first normalized them using the Moses
scripts and then we employed pyvi12 to conduct supervised
word segmentation on those texts.

4.3. System Architectures

Recurrent systems. We implement all recurrent transla-
tion systems using OpenNMT-py 13 [15]. In our models, the
encoder is a bi-directional LSTM which has two layers and
the decoder is another recurrent architecture with two LSTM
layers, the hidden size for each layer is 512 dimension. The
embedding size on both source and target is also 512. We use

8https://tatoeba.org
9https://en.glosbe.com/

10The compilation of the corpora is available at https://github.
com/ngovinhtn/JaViCorpus.

11http://www.phontron.com/kytea/
12https://pypi.org/project/pyvi/
13https://github.com/OpenNMT/OpenNMT-py

Adam optimizer to update weights with the learning rate is
initialized at 0.001 and then annealing on training. The size
of each mini batch is 32 and the number of training epochs
for each system are 15. Other parameters are the defaults of
OpenNMT-py. For each system, we choose the best model
in terms of the accuracy on validation set.

Transformer systems. We employ the framework
NMTGMinor14, a variant of Transformer described in [11].
For all our model, we use a stack of 4 layers for both encoder
and decoder with the sizes of hidden units and embedding
for each layer are the same as 512 and the number of heads
are H = 8. The size of inner feed forward layer is 1024.
The number of words on each mini batch are 4096 tokens.
We use the scaling factor for all dropout layers is 0.2 ex-
cept on embedding indices is 0.1. Like recurrent models, we
also use Adam optimizer to learn weights but we initialize
the learning rate at 1.0 and do not use annealing on training.
The output of loss function is smoothed with the factor of
0.1. We train all of translation systems for 50 epochs and
obtain the best model which have the smallest perplexity on
the validation set.

4.4. Results

We evaluate the quality of our translation systems using
two measures including multi-BLEU and RIBES15 [16].
Table 2 shows the results for Japanese⇒Vietnamese and
Vietnamese⇒Japanese. To have more exact evaluation
in case of Vietnamese⇒Japanese direction, we re-apply
kytea tokenization on the translated outputs, and calculate
multi-BLEU and RIBES scores on these tokenized texts
with the human references16.

Recurrent systems. As we already analyzed in Sec-
tion 2 and Section 3, character-based translation systems em-
ploying recurrent architecture would suffer from a longer
sequence given the same amount of information. Further-

14https://github.com/quanpn90/NMTGMinor
15http://www.kecl.ntt.co.jp/icl/lirg/ribes/
16All the recipes for those experiments are available at https://

github.com/ngovinhtn/charTransform.



more, it is difficult for the recurrent architecture to jointly
learn tokenization and translation. Using the same recur-
rent architecture, the character-based system performs 1.44
and 1.09 BLEU scores less than the word-based system us-
ing the best tokenization methods in Japanese⇒Vietnamese
and Vietnamese⇒Japanese, respectively.

Word2Word systems. We observe the fact that using
transformer architectures in word-based systems brings im-
provements in both of the translation directions, especially in
Vietnamese⇒Japanese (BLEU improvement is 1.94, RIBES
improvement is 0.086). It might reflect the better modeling
capacity of the transformer over the recurrent.

Character-based transformer systems. Those systems
achieve best results on both directions, significantly out-
perform the best systems reported in [12], which are the
word-based systems using the best tokenization methods
(BLEU scores 13.34 vs. 11.05 on Japanese→Vietnamese
and 15.05 vs. 11.15 on Vietnamese→Japanese). Moreover,
character-based systems do not require external knowledge
or tools in order to perform tokenization. This advantage
makes the translation systems more scalable and applica-
ble in new domains and in similar languages where such
tools and knowledge do not exist or expensive and diffi-
cult to create. Our systems set a new state-of-the-art results
on Japanese⇒Vietnamese and Vietnamese⇒Japanese trans-
lations. The results confirms our hypotheses about the su-
periors of using transformer architectures on character-level
translation.

5. Related Works
To alleviate the weakness of word-based translation mod-
els, many works recently have inspected translation tasks
on several levels like sub-word units or characters. [4]
proposed BPE algorithm for learning rules to convert a
word into sub sequences. [12] developed a segmentation
method for Vietnamese. These approaches are unsuper-
vised ways. [17] have investigated translation systems at
entirely character level on many Indo-European language
pairs on sequence-to-sequence models using recurrent archi-
tecture. To dealing with the unfavorable impacts of long-
term dependencies on translation systems, they add some
more layers to the encoder to obtain a shorter representa-
tion from the input sentence. However, their experiments
have shown these efforts still fail to solve this problem. [18]
have also revisited character-based translation systems using
RNNs but they extended their systems with a component for
compressing of character sequences to speed up computa-
tion and a hierarchical multi-scale LSTM network for han-
dling length sentences. [6] have achieved improvements on
Japanese⇒Chinese translation task based on the survey of
character translation. As previous woks, they also employ
traditional NMT system with recurrent encoder-decoder and
attention mechanism. In addition, they convert all katakana
characters, Arabic numerals, Latin symbols and other spe-
cial symbols in Japanese texts to new symbols correspond-

ing. For these reason, many symbols in Japanese are derived
from Chinese symbols. This changes the original Japanese
texts and makes the systems are more difficult to do transla-
tion in the reverse direction as Chinese⇒Japanese. Briefly,
all of above works has conducted their experiments on recur-
rent architecture and modified their architectures or perform
some replacing operators in the preprocessing.

6. Conclusion
We have investigated character-based NMT systems using
transformer and compared them to the state-of-the-art word-
based recurrent systems. Our results have shown that trans-
former is capable of learning long-term dependencies, so
they can translate better at character level. In the future, we
would like to exploit our systems’ effects on more languages
and conduct more detailed analysis on how the transformer
really models the sequence.

7. Acknowledgments
This work is supported by the project "Building a machine
translation system to support translation of documents be-
tween Vietnamese and Japanese to help managers and busi-
nesses in Hanoi approach to Japanese market", No. TC.02-
2016-03.

8. References
[1] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
et al., “Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation,” in Transactions of the Association for Compu-
tational Linguistics, vol. 5, pp. 339–351 2017.

[2] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, R. Cat-
toni, and M. Federico, “The IWSLT 2016 Evaluation
Campaign,” in Proceedings of the 13th International
Workshop on Spoken Language Translation (IWSLT
2016), Seattle, WA, USA, 2016.

[3] E. Cho, J. Niehues, T.-L. Ha, M. Sperber, M. Mediani,
and A. Waibel, “Adaptation and combination of nmt
systems: The kit translation systems for iwslt 2016,”
in Proceedings of the ninth International Workshop on
Spoken Language Translation (IWSLT), Seattle, WA,
2016.

[4] R. Sennrich, B. Haddow, and A. Birch, “Neural Ma-
chine Translation of Rare Words with Subword Units,”
in Association for Computational Linguistics (ACL
2016), Berlin, Germany, August 2016.

[5] L. Zhang and M. Komachi, “Neural machine translation
of logographic language using sub-character level
information,” in Proceedings of the Third Conference
on Machine Translation: Research Papers. Belgium,



Brussels: Association for Computational Linguistics,
Oct. 2018, pp. 17–25. [Online]. Available: https:
//www.aclweb.org/anthology/W18-6303

[6] J. Zhang and T. Matsumoto, “Improving character-
level japanese-chinese neural machine translation with
radicals as an additional input feature,” CoRR, vol.
abs/1805.02937, 2018. [Online]. Available: http:
//arxiv.org/abs/1805.02937

[7] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Comput., vol. 9, no. 8,
pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[8] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical
Machine Translation,” in Proceedings of Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8. Baltimore, ML, USA: Associa-
tion for Computational Linguistics, Jule 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015. [Online]. Available: http:
//arxiv.org/abs/1512.03385

[10] M.-T. Luong, H. Pham, and C. D. Manning, “Effective
approaches to attention-based neural machine transla-
tion,” in Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP
15. Lisbon, Portugal: Association for Computational
Linguistics, September 2015, pp. 1412–1421. [Online].
Available: http://aclweb.org/anthology/D15-1166

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” CoRR, vol. abs/1706.03762,
2017. [Online]. Available: http://arxiv.org/abs/1706.
03762

[12] T.-V. Ngo, T.-L. Ha, P.-T. Nguyen, and L.-M. Nguyen,
“Combining advanced methods in japanese-vietnamese
neural machine translation,” 2018 10th International
Conference on Knowledge and Systems Engineering
(KSE), pp. 318–322, 2018.

[13] H. Riza, M. Purwoadi, Gunarso, T. Uliniansyah, A. A.
Ti, S. M. Aljunied, L. C. Mai, V. T. Thang, N. P. Thai,
V. Chea, R. Sun, S. Sam, S. Seng, K. M. Soe, K. T.
Nwet, M. Utiyama, and C. Ding, “Introduction of the
asian language treebank,” in 2016 Conference of The
Oriental Chapter of International Committee for Coor-
dination and Standardization of Speech Databases and
Assessment Techniques (O-COCOSDA), Oct 2016, pp.
1–6.

[14] G. Neubig, Y. Nakata, and S. Mori, “Pointwise
prediction for robust, adaptable japanese morpholog-
ical analysis,” in Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies: Short
Papers - Volume 2, ser. HLT ’11. Stroudsburg,
PA, USA: Association for Computational Lin-
guistics, 2011, pp. 529–533. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2002736.2002841

[15] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush,
“Opennmt: Open-source toolkit for neural machine
translation,” in Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics-
System Demonstrations. Vancouver, Canada, July 30
- August 4, 2017: Association for Computational Lin-
guistics, 2017, pp. 67–72.

[16] H. Isozaki, T. Hirao, K. Duh, K. Sudoh, and
H. Tsukada, “Automatic evaluation of translation
quality for distant language pairs,” in Proceedings
of the 2010 Conference on Empirical Methods in
Natural Language Processing, ser. EMNLP ’10.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2010, pp. 944–952. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1870658.1870750

[17] J. Lee, K. Cho, and T. Hofmann, “Fully character-
level neural machine translation without explicit
segmentation,” CoRR, vol. abs/1610.03017, 2016.
[Online]. Available: http://arxiv.org/abs/1610.03017

[18] C. Cherry, G. Foster, A. Bapna, O. Firat, and
W. Macherey, “Revisiting character-based neural
machine translation with capacity and compression,”
CoRR, vol. abs/1808.09943, 2018. [Online]. Available:
http://arxiv.org/abs/1808.09943


