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Abstract

Neural network based word embeddings, such
as Word2Vec and GloVe, are purely data
driven in that they capture the distributional in-
formation about words from the training cor-
pus. Past works have attempted to improve
these embeddings by incorporating semantic
knowledge from lexical resources like Word-
Net. Some techniques like retrofitting modify
word embeddings in the post-processing stage
while some others use a joint learning ap-
proach by modifying the objective function of
neural networks. In this paper, we discuss two
novel approaches for incorporating semantic
knowledge into word embeddings. In the first
approach, we take advantage of Levy et al’s
work which showed that using SVD based
methods on co-occurrence matrix provide sim-
ilar performance to neural network based em-
beddings. We propose a sprinkling technique
to add semantic relations to the co-occurrence
matrix directly before factorization. In the sec-
ond approach, WordNet similarity scores are
used to improve the retrofitting method. We
evaluate the proposed methods in both intrin-
sic and extrinsic tasks and observe significant
improvements over the baselines in many of
the datasets.

1 Introduction

Neural Network based models (Mikolov et al.,
2013a; Pennington et al., 2014) have been hugely
successful in generating useful vector representa-
tion for words which preserve their distributional
properties in a given corpora. Improving the qual-
ity of word embeddings have led to better per-
formance in many downstream language tasks.
Considering the widespread uses of word embed-
dings, there have been a lot of interest in improv-
ing the quality of these embeddings by leverag-
ing lexical knowledge such as synonymy, hyper-
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nymy, hyponymy, troponymy and paraphrase re-
lations. This is accompanied by the availabil-
ity of large scale lexical knowledge available in
WordNet (Miller, 1995) and Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013).

In this paper, we propose two simple yet pow-
erful approaches to incorporate lexical knowl-
edge into the word embeddings. First, we pro-
pose a matrix factorization based approach which
uses the idea of ‘sprinkling’ (Chakraborti et al.,
2006, 2007) semantic knowledge into the word co-
occurrence matrix. Second, we identify the weak-
nesses of the retrofitting model (Faruqui et al.,
2014) and propose a few modifications that im-
proves the performance. We demonstrate the
strength of the proposed models by showing sig-
nificant improvements in two commonly used in-
trinsic language tasks - word similarity and anal-
ogy, and two extrinsic tasks - named entity recog-
nition (NER) and part of speech tagging (POS).

2 Related Works

Learning of word embeddings that capture distri-
butional information has been vital to many NLP
tasks. Prediction-based methods such as skip-
gram (Mikolov et al., 2013a) and CBOW (Ben-
gio et al., 2003) use neural language modelling for
predicting a given word given its context words (or
vice-versa) and extract the learned weight vectors
as word embeddings. On the other hand, count-
based methods derive a co-occurrence matrix of
words in the corpus and use matrix factorization
techniques like SVD to extract word representa-
tions (Levy and Goldberg, 2014). GloVe (Pen-
nington et al., 2014) uses co-occurrence matrix to
train word embeddings such that the dot product
between any two words is proportional to the log
probability of their co-occurrence.

The models that incorporate lexical knowledge
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into the word embeddings can be broadly classi-
fied into two categories, namely post processing
and joint learning. Post processing methods such
as (Faruqui et al., 2014; Mrkšić et al., 2016) take
the pre-trained word embeddings and modify them
by injecting semantic knowledge. The retrofitting
method (Faruqui et al., 2014) derives similarity
constraints from WordNet and other resources to
pull similar words closer together. Whereas, the
counterfitting approach, (Mrkšić et al., 2016) also
tries to push the antonymous words away from
each other. These approaches consider only one-
hop neighbours’ relations. We improve upon
this by considering multi-hop neighbours as well
as use structural and information-based similar-
ity scores to determine their relative importance in
imposing similarty contraints to the word embed-
dings.

Joint learning approaches like (Yu and Dredze,
2014; Fried and Duh, 2014; Vashishth et al., 2018)
learn word embeddings by jointly optimizing dis-
tributional and relational information. For in-
stance, in Yu and Dredze (2014), the objective
function consists of both the original skip-gram
objective as well as prior knowledge from seman-
tic resources to learn improved lexical semantic
embeddings. The recent work by Vashishth et
al. (2018) uses Graph Convolutional Networks
(GCNs) to learn relations between words and out-
performs the previous methods in many language
tasks.

Sprinkling: Latent Semantic Indexing (LSI),
also known as Latent Semantic Analysis (LSA),
learns a distributional representation for words by
performing Singular Value Decomposition (SVD)
on the term-document matrix. However, the di-
mensions obtained from LSI are not optimal in
a classification setting because it is agnostic to
class label information of the training data. The
sprinkling method introduced by Chakraborti et
al., (2006) improves LSI by appending the class
labels as extra features (terms) to the correspond-
ing training documents. When LSI is carried out
on this augmented term-document matrix, terms
pertaining to the same class are pulled closer to
each other. An extension of this method, called
adaptive sprinkling (Chakraborti et al., 2007), al-
lows to control the importance of specific class la-
bels by appending them multiple times to the term-
document matrix. For instance, in case of double
sprinkling, we append the class labels twice to the

matrix thus improving the weakly supervised con-
straints imposed by class labels.

3 Proposed Models

In this section, we discuss the proposed models
to incorporate semantic knowledge into word em-
beddings.

3.1 SS-PPMI & DSS-PPMI
In this approach, we take advantage of Levy
and Goldberg’s work (2014) in which the authors
have shown that the objective function used in
Word2vec (Mikolov et al., 2013a) implicitly fac-
torizes a Shifted PPMI (SPPMI) matrix. While
there are many methods that attempt to inject se-
mantic knowledge into neural word embeddings,
to the best of our knowledge, we have not come
across any work that tries to inject semantic
knowledge into the SPPMI matrix. In its origi-
nal form, the SPPMI matrix captures only distri-
butional information. Hence, we are interested in
analysing the impact of injecting semantic knowl-
edge into the SPPMI matrix and the effectiveness
of the resulting word embeddings.

Inspired from (Chakraborti et al., 2006, 2007),
which exploits the class knowledge of the docu-
ments by ’sprinkling’ label terms into the term-
document matrix before matrix factorization, we
modify the SPPMI matrix by adding reachability
information from lexical knowledge bases such as
WordNet and PPDB. In the lexical graphs obtained
from these knowledge bases, words are connected
by edges representing relations such as synonymy,
hypernymy, etc. We say that a word v is reach-
able from another word u if and only if there ex-
ists a path between them in the lexical graph. More
formally, let n be the size of the vocabulary. We
define the reachability matrix Lk ∈ {0, 1}n×n to
be a zero-one square matrix with each element
Lk(u, v) indicating if word v is reachable from
word u within k hops in the lexical knowledge
graph.

We concatenate the reachability matrix with the
SPPMI matrix to obtain Sprinkled Shifted - Pos-
itive PMI (SS-PPMI). We then perform SVD on
this augmented matrix to obtain the enriched word
embeddings.

SPPMI = max(PMI − log(neg), 0) (1)

SS-PPMI = SPPMI ◦ Lk (2)

SS-PPMI ≈ UxΣxV
T
x (3)
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Embeddings = UxΣp
x (4)

where ◦ denotes the matrix concatenation opera-
tion, neg denotes the number of negative samples
and x denotes the lower rank approximation of the
SS-PPMI matrix. SS-PPMI matrix is of dimen-
sions n × 2n. Following the work of Levy et al.,
(2014), we have used p as 0.5 to obtain the word
embeddings.

The original motivation for sprinkling tech-
nique (Chakraborti et al., 2006) was that docu-
ments of same class are brought closer by ap-
pending the class labels to term-document ma-
trix. Likewise, words which have strong syntac-
tic relations such as synonymy or antonymy have
similar neighbourhood in graphs like WordNet.
This translates to these word pairs having similar
columns in the reachability matrix. Thus, append-
ing reachability matrix to SPPMI matrix would
bring such words closer.

We can further strengthen these constraint by
adding the reachability matrix multiple times as
done in adaptive sprinkling (Chakraborti et al.,
2007). We performed experiments adding reacha-
bility matrix twice and we call the resulting matrix
as Doubly Sprinkled Shifted - Positive PMI (DSS-
PPMI), which will be of dimensions n× 3n.

3.2 W-Retrofitting
Retrofitting was introduced by Faruqui et al.,
(2014) and is a method to add semantic infor-
mation to pre-trained word vectors. The post-
processing step modifies the word embeddings
such that the embeddings of words with seman-
tic relations between them are pulled towards each
other. Formally, given the pre-trained vectors Q̂ =
(q̂1, q̂2 · · · q̂n), and a knowledge base represented
by the adjacency matrix A, we need to learn new
vectors Q = (q1, q2 · · · qn) such that following ob-
jective ψ(Q) is minimized:

ψ(Q) =
i=n∑
i=1

(αi‖qi− q̂i‖2 +
j=n∑
j=1

βijAij‖qi−qj‖2)

(5)
The objective is a convex function and we can
find the solution using the efficient iterative update
method used in Faruqui et al., (2014):

qi =

∑j=n
j=1 Aijβijqj + αiqi∑j=n

j=1 Aijβij + αi

(6)

The βij term is usually assigned as
degree(i)−1. This choice of assigning weights

Scores Datasets
Similarity RG65, WS353S, Simlex-999

Relatedness WS353R, TR9856
No Distinguishing MEN, RW, MTunk, WS353

Table 1: The characterization of scores given by differ-
ent word similarity datasets

can be done in a better way by learning from
semantic knowledge sourcea such as WordNet.

We propose a modification to the retrofitting
methods called W-Retrofitting (weighted
retrofitting), where we use WordNet-based simi-
larity scores to obtain a better setting of βij . For
two words wi and wj with WordNet similarity
score Sim(i, j), βij is obtained by normalizing
the similarity scores across neighbors and is
given as: βij = Sim(i,j)∑

j′ Sim(i,j′)
. Since a word

can have multiple synsets, the similarity score
is the maximum of the similarity scores of all
possible pairs of synsets, taking one each from
the two words. For information based similarity
measures like Lin similarity we compute mutual
information from a random subset of Wikipedia
corpus containing 100,000 articles. Further, we
extend our method to consider nodes which are
atmost 2 hops from given node when computing
weights.

4 Experimental Setup

4.1 Intrinsic Evaluation
We evaluate the proposed models on word similar-
ity and analogy tasks.
Word similarity: We use MEN (Bruni et al.,
2014), MTunk (Radinsky et al., 2011), RG65
(Rubenstein and Goodenough, 1965), Rare
Words(RW) (Luong et al., 2013), SimLex999
(Hill et al., 2015), TR9856 (Levy et al., 2015b),
WS353 (Finkelstein et al., 2002), WS353S
(Similarity), WS353R (Relatedness). Spearman
correlation is used as evaluation metric.
Analogy: We evaluated analogy task with Google
Analogy (Mikolov et al., 2013a), MSR Analogy
(Mikolov et al., 2013b) and Semeval2012 datasets.
We follow the standardized setup as explained in
(Jastrzebski et al., 2017).

4.2 Sources of Knowledge
We used two sources of semantic knowledge:
WordNet (Miller, 1995) and PPDB (Ganitke-
vitch et al., 2013). We used the same PPDB
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knowledge source used in Faruqui et al., (2014).
We used WordNet source knowledge from V.
Batagelj (2004). The relations considered are syn-
onymy, hypernymy, meronymy and verb entail-
ment. PPDB has 84467 nodes and 169703 edges,
WordNet source we used has 82313 nodes and
98678 edges.

We used the latest Wikipedia dump1 containing
6 Billion wikipedia articles to generate the SPPMI
matrix. We followed the same procedure as given
in Levy et al., (2015a) and chose the number of
negative samples to be default value of 5. In all of
our experiments, we chose embedding dimension
as 300, which is commonly used in the literature.

4.3 Baselines

We use the following baselines for comparison

1. GloVe: Our first baseline is the GloVe em-
beddings (Pennington et al., 2014) trained on
the Wikipedia corpus retrieved from Stanford
NLP group website2.

2. Retrofit: We apply the retrofitting technique
(Faruqui et al., 2014) on the GloVe embed-
dings where Wordnet or PPDB was as the
source of word relations.

3. SPPMI: We perform SVD on the Shifted
PPMI matrix (as mentioned in Section 3)
without sprinkling.

4. SynGCN (Vashishth et al., 2018): This work
uses Graph-convolution based methods to
impart relational information between words
and have shown state-of-art results in many
benchmarks. We directly report the available
results from the original paper which uses
same evaluation benchmarks.

4.4 Extrinsic Evaluation

To further test the effectiveness of the different
methods in grounding word meanings, we utilize
the embeddings in following tasks. The neural net-
work architectures used for each of the tasks are
same as that used in Vashishth et al., (2018).

1. Part-of-speech tagging (POS): This task
classifies each word of given sentence as
one of the part-of-speech tags. We use the
LSTM based neural architecture discussed in

1https://dumps.wikimedia.org/enwiki/latest/
2https://nlp.stanford.edu/projects/GloVe/

Reimers and Gurevych (2017) on the Penn
treebank dataset (Marcus et al., 1994).

2. Named-entity recognition (NER): The goal
of this task is to extract and classify named
entities in the sentences as person, organi-
sation, location or miscellaneous. We use
the model proposed in Lee et al., (2018)
on CoNLL-2003 dataset (Sang and Meulder,
2003).

5 Results and Analysis

5.1 SS-PPMI

Reachability Matrix is powerful in capturing
semantic information: We proposed a simple
sprinkling approach in which a zero-one matrix
captures the k-hop reachability information be-
tween words in a lexical knowledge graph. In
order to see how effectively the reachability ma-
trix captures the lexical knowledge, we performed
SVD on the reachability matrix and obtained the
word embeddings. Table 2 shows the performance
of the obtained embeddings on word similarity
task, The dimension of embedding used is 300.
Interestingly, we clearly observe that the embed-
dings obtained from the reachability matrix only
(without SPPMI matrix) compete strongly with
300 dimensional pretrained GloVe embeddings on
the similarity based datasets. The best perform-
ing model gives a Spearman correlation which is
0.19 more than GloVe in Simlex999. Similarly,
in RG65 and WS353S, the reachability based em-
beddings compete well with GloVe. Between the
choice of PPDB or WordNet as the lexical knowl-
edge sources, PPDB seems to be more helpful.
In general, the performance of reachability-based
embeddings increases with increasing the number
of hops on the similarity datasets.

In the case of relatedness datasets, the model
competes poorly with the baseline-GloVe. This is
quite expected as the reachability matrix doesn’t
capture any information about the word co-
occurrence. These observations have been foun-
dational to our proposed SS-PPMI and DSS-PPMI
methods.
SS-PPMI and DSS-PPMI provide significant
improvements in word similarity and analogy:
Table 3 provides the results with SS-PPMI and
DSS-PPMI approaches on word similarity task
with embedding dimension as 300. We clearly ob-
serve that the proposed models defeat the baseline
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Similarity Relatedness No Distinction
Lexical Knowledge Hops - k SimLex999 WS353S RG65 WS353R TR9856 WS353 MEN MTurk RW
Baseline - GloVe - 0.370 0.665 0.769 0.560 0.575 0.601 0.737 0.633 0.411

PPDB
1 0.507 0.461 0.433 0.127 0.273 0.336 0.284 0.181 0.465
2 0.529 0.567 0.512 0.128 0.261 0.362 0.304 0.261 0.506

WordNet
1 0.077 0.343 0.110 0.151 0.128 0.293 0.161 0.063 0.056
2 0.209 0.349 0.378 0.163 0.149 0.285 0.275 0.145 0.209

Table 2: Performance of the reachability-based embeddings on similarity datasets. Reported numbers are the
Spearman correlation coefficients.

Similarity Relatedness No Distinction
Method Lexical Knowledge hops SimLex999 WS353S RG65 WS353R TR9856 WS353 MEN MTurk RW
SPPMI - - 0.385 0.728 0.783 0.603 0.625 0.663 0.742 0.599 0.516

SynGCN - - 0.455 0.732 - 0.457 - 0.601 - - 0.337

SS-PPMI PPDB
1 0.386 0.728 0.782 0.604 0.625 0.663 0.742 0.599 0.516
2 0.398 0.733 0.775 0.619 0.628 0.669 0.743 0.610 0.521

DSS-PPMI PPDB
1 0.386 0.728 0.782 0.604 0.625 0.663 0.742 0.599 0.516
2 0.420 0.733 0.780 0.620 0.629 0.668 0.743 0.607 0.528

SS-PPMI WordNet
1 0.393 0.724 0.792 0.627 0.597 0.667 0.769 0.611 0.464
2 0.394 0.733 0.793 0.629 0.601 0.671 0.770 0.616 0.435

DSS-PPMI WordNet
1 0.393 0.724 0.792 0.627 0.597 0.667 0.769 0.611 0.463
2 0.394 0.739 0.804 0.638 0.599 0.677 0.771 0.619 0.414

Table 3: Results on word similarity datasets using SS-PPMI and DSS-PPMI embeddings

in all the datasets. The margin of improvement is
quite high in case of similarity datasets. We see
close to 0.21 increase in spearman correlation for
Simlex999, 0.04 increase in RG65. This is some-
what expected as we already saw that reachabil-
ity matrix contains lexical information. Interest-
ingly, we also saw improvements in relatedness
datasets where the sprinkling approaches perform
narrowly better than SPPMI based approach. In
other datasets like WS353, MEN we see improve-
ments of about 0.02 and 0.03 in spearman correla-
tion respectively. Overall, sprinkling significantly
improves the performance on word similarity task.

Overall, we observe that Double Sprinkling
method (DSS-PPMI) works better than SPPMI in
word similarity task. Increasing the number of
hops (k) in the reachability matrix improves the
performance in word similarity , in general.

Table 4 shows improvements provided by the
sprinkling methods on analogy datasets. We ob-
serve marginal improvements over baseline in
google and SemEval2012.

5.2 W-Retrofitting

We apply our W-retrofitting model to GloVe
(Pennington et al., 2014) embeddings trained on
Wikipedia corpus. We experimented with one
hop and two hop neighbors and several meth-
ods for similarity estimation: inverse path similar-
ity, Jaing-Conrath Similarity (Jiang and Conrath,
1997), Wu -Palmer Similarity (Wu and Palmer,

Method Graph hops Google SemEval
SPPMI-Baseline - - 0.337 0.176

SynGCN - 0.234

SS-PPMI PPDB
1 0.338 0.175
2 0.347 0.180

DSS-PPMI PPDB
1 0.338 0.176
2 0.343 0.188

SS-PPMI WordNet
1 0.122 0.166
2 0.121 0.165

DSS-PPMI WordNet
1 0.122 0.166
2 0.118 0.161

Table 4: Analogy results using proposed SS-PPMI and
DSS-PPMI approaches

1994), Leacock-Chowdorov Similarity (Leacock
and Chodorow, 1998) and Lin Similarity (Lin
et al., 1998). The neighbourhood information
for estimating similarity was obtained from either
WordNet or PPDB graphs. We found that Jaing-
Conrath Similarity works best for WordNet, in-
verse path similarity for PPDB. So, we report re-
sults for these similarity measures only.

Word Similarity: The performances of all our
models are either comparable or superior to base-
lines as seen in table 5. We see that using PPDB
knowledge source and path based similarity as
weights in the retrofit objective functions gives the
best performance and outperforms the baselines in
most benchmarks.

Analogy: Some of our models outperform
retrofitting baselines in Google analogy. In Se-
mEval task, we mostly outperform GloVe but
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Similarity Relatedness No Distinction
Method Lexical Knowledge Hops SimLex999 WS353S RG65 WS353R TR9856 MTurk WS353 MEN RW
GloVe-baseline - 0.37 0.665 0.769 0.56 0.575 0.633 0.601 0.737 0.411
SynGCN - - 0.455 0.732 - 0.457 - 0.601 - - 0.337
Retrofit-baseline

PPDB
1 0.496 0.7 0.825 0.585 0.601 0.675 0.631 0.764 0.431

W-retrofit(path)
1 0.509 0.71 0.824 0.583 0.584 0.669 0.641 0.773 0.417
2 0.422 0.628 0.788 0.519 0.525 0.63 0.562 0.722 0.372

Retrofit-baseline
Wordnet

1 0.434 0.693 0.774 0.557 0.574 0.642 0.607 0.766 0.387

W-retrofit(jcn)
1 0.432 0.685 0.772 0.543 0.568 0.64 0.6 0.764 0.353
2 0.399 0.73 0.785 0.528 0.579 0.634 0.616 0.764 0.389

Table 5: Word Similarity results for W-Retrofitting approach

retrofitting baseline on WordNet gives the best
score. The results are summarised in table 6

Similarity Graph Hops Google SemEval
GloVe 0 0.717 0.164
SynGCN - 0.234
Retrofit-baseline

PPDB
1 0.451 0.171

path
1 0.448 0.167
2 0.248 0.151

Retrofit-baseline
WordNet

1 0.603 0.184

jcn
1 0.701 0.161
2 0.693 0.155

Table 6: Analogy results for W-Retrofitting

Model SimLex999 WS353S RG65
SPPMI 0.276 0.624 0.671

Retrofitting 0.336 0.624 0.752
W-Retrofitting 0.429 0.656 0.747

Reachability Matrix 0.561 0.567 0.664
Sprinkling 0.591 0.748 0.821

Model WS353R TR9856 MTurk
SPPMI 0.509 0.527 0.626

Retrofitting 0.479 0.534 0.623
W-Retrofitting 0.521 0.548 0.631

Reachability Matrix 0.194 0.325 0.283
Sprinkling 0.638 0.629 0.619

Model WS353 MEN RW
SPPMI 0.562 0.691 0.359

Retrofitting 0.545 0.708 0.350
W-Retrofitting 0.595 0.726 0.384

Reachability Matrix 0.376 0.325 0.506
Sprinkling 0.682 0.771 0.560

Table 7: Comparison with various baselines for word
similarity and relatedness.

5.3 Overall Comparison on Word Similarity
In order to make fair and direct comparison be-
tween Sprinkling and Retrofitting, we applied
retrofitting and W-retrofitting (using inverse-path
similarity over PPDB graph) on the 300 dimen-
sional SPPMI vectors. Table 7 provides the best
results of the models on each of the word simi-
larity and analogy datasets. We make the follow-
ing observations. W-Retrofitting does much better

Method Graph Hops NER POS
SPPMI-Baseline 82.3 92.9

SS-PPMI PPDB
1 83.4 93.3
2 84.7 93.4

DSS-PPMI PPDB
1 82.3 93.5
2 87.3 93.4

SS-PPMI Wordnet
1 83.5 92.8
2 83.9 93.2

DSS-PPMI Wordnet
1 83.2 93.2
2 83.5 93.1

Table 8: Results on Extrinsic Evaluation tasks using
SS-PPMI and DSS-PPMI embeddings

Method Graph Hops NER POS
GloVe - 89.1 94.6
SynGCN - 89.5 95.4
Retrofit-baseline

PPDB
1 88.8 94.8

path
1 88.7 95
2 89.2 95.1

Retrofit-baseline
Wordnet

1 88.2 94.5

jcn
1 88.9 95
2 89.4 95.3

Table 9: Results on Extrinsic Evaluation tasks using
W-Retrofitting

than Retrofitting in similarity datasets, as what we
saw with GloVe embeddings. The source of the
improvement comes comes from two things: in-
clusion of two-hop neighbor information and the
intelligent choice of weights from WordNet in W-
Retrofitting.

Using only the Reachability Matrix provides
very good scores in similarity based datasets, but
doesn’t capture relatedness information at all. Us-
ing sprinkling approach, we manage to obtain em-
beddings that have optimal combination of simi-
larity and relatedness information and this makes
it perform better than all the other baselines in sim-
ilarity, relatedness and analogy tasks.

5.4 Evaluation on Extrinsic tasks
The results on extrinsic tasks (discussed in Sec-
tion 4.4) are given in Tables 8 and 9. In the case of
sprinkling methods, we see that there is a clear in-
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crease in scores for both the extrinsic tasks from
using the proposed SS-PPMI matrix over using
only the SPPMI matrix. We also see that models
using PPDB perform better. One reason why we
do not compare scores of sprinkling based meth-
ods with that of GloVe and Retrofitting based ones
is that the vocabulary size(number of nodes) in
PPDB or Wordnet graphs are lower than that for
GloVe. We also didn’t consider punctuation sym-
bols in SPPMI unlike GloVe.

In the case of W-retrofitting, scores from the
proposed W-Retrofitting model using jcn weights
on wordnet graph are very similar to SynGCN
model inspite of SynGCN being a more complex
model with a lot of hyperparameters. We also
see that the other methods of W-retrofitting have
comparable performance to SynGCN. We observe
improved performance by considering upto 2 hop
neighbours over methods considering just 1 hop
neighbours. It is quite interesting to see that the
proposed light-weight retrofitting model competes
strongly with the more complex SynGCN method
as shown by the results in Table 9.

6 Conclusion and Future Work

In this paper, we proposed two simple yet pow-
erful approaches to incorporate lexical knowl-
edge into word embeddings. The first approach
is a matrix factorization method that ‘sprinkles’
higher order graph information into the word co-
occurrence and we show that it significantly im-
proves the quality of the word embeddings. Sec-
ond, we proposed a simple modification to the
retrofitting method that improves it performance
visibly. We showed the improvements of the pro-
posed models over baselines in a variety of word
similarity and analogy tasks, and across two pop-
ular lexical knowledge bases.

For extrinsic tasks, W-retrofitting showed com-
parable performance to the state-of-art SynGCN
model, (Vashishth et al., 2018) inspite of Syn-
GCN being a more sophisticated model with lots
of parameters that constitute the weights of Graph
Convolutional layers and linear layers of neu-
ral network used as well as many hyperparame-
ters needed for training the neural network (such
as number of GCN layers and their dimensions,
learning rate, number of epochs, etc.).

In our sprinkling approach, we didn’t consider
any importance weighting for different relations.
One promising direction that can be experimented

in future is to use wordnet similarity scores or a
combination of co-occurrence and lexical infor-
mation as importance values in the reachability
matrix. We could also use ‘adaptive sprinkling’
(Chakraborti et al., 2007) to give more importance
to relations of specific sets of words.

The more recent methods that achieve the state-
of-art results in a variety of language tasks uti-
lize pre-trained models such as Elmo (Peters et al.,
2018), BERT (Devlin et al., 2018) and XLNet
(Yang et al., 2019). These models that learn con-
text dependent word embeddings are pre-trained
for different language tasks and are later fine-
tuned for specific tasks. Another direction of re-
search we would like to explore is to study the
improvements gained by using our proposed mod-
els to initialize the word embeddings before pre-
training these models.

References
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