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Abstract

In this article, we tackle the issue of the
limited quantity of manually sense anno-
tated corpora for the task of word sense
disambiguation, by exploiting the seman-
tic relationships between senses such as
synonymy, hypernymy and hyponymy, in
order to compress the sense vocabulary of
Princeton WordNet, and thus reduce the
number of different sense tags that must
be observed to disambiguate all words of
the lexical database. We propose two dif-
ferent methods that greatly reduce the size
of neural WSD models, with the benefit
of improving their coverage without addi-
tional training data, and without impacting
their precision. In addition to our meth-
ods, we present a WSD system which re-
lies on pre-trained BERT word vectors in
order to achieve results that significantly
outperforms the state of the art on all WSD
evaluation tasks.

1 Introduction

Word Sense Disambiguation (WSD) is a task
which aims to clarify a text by assigning to each
of its words the most suitable sense labels, given a
predefined sense inventory.

Various approaches have been proposed to
achieve WSD: Knowledge-based methods rely on
dictionaries, lexical databases, thesauri or knowl-
edge graphs as primary resources, and use algo-
rithms such as lexical similarity measures (Lesk,
1986) or graph-based measures (Moro et al.,
2014). Supervised methods, on the other hand, ex-
ploit sense annotated corpora as training instances
for a classifier such as SVM (Chan et al., 2007;
Zhong and Ng, 2010), or more recently by a neu-
ral network (Kågebäck and Salomonsson, 2016).
Finally, unsupervised methods automatically iden-

tify the different senses of words from unanno-
tated or parallel corpora (e.g. Ide et al. (2002)).

Supervised methods are by far the most pre-
dominant as they generally offer the best results
in evaluation campaigns (for instance (Navigli et
al., 2007)). State of the art classifiers used to com-
bine specific features such as the parts of speech
and the lemmas of surrounding words (Zhong and
Ng, 2010), but they are now replaced by neural
networks which learn their own representation of
words (Raganato et al., 2017b; Le et al., 2018).

One major bottleneck of supervised systems is
the restricted quantity of manually sense anno-
tated corpora: In the annotated corpus SemCor
(Miller et al., 1993), the largest manually sense
annotated corpus available, words are annotated
with 33 760 different sense keys, which corre-
sponds to only approximately 16% of the sense
inventory of WordNet (Miller, 1995), the lexical
database of reference widely used in WSD. Many
works try to leverage this problem by creating
new sense annotated corpora, either automatically
(Pasini and Navigli, 2017), semi-automatically
(Taghipour and Ng, 2015), or through crowdsourc-
ing (Yuan et al., 2016).

In this work, the idea is to solve this issue by
taking advantage of the semantic relationships be-
tween senses included in WordNet, such as the
hypernymy, the hyponymy, the meronymy, the
antonymy, etc. Our method is based on the ob-
servation that a sense and its closest related senses
(its hypernym or its hyponyms for instance) all
share a common idea or concept, and so a word
can sometimes be disambiguated using only re-
lated concepts. Consequently, we do not need to
know every sense of WordNet to disambiguate all
words of WordNet.

For instance, let us consider the word “mouse”
and two of its senses which are the computer
mouse and the animal mouse. We only need to
know the notions of “animal” and “electronic de-



vice” to distinguish them, and all notions that are
more specialized such as “rodent” or “mammal”
are therefore superfluous. By grouping them, we
can benefit from all other instances of electronic
devices or animals in a training corpus, even if
they do not mention the word “mouse”.
Contributions: In this paper, we hypothesize that
only a subset of WordNet senses could be con-
sidered to disambiguate all words of the lexical
database. Therefore, we propose two different
methods for building this subset and we call them
sense vocabulary compression methods. By us-
ing these techniques, we are able to greatly im-
prove the coverage of supervised WSD systems,
nearly eliminating the need for a backoff strategy
that is currently used in most systems when deal-
ing with a word which has never been observed
in the training data. We evaluate our method on
a state of the art WSD neural network, based on
pretrained contextualized word vector representa-
tions, and we present results that significantly out-
perform the state of the art on every standard WSD
evaluation task. Finally, we provide a documented
tool for training and evaluating neural WSD mod-
els, as well as our best pretrained model in a dedi-
cated GitHub repository1.

2 Related Work

In WSD, several recent advances have been made
in the creation of new neural architectures for su-
pervised models and the integration of knowledge
into these systems. Multiple works also exploit the
idea of grouping together related senses. In this
section, we give an overview of these works.

2.1 WSD Based on a Language Model

In this type of approach, that has been initiated by
Yuan et al. (2016) and reimplemented by Le et al.
(2018), the central component is a neural language
model able to predict a word with consideration
for the words surrounding it, thanks to a recurrent
neural network trained on a massive quantity of
unannotated data.

Once the language model is trained, it is used to
produce sense vectors that result from averaging
the word vectors predicted by the language model
at all positions of words annotated with the given
sense.

At test time, the language model is used to pre-
dict a vector according to the surrounding context,

1https://github.com/getalp/disambiguate

and the sense closest to the predicted vector is as-
signed to each word.

These systems have the advantage of bypassing
the problem of the lack of sense annotated data by
concentrating the power of abstraction offered by
recurrent neural networks on a good quality lan-
guage model trained in an unsupervised manner.
However, sense annotated corpora are still indis-
pensable to contruct the sense vectors.

2.2 WSD Based on a Softmax Classifier

In these systems, the main neural network directly
classifies and attributes a sense to each input word
through a probability distribution computed by a
softmax function. Sense annotations are simply
seen as tags put on every word, like a POS-tagging
task for instance.

We can distinguish two separate branches of
these types of neural networks:
1. Those in which we have several distinct and

token-specific neural networks (or classifiers)
for every different word in the dictionary (Ia-
cobacci et al., 2016; Kågebäck and Salomons-
son, 2016), each of them being able to manage
a particular word and its particular senses. For
instance, one of the classifiers is specialized in
choosing between the four possible senses of
the noun “mouse”. This type of approach is
particularly fitted for the lexical sample tasks,
where a small and finite set of very ambigu-
ous words have to be sense annotated in several
contexts, but it can also be used in all-words
word sense disambiguation tasks.

2. Those in which we have a larger and general
neural network that is able to manage all dif-
ferent words and assign a sense in the set of all
existing sense in the dictionary used (Raganato
et al., 2017b).

The advantage of the first branch of approaches
is that in order to disambiguate a word, limiting
our choice to one of its possible senses is compu-
tationally much easier than searching through all
the senses of all words. To put things in perspec-
tive, the average number of senses of polysemous
words in WordNet is approximately 3, whereas
the total number of senses considering all words
is 206 941.

The second approach, however, has an interest-
ing property: all senses reside in the same vector
space and hence share features in the hidden layers
of the network. This allows the model to predict

https://github.com/getalp/disambiguate


an identical sense for two different words (i.e. syn-
onyms), but it also offers the possibility to predict
a sense for a word not present in the dictionary
(e.g. neologism, spelling mistake...).

Finally, in two recent articles, Luo et al. (2018a)
and Luo et al. (2018b) have proposed an improve-
ment of these type of architectures, by computing
an attention between the context of a target word
and the gloss of its different senses. Thus, their
work is one of the first to incorporate knowledge
from WordNet into a WSD neural network.

2.3 Sense Clustering Methods
Several works exploit the idea of grouping to-
gether mutiple WordNet sense tags in order to cre-
ate a coarser sense inventory which can potentially
be more useful in some NLP tasks.

In the works of Ciaramita and Altun (2006), the
authors propose a supervised system that learns
and predicts “Supersense” tags, which belong to
the set of the broad semantic categories of senses,
organizing the sense inventory of WordNet. This
tagset consists, in their work, of 26 categories
for nouns (such as “food”, “person” or “object”),
and 15 categories for verbs (such as “emotion” or
“weather”). By predicting supersense tags instead
of the usual fine-grained sense tags of WordNet,
the output vocabulary of their system is shrinked
to only 41 different classes, and this leads to a
small and easy-to-train model able to perform par-
tial WSD, which could be useful and sufficient for
other NLP tasks where the fine-grained distinction
is not necessary.

In Izquierdo et al. (2007), the authors propose
several methods for creating “Basic Level Con-
cepts” (BLC), groups of related senses with a gen-
erally smaller size than supersenses, and which
can be controlled by a threshold variable. Their
methods rely on the semantic relationships be-
tween senses of WordNet, and, in the same way as
Ciaramita and Altun (2006), they evaluated their
clusters on a modified WSD task, where super-
senses or BLC have to be predicted instead of the
original sense tags from WordNet.

The main difference between our work and
these works is that our end goal is to improve fine-
grained WSD systems. Even though our methods
generate clusters of related senses, we guarantee
that two different senses of a lemma reside in two
different clusters, so at the end, even if our su-
pervised system produces a cluster tag for a target
word, we are still able to find back the true sense

tag, by simply keeping track of which sense key of
its lemma belongs to the predicted group.

3 Sense Vocabulary Compression

Current state of the art supervised WSD systems
such as Yuan et al. (2016), Raganato et al. (2017b),
Luo et al. (2018a) and Le et al. (2018) are all con-
fronted to the following issues:
1. Due to the small number of manually sense an-

notated corpora available, a target word may
never be observed during the training, and
therefore the system is not able to annotate it.

2. For the same reason, a word may have been ob-
served, but not all of its senses. In this case
the system is able to annotate the word, but if
the expected sense has never been observed, the
output will be wrong, regardless of the architec-
ture of the supervised system.

3. Training a neural network to predict a tag
which belongs to the set of all WordNet senses
can become extremely slow and requires a lot
of parameters with a large output vocabulary.
And this vocabulary goes up to 206 941 if we
consider all word-senses of WordNet.

In order to overcome all these issues, we propose a
method for grouping together multiple sense tags
that refer in fact to the same concept. In conse-
quence, the output vocabulary decreases, the abil-
ity of the trained system to generalize improves, as
well as its coverage.

3.1 From Senses to Synsets: A Vocabulary
Compression Based on Synonymy

In the lexical database WordNet, senses are orga-
nized in sets of synonyms called synsets. A synset
is technically a group of one or more word-senses
that have the same definition and consequently the
same meaning. For instance, the first senses of
“eye”, “optic” and “oculus” all refer to a common
synset which definition is “the organ of sight”.

Illustrated in Figure 1, the word-sense to synset
mapping is hence a way of compressing the out-
put vocabulary, and it is already applied in many
works (Yuan et al., 2016; Le et al., 2018), while
not being always explicitly stated. This method
clearly helps to improve the coverage of super-
vised systems however. Indeed, if the verb “help”
is observed in the annotated data in its first sense,
the context surrounding the target word can be
used to later annotate the verb “assist” or “aid”
with the same valid synset tag.
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help#1
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aid#2
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"give help or assistance"

"improve the condition of"

"act as an assistant"

Figure 1: Word-sense to synset mapping (com-
pression through synonymy) applied on the first
two senses of the words “help”, “aid” and “assist”.

Going further, other information from WordNet
can help the system to generalize. Our first new
method takes advantage of the hypernymy and hy-
ponymy relationships to achieve the same idea.

3.2 Compression through Hypernymy and
Hyponymy Relationships

According to Polguère (2003), hypernymy and hy-
ponymy are two semantic relationships which cor-
respond to a particular case of sense inclusion: the
hyponym of a term is a specialization of this term,
whereas its hypernym is a generalization. For in-
stance, a “mouse” is a type of “rodent” which is in
turn a type of “animal”.

In WordNet, these relationships bind nearly ev-
ery noun together in a tree structure2 that goes
from the generic root, the node “entity” to the
most specific leaves, for instance the node “white-
footed mouse”. These relationships are also
present on several verbs: for instance “add” is a
way of “compute” which is a way of “reason”.

For the sake of WSD, just like grouping to-
gether the senses of the same synset helps to better
generalize, we hypothesize that grouping together
the synsets of the same hypernymy relationship
also helps in the same way. The general idea of
our method is that the most specialized concepts
in WordNet are often superfluous for WSD.

Indeed, considering a small subset of WordNet
that only consists of the word “mouse”, its first
sense (the small rodent), its fourth sense (the elec-

2We computed that 41 607 on the 44 449 polysemous nouns of
WordNet (94%) are part of this hierarchy.

mouse#1

rodent#1

mammal#1

living_thing#1

whole#2

device#1

electronic_device#1

instrumentality#3

artifact#1

entity#1

mouse#4

animal#1

Figure 2: Sense vocabulary compression trough
hypernymy hierarchy applied on the first and
fourth sense of the word “mouse”. Dashed arrows
mean that some nodes are skipped for clarity.

tronic device), and all of their hypernyms. This is
illustrated in Figure 2. We can see that every con-
cept that is more specialized than the concepts “ar-
tifact” and “living_thing” could be removed. We
could map every tag of “mouse#1” to the tag of
“living_thing#1” and we could still be able to dis-
ambiguate this word, but with a benefit: all other
“living things” and animals in the sense annotated
data could be tagged with the same sense. They
would give examples of what is an animal and then
show how to differentiate the small rodent from
the hand-operated electronic device.

Therefore, the goal of our method is to map ev-
ery sense of WordNet to its highest ancestor in the
hypernymy hierarchy, but with the following con-
straints: First, this ancestor must discriminate all
the different senses of the target word. Second,
we need to preserve the hypernyms that are indis-
pensable to discriminate the senses of the other
words in the dictionary. For instance, we cannot
map “mouse#1” to “living_thing#1", because the
more specific tag “animal#1” is essential to distin-
guish the two senses of the word “prey” (one sense
describes a person, the other describes an animal).
Our method thus works in two steps:
1. We mark as “necessary” the children of the first

common ancestor of every pair of senses of ev-
ery word of WordNet.

2. We map every sense to its first ancestor in the
hypernymy hierarchy that has been previously
marked as “necessary”.



As a result, the most specific synsets of the tree
that are not indispensable for discriminating any
word of the lexical inventory are automatically re-
moved from the vocabulary. In other words, the
set of synsets that is left in the vocabulary is the
smallest subset of all synsets that are necessary to
distinguish every sense of every word of WordNet,
following the hypernym and hyponym links.

3.3 Compression through all semantic
relationships

In addition to hypernymy and hyponymy, Word-
Net contains several other relationships between
synsets, such as the instance relationship (e.g. “Al-
bert Einstein” is an instance of “physicist’), the
meronymy (X is part of Y, or X is a member of Y)
and its counterpart the holonymy, the antonymy (X
is the opposite of Y), etc.

We hence propose a second method for sense
vocabulary compression, that considers all the se-
mantic relationships offered by WordNet, in order
to form clusters of related synsets.

For instance, using all semantic relationships,
we could form a cluster containing “physicist”,
“physics” (domain category), “Albert Einstein”
(instance of), “astronomer” (hyponym), but also
further related senses such as “photon”, because it
is a meronym of “radiation”, which is a hyponym
of “energy”, which belongs to the same domain
category of “physics”.

Our method works by constructing these clus-
ters iteratively: First, we initialize the set of clus-
ters C with one synset in each cluster.

C ={c0, c1, ..., cn} S = {s0, s1, ..., sn}
C ={{s0}, {s1}, ..., {sn}}

Then at each step, we sort C by sizes of clusters,
and we peek the smallest one cx and the smallest
related cluster to cx, cy. We define a cluster being
related to another if they contain at least one synset
that have a semantic link together. We merge cx
and cy together, and we verify that the operation
still allows to discriminate the different senses of
all words in the lexical database. If it is not the
case, we cancel the merge and we try another se-
mantic link. If no link is possible, we try to create
one with the next smallest cluster, and if no further
link can be created, the algorithm stops.

In Figure 3, we show a possible set of clusters
that could result from our method, focusing on two
senses of the word “Weber” and only on a few re-
lationships.

Sociologist
#1Politics#2

Weber#4  
(M. Weber) 

Social
Science

instance

hyponym
↳related to

hypernym

Photon#1

Physics#2

Physicist#1

Weber#2  
(W. Weber) 

instance

domain
category 

meronym
↳hypernym
↳domain
   category

Figure 3: Example of clusters of sense that could
result from our method, if we limit our view to
two senses of the word “Weber” and only some
relationship links.

This method produces clusters significantly
larger than the method based on hypernyms. On
average, a cluster has 5 senses with the hyper-
nym method, whereas it has 17 senses with this
method. This method, unlike the previous one, is
also stochastic, because the formation of clusters
depends on the underlying order of iteration when
multiple clusters are the same size. However, be-
cause we always sort clusters by size before cre-
ating a link, we observed that the final vocabulary
size (i.e. number of clusters) is always between
11 000 and 13 000. In the following, we consider
a resulting mapping where the algorithm stopped
after 105 774 steps.

Method Vocabulary
size

Compres-
sion rate

SemCor
Coverage

No compression 206 941 0% 16%
Synonyms 117 659 43% 22%
Hypernyms 39 147 81% 32%
All relations 11 885 94% 39%

Table 1: Effects of the sense vocabulary compres-
sion on the vocabulary size and on the coverage of
the SemCor.

In Table 1, we show the effect of the common
compression through synonyms, our first proposed
compression through hypernyms, and our second
method of compression through all semantic rela-
tionships, on the size of the vocabulary of Word-
Net sense tags, and on the coverage of the SemCor
corpus. As we can see, the sense vocabulary size
is drastically decreased, and the coverage of the
same corpus really improved.



4 Experiments

In order to evaluate our sense vocabulary compres-
sion methods, we applied them on a neural WSD
system based on a softmax classifier capable of
classifying a word in all possible synsets of Word-
Net (see subsection 2.2).

We implemented a system similar to Raganato
et al. (2017b)’s BiLSTM but with some key dif-
ferences. In particular, we used BERT contextu-
alized word vectors (Devlin et al., 2018) in in-
put of our network, Transformer encoder layers
(Vaswani et al., 2017) instead of LSTM layers as
hidden units, our output vocabulary only consists
of sense tags seen during training (mapped accord-
ing to the compression method used), and we ig-
nore the network’s predictions on words that are
not annotated.

4.1 Implementation details

For BERT, we used the model named “bert-large-
cased” of the PyTorch implementation3, which
consists of vectors of dimension 1024, trained on
BooksCorpus and English Wikipedia.

Due to the fact that BERT’s internal tokenizer
sometimes split words in multiples tokens (i.e.
[“rodent”] becomes [“rode”, “##nt”]), we trained
our system to predict a sense tag on the first token
only of a splitted annotated word.

For the Transformer encoder layers, we used the
same parameters as the “base” model of Vaswani
et al. (2017), that is 6 layers with 8 attention heads,
a hidden size of 2048, and a dropout of 0.1.

Finally, because BERT already encodes the po-
sition of the words inside their vectors, we did not
add any positional encoding.

4.2 Training

We compared our sense vocabulary compression
methods on two training sets: The SemCor, and
the concatenation of the SemCor and the Prince-
ton WordNet Gloss Corpus (WNGC). The latter
is a corpus distributed as part of WordNet since
its version 3.0, and it consists of the definitions
(glosses) of every synset of WordNet, with words
manually or semi-automatically sense annotated.
We used the version of these corpora given as part
of the UFSAC 2.1 resource4 (Vial et al., 2018).

3https://github.com/huggingface/
pytorch-pretrained-BERT

4https://github.com/getalp/UFSAC

We performed every training for 20 epochs. At
the beginning of each epoch, we shuffled the train-
ing set. We evaluated our model at the end of ev-
ery epoch on a development set, and we kept only
the one which obtained the best F1 WSD score.
The development set was composed of 4 000 ran-
dom sentences taken from the Princeton WordNet
Gloss Corpus for the models trained on the Sem-
Cor, and 4 000 random sentences extracted from
the whole training set for the other models.
For each training set, we trained three systems:
1. A “baseline” system that predicts a tag belong-

ing to all the synset tags seen during training,
thus using the common vocabulary compres-
sion through synonyms method.

2. A “hypernyms” system which applies our vo-
cabulary compression through hypernyms al-
gorithm on the training corpus.

3. A “all relations” system which applies our sec-
ond vocabulary compression through all rela-
tions on the training corpus.

We trained with mini-batches of 100 sentences,
truncated to 80 words, and we used Adam
(Kingma and Ba, 2015) with a learning rate of
0.0001 as the optimization method.

System SemCor SemCor+WNGC
baseline 77.15M 120.85M
hypernyms 63.44M 79.85M
all relations 55.16M 60.27M

Table 2: Number of parameters of neural models.

All models have been trained on one Nvidia’s
Titan X GPU. The number of parameters of indi-
vidual models are displayed in Table 2. As we can
see, our compression methods drastically reduce
the number of parameters, by a factor of 1.2 to 2.

4.3 Evaluation
We evaluated our models on all evaluation cor-
pora commonly used in WSD, that is the English
all-words WSD tasks of the evaluation campaigns
SensEval/SemEval. We used the fine-grained eval-
uation corpora from the evaluation framework of
Raganato et al. (2017a), which consists of Sen-
sEval 2 (Edmonds and Cotton, 2001), SensEval 3
(Snyder and Palmer, 2004), SemEval 2007 task 17
(Pradhan et al., 2007), SemEval 2013 task 12
(Navigli et al., 2013) and SemEval 2015 task 13
(Moro and Navigli, 2015), as well as the “ALL”
corpus consisting of the concatenation of all pre-

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/getalp/UFSAC


SE2 SE3 SE07 SE13 SE15 ALL (concat. of previous tasks) SE07
System 17 nouns verbs adj. adv. total 07

First sense baseline 65.6 66.0 54.5 63.8 67.1 67.7 49.8 73.1 80.5 65.5 78.9
HCAN (Luo et al., 2018a) 72.8 70.3 - 68.5 72.8 72.7 58.2 77.4 84.1 71.1 -

LSTMLP (Yuan et al., 2016) 73.8 71.8 63.5 69.5 72.6 †73.9 - - - †71.5 83.6
SemCor, baseline 77.2 76.5 70.1 74.7 77.4 78.7 65.2 79.1 85.5 76.0 87.7
SemCor, hypernyms 77.5 77.4 69.5 76.0 78.3 79.6 65.9 79.5 85.5 76.7 87.6
SemCor, all relations 76.6 76.9 69.0 73.8 75.4 77.2 66.0 80.1 85.0 75.4 86.7
SemCor+WNGC, baseline 79.7 76.1 74.1 78.6 80.4 80.6 68.1 82.4 86.1 78.3 90.4
SemCor+WNGC, hypernyms 79.7 77.8 73.4 78.7 82.6 81.4 68.7 83.7 85.5 79.0 90.4
SemCor+WNGC, all relations 79.4 78.1 71.4 77.8 81.4 80.7 68.6 82.8 85.5 78.5 90.6

Table 3: F1 scores (%) on the English WSD tasks of the evaluation campaigns SensEval/SemEval. The
task “ALL” is the concatenation of SE2, SE3, SE07 17, SE13 and SE15. The first sense is assigned
on words for which none of its sense has been observed during the training. Results in bold are to our
knowledge the best results obtained on the task. Scores prefixed by a dagger (†) are not provided by the
authors but are deduced from their other scores.

vious ones. We also compared our result on the
coarse-grained task 7 of SemEval 2007 (Navigli et
al., 2007) which is not present in this framework.

For each evaluation, we trained 8 independent
models, and we give the score obtained by an
ensemble system that averages their predictions
through a geometric mean.

System No Backoff Backoff on
Monosemics

SemCor, baseline 93.23% 98.13%
SemCor, hypernyms 98.75% 99.68%
SemCor, all relations 99.67% 99.99%
SemCor+WNGC, baseline 98.26% 99.41%
SemCor+WNGC, hypernyms 99.83% 99.96%
SemCor+WNGC, all relations 99.99% 100%

Table 4: Coverage of our systems on the task
“ALL”. “Backoff on Monosemics” means that
monosemic words are considered annotated.

In the results in Table 3, we first observe that our
systems that use the sense vocabulary compression
through hypernyms or through all relations obtain
scores that are overall equivalent to the systems
that do not use it.

Our methods greatly improves their coverage on
the evaluation tasks however. As we can see in Ta-
ble 4, on the total of 7 253 words to annotate for
the corpus “ALL”, the baseline system trained on
the SemCor is not able to annotate 491 of them,
while the vocabulary compression through hyper-
nyms reduces this number to 91 and 24 for the

compression through all relations.
When adding the Princeton WordNet Gloss

Corpus to the training set, only one word (the
monosemic adjective “cytotoxic”) cannot be an-
notated with the system that uses the compression
through all relations because its sense has not been
observed during training.

If we exclude the monosemic words, the sys-
tem based on our compression method through
all relations miss only one word (the adverb “elo-
quently”) when trained on the SemCor, and has a
coverage to 100% when the WNGC is addded.

In comparison to the other works, thanks to
the Princeton WordNet Gloss Corpus added to the
training data and the use of BERT as input embed-
dings, we outperform systematically the state of
the art on every task.

4.4 Ablation Study
In order to give a better understanding of the origin
of our scores, we provide a study of the impact of
our main parameters on the results. In addition to
the training corpus and the vocabulary compres-
sion method, we chose two parameters that dif-
ferentiate us from the state of the art: the pre-
trained word embeddings model and the ensem-
bling method, and we have made them vary.

For the word embeddings model, we experi-
mented with BERT (Devlin et al., 2018) as in our
main results, with ELMo (Peters et al., 2018), and
with GloVe (Pennington et al., 2014), the same
pre-trained word embeddings used by Luo et al.
(2018a). For ELMo, we used the model trained on



Training Corpus Input Embeddings Ensemble
F1 Score on task “ALL” (%)

Baseline Hypernyms All relations
x̄ σ x̄ σ x̄ σ

SemCor+WNGC BERT Yes 78.27 - 79.00 - 78.48 -
SemCor+WNGC BERT No 76.97 ±0.38 77.08 ±0.17 76.52 ±0.36
SemCor+WNGC ELMo Yes 75.16 - 74.65 - 70.58 -
SemCor+WNGC ELMo No 74.56 ±0.27 74.36 ±0.27 68.77 ±0.30
SemCor+WNGC GloVe Yes 72.23 - 72.74 - 71.42 -
SemCor+WNGC GloVe No 71.93 ±0.35 71.79 ±0.29 69.60 ±0.32
SemCor BERT Yes 76.02 - 76.73 - 75.40 -
SemCor BERT No 75.06 ±0.26 75.59 ±0.16 73.91 ±0.33
SemCor ELMo Yes 72.55 - 73.09 - 69.43 -
SemCor ELMo No 72.21 ±0.13 72.83 ±0.24 68.74 ±0.29
SemCor GloVe Yes 70.77 - 71.18 - 68.44 -
SemCor GloVe No 70.51 ±0.16 70.77 ±0.21 67.48 ±0.55

HCAN (Luo et al., 2018a) (fully reproducible state of the art)
SemCor+WordNet glosses GloVe No 71.1

LSTMLP (Yuan et al., 2016) (state of the art scores but use private data)
SemCor+1K (private) private No 71.5

Table 5: Ablation study on the task “ALL” (i.e. the concatenation of all SensEval/SemEval tasks). For
systems that do not use ensemble, we display the mean score (x̄) of eight individually trained models
along with its standard deviation (σ).

Wikipedia and the monolingual news crawl data
from WMT 2008-2012.5 For GloVe, we used
the model trained on Wikipedia 2014 and Giga-
word 5.6 Due to the fact that GloVe embeddings
do not encode the position of the words (a word
has the same vector representation in any con-
text), we used bidirectional LSTM cells of size
1 000 for each direction, instead of Transformer
encoders for this set of experiments. In addition,
because the vocabulary of GloVe is finite and all
words are lowercased, we lowercased the inputs,
and we assigned a vector filled with zeros to out-
of-vocabulary words.

For the ensembling method, we either perform
ensembling as in our main results, by averaging
the prediction of 8 models trained separately or we
give the mean and the standard deviation of the
scores of the 8 models evaluated separately.

As we can see in Table 5, the additional training
corpus (WNGC) and even more the use of BERT
as input embeddings both have a major impact on
our results and lead to scores above the state of the
art. Using BERT instead of ELMo or GloVe im-
proves respectively the score by approximately 3
and 5 points in every experiment, and adding the
WNGC to the training data improves it by approx-
imately 2 points. Finally, using ensembles adds
roughly another 1 point to the final F1 score.

5https://allennlp.org/elmo
6https://nlp.stanford.edu/projects/glove/

Finally, through the scores obtained by invidual
models (without ensemble), we can observe on the
standard deviations that the vocabulary compres-
sion method through hypernyms never impact sig-
nificantly the final score. However, the compres-
sion method through all relations seems to nega-
tively impact the results in some cases (when us-
ing ELMo or GloVe especially).

5 Conclusion

In this paper, we presented two new methods that
improve the coverage and the capacity of general-
ization of supervised WSD systems, by narrowing
down the number of different sense in WordNet
in order to keep only the senses that are essential
for differentiating the meaning of all words of the
lexical database. On the scale of the whole lex-
ical database, we showed that these methods can
shrink the total number of different sense tags in
WordNet to only 6% of the original size, and that
the coverage of an identical training corpus has
more than doubled. We implemented a state of
the art WSD neural network and we showed that
these methods compress the size of the underlying
models by a factor of 1.2 to 2, and greatly improve
their coverage on the evaluation tasks. As a re-
sult, we reach a coverage of 99.99% of the evalu-
ation tasks (1 word missing on 7 253) when train-
ing a system on the SemCor only, and 100% when
adding the WNGC to the training data, on the pol-

https://allennlp.org/elmo
https://nlp.stanford.edu/projects/glove/


ysemic words. Therefore, the need for a backoff
strategy is nearly eliminated. Finally, our method
combined with the recent advances in contextual-
ized word embeddings and with a training corpus
composed of sense annotated glosses, our system
achieves scores that considerably outperform the
state of the art on all WSD evaluation tasks.
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