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Abstract
This study investigates the coordination of reading (input) and writing (output) activities in
from-scratch translation and post-editing. We segment logged eye movements and keylogging
data into minimal units of reading and writing activity and model the process of post-editing
and from-scratch translation as a Markov model. We show that the time translators and post-
editors spend on source or target text reading predicts with a high degree of accuracy how
likely it is that they engage in successive typing. We further show that the typing probability
is also conditioned by the degree to which source and target text share semantic and syntactic
properties. The minimal cognitive Markov model describes very basic factors which play a
role in the processes occurring between input (reading) and output (writing) during translation.

1 Introduction

We build a cognitive model of the translation process (from-scratch translation and post-editing)
which aims at predicting where translation problems occur. We ground the model in transla-
tion activity data that consists of keystrokes and gaze data that was captured during translation
sessions. We decompose the translation process into minimal cycles of iterative reading and
writing. We assume that the typing activities represent the solution to a translation problem that
emerged during the preceding reading event. We show that the complexity (i.e. non-literality)
of the produced translation as well as the duration and distribution of gaze activities on the
source and target texts has an effect on the probability of a successive typing event.

Schaeffer et al. (2016); Hvelplund (2016); Carl et al. (2016); Läubli and Germann (2016)
describe methods to decompose the stream of eye movements and keystrokes into sequences of
minimal activity units. In this paper we relate the duration of activity units with properties of
the translation product — the degree of translation literality — to predict the probability when
post-editors and translators will type after reading either the source (henceforth ST) or the target
text (henceforth TT).

Carl et al. (2016) show that a measure of translation literality has a great predictive power
for behavioral observations in the translation process. According to this definition, a translation
is literal if:

1. Word order is identical in the ST and TT

2. ST and TT items correspond one-to-one
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3. Each ST word has only one possible translated form in a given context

A translations which completely fulfills all three criteria is an absolutely literal transla-
tions. A literal translation consists of the same number of ST and TT tokens where each TT
token corresponds to exactly one ST token, and tokens in both texts are ordered in the same
way. A change in word order or a situation in which one ST word is aligned to more than one
TT word or vice versa weakens literality criteria 1 and 2 and makes a translation less literal.
Criteria 1 and 2 thus measure the syntactic similarity of an ST and its translation. The third
criterion describes the semantic similarity in both languages. If a word (or phrase) is consis-
tently translated in the same way by different translators, we assume that the ST word and its
translation also have large overlapping semantic properties. The more a source word (or phrase)
can be rendered into different translations, the weaker is also the semantic overlap between the
two languages (with respect to this word or phrase). In this paper we show that the degree of
translation literality has an effect on the reading activities prior to translation typing.

In section 2 we introduce an operationalization of the literality metric as described above.
We introduce a metric “HCross” which measures the entropy of word-order choices that are
observed in alternative translations, and which is strongly predictive for reading time duration
during the translation process. Section 3 presents the material of our empirical study. In section
4 we introduce translation units and translation states, as well as the topology of a minimal
cognitive model for from-scratch translation and post-editing. We review similar work which
used transition networks of activity units to model novice and expert translators. We review
a proposal that defines different translation styles and map these onto sequences of translation
states of our minimal cognitive model. In section 5 we analyze our data and develop a minimal
model of translation and post-editing.

Figure 1: An English-Spanish alignment with Cross values

2 Operationalising Translation Literality

2.1 Word-order Distortion (Cross)
From a given translation and its word alignment relations we compute Cross values (see Figure
1). For any two successive source words sk−1 and sk, we follow the alignment links to their
translations (sk−1 → tk−1 and sk → tk}) and compute the distance between the position
of words tk and tk−1 in the translation (i.e. position(tk) − position(tk−1)) as the value for
Cross(sk). We thus obtain a vector of relative alignment distortions for word positions in the
ST and the TT, indicating the word order similarity of the two sentences. In the case of an
(absolutely) literal translation, we say that each successive word aligns with the next one in the
target language, which provides the Cross vectors with values 1.

For instance, the word [He] in Figure 1 occurs at position 1 on the English source side
while its Spanish translation [le] occurs one word ahead at position 2 in the translation. [He]
thus has a Cross(s1) value of 2 in that sentence. In order to generate the translation [aplicaron]
for the English [given] we need to jump from the previous alignment [was-Se] two words to the
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right, which produces a Cross(s3) value of 2. In this way, Cross values are generated for each
word position in the text, for the source and the target sides. If a word is aligned to more than
one word (e.g. sk → {tk1

. . . tkn
}), Cross(sk) is the signed value of the maximum absolute

difference between the two translations, i.e. max(abs({tk1
− tk−1), . . . , abs(tkn

− tk−1)}). In
this way, t10 which has the alignment [cada→ “each of the”] has an alignment distortion value
Cross(t10) = 3.

2.2 Word Translation Entropy (HTra)
Carl et al. (2016) introduce word translation entropy as a measure to quantify observed transla-
tion choices. Entropy,H , represents the average amount of non-redundant information provided
by each new item. It is computed based on the sum of the probability of the items and their in-
formation. The information of a probability p is defined as I(p) = − log2(p) The entropy H is
the expectation of that information as defined in equation (1):

H =

n∑
i=1

piI(pi) = −
n∑

i=1

pi log2(pi) (1)

We adopt this notion to assess the entropy of word translation choices for a given ST word
sk into its n possible translations ti...n as shown in equation (2)

HTra(sk) = −
n∑

i=1

p(ti|sj)× log2(p(ti|sj)) (2)

The word translation entropy HTra(sk) in equation 2 is computed for each source word
sk and in every segment. The translations ti...n are taken only from the aligned alternative
translations of this segment. That is, the word translation probabilities p(ti|sk), as computed
according to equation (3), represent the ratio of the number of observed translations sk → ti
separately for each source segment in which sk occurs. Thus, while in language modeling, the
entropy indicates how many possible continuations for a sentence exist at any time, we deploy
the metric to assess how many different translations an ST word has in a given context.

p(ti|sk) =
count(sk → ti)

count(sk)
(3)

We take it, that HTra reflects the semantic similarity between a source word and its trans-
lation(s): low HTra values indicate a high amount of agreement between translator choices, and
thus a high degree of semantic similarity according to literality criterion 3 above.

2.3 Word-order Entropy (HCross)
The choices that a translator has to re-order translations of a source word sk in the target lan-
guage is captured by the metric HCross, as given in equation 4.

HCross(sk) = −
n∑

i=1

p(Cross(sk))× log2(p(Cross(sk)) (4)

The probability for each relative translation word-order distortions p(Cross(sk)) for a
source word sk is computed as the ratio of the number of the distortions Cross(sk) for alter-
native translations sk → t1...n divided by the total number of observed alternative translations
count(sk), similar to equation 3.

HTra and HCross values correlate to a high degree (r=.79, p < .001). That is, semantic
and syntactic variation seem to correlate highly in translation. More variation in syntactic (i.e.
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word-order) rendering of the translation seem to come along with more variation in lexical
choices, and vice versa: Low cross-lingual semantic similarity (i.e. high HTra values) are
correlated with high syntactic variation and complexity (i.e. high HCross values).

3 Experimental material

As a basis for our investigation in this paper we use the multiLing subset of the TPR-DB (Carl
et al., 2016). The multiLing set consists of six short English source texts (together 849 words,
40 ST segments) and a large number of alternative translations into Danish (da), Spanish (es),
German (de), Hindi (hi), Chinese (zh) and Japanese (jp) each by several translators. It contains
currently more than 1500 text production sessions, for from-scratch translation (T), post-editing
(P), monolingual editing (E), translation dictation (D) and text copying (C). However, in this
study we only make use of from-scratch translation and post-editing, which amounts to approx-
imately half the data, 124 hours productin time. For each text production session, keystroke
and gaze data were collected and stored. A real-time gaze-to-word mapping tool (Carl, 2012)
was used to map the gaze samples on the words, so that it is known which word was gazed
at, at any time during the translation sessions. The tool also computes which keystroke con-
tributes to the production (or modification) of which word. The STs and TTs were manually
aligned using the YAWAT tool (Germann, 2008). Aligners were adviced to align each segments
as compositional and complete as possible. The aligned data were further post-processed into a
set of summary tables, which integrate and describe the data of the translation process and the
translation product by means of currently more than 300 features (Carl et al., 2016).

SText:#Seg 1:6 2:7 3:5 4:5 5:10 6:7 STtok STseg
ST Token 160 154 146 110 139 139 848 40

Task Study TL Alt Alt Alt Alt Alt Alt TTtok TTseg Dur
P BML12 es 10 12 10 12 8 12 10216 431 5.22

ENJA15 ja 13 12 14 12 13 12 14447 519 16.81
MS12 zh 3 5 3 3 3 2 2561 129 3.18
NJ12 hi 7 12 8 10 12 11 9365 409 18.2
SG12 de 8 7 7 8 7 8 6470 305 8.78

T BML12 es 11 10 8 10 12 8 9938 411 10.34
ENJA15 ja 12 13 12 13 13 13 14134 525 22.46
KTHJ08 da 24 23 22 0 0 0 10667 523 7.7
MS12 zh 3 3 3 3 3 1916 89 4.12
NJ12 hi 7 7 5 7 6 6 5783 266 14.84
SG12 de 6 8 8 8 7 8 6777 305 12.46

Total 101 112 100 86 84 83 92274 3912 124

Table 1: Subset of the TPR-DB multiLing corpus with the post-editing (P) and from-scratch
translation (T) data. The table shows for each of the six English source texts the number of
segments and the number of words, as well as the total number of ST segments (STseg:40) and
words (STtok:848). It also shows for each language the number of alternative translations (Alt)
the total number of target text tokens (TTtok), segments (TTseg) and duration (Dur) per target
language and for each of the translation modes.

Table 1 shows some figures of multiLing Corpus. The length in words for each of the six
STs is given in the first row in Table 1 (ST1-6). For each of the six STs, the table indicates the
number of participants (#Part), and for each of the six STs the number of alternative translations
(Alt) and their total number in tokens (TokT). The total number of target words (TtokT) and
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target sentences (Ttsg) is also provided, together with the total production duration in hours
(Dur). The data is freely available. For more information on this dataset, please consult the
CRITT website.1

4 Translation states

We extend the work of Schaeffer et al. (2016), who introduce Activity Units as a means to
segment the stream of translation (and post-editing) activity into distinct units. Similar to Carl
et al. (2016) they make a distinction between 6 different basic types of activities 2:

• type 1: ST reading

• type 2: TT reading

• type 4: translation typing (no gaze data recorded)

• type 5: ST reading and typing (touch typing)

• type 6: TT reading and typing (translation monitoring)

• type 8: no gaze or typing activity recorded for more than 2.5 seconds

In this study we simplify the 6 types of activity units into four translation states. We
collapse activity units 4, 5 and 6 into writing activities (W ), irrespectively of whether reading
activities are also recorded at the same time. This leaves us with the following four translation
states:

Post-editing From-scratch translation
# OBS %Dur S2 T2 W2 P2 # OBS %Dur S2 T2 W2 P2

S1 15695 26 0.00 0.81 0.16 0.02 17756 29 0.03 0.52 0.42 0.03
T1 19275 40 0.56 0.01 0.41 0.03 17417 19 0.42 0.00 0.54 0.03
W1 13092 27 0.35 0.44 0.14 0.07 26187 44 0.36 0.28 0.30 0.05
P1 1723 8 0.19 0.28 0.53 0.00 2303 8 0.18 0.21 0.60 0.00

Total 49785 38.76 hours 63663 42.44 hours

Table 2: Distribution of translation states in number of total observations (#OBS) and duration
(%Dur), as well as a transition matrix for post-editing and from-scratch translation. The data
represents translation states during the drafting phase of the data from Table 1

• S: ST reading (with no concurrent writing activity)

• T : TT reading (with no concurrent writing activity)

• W : Writing (with or without concurrent gaze activity on the source or target window)

• P : Pausing (no activity recorded for more than 2.5 seconds)

Each of the translation states (i.e activity units) can be described by a number of features
(excluding P which has only a duration), including the number of keystrokes (deletions and
insertions), the word(s) produced by the keystrokes, the number and duration of fixations, the
fixation scanpath (i.e. sequence of fixations) within a state, including the number of different
words fixated, their average distance etc. (cf. Schaeffer et al. (2016)).

1sites.google.com/site/centretranslationinnovation
2The Activity Unit of type 7, as suggested in Carl et al. (2016), which entails concurrent type 1, 2 and 4 behaviour

is not assumed here. Instead the activities were split into the six types above.
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4.1 State transitions in translation and post-editing
The data in Table 2 shows the distribution of translation states from the mulitLing data which
were introduced in Table 1. The total dataset was segmented into 49,785 and 63,663 activity
units for the post-editing and translation experiments respectively.

The data represented in Table 2 only accounts for the activities during the drafting phase.
This amounts to 38.76 hours post-editing and 42.44 hours translating. The column #OBS shows
the number of observations per translation state, while the %Dur column gives their percentage
of the total production duration. In the post-editing mode, most activities (19,275 units) were
observed in the TT reading (T1) mode, as well with respect to the number of units and with
respect to their duration. In the translation mode, the translators were 44% of the total time
involved in writing activities.

Figure 2: A fully connected translation process transition network with four states.

The columns S2, T2, W2 and P2 provide the likelihood of the next state to which post-
editors or translators will switch.3 For instance, if a post-editor is involved in an ST reading
state (S1), there is a high chance of 81% that next he or she will switch to TT reading (T2).
Once in the T1 state, the highest probability (56%) is to switch back to ST reading (S2). This is
different in the translation mode, where the translator will most likely turn to writing (W2) after
a T1 activity. Table 2 provides thus a transition table which can be represented in the form of
a completely connected transition network as shown in Figure 2. Each state in the network in
Figure 2 is connected to each other state in the network, and the transition from one state to the
successor states are weighted by probabilities, such that the sum of all outgoing archs sums to
1.0. Two possible instantiations of the transition network are shown in Table 2, which produce
slightly different behavior for post-editing and for from-scratch translation.

4.2 Novice and expert translators
Hvelplund (2016) reports that novice and expert translators exhibit different behavior with re-
spect to the length and the sequencing of translation activities. His study is restricted to the
English to Danish data collection which is gathered in the KTHJ08 study in Table 2. Accord-
ing to Hvelplund, experienced translators shift more often from ST reading (S1) directly to
writing (W2) than student translators; in 65.5% and 52.2% of the cases respectively. Student

3There are also transitions in the diagonal e.g. W1 → W2 which result from the fact that we have collapsed
activities of type 4,5 and 6 into one state. We will ignore them here, since we are not concerned with these transitions
in this paper.
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translators show more occurrences of TT reading than professionals, which suggests that stu-
dents aim more often at confirming meaning hypotheses, rather than allocating the cognitive
resources directly to writing once a meaning hypothesis has been established. Hvelplund also
finds a higher variability in the unit duration of professional translators as compared to student
translators. Hvelplund sees this as an indicator for greater ability to adapt to the situation by the
professional group.

While Hvelplund investigates the impact of the level of translation expertise on the activity
transition probabilities of S1 →W2, we will show below in section 5 that the inner structure of
the preceding units (i.e. S1) themselves seem to determine to some extent the transition to the
next state.

4.3 Post-editing styles
Based on a taxonomy that overlaps to some extent with our six activity units, Mesa-Lao (2013)
suggests six post-editing steps and develops a minimal model of post-editing with spells out
four translation styles. His first two post-editing styles are:

• style1: The post-editor first reads the TT segment, detects an MT error, reads the ST
segment, and fixes the MT error.

• style2: The post-editor first reads the ST segment, then the TT segment, detects an MT
error, and fixes it.

Translation style3 in Mesa-Lao’s taxonomy is a variations of style2 (omit ST reading) and
in style4 the post-editor reviews first a previous segment before fixing the MT error. Post-
editing style1 seems to be the most preferred among his participants. However, in order to
simulate Mesa-Lao’s translation styles based on the available data that we have (keystrokes and
fixations) and the the four translation states, we cannot know when a translator actually detects
an MT error. Skipping the step “detect an MT error” leaves us thus with two post-editing
patterns that we can map on sequences of the translation states: style1: T → S → W and
style2: S → T → W . In the following section we reduce these two patterns even further and
examine the minimum translation cycles T → W and S → W , which represent the question:
what happens before typing?

5 Determinants of writing probability

In this section we analyze where and for how long the gaze was observed prior to writing. We
will also test to what extent the HCross value (i.e possibility for syntactic choice) of the typed
text has an effect on S1 and T1 reading duration, prior to typing W2. The analysis tells us
something about the processes which take place between the input (S1 and T1 reading), the
output (W2 writing activity) in the cognitive system.

For all the analyses in the present study, R (R Development Core Team, 2014) and the lme4
(Bates et al., 2014) and languageR (Baayen, 2013) packages were used to perform generalized
linear mixed-effects models. To test for significance, the R package lmerTest (Kuznetsova et al.,
2014) was used. Two separate models (one for post-editing and one for from-scratch translation)
with reading duration and HCross as predictors and their interaction with reading type were
tested. Both models had participant and target language as random factors.

5.1 The effect of reading duration on writing probability
Increased S1 reading duration during post-editing (Figure 3a, left) and from-scratch transla-
tion (Figure 3b, left) decreases the probability of successive writing (TypingProb). Increased
S1 reading duration thus increases the chances that post-editors and translators engage in suc-
cessive T2 reading, instead of writing (W2). The reason might be due to ST comprehension
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(a) Post-editing (b) Translation

Figure 3: The effect of S1 and T1 reading duration (Dur 1) on the probability (TypingProb)
that participants engage in successive writing activity W2. The gray shadow represents the
standard error.

or translation difficulties, which require longer S1 reading reading times, for both post-editing
and from-scratch translation. The more information is processed during ST reading (long S1

reading), the stronger is the need to first cross check the emerging translation hypothesis with
the existing TT, before typing in the translation solution - possibly due to working memory
limitations. We thus see more likely a transition S1 → T2 for longer S1 reading times. That
is, a translation hypothesis gathered during S1 reading needs to be integrated with the existing
TT before writing a solution. If the ST information intake is long (long S1 reading), memory
on the status of the TT might first need to be refreshed through (re-newed) TT reading in order
for the new solution to be properly integrated. Accordingly, the 16% and 42% of S1 → W2

transitions in post-editing and from-scratch translation respectively (see Table 2) take mainly
place if S1 reading durations are short (< 5000ms, see section 5.3).

Longer T1 reading activities increase the probability of a successive writing (W2) for post-
editing (Figure 3a, right) but decrease the probability of successive writing for from-scratch
translation (Figure 3b, right). This difference in TT reading patterns might be due to the fun-
damental difference between post-editing and from-scratch translation. In post-editing a TT
already exists and some modifications can be made without consultation of the ST. W2 activi-
ties after longer T1 reading times during post-editing might relate to the correction of (relatively
minor) fluency errors which can be corrected without consultation of the TT.

In from-scratch translation, information from the ST needs to be retrieved and integrated
with the existing translation in order to continue producing the emerging TT. The longer from-
scratch translators read the TT, the more likely they will need to retrieve new information from
the ST in order to continue translation production

There were highly significant main effects for reading type, for post-editing (β=4.02,
SE=0.06, t=62.54, p < .001) and for from-scratch translation (β=2.11, SE=0.04, t=54.65, p
< .001), such that writing (W2) was more likely after TT reading (T1). There were also highly
significant main effects for reading duration for post-editing (β=-0.91, SE=0.045, t=-20.38,
p < .001) and for from-scratch translation (β=-0.68, SE=0.02, t=-33.25, p < .001), such that
longer reading activities (Dur 1) made writing less likely. The interaction between reading type
(S1/T1) and reading duration (Dur 1) was highly significant for post-editing (β=1.07, SE=0.05,
t=22.65, p < .001) and for from-scratch translation (β=0.56, SE=0.03, t=21.41, p < .001).
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(a) Post-editing (b) Translation

Figure 4: The effect of the HCross on the probability that participants type immediately after
the reading activity (TypingProb), depending on whether the source (S) or the TT (T ) is read
prior to the writing event.

5.2 The effect of HCross on writing probability

As discussed in section 2, HCross represents the possibility for the translation of a word or
phrase to occur in different syntactic positions in the target text segment. HCross is highly
correlated with cross-lingual semantic similarity - HTra and HCross correlate to a high degree
(r=.79, p < .001). The more likely it is that different word orders are realized (high syntactic
complexity), the more likely it is that different lexical items are used (high semantic complex-
ity).

For both post-editing (Figure 4a) and from-scratch translation (Figure 4b), HCross had a
positive effect on the probability that writing follows ST reading. Thus, higher HCross values
increase the probability of a S1 → W2 transition. This effect was more pronounced for
from-scratch translation then on post-editing. However, for both post-editing and from-scratch
translation, HCross had a negative effect on the probability that writing follows TT reading.
Again, this effect was more pronounced for from-scratch translation.

An explanation of this observation might be that items with higher HCross values can be
seen as particularly challenging to translate and that solutions for difficult translations emerge
during ST reading. The more complex the translation is, i.e. semantically and syntactically less
similar, (the less literal), the more likely both post-editors and translators are to refer back to the
ST and the less likely they are to type a translation solution immediately after reading the TT.

That is, the 41% and 54% of T1 → W2 transitions in post-editing and from-scratch trans-
lation respectively (see Table 2) take preferably place if HCross values are low (the translation
is easy). The solutions of more complex translation problems are preferably typed in after S1

reading.
There were highly significant main effects for HCross, for post-editing (β=0.23, SE=0.02,

t=9.73, p < .001) and for translation (β=0.41, SE=0.017, t=24.15, p < .001), such that writing
(W2) was more likely for higher HCross values. The interaction between reading type (S1 / T1)
and HCross was highly significant for post-editing (β=-1.34, SE=0.03, t=-44.28, p < .001) and
for translation (β=-1.12, SE=0.02, t=-49.84, p < .001).
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(a) Interaction between HCross * Dur 1

(b) Distribution of S1 duration
(Dur 1)

Figure 5: Interaction between the duration (Dur 1) of an S1 event and the complexity (HCross)
of successive translation productionW2 on the probability of a S1 →W2 transition. The typing
probability increases with short S1 reading times and high HCross values. Typing probability
decreases with long S1 reading times and high translation complexity (HCross).

5.3 Interaction of S1 reading duration and HCross value on W2 probability
As discussed in the previous sections, the S1 → W2 typing probability during translation de-
pends (among other factors) on the:

• expertise of the translator (section 4.2)

• S1 reading duration (section 5.1)

• HCross value of the W2 event (section 5.2)

Figure 5a shows the interaction effect between S1 reading duration (Dur 1) and the com-
plexity of the translation (HCross) that follows the reading event. In line with the findings
discussed in Figures 3a and 3b (left) it shows that short ST reading activities (< 5000ms) are
followed with high probability by typing events. As shown in Figure 4a and 4b (left) the typ-
ing probability is even more likely if the produced translation solution is more complex. This
suggests that complex translations are preferably produced immediately after a short ST con-
sultation, presumably to relieve working memory by flushing out probably intermediate and
incomplete translation solutions that are later to be revised and thus to avoid building up and
keeping more complex structures in mind. In contrast, less complex translation problems may
still be integrated with more information gathered during successive TT reading before a typing
event occurs.

This trend is reversed for longer ST reading duration, where the typing probability de-
creases if the translation problem becomes more complex. It suggests that long S1 reading
duration in combination with complex translation problems requires additional T2 reading, and
presumably additional ST-TT integration cycles.

In combination, these observations suggest that difficult translation problems are cross-
checked and resolved after reading the ST, while simple translation problems may be rectified
after TT reading.
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6 General Discussion

According to Dillinger (2014, xi), a key ability for post-editors (and translators) is their ability
to compare sentences (and texts) across languages, in terms of both literal meaning and the
culturally determined patterns of inference and connotation that different phrasings will entail.
Patterns of keystrokes and gaze behavior make it possible to trace the origin of problems trans-
lators face to establish equivalence across languages. We have shown that bigrams of translation
states, i.e., reading the ST or the TT and writing, constitute minimal and coherent problem iden-
tification and solution cycles. The degree of complexity (i.e. syntactic choice) clearly predicts
subsequent activities, both during translation and post-editing. Remarkable in this regard is the
fact that the effect of word-order choices in the target language (HCross) is similar in both tasks,
suggesting that post-editors engage in processes which are not unlike those during from-scratch
translation, when the raw MT output is faulty. Both post-editors and translators refer back to the
source text when the produced TT is semantically and/or syntactically complex or non-literal.
We hope that these minimal and coherent problem identification and solution cycles will con-
stitute the building blocks for a more fully fledged model of both post-editing and from-scratch
translation.
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