
LiLT volume 13, issue 3 October 2016

From Abstract Syntax to Universal

Dependencies

Prasanth Kolachina and Aarne Ranta, University of

Gothenburg

Abstract.
Abstract syntax is a semantic tree representation that lies between

parse trees and logical forms. It abstracts away from word order and
lexical items, but contains enough information to generate both surface
strings and logical forms. Abstract syntax is commonly used in com-
pilers as an intermediate between source and target languages. Gram-
matical Framework (GF) is a grammar formalism that generalizes the
idea to natural languages, to capture cross-lingual generalizations and
perform interlingual translation. As one of the main results, the GF
Resource Grammar Library (GF-RGL) has implemented a shared ab-
stract syntax for over 30 languages. Each language has its own set of
concrete syntax rules (morphology and syntax), by which it can be
generated from the abstract syntax and parsed into it.

This paper presents a conversion method from abstract syntax trees
to dependency trees. The method is applied for converting GF-RGL
trees to Universal Dependencies (UD), which uses a common set of la-
bels for different languages. The correspondence between GF-RGL and
UD turns out to be good, and the relatively few discrepancies give rise
to interesting questions about universality. The conversion also has po-
tential for practical applications: (1) it makes the GF parser usable as
a rule-based dependency parser; (2) it enables bootstrapping UD tree-
banks from GF treebanks; (3) it defines formal criteria to assess the
informal annotation schemes of UD; (4) it gives a method to check the
consistency of manually annotated UD trees with respect to the anno-
tation schemes; (5) it makes information from UD treebanks available

1

2 / LiLT volume 13, issue 3 October 2016

for the construction and ranking of GF trees, which can improve GF
applications such as machine translation. The conversion is tested and
evaluated by bootstrapping two small treebanks for 31 languages, as
well as comparing a GF version of the English Penn treebank with the
UD version.

1 Introduction

Computational syntax can work on different levels of abstraction. The
lowest level normally used when processing written text is strings of to-
kens ("words"). But it is often useful to work with more abstract struc-
tures: part-of-speech (POS) tagged lemma sequences, phrase structure
trees, dependency trees, or some kind of logical forms.

Raising the level of abstraction often gives new ways to relate differ-
ent languages to each other. Thus tagged lemmas enable the separation
of surface strings from word senses, which can be useful, for instance, in
factored machine translation. Logical forms ideally ignore all language-
related features, and express just the pure propositional meaning. But
what about syntax trees? Traditional phrase structure trees preserve
surface words and constituent order and are hence language-dependent.
Dependency trees are often a bit more abstract, treating the word order
as irrelevant and lemmatizing the words. Sharing the POS tags and de-
pendency labels between languages increases this potential to abstract
over languages.

Universal Dependencies (UD, de Marneffe et al. (2014)) is a re-
cent approach to dependency parsing that tries to maximize the shar-
ing of structures between languages. UD has a set of dependency labels
and POS tags that are designed to fit many languages, and a series
of annotation manuals that guide treebank builders to use the labels
and tags in a uniform way. The expected gain is that efforts can be
shared among languages. For instance, searching for semantic roles in
sentences can be defined uniformly for different languages, and parsers
for new languages can be bootstrapped by using treebanks for other
languages.

As suggested by Nivre (2015), UD can be seen as a modern approach
to universal grammar. The originally mediaeval idea of a universal
grammar has many times been rejected by linguists, often with good
reasons. But much of it can be saved if we think of it as an abstraction:
on a proper level of abstraction, languages have much in common, so
why not try to find out what is common? Universality should be seen
as a working hypothesis rather than an a priori truth.

In UD, the working hypothesis is that languages have a common set

From Abstract Syntax to Universal Dependencies / 3

of parts of speech (nouns, verbs, etc) as well as grammatical functions
(subject, modifier, etc). Some languages don’t have all of these features,
and individual languages may have features that are not universal.
The annotation manuals for treebank builders have recommendations
that maximize the use of common features, but give room to diversity.
This approach has proved successful, and as a result, UD has presented
treebanks for over 30 languages.

An older but nonetheless computational approach to universal gram-
mar is Curry’s notion of tectogrammatical structure (Curry, 1961).
The tectogrammatical representations are function applications1. They
are trees that describe pure constituency: what the constituents are
and how they are put together, but ignoring what word strings are
ultimately used and what their linear order is. To give an example,
subject-verb-object predication could be presented by a tectogrammat-
ical function Pred,

Pred : TV -> NP -> NP -> S

that takes a transitive verb and two noun phrases as its arguments and
produces a sentence. The constituent order (SVO, SOV, etc) is specified
separately for each language in their phenogrammatical rules. These
rules may look as follows:

Pred verb subj obj = subj ++ verb ++ obj
Pred verb subj obj = subj ++ obj ++ verb

for SVO and SOV, respectively (with ++ marking concatenation).
Curry’s tectogrammar inspired the Prague school of dependency

parsing (Böhmová et al., 2003). The grammars, however, are differ-
ent, since the Prague school is based on the roles of words (similar to
what is traditionally called "grammatical functions"), whereas Curry’s
tectogrammatical functions are functions that combine words. Gram-
matical Framework (GF, Ranta (2004, 2011)) is a grammar formalism
that is more directly based on Curry’s architecture. GF grammars are
similar to grammars used in compiler construction, where tectogram-
mar is called abstract syntax and phenogrammar is called concrete
syntax or linearization (McCarthy, 1962, Appel, 1998). 2

The most comprehensive multilingual grammar in GF is the Re-
source Grammar Library, GF-RGL (Ranta, 2009b), which by the
time of writing has concrete syntaxes for over 30 languages, ranging

1
Also known as lambda terms or LISP terms or, as in Curry’s original work,

terms of combinatory logic.

2
As noted by Dowty (1979), also Montague grammar (Montague, 1974) can be

seen as having Curry’s architecture, although Montague only used it for English.

4 / LiLT volume 13, issue 3 October 2016

from European through Finno-Ugric and Semitic to East Asian lan-
guages.3 When the UD approach appeared, it became immediately in-
teresting to see how it relates to GF-RGL. The formal correspondence
was obvious: once we have a GF abstract syntax tree, we can easily
derive a dependency tree. For instance, a rule of the form

Pred verb subj obj

gives rise to a dependency tree where the first argument produces the
head, the second argument produces a dependent with label subj and
the third argument a dependent with label obj. As we will show more
formally in Section 2.2, a simple recursive function can convert abstract
trees to dependency trees in this way. However, there are details that
remain to be worked out:. How to convert GF-RGL to an independently given dependency

scheme, such as UD?. Is GF-RGL complete, in the sense of covering all UD structures?. Can GF-RGL give any new insights for developing UD further?
The purpose of this paper is to answer these questions. While doing
so, we will often discuss the differences in analyses between GF-RGL
and UD, and in many cases argue for the GF-RGL decisions. But in a
bigger picture, we have been surprised to see how much the approaches
have in common. That so similar structures of "universal grammar"
have been found in two independent ways can be seen as confirming
evidence for both of them.

Our work is also expected to have practical uses: bootstrapping UD
treebanks from GF; using UD treebanks to help GF parsing (in partic-
ular, statistical disambiguation); assessing UD annotation schemes and
treebanks from a formal perspective. Our conversion moreover makes
the GF-RGL parser usable as a rule-based UD parser, although a rather
slow one. Perhaps more interestingly, generation from UD trees becomes
possible (including translations to other languages), because GF gram-
mars are reversible (and generation is fast, as opposed to parsing).

The structure of the paper is as follows: Section 2 prepares the discus-
sion with a concise introduction to GF and a mathematical definition
of the correspondence between abstract syntax trees and dependency
trees. Section 3 gives an overview of GF-RGL and UD; parts of it can be
skipped by the reader who already knows the approaches, and many of
the details are given in an Appendix. Section 4 goes through the great
majority of structures, where GF-RGL and UD are similar enough to

3
The current status of GF-RGL can be seen in http://www.

grammaticalframework.org/lib/doc/synopsis.html which also gives access

to the source code.

From Abstract Syntax to Universal Dependencies / 5

allow a simple, local (i.e. compositional) and language-independent con-
version of trees. Section 5 covers the remaining structures, where non-
local or language-dependent conversions are needed. Section 6 presents
an evaluation with three different treebanks. Section 7 concludes.

2 Grammars and trees

2.1 Abstract and concrete syntax
A GF grammar consists of an abstract syntax and a set of concrete
syntaxes. Figure 1 shows a set of abstract syntax rules, which is a small
fragment of the GF Resource Grammar Library, but representative
in the sense that it covers some of the most fundamental syntactic
structures. The rule set includes a lexicon that is large enough to cover
our running example, the English sentence

the black cat sees us

and its French equivalent
le chat noir nous voit (word to word: "the cat black us sees")

An abstract syntax has two kinds of rules:. cat rules defining categories, here S, NP, VP, etc.. fun rules defining functions, here PredVP, ComplTV, etc.
All rules in Figure 1 are equipped with comments (starting –-) that
explain the categories and functions.

Categories are the basic building blocks of types, which have the
form

C1 ! . . . ! Cn ! C

where n � 0 and C1, . . . , Cn, C are categories. Each such type is a
function type, where C1, . . . , Cn are the argument types and C is
the value type. The limiting case n = 0 gives types of constant func-
tions, which typically correspond to lexical items, such as we_Pron
in Figure 1. Types with n > 1 typically correspond to syntactic com-
binations, such as PredVP, combines an NP with a VP to an S. Types
with n = 1 are typically coercions, such as UsePron, which lifts a
pronoun into an NP.

A concrete syntax has two kinds of rules, parallel to cat and fun
rules:. for each category, a lincat rule defining its linearization type. for each function, a lin rule defining its linearization, which is

a function that combines the linearizations of the arguments into
an object of the linearization type of the value type

To define a concrete syntax for Figure 1, we can start by uniformly

6 / LiLT volume 13, issue 3 October 2016

cat

S ; -- sentence

NP ; -- noun phrase

VP ; -- verb phrase

TV ; -- transitive verb

AP ; -- adjectival phrase

CN ; -- common noun

Det ; -- determiner

Pron ; -- personal pronoun

fun

PredVP : NP -> VP -> S ; -- predication: (the cat)(sees us)

ComplTV : TV -> NP -> VP ; -- complementation: (see)(us)

DetCN : Det -> CN -> NP ; -- determination: (the)(cat)

AdjCN : AP -> CN -> CN ; -- adjectival modification: (black)(cat)

UsePron : Pron -> NP ; -- use pronoun as noun phrase: (us)

we_Pron : Pron ; -- we/us

see_TV : TV ; -- see/sees

the_Det : Det ; -- the

black_AP: AP ; -- black

cat_CN : CN ; -- cat/cats

FIGURE 1 An abstract syntax for a fragment of GF-RGL.

From Abstract Syntax to Universal Dependencies / 7

using Str as linearization type:

lincat S, NP, VP, TV, AP, CN, Det = Str

All linearizations are then defined as strings and their concatenations
(denoted by ++). Thus a tree formed by the function PredVP is in both
English and French linearized by

lin PredVP np vp = np ++ vp

concatenating the linearization of the NP argument with the lineariza-
tions of the VP argument. But usually the rules are different. Thus
lexical items have rules such as

lin black_AP = "black" -- English
lin black_AP = "noir" -- French

More interestingly, linearization rules can also vary the word order:

lin ComplTV tv np = tv ++ np -- English
lin ComplTV tv np = np ++ tv -- French

lin AdjCN ap cn = ap ++ cn -- English
lin AdjCN ap cn = cn ++ ap -- French

The concrete syntax rules shown above use only strings and their
concatenation. Such rules have an expressive power similar to syn-
chronous context-free grammars (Aho and Ullman, 1969), the
main difference being that synchronous grammars don’t make the ab-
stract syntax explicit. Synchronous context-free grammars are sufficient
for changing the lexical items and their order, which is what we need in
our running example. However, the above rules are not correct, because
they don’t deal with morphology (case and agreement) nor with vari-
able word order (clitic vs. non-clitic objects in French). To deal with
natural languages in full scale while sharing the abstract syntax, we
need a bit more expressive power. We will return to this in Section 2.3.

2.2 Trees and their conversions
Figure 2 summarizes the different kinds of trees that we will speak
about, by showing different representations of one and the same exam-
ple.. Abstract syntax trees (a) are trees where the nodes and leaves

are abstract syntax functions.. Parse trees (b,c), also known as concrete syntax trees or
phrase structure trees, are trees where the nodes are categories
and the leaves are words (strings).. Dependency trees (d,e) are trees where the nodes are words

8 / LiLT volume 13, issue 3 October 2016

and the edges are marked by dependency labels; the order of
words is significant.. Abstract dependency trees (f) are trees where the nodes are
constant functions and the edges are marked by dependency la-
bels; the order of nodes is not significant.

The tree visualizations are generated by GF software.
The abstract syntax tree (Figure 2 (a)) is a non-redundant represen-

tation from which all the others can be derived. Parse trees are derived
as follows: given an abstract syntax tree T,

1. Linearize it to a word sequence S.
2. Link each word in S to its smallest spanning subtree in T.
3. Replace each function in the nodes of T by its value category.

The smallest spanning subtree of a word is the subtree whose top
node is the function whose linearization generates that word.

To convert an abstract tree to a dependency tree, we specify, for
each abstract syntax function, its dependency configuration: which
of the arguments is the head, and how the other arguments are labelled.
The default dependency configuration used in GF says that the head
is the first argument, and the other arguments have labels dep1, dep2,
and so on. This default can be overridden by an explicit configuration.
In Figure 2, we assume the following configurations to produce the
standard UD labels:

PredVP nsubj head
ComplTV head dobj
DetCN det head
AdjCN amod head

A similar configuration can be used for mapping GF categories to UD
part of speech tags. The default is the category symbol itself.

Given an abstract syntax tree T of a word sequence S, a dependency
tree is derived as follows:

1. For each word w in S, find the function fw forming its smallest
spanning subtree in T.

2. Link each word w in S with either
(a) the head argument of fw, if w is not the head
(b) the head of whole fw, if w is itself the head

Given a concrete syntax and a dependency configuration, an abstract
syntax tree is thus a non-redundant and faithful representation for all
information about a sentence. In contrast to this, parse trees and de-
pendency trees are lossy representations. For dependency trees, this
is easy to see: many functions can have the same dependency config-
uration, and if we only see the labels attached to the arguments, we

From Abstract Syntax to Universal Dependencies / 9

(a)

(b) (c)

(d) (e)

(f)

FIGURE 2 Trees for the sentence the black cat sees us and its French
translation: (a) abstract syntax tree; (b,c) parse trees; (d,e) dependency

trees; (f) abstract dependency tree with unordered word senses.

10 / LiLT volume 13, issue 3 October 2016

cannot know what the dominating function is. For parse trees, it can
likewise happen that a context-free grammar rule encodes different ways
of putting together its constituents. For instance, the flat predication
rule

S ! NP TV NP
can, in a free word order language, match both SVO and OVS se-
quences.

For the reason of missing information, dependency trees and parse
trees cannot in general be derived from each other. This is why the
existing algorithms use uncertain heuristics such as head percolation
(Collins, 1996). Using abstract syntax trees as the master representa-
tion solves this problem.

An alternative way to derive dependency trees is to use parse trees
decorated with abstract syntax functions and dependency labels. This
gives a natural way to explain the conversions and will therefore be used
later in this paper. In a decorated parse tree, we mark the dependency
labels at each branching point of the tree, as shown in Figure 3, but
omit the "head" labels. To find the labelled arc for each word,

1. Follow edges up from the word until a label is reached: this is the
label of the word.

2. From the dominating node, follow the (unique) path of unlabelled
edges down to another word: this is the head of the word. A head
path in a tree is called a spine.

3. If no label is encountered on the way upwards, the word is itself
the head of the sentence.

Figure 3 shows the path corresponding to the labelled arc of the word
cat.

2.3 Abstracting from morphological variation
If we swap the subject and the object in the example sentence of Fig-
ure 2 and linearize with the concatenation rules of concrete syntax in
Section 2.1, we get us sees the black cat in English and nous le chat
noir voit in French. Both sentences have a subject-verb agreement er-
ror. The English sentence also has a wrong case of the pronoun, and the
French sentence has a wrong word order, since the object can appear
before the verb only if it is a clitic pronoun. To solve these problems, we
need to introduce morphological variation in the grammar. Since mor-
phological variation is language-dependent, we introduce it in concrete
syntax and not in the abstract syntax. This forces us to go beyond the
context-free linearization rules of Section 2.1.

Let us consider verb inflection first, restricted to present tense in-
dicative forms for simplicity. In English, we need two forms: the third

From Abstract Syntax to Universal Dependencies / 11

FIGURE 3 Dependency tree derivation from a decorated parse tree. The
word cat has sees as its head and nsubj as its label. The path from the top

to the word sees is a spine.

person singular and "other". We define, in the English concrete syntax,
a parameter type of verb forms, which has two elements:

param VForm = SgP3 | Other

The category TV (and also VP) has as its linearization type a table
(similar to an inflection table), which produces a string as a function
of a verb form:

lincat VP, TV = VForm => Str

Thus the verb see is linearized as follows:

lin TV = table {SgP3 => "sees" ; Other => "see"}

For noun phrases, we need the parameter of case, which is nominative
or accusative.

param Case = Nom | Acc

But we also need to account for the subject-verb agreement: the fact
that a noun phrase can determine the form of a verb. This we can do
by using a record type as the linearization type of NP:

lincat NP = {s : Case => Str ; a : VForm} ;

A record of this type has two fields: the field s, which is a case-
dependent string, and the field a (agreement feature), which is a verb
form. An example is the linearization of we_Pron:

lin we_Pron =
{s = table {Nom => "we" ; Acc => "us"} ; a = Other}

12 / LiLT volume 13, issue 3 October 2016

Putting everything together, we obtain the linearization rule for pred-
ication:

lin PredVP np vp = np.s ! Nom ++ vp ! np.a

This rule uses the s field of the NP (by the projection operator .), from
which it takes the Nom form (by the selection operator !). The result is
concatenated to the verb form selected for the value for the a field of
the NP.

In French, we need different parameter types: for instance, verbs have
six forms and not just two. We also need some parameters not present
in English, such as the gender of adjectives, nouns, and determiners.
The most interesting parameter for the example at hand is, however, a
boolean that states if an NP is a clitic, to determine its position when
used as object:

lincat NP =
{s : Case => Str ; a : VForm ; isClitic : Bool}

Now we can write a complementation rule that inspects the cliticity
feature of the object to decide if the verb or the object comes first:

lin Compl tv np = table {vf =>
case np.isClitic of {

True => np.s ! Acc ++ tv ! vf ;
False => tv ! vf ++ np.s ! Acc
}

}

The generalization of linearization from strings to tables and records
leads us from context-free grammars to multiple context free gram-
mars (MCFG) (Seki et al., 1991). As shown in Ljunglöf (2004), GF is
actually equivalent to PMCFG (Parallel MCFG), which is MCFG with
reduplication. 4

An MCFG is a grammar over tuples of strings rather than just
strings. In addition to inflection and word order variations, MCFG
enables discontinuous constituents. Thus for instance in VSO lan-
guages (such as classical Arabic) verb phrases are records with separate
fields for the verb and the complement:

lincat VP = {verb : Str ; compl : Str}

(ignoring all morphological parameters). The VSO order is realized in
the predication rule, which puts the subject noun phrase between the
verb and the complement:

4
Reduplication is used only in few places in the RGL: Chinese yes/no questions

and some semantic constructions such as the intensification of adjectives in Swedish.

From Abstract Syntax to Universal Dependencies / 13

lin PredVP np vp = vp.verb ++ np ++ vp.compl

2.4 Abstracting from syncategorematic words
Designing a GF grammar involves finding a level of abstraction that
makes sense for all languages to be addressed. For instance, morpholog-
ical distinctions present in one language but not the others should be
ignored in the abstract syntax. Some of these questions can be subtle.
The copula of adjectival predication is an example of a common kind
of questions encountered in the RGL-UD mapping task.

Let us extend the abstract syntax of Figure 1 with a rule converting
adjectival phrases to verb phrases:

fun CompAP : AP -> VP

The English linearization rule (ignoring morphology, which is irrelevant
for this question) introduces the copula is prefixed to the AP:

lin CompAP ap = "is" ++ AP

The copula has thus no abstract syntax of its own. The cross-linguistic
justification of this treatment is that many languages (Arabic, Russian)
don’t need copulas, and that they should therefore not be introduced in
the abstract syntax. Words with no abstract syntax category attached
are called syncategorematic.

The conversion defined in Section 2.2 generates no dependency labels
for syncategorematic words. Thus the tree assigned to the cat is black
in this grammar has no label for the word is. A default dummy label
"dep" can then be used, as in Figure 4 (a). This tree moreover uses
VP as the part of speech tag, since this is the category of the smallest
spanning subtree of the copula.

However, the UD annotation manual for English says that the copula
should have the label "cop" with the word black as its head (Figure 4
(b)) and AUX as its POS tag. The general principle in dependency
parsing is that all words have labels connecting them to a head (except
for the head of the whole sentence). According to this principle, there
are no syncategorematic words.

The principle that all words are categorized makes sense in the de-
pendency parsing context, where the trees are trees of words and not of
phrases, let alone abstract functions. But from the "universal" point of
view, this results in trees that may be unnecessarily different in different
languages, because syncategorematic words are not universal. They can
also be argued to be irrelevant for the semantic structure. Thus depen-
dency parsers are sometimes supplemented by "flattening" or "collaps-
ing" functions that remove semantically irrelevant words (de Marneffe
and Manning, 2008, Ruppert et al., 2015). The "collapsing" process

14 / LiLT volume 13, issue 3 October 2016

(a) (b)

(c)

FIGURE 4 Dependency trees for the cat is black (a) with a
syncategorematic copula (b) with a categorized copula. Also shown in (c) is

a collapsed variant of (a)

achieves two characteristics: a collapsed tree no longer contains all the
words in a sentence and the dependency labels and heads are semanti-
cally coherent (but may be syntactically heterogeneous).

When dependency trees are derived from abstract syntax, the situa-
tion is the opposite. What we get first, by straightforward dependency
configurations, is a kind of "collapsed" trees (Figure 4 (c)). The se-
mantically irrelevant words are not provided with a dependency label
of their own using dependency configurations defined on abstract syn-
tax. To obtain these labels, we must extend the dependency configu-
rations with rules defined on concrete syntax. Such rules are language-
dependent, not universal.

One could question whether not just stop at the collapsed trees, since
they are the truly universal ones. However, since we are interested in
converting GF trees to complete UD trees, we have chosen to extend
our conversion algorithm with a "decollapsing" phase, by extending
the abstract (language-independent) dependency configurations with
language-dependent ones (Section 5). The resulting dependency tree at
the end of this "decollapsing" phase is a connected tree where all words
have labels connecting them to a head, as done in the UD scheme. The
extended conversion algorithm is presented in Section 5.7.

An alternative to these language-dependent configurations is to
rewrite the grammar. Rewriting the grammars facilitates constructing
complete UD trees using dependency configurations defined only on the

From Abstract Syntax to Universal Dependencies / 15

abstract syntax. For the example at hand, this is simple: just introduce
a category Cop of copulas, with one element be_Cop, and change the
CompAP rule:

cat Cop
fun be_Cop : Cop
fun CompAP : Cop -> AP -> VP

In languages with zero copulas, the linearization of be_Cop is the empty
string.

The line that we follow in this paper, however, is to keep GF-RGL as
it is and instead make the dependency configurations more elaborate.
This choice has several advantages:. We can automatically get collapsed trees. These can be post-

processed later to add labels for syncategorematic words, but still
be useful if the end goal is only to extract relations between the
content words in the sentence.. We don’t optimize for the particular dependency annotation
scheme of UD and can easily change the configurations.. Since GF-RGL was from the start designed to be multilingual,
we get evidence to assess the universality of the current UD.

3 An overview of GF-RGL and UD

This section provides readers with an overview of GF-RGL and the UD
annotation project. Readers familiar with GF can skip Section 3.1 and
readers familiar with UD can skip Section 3.2.

3.1 Overview of RGL
The first applications of GF were small grammars built for transla-
tion systems on specific application domains, such as geographic facts
(Dymetman et al., 2000), mathematics (Hallgren and Ranta, 2000),
and simple health-care dialogues (Khegai, 2006). The abstract syntax
in these applications encoded the semantic structures that were to be
preserved in translation. But the idea soon emerged to generalize the
abstract syntax idea from domain semantics to domain-independent
syntactic structures, such as NP-VP predication. This led to the de-
velopment of the GF Resource Grammar Library (RGL), whose first
version was inspired by the syntactic structures used in CLE (Core Lan-
guage Engine) (Rayner et al., 2000). The RGL was first intended to be
a library that would help domain grammarians by giving them reusable
functions for surface syntax and morphology (Ranta, 2009a). But it was
soon also seen as a linguistic experiment, to find out how comprehen-
sive a common abstract syntax could be and how many languages it

16 / LiLT volume 13, issue 3 October 2016

could apply to. This experiment had no commitment to any theory of
linguistic universals, but the idea was just to try and see how far one
can get. Nevertheless, the sharing of tree structures was more far reach-
ing than parallel grammar development in systems like CLE, LinGO
Matrix (Bender and Flickinger, 2005), and ParGram (Butt et al., 2002).

The first experiments on a handful of not too similar languages (En-
glish, Finnish, French, Russian) were encouraging. Gradual modifica-
tions led to a stable abstract syntax, which was reported in Ranta
(2009b) and was at the time implemented for 14 languages. In late
2015, the same abstract syntax has concrete syntaxes for 30 languages,
and 5 to 10 more are under construction. More than 50 persons have
contributed to the GF-RGL. Its source code and documentation are
available on the GF web page.5

The GF Resource Grammar Library has an abstract syntax with
86 categories and 356 functions. Of these functions, 140 are functions
that don’t take arguments (mostly structural words such as determin-
ers), 85 are one-argument coercions, and 131 are syntactic combinations
with more than one argument (the only class that needs dependency
configurations). This abstract syntax is the core RGL, which is spec-
ified as the minimum to be implemented for a language to count as a
"complete" resource grammar. This notion of completeness is of course
purely formal, and does not mean that the whole language is analysable
by the grammar. But it does mean that the standard GF applications,
such as controlled language grammars (Ranta et al., 2012, Dannélls
et al., 2012, Kaljurand and Kuhn, 2013) are directly portable to that
language.

In addition to the core RGL, the library has language-specific ex-
tensions, which need not be shared by all languages. These extensions
are grouped hierarchically, so that for instance Romance languages have
a set of common extensions, on top of which Catalan, French, Italian,
and Spanish have their own extensions. These modules typically make
a 10% addition to the core RGL code. The extension modules enable
grammarians to experiment with individual languages without bother-
ing about the universality of all constructs. There is after all no reason
why all grammatical constructs should be universal: it is good enough
if a core subset is.

Another, recent addition to the core RGL is a set of categories and
functions that enable wide coverage parsing and translation (Angelov
et al., 2014). To maintain the interlingual translation architecture, these
extensions are shared by all languages (15 at the time of writing). But

5
http://www.grammaticalframework.org/lib/doc/synopsis.html

From Abstract Syntax to Universal Dependencies / 17

they are generally less precise than the original RGL functions. In par-
ticular, there is a category of chunks, which is used as a robust back-up
to syntactically complete parsing.

The present paper focuses on the core RGL, showing how the main
syntactic structures of GF are mapped into UD. This is sufficient for
two small treebanks, which are covered for 31 languages. Dealing with a
larger treebank, covering 15 languages, also includes the robust back-up
rules. But this part is less stable and more ad hoc, and we will report
the result for the two parts separately.

Figure 18 in the Appendix shows the hierarchy of categories in the
core RGL. The same picture appears in (Ranta, 2011), and Ranta
(2009b) provides a systematic linguistic discussion of the categories
and functions. In this paper, we will present the RGL from another
perspective, showing how the functions are decorated by UD labels to
convert them to dependency trees. Table 11 in the Appendix lists the
RGL categories with explanations, examples, and corresponding UD
POS tags.

Let us walk through an example, which shows many of the main
functions in use. Figure 5 shows an abstract syntax tree for the sentence
my two brothers and I would not have bought that red car and its RGL
equivalents in 29 other languages, artificially constructed to show as
many structures as possible. The tree is decorated with UD dependency
labels.

The topmost category in Figure 5 is Utt, utterances, which is built
from S, sentence; an Utt could also be built from a question or an
imperative, as shown in Figure 18. The sentence in turn is built from
a clause (Cl) by adding temporal and polarity features: conditional
anterior negative. The core RGL has 16 tense-polarity combinations
for clauses. The clause is built from a noun phrase (NP) and a verb
phrase (VP).

The subject noun phrase is a coordination, built from a list of noun
phrases (ListNP) with a conjunction (Conj). The list is a recursive
structure, with the base case taking two elements. Longer lists are (in
English and many other languages) linearized by using commas, for
instance, her mother, my brother and I.

The first conjunct of the subject is built from a determiner (Det) and
a common noun (CN). The determiner is further analysed into the head
quantifier (Quant) and a number (Num). The quantifier is a pronoun
(Pron) used possessively, and the number is a cardinal numeral. The
second conjunct is just a pronoun.

The verb phrase is built from a slash verb phrase (VPSlash), by pro-
viding an object noun phrase; VPSlash is similar to a "slash category"

18 / LiLT volume 13, issue 3 October 2016

FIGURE 5 Dependency-decorated abstract syntax tree for my two brothers
and I would not have bought that red car.

(VP/NP in the notation of Gazdar et al. (1985)). The VPSlash is here
just a two-place verb (V2). V2 is a generalization of TV and covers
both transitive and prepositional verbs, as well as verbs taking differ-
ent complement cases in different languages. A verb being transitive is
not a multilingual invariant and therefore not maintained in the ab-
stract syntax. The complement NP is built from a Det and a CN that
has an AP modifier. The determiner has a dummy number (NumSg)
indicating that the quantifier that_Quant is used in the singular form.

As we can see from the tree, most of the dependency labels are
straightforward to define, since the words ultimately appear as cat-
egorized lexical items. But some of them need special attention, in
particular the tense and polarity features, which in English are real-
ized syncategorematically as auxiliary verbs (discussed in Section 5.4).
Also coordination is worth discussion (Section 4.5), as it is a perennial
question in dependency parsing.

From Abstract Syntax to Universal Dependencies / 19

3.2 Overview of UD
The UD annotation scheme defines a taxonomy of 40 relations as
the core or universal dependency label set (shown in Table 12 in the
Appendix). This taxonomy is further refined (or reduced) to address
language-specific extensions, not necessarily shared by all languages.
The scheme also defines universal sets of part-of-speech tags and mor-
phological features (shown in Table 13 in the Appendix). The part-of-
speech tagset includes 17 tags, with extensions to previously proposed
Universal Part-of-Speech tagset (Petrov et al., 2012). The project is
an effort to consistently annotate multilingual corpora with these
morphological features, part-of-speech tags and universal labels in the
dependency parse tree. Figure 6 shows all three layers of UD annota-
tion for a French sentence Toutefois les filles adorent les desserts au
chocolat (trans. “However girls love chocolate desserts”; example and
figure quoted verbatim from Nivre et al. (2016)).

FIGURE 6 UD annotation for a French sentence (lemmas are capitalized).
Figure quoted verbatim from Nivre et al. (2016).

Core arguments of clauses are marked as either a subject (nsubj
in the case of nominal subjects and csubj for clausal subjects) or di-
rect/indirect objects depending on their grammatical function. An ex-
ample is shown in Figure 7. In the case of direct objects, distinction
between nominal arguments (dobj), finite clausal arguments (ccomp)
and open clausal arguments (xcomp) is made. Furthermore, in the case
of passive constructions, separate labels are used to mark subjects
(nsubjpass and csubjpass) to indicate transformation of voice. We
will look at these constructions separately in Section 5.

Non-core dependents of clausal predicates like prepositional phrases
attached to the verb are annotated as nominal dependents using nmod
label or adverbial modifiers (advmod for adverbs and advcl for clausal
dependents). Other labels used for non-core dependents in a clause are
neg to mark negation of predicates (and also noun phrases), vocative
to mark vocative noun phrases and expl for expletives. Expletives are
nominals that appear with labels for the core arguments in a clause,

20 / LiLT volume 13, issue 3 October 2016

FIGURE 7 UD dependency labels for arguments in clauses

but have no semantic significance by themselves (for example, there
is an expletive in there is a cat in the house). More frequently found
labels in annotated corpora from this class are aux for auxiliary verbs,
auxpass for auxiliary verbs in passive voice constructions and cop for
copula verbs. The mapping for auxiliary verbs and copulas is discussed
in Section 5.

An example of language-specific extensions defined in the UD an-
notation scheme are labels used to annotate these non-core nominal
dependents. In English, the nmod label is refined to indicate tempo-
ral adverbs nmod:tmod, possessive noun modifiers nmod:poss and noun
phrases used as adverbials nmod:npmod. In case of Swedish, the nmod
is further refined to indicate agents used in passive voice constructions
nmod:agent and the same possessive noun modifiers as in English. The
annotation scheme allows fine-grained extensions to a label, but the
choice of annotating the extension is left to the annotators of the lan-
guage. The guidelines for a specific language provides details on when
to annotate these extensions in the language. The mapping we discuss
in this paper will ignore these fine-grained extensions, since the goal is
to map the core RGL to the core label set. But it is possible to add the
fine-grained distinctions to the mapping if we are interested in indepen-
dently analysing each language. In our own experiments, the extensions
to nominal dependents for possessive noun modifiers, and noun phrase
adverbials are defined in a separate mapping on the abstract syntax.
This mapping is defined only for English. Similarly, the extension in
Swedish for agents in passive constructions is equally straight forward
to define.

When annotating noun phrases, dependents are typically labelled
using either nummod for numerical modifiers, appos for appositions or
a generic nmod label for all other nominal modifiers like prepositional
phrases. There is a det label for determiners and an amod label for
adjectival modifiers. Relative clauses that modify the noun are marked
using the acl label (that we saw in the NP the children that we saw).

From Abstract Syntax to Universal Dependencies / 21

Prepositions are always marked as modifiers using the case label.

FIGURE 8 UD labels for modifiers in NPs

Other labels defined in the core label set include cc and conj for
coordination constructions (an example of flat-structure provided for
coordinations is shown in Figure 9), compound for compounding, mwe to
treat multi-word expressions and a loosely defined goeswith label for
robust analysis of web and raw texts. Annotation strategies for these
specific labels will be clearly explained when we discuss the mapping
between the GF-RGL for these phenomena. In this paper, the labels
used for defining these loose joining relations will not receive critical
attention.

FIGURE 9 UD labels for a coordination of 3 NPs

4 Dependency mappings: straightforward cases

In the general case, we define the mapping between functions in the core
RGL and the universal UD labels using dependency configurations to
UD labels. The mapping to the core UD labels allows bootstrapping
treebanks for new languages using the abstract syntax defined in GF-
RGL. Additionally, we also define a fine-grained mapping over these
functions to derive language-specific UD labels defined in the annota-
tion scheme. Throughout this paper, we will mainly describe the map-
ping to the core UD labels.

22 / LiLT volume 13, issue 3 October 2016

4.1 Clausal predicates: predication and complementation
We will start by detailing the mappings for functions in the GF-RGL
library used to build declarative clauses. The example shown in Figure 5
discussed some of these functions. Table 1 shows the complete set of
functions used to construct these clauses, the argument types and value
type of the resulting phrase and the dependency configuration for each
of these functions.

The PredVP and PredSCVP functions are the main functions respon-
sible for predication. The interpretation of the type signature shown in
column 2 of the table is as follows- the PredVP function takes a noun
phrase (NP) and a verb phrase (VP) and constructs a clause (Cl). Sim-
ilarly, the PredSCVP function takes an embedded clause SC and a verb
phrase and constructs a clause. Figure 10 shows the parse trees for the
example sentences, John killed him and that she came will make news.
We map the noun phrase in the PredVP function to the nsubj label,
and in the case of PredSCVP, the embedded clause is mapped to the
csubj label.

FIGURE 10 Decorated parse trees showing nominal and clausal predication
in GF. The parse trees shows the abstract function names, the category of

each node and the UD labels.

VP are created using the ComplSlash that takes a VPSlash type
phrase and NP phrase as a core argument. Alternative complementa-
tion functions are ComplVS for clausal arguments S (he says that you
want to swim), ComplVV for verb phrase complements (want to swim)
and ComplVA for adjectival phrase complements (feel bad). In these
cases, we map the NP phrase using a dobj label and the clause S using

From Abstract Syntax to Universal Dependencies / 23

the ccomp label. The complement arguments of ComplVV and ComplVA
functions are mapped using the xcomp label. In all complementation
functions, the arguments with different verb types (VPSlash, VS, VV,
VA) are marked as the head of the phrases.

Verbs that take sentential arguments VS in the GF-RGL library are
used in the ComplVS function to create a VP. The clausal argument
(S), is mapped to the ccomp label. Alternatively, the RGL also defines
a ComplVQ function for verbs that takes question clauses as arguments
(do you know who did it), here also we map the clausal argument to
the ccomp label.

Similarly, SlashVP and SlashVS functions are alternate ways to com-
bine an NP with a VPSlash (verb phrase missing an NP), or ClSlash
(clause missing an NP). These types of phrases are used to create ques-
tion clauses and relative clauses. In both these functions, we map the
arguments to nsubj and nsubj and ccomp respectively.

Passive voice constructions in GF are created using a type-raising
function to create the VP phrase, by dropping one of the mandatory
arguments. In the case of transitive verbs and ditransitive verbs, the
VPSlash type is converted into a VP type without any additional NPs.
The predication functions PredVP and PredSCVP remain the same since
the voice is localized in the sub-tree corresponding to the VP. In order
to distinguish the nsubj and nsubjpass labels in the case of passive
voice, we extend our dependency configuration rules defined on the
abstract syntax. We describe the mapping for passive constructions in
Section 5.1.

PredVP NP -> VP -> Cl nsubj head John walks
PredSCVP SC -> VP -> Cl csubj head that she came will make news
ComplSlash VPSlash -> NP -> VP head dobj love it
ComplVS VS -> S -> VP head ccomp say that she runs
ComplVQ VQ -> QS -> VP head ccomp wonder who runs
ComplVV VV -> VP -> VP head xcomp want to sleep
ComplVA VA -> AP -> VP head xcomp become red
SlashVP NP -> VPSlash -> ClSlash nsubj head (whom) he sees
SlashVS NP -> VS -> SSlash -> ClSlash nsubj head ccomp (who) he says that she loves

TABLE 1 UD mappings for declarative clauses

It is worth mentioning here that the entire mapping of the UD la-
bels is encoded in a declarative fashion, exactly as shown in Table 1.
Our mappings are the first and the third columns in this table. The
other two columns are shown for convenience. The declarative style of
specification allows for the conversion algorithm from GF-RGL trees to
remain independent of the annotation scheme, allowing one to easily
switch between different annotation schemes.

24 / LiLT volume 13, issue 3 October 2016

4.2 Adverbial modifiers
Adverbial phrases that modify VP phrases are analysed using either
AdVVP function that takes a VP phrase and a AdV phrase (always
sleep) or AdVVPSlash that modifies a VPSlash instead of a VP phrase.
Alternatively, simple adverbs can modify a VP phrase using the AdvVP
function (sleep here). For all these functions, we map the head of the
adverbial phrase using the advmod label. Table 2 lists the functions used
to modify VP phrases.

AdVVP AdV -> VP -> VP advmod head always sleep
AdVVPSlash AdV -> VPSlash -> VPSlash advmod head always use (something)

AdvVP VP -> Adv -> VP head advmod sleep here
AdvVPSlash Adv -> VPSlash -> VPSlash advmod head use (something) here

AdvS Adv -> S -> S advmod head then I will go home
AdAP AdA -> AP -> AP advmod head very warm

TABLE 2 UD mappings for adverbial modifiers

4.3 Questions and relative clauses
The GF-RGL provides a module for questions combining interrogatives
(IP, IComp, IAdv) with verb phrases (VP, VPSlash) and clauses (Cl,
ClSlash). For example, the function QuestIAdv takes a clause like John
walks and a pronoun like why to construct the question why does John
walk. Similarly, relative clauses are constructed using one of NP, VP or
ClSlash types. Table 3 shows the mappings defined for functions used
in constructing question and relative clauses.

4.4 Noun phrases and modifiers
The GF-RGL provides two primary kinds of functions to create noun
phrases. Functions used to generate noun phrases and phrases with
adjectival modifiers and functions used to modify these noun phrases
using prepositional phrases, appositional NPs and relative clauses. We
will present these two groups separately. There are in all two different
categories for nouns defined in the RGL, CN for the basic nouns, N2

QuestIAdv IAdv -> Cl -> QCl advmod head why does John walk
QuestIComp IComp -> NP -> QCl head nsubj where is John

QuestVP IP -> VP -> QCl nsubj head who walks
QuestSlash IP -> ClSlash -> QCl dobj head who does John love
QuestQVP IP -> QVP -> QCl nsubj head who buys what he is selling
RelSlash RP -> ClSlash -> RCl mark head whom John loves
RelVP RP -> VP -> RCl who loves John mark head

TABLE 3 UD mappings for questions and relative clauses

From Abstract Syntax to Universal Dependencies / 25

for nouns that take a noun complement (mother of king, list of names).
The primary DetCN function takes a determiner and a CN to create a
NP (the boy, this paper). N2 type nouns take an NP complement phrase
to construct a CN. In the DetCN function, we map the determiner to
the det label and make the CN argument head of the NP phrase. In
ComplN2 and ComplN3 functions, NP arguments are mapped as modi-
fiers of the noun using the nmod label (names is marked as the child of
list with nmod). Alternative ways to generate NP phrases use CNIntNP
for phrases like level 5, CNNumNP for level five; in both cases we map the
Int/Card argument to the nummod label. The AdjCN function is used to
modify nouns; these nouns still need a Det argument to become noun
phrases (the blue house). Here, the head of the adjective phrase AP is
mapped to the label. Table 4 lists the functions used to construct the
basic NP phrases and the respective mappings.

DetCN Det -> CN -> NP det head the man
ComplN2 N2 -> NP -> CN head nmod mother of the king
CNIntNP CN -> Int -> NP head nummod level 5

CNNumNP CN -> Card -> NP head nummod level five
AdjCN AP -> CN -> CN amod head big house

DetQuant Quant -> Num -> Det det head these five
DetQuantOrd Quant -> Num -> Ord -> Det det head amod these five best

TABLE 4 UD mappings for generating basic noun phrases

The Det type in GF is used for determiners, typically constructed
by taking a Quant type and Num type. For the definite article the, the
analysis would be
the: DetQuant (DefArt) (NumSg)
the: DetQuant (DefArt) (NumPl)

This Det type and the DetCN is used to construct determiner phrases
like these five that can modify a noun or act as noun phrases by them-
selves. An alternative function to generate the Det type is DetQuantOrd
using which phrases like these five best can be analysed. In both these
cases, we map the Quant type as the head of the phrase and the Num
type is mapped using the nummod label. As such in phrases like these
boys where there are no numerical modifiers in the phrase, we obtain
the same structure as in UD i.e. these is given the det label and boys
is the head. However in phrases with numerical modifiers (for example
these five boys), the numerical modifier five is attached to the quantifier
these and not to the noun boys.

In addition to these functions, NPs can be modified using other NPs
for apposition, prepositional phrases. The list of functions is shown in

26 / LiLT volume 13, issue 3 October 2016

Table 5. ApposCN is used for apposition (Sam, my brother) and PossNP
for possessive nominal modifier constructions (Marie’s book), PartNP
for partitive constructions (glass of wine). The modifier NP phrases
are mapped to appos, and nmod labels. In the PossNP, the noun repre-
senting the possessive modifier is assigned the nmod (or nmod:poss for
English) label where as in the PartNP function, it is the opposite.

ApposCN CN -> NP -> NP head appos city Paris
PossNP CN -> NP -> CN head nmod Marie’s brother
PartNP CN -> NP -> CN head nmod glass of wine

ComparA A -> NP -> AP amod head warmer than I
RelCN CN -> RelS -> CN head acl house that John bought
RelNP NP -> RelS -> NP head acl Paris, which is beautiful

TABLE 5 UD mappings for modifying noun phrases

The RelCN and RelNP functions are used to modify nouns and noun
phrases with relative clauses. In this case, we map the head of the
relative clausal predicate using the acl label.

4.5 Coordination
The RGL defines multiple functions for building coordination construc-
tions by combining lists of phrases (two or more) in the same category
using conjunctions. Base* functions accepts two phrases of same type
and create a tree of type List*. The List* types are combined with con-
junctions (marked as Conj) using Conj* functions to form trees corre-
sponding to coordination constructions. Additionally, Cons* functions
recursively add a new phrase to List* phrases. These Cons* functions
are used when coordinating more than two phrases of a given type.
The Conj* functions handle both syndetic and asyndetic coordination
constructions in all languages. Syndetic coordination is a form of co-
ordination with the help of an explicit coordinating conjunction (ham
and eggs) while asyndetic coordination allows for conjunctions to be
omitted from one or all the conjuncts in the coordination construction
(he came, saw and conquered).

Let us look at an example of adverbial coordination using the phrase
here, there and everywhere. The parse tree for this example is shown
in Figure 11. Adverbials there and everywhere are first analysed using
the BaseAdv function. The ConsAdv function adds here to the list of
adverbs from the BaseAdv function. This resulting ListAdv phrase is
used by the ConjAdv function along with the conjunction and to form
the AST for the coordinated phrase.

From Abstract Syntax to Universal Dependencies / 27

FIGURE 11 Coordination of three adverbials

The existing UD scheme annotates the first conjunct in the con-
struction as the head, and treats the rest of the conjuncts as modifiers
attached directly to the head via the conj relation. Similarly, conjunc-
tions are attached to the same head via the cc relation. Table 6 shows
the mapping defined for coordinating any two types in the GF-RGL.
Note that when coordinating more than two phrases, the first con-
junct always comes from the argument of the ConsNP function. The
same mapping is defined for the set of these three functions defined for
all types in GF-RGL (complex nouns CN, noun phrases NP, adjecti-
val phrases AP, adverbial phrases AdV, simple clauses S and relative
clauses RS).

BaseT T -> T -> ListT head conj
ConsT T -> ListT -> ListT head conj
ConjT Conj -> ListT -> T cc head

TABLE 6 UD mappings for generic type T in GF-RGL. T can be CN, NP,
AP, AdV, S and RS

5 Dependency mappings: Problematic cases

The mappings described in the previous section are straightforward
rules defined over the abstract syntax in GF-RGL. When the equiv-

28 / LiLT volume 13, issue 3 October 2016

alent labelled dependency tree for a given phrase can be completely
identified from the AST by defining a mapping to dependency labels
for the functions over its immediate arguments, then such a mapping
is sufficient to construct a fully connected dependency tree from the
AST.

This is not necessarily the case. Using only rules described in the pre-
vious section, the mappings can result in a dependency tree with edges
labelled using the dep label. The main reason for this is the presence of
the syncategorematic words in GF (discussed in Section 2.4) due to the
abstraction level of GF-RGL intended to maximize sharedness across
languages.

For example, GF-RGL defines multiple functions in abstract syntax
for existential clauses (there is a cat). Existential clauses are analysed
using the ExistNP or ExistNPAdv function. The ExistNP function takes
a NP and constructs a clause Cl. The dummy pronoun, an expletive
there and the copula verb is are abstracted by the ExistNP function in
the AST. Similarly, the ExistNPAdv takes a NP and a modifier phrase
Adv (for example, in the bag to construct the clause. Linearizations of
these functions vary across languages depending on whether expletives
are necessary and the choice of copula in the language. See Figure 12
for the parse trees of the clause in English and Bulgarian. The Bulgar-
ian translation of the existential clause neither contains the expletive
or the copula, instead the verb used here is annotated as the main
head in current UD annotation. We will discuss existential clauses in
Section 5.6.

We extend the set of mappings defined until now with three addi-
tional types of rules:

i) local abstract rules are rules on abstract functions addressing
their immediate arguments only (all rules defined until this point
are of this type)

ii) non-local abstract rules allow mappings to be defined on the
abstract functions using more context than the immediate argu-
ments of the functions.

iii) local concrete rules are defined for each language on the respec-
tive linearizations of an abstract function.

iv) non-local concrete rules are defined to map the linearization of
a function to the UD labels using more contexts like in the case of
non-local abstract rules.

Table 7 shows the different types of rules and specification formats
used to encode UD information. We previously mentioned that the
mapping is encoded in a declarative manner to remain independent of

From Abstract Syntax to Universal Dependencies / 29

FIGURE 12 Parse trees of the existential clause there is a cat and its
translation in Bulgarian

Abstract Concrete
Local Fun Label+ Fun ReLabel+
Non-local (Fun args*) Label+ (Fun args*) ReLabel+

TABLE 7 Type of rules in the extended mapping to construct full UD trees

annotation schemes. We briefly explain these new types of rules before
explaining how they are used in our conversion. This is discussed in
more detail at the end of this section (and Appendix).

The local abstract rules discussed previously are encoded using
the syntax shown in Section 2. Fun here refers to the name of a function
in the abstract syntax (PredVP or ComplSlash). One argument of Fun is
mapped to a label called head and the rest are mapped to corresponding
UD labels. In the trivial case, where a function takes only one argument,
the argument is always mapped to the head label.

Non-local abstract rules are an extension of local abstract rules,
that are applied only if the arguments of Fun in the abstract syntax tree
match the values (or patterns) specified in this rule. args* represents
the list of arguments of the function Fun (* corresponds to the Kleene
operator in regular expressions) and each item in this list expresses
a pattern for the arguments. We explain these in Section 5.1. These

30 / LiLT volume 13, issue 3 October 2016

patterns for arguments encode a context that is outside the scope of
what is matched in local abstract rules. Non-local rules can simply be
interpreted as multi-level rules in the grammar while local rules are
one-level rules in the grammar. We will see these rules in more detail
in Section 5.1.

Local concrete rules are introduced to address different realiza-
tions of an abstract function across multiple languages. The example of
existential clauses mentioned above is an instance of this. These map-
pings are encoded using a list, similar to local abstract rules. In both
cases of local and non-local concrete rules, each item in the list repre-
sents a relabelling operation of an edge in the dependency tree. This
relabelling can be one of three types: relabel an existing edge in the
dependency tree with a new label, relabel an edge with a new label af-
ter reversing the direction of the edge or add both an edge and a label
to the dependency tree. These rules will be discussed in Section 5.2 for
cases of copula constructions and Section 5.3 for verb phrase comple-
ments and prepositional verbs.

Non-local concrete rules are again an extension of local concrete
rules, where the relabelling operations are applied only if the arguments
of the abstract function Fun match the context specified in these rules.
These rules are explained in the context of clausal negation and auxil-
iary verbs in Section 5.4.

The terms “local” and “non-local” refer to the scope over which the
conversion algorithm matches the specified mappings. The mappings
are always specified over functions in the abstract syntax. The terms
“abstract” and “concrete” refers to the layer of syntax on which the
mappings are applied. Abstract rules are applied on the AST and con-
crete rules are applied after abstract rules on labelled dependency trees
for the specific language. Both sets of local and non-local concrete rules
must be defined for each language in the RGL. In the absence of con-
crete rules, the conversion results in a connected UD tree, where some
edges are connected artificially using the dep label. When the edges
marked with these dummy labels are collapsed, the resulting depen-
dency tree structure can be a representation that is closer to the se-
mantics of the sentence. We will show this in our experiments described
in Section 6.

5.1 Passive voice constructions
Passive clauses in GF are constructed using functions that allow a verb
to drop one of its obligatory arguments to construct the VP, for example
PassV2 and PassVPSlash.

Let us look at the ASTs for the clause John killed him and its pas-

From Abstract Syntax to Universal Dependencies / 31

sive counterpart (he was killed), shown in Figure 13. The grammatical
subject of the passive clause is incorrectly mapped to nsubj label using
only local abstract rules.

FIGURE 13 Decorated ASTs for the clause John killed him and its passive
counterpart He was killed using both local and non-local abstract

rules

The PassV2 function in GF-RGL allows a transitive verb to form a
VP phrase without the obligatory NP phrase (dobj). The extensions in
GF-RGL define a function PassVPSlash that can be used to construct
passive voice constructions for both transitive and ditransitive verbs.
This function can be understood to be a generalization of the PassV2
defined in the core RGL. However, the top level predication function
remains the same (PredVP) irrespective of active or passive voice.

The UD annotation scheme distinguishes between subjects of active
and passive clauses (NP arguments) using two labels — nsubj and
nsubjpass. In order to make this distinction in our mapping, the rules
corresponding to PredVP should be enriched with more context. We
define the following non-local rules for PredVP function for this purpose.

(1) (PredVP ? PassV2) nsubjpass head
(2) (PredVP ? PassVPSlash) nsubjpass head
(3) PredVP nsubj head

The context in this example is encoded using abstract function
names corresponding to passivization of VP phrases. The first rule (1)
is only applicable in the case when PassV2 appears in the sub-tree
corresponding to the VP phrase i.e. transitive verbs in passive voice
constructions. Similarly, the second rule (2) addresses di-transitive
verbs in passive voice, when PassVPSlash appears in the sub-tree of
the VP phrase. Finally, the general rule ((3), also the local abstract

32 / LiLT volume 13, issue 3 October 2016

rule) is applied in all other cases, when none of these two contexts
are matched i.e. in active voice constructions. The ? character rep-
resents a meta-variable in the tree. This is interpreted as matching
anything i.e. there are no restrictions on the sub-tree corresponding to
this argument. In the example of the predication function, there are no
restrictions on the sub-tree corresponding to the NP argument. Using
these non-local rules, grammatical subjects of passive voice clauses are
mapped to the nsubjpass label instead of the nsubj label.

We also define similar rules for PredSCVP function, used in analyses
of constructions with clausal subjects. Recall from Section 4 that the
PredSCVP function is used to construct a clause using an embedded
clause and a VP phrase.

The passive voice constructions described above is addressed using a
limited non-local context (the daughter nodes). However, in principle it
is possible to define contexts corresponding to abstract functions using
expressions of arbitrary depth.

Before extending the format of the dependency configurations, we
considered the alternative of changing the RGL to resemble UD anno-
tation in this particular case. RGL localizes the voice transformation
to the VPs while UD uses a different label for subject arguments that
is non-local to the VP, which could be easy to achieve in GF as well.
However, if we consider co-ordinated constructions with subject sharing
(he killed his wife and was chased by the police), the shared subject he
should be both an nsubj and an nsubjpass. UD resolves the conflict
with its flat structure to coordinations, by choosing the label appropri-
ate for the first conjunct (nsubj). However, by localizing the voice to
the VP, it is possible to give separate interpretations to the subject.6

At this point, it is clear that the addition of non-local rules makes
it necessary to introduce a notion of precedence between the local and
non-local rules for a specific function. We will formally address this
question in Section 5.7. For now, it is enough to note that non-local
rules should precede local rules, and this is specified in the semantics
of dependency configurations.

5.2 Copula constructions
Copula constructions in GF-RGL are analysed in two steps: any of the
Comp* functions are used to convert phrases into copula complements
(Comp in GF-RGL) followed by UseComp function that converts this
complement into a VP. The UseComp function also introduces the copula
verb into the VP (when necessary). The choice of copula verb and its

6
With the above local rules for PredVP, the AST for this example will yield the

same dependency tree as the UD tree, which is just what we wanted.

From Abstract Syntax to Universal Dependencies / 33

FIGURE 14 Decorated parse tree for a copula construction in English

form is specified in concrete syntax and the abstract syntax tree does
not know exactly what the copula verb in the specific language is. This
abstraction is desired because the realization of copula constructions
varies across languages. For example, the linearization of the UseComp
in Russian (so called zero-copula language) doesnot contain a copula
verb in present tense. The linearization rules in English, Finnish and
Swedish introduce the verbs is, on and är respectively. In the case of
Chinese and Thai, the copula verbs are restricted to only some selected
complements. Figure 14 shows the decorated parse tree in English for
the sentence John is clever. Notice the dummy dep label for the copula
verb is obtained using abstract rules.

The UD scheme in the case of copula constructions annotates the
copula verb as a child of the complement using the cop label. In order
to match this structure in our mapping, we introduce a local concrete
rule, that marks copula verbs using the cop label. Shown below is the
concrete rule specified for English:

UseComp head {"am", "is", "was",
"are", "were", "be", "been", "being"} cop head

This rule specifies that if any of the different forms of the copula

34 / LiLT volume 13, issue 3 October 2016

verb in English (am, is, was, are, were, be, been) are found under the
functions in the spine corresponding to the head of the UseComp func-
tion in the AST, they should be attached to the head of the UseComp
function using the cop label. The expression

head {"am", "is", ...} cop head

specifies a single relabelling operation in the concrete rule.

5.3 Verb phrase complements and prepositional verbs

FIGURE 15 Decorated parse tree showing verb phrase complements and
prepositional verbs

Let us look at one more example of these local concrete rules used
in our mapping for verb phrase complements and prepositional verbs.
GF-RGL defines a different function for complementation in case the
argument is a verb phrase (these verbs are marked as VV in RGL).
The ComplVV function is used with verb phrase complements. The
ComplSlash function used for nominal objects additionally is also used
for prepositional verbs (listen to ...). For these verbs, the required case
of the NP argument is specified in the entry corresponding to the
verb in the lexicon. This case information is then propagated to the
ComplSlash function (specifically the function stores this information
in a record with label c2).

Figure 15 shows the parse tree for the sentence I like to listen to
music in French. The verb like is an example of verb phrase complement

From Abstract Syntax to Universal Dependencies / 35

and listen to is a prepositional verb. Note that in both these functions,
the infinitive marker to the verb phrase complement and the case are
abstracted from the AST, these are localized in the concrete syntax
(seen only in parse tree) of the language. The local abstract rules shown
in Table 1 map the head of these arguments to xcomp and dobj, but
leave the infinitive marker to and preposition for unlabelled.

ComplSlash head .c2 case dobj
ComplVV head {"to"} mark xcomp

The local rules above specify the following relabeling operations: for
the ComplSlash function, the preposition/case in the .c2 record field
should be relabelled as a child of the direct object (marked dobj) using
the label case. In the ComplVV function, the infinitive marker to is
labelled using the mark label as a child of the verb complement.

5.4 Auxiliary verbs and verbal negation
Non-local concrete rules address dependencies of words introduced in
the concrete syntax where context inside the arguments of an abstract
function are necessary to determine the respective UD labels. In order
to understand the necessity of these rules, we will look at a concrete
example (shown in Figure 16). The motivation in this example is to ad-
dress cases of auxiliary verbs constructed from tense in GF and clausal
negation in our mapping.

FIGURE 16 Decorated parse tree showing tense and clausal negation with
the UD labels

The decorated parse tree in Figure 16 shows the analysis provided

36 / LiLT volume 13, issue 3 October 2016

by GF for the sentence John had not slept. The parse tree for the clause
John sleeps has the same functions and categories as this sentence. Why
is this? The Cl type resulting from the predication (PredVP) function
represents an untensed clause, in other words a simple proposition. This
proposition is transformed to a sentence when Tense and Polarity
arguments are given to the UseCl function along with an untensed
clause Cl. The UseCl function will then result in a sentence of type S.
Note the PNeg value for the polarity of the clause and the TPast,AAnter
for the tense in our example. The not appears due to the PNeg value
and the auxiliary verb had due to the anteriority of the tense. The
tense parameter dictates the choice of auxiliary verbs and the polarity
parameter if not occurs in the clause. The equivalent UD labels are also
shown in the parse tree. It can be seen that the modifiers according to
UD are not always in the same sub-tree as the head (not modifies slept).

In order to make the mapping to UD labels, we need non-local con-
crete rules, as the specific auxiliary verbs in a language are abstracted
by the Tense parameters in the AST and are only available in concrete
rules for the language. The non-locality is also required to handle cases
of negation.

(1) (UseCl ? PNeg ?) head {"not"} neg head
(2) (UseCl tense ? ?) head {*} aux head

The non-local rules for auxiliaries and copulas are defined as shown
above. The negation modifier (not) is introduced into the clause by the
UseCl function if its polarity argument has the PNeg value. The word
not is introduced under the UseV function, which lies on the spine
corresponding to the head of the UseCl function. The same is also true
for auxiliary verbs, they are introduced by the Tense parameter under
the UseV function. For clausal negation, the edge between the head
word of the UseCl function and the word not is labelled using the neg
label, with not as the child. Similarly, auxiliary verbs introduced by the
Tense argument to the UseCl function, irrespective of what exactly is
the auxiliary are always connected to the head using the aux label. The
{*} in the rule specifies that all and any auxiliary verbs can be matched
in this relabelling operation.

5.5 Multi-word expressions
One of the UD taxons we haven’t discussed yet are cases of multi-word
expressions and some instances of compounding. Compounding encom-
passes a wide range of linguistic phenomena, from compound nouns and
phrasal verbs to non-compositional multi-word expressions. In the UD
scheme, this also includes foreign language phrases and two parts of a

From Abstract Syntax to Universal Dependencies / 37

single word in poorly written text. The annotation of compound nouns
in UD (for example phone book, agent provocateur) is fairly consistent
across languages. However, there is variation in annotations of phrasal
verbs. This is not surprising given the variety of "phrasal verb" con-
structions in different languages.

In the GF-RGL, compounds are handled in two different ways: com-
positional compounds are analysed using the functions in RGL men-
tioned previously CompoundN and CompoundAP (for example control sys-
tems, language independent). Other compounds i.e. non-compositional
compounds are addressed inside the lexicon specific to a language. The
analyses provided to these types of compounds is very much depen-
dent on the concrete syntax of the language, whether the translation
in the specific language is compositional or not. It is also possible that
the translation is simply lexicalized, without any compounding in a
languages. For these reasons, the abstract syntax shared for these com-
pounds is only the function name, specific analysis of the compound
is localized in the concrete syntax. This is because languages allow for
discontinuous compounds, particularly in cases of phrasal verbs and
light verb constructions (for example shut off in shut it off, shut off the
TV).

We provide three dependency labels for all these compounding phe-
nomena in our mapping, it can either be a compound, mwe or goeswith.
However, unlike the local abstract rules for the functions that corre-
spond to compositional compounds, these labels are defined on the
concrete syntax of a specific language. Shown below are the local con-
crete rules used for particle verbs shut off and multi-word expressions
according to and in front of.

shut_off_V2 head {"off"} compound head
according_to_Prep head {"to"} mwe head
in_front_of_Prep head {"front", "of"} mwe head

The relabelling operation in the case of shut_off_V2 specifies that
the particle off be added as a child to shut with a compound label.
Similarly, for in_front_of_Prep, edges from in to front and of are
relabelled using the mwe operation. In all these cases, it is implicitly
understood that the first word (shut, according, in) is the head of the
function. This is in sync with the current UD annotation scheme in
its current form. However, the rule specification format is flexible to
allow a different choice of the head, say for example, a semantic head
for multi-word expressions. The UD annotation scheme where multi-
word expressions are concerned might be revised in the future, and our
current mapping scheme allows room for any such changes.

38 / LiLT volume 13, issue 3 October 2016

5.6 Idiomatic and Semantic (CxG) Constructions
Finally, we discuss semantic constructions that are commonly found
in languages and can be translated idiomatically in languages. We dis-
cussed at the beginning of this section how GF-RGL defines functions
for constructions like existential clauses (there is a blue house on the
hill) or cleft sentences (it is money that was owed to him). There is
also a small subset of semantic constructions defined in GF-RGL. One
example of these semantic constructions is a function that accepts a
number, say 10 and renders the semantic linearization of the VP is 10
years old in a specific language.

has_age_VP n -- (someone) "is" n "years old"

We define the mappings to UD labels over these semantic construc-
tions defined in the RGL. In order to construct the fully connected UD
trees, it is necessary to define both abstract rules and concrete rules
over these functions. The rules used for the ExistNP function are shown
below. The expletive pronoun there is marked using the expl and the
copula verb indicating tense has the label cop.

ExistNP head {"there"} expl head ; head {*} cop head

Notice that in these examples, the concrete mappings specify more
than one relabelling operation. This is possible and the ; is used as a
separator between different operations. The conversion algorithm car-
ries out each of these operations in the order specified by the mapping.

5.7 Dependency conversion algorithm and specification
language

We show the exact dependency configuration syntax used to spec-
ify the mappings to UD scheme and more generally to any dependency
annotation scheme in Figure 19 (in Appendix). The figure shows the
BNF fragment specifying the syntax of the configuration rules.

In the case of local rules, both abstract and concrete, the key to the
mapping is the abstract syntax function name Fun that specifies where
the mapping should be applied. Similarly for non-local rules, this key
is extended from Fun to a pattern of expression that matches sub-trees.
Each arg in the non-local rule is a pattern for the arguments of Fun, the
number of such patterns being the same as the number of arguments.
The ? character is used to indicate match everything.

For abstract rules, the mapping is a list of labels of the same size
as the number of arguments to function. The items in these lists are
any of the labels specified according to the annotation scheme or the
special label head that encodes what is the head corresponding to the

From Abstract Syntax to Universal Dependencies / 39

abstract function. By definition, there should be one and only one head
in each mapping specified.

The mapping in the case of concrete rules is a list of relabelling
operations. The number of these operations specified by a single rule
depends on the number of lexical items introduced by the concrete
syntax in the language that are hidden in the AST. There are three
possible relabelling operations defined: renaming an existing edge with
a new label (retains the already encoded head-modifier relationship),
renaming an existing edge after modifying the direction of the edge
with a new label or adding a completely new edge that did not exist
before. Examples of all three operations have been shown before. Each
relabelling operation is specified as

Label Part Label Label
The first Label in a relabelling operation is a label specified in the

abstract rules, to indicate functions(s) in the AST marked with Label.
This specifies a spine in the AST used to locate functions under which
syncategorematic words can be found. Part specifies either a set of
words (in the case of copula verbs) or a record label (in the case of
prepositional verbs) or a * to match all lexical items introduced under
a function in the AST. The remaining two Label specify the label of
the modifier and the label of the head in the AST in that order.

The precedence of the local and non-local rules corresponding to
a function Fun is defined in the same order as they are specified in
the configuration syntax. In other words, non-local rules that must be
applied before are specified before the local rules. By choosing to put
this in the configuration, we do not modify the conversion algorithm to
specially handle non-local rules.

With this dependency configuration syntax, the dependency conver-
sion algorithm is extended to derive the complete UD tree. In Section 2,
the conversion method given an AST T and a word sequence S to its
corresponding dependency tree was described. The algorithm is divided
into two separate steps: conversion using the abstract rules and the
concrete rules in that order. Algorithm 1 (in Appendix) describes the
extended conversion algorithm we used in this paper.

6 Experiments

In our experiments, we focus on evaluating two things: the mapping
proposed in this paper to convert GF trees into UD dependency trees
and subsequently how much the abstract syntax in GF-RGL and the
mapping is useful in bootstrapping treebanks. We carry out experi-
ments to evaluate the correctness of our mapping and to understand

40 / LiLT volume 13, issue 3 October 2016

the systematic similarities between GF-RGL and the UD annotation
scheme.

In the first set of experiments, using mappings defined on the ab-
stract syntax alone (both local and non-local rules), we bootstrap de-
pendency trees for 31 languages from a treebank of ASTs. Analyses
of these bootstrapped treebanks give insights about the UD scheme
and the GF-RGL. The lack of concrete local and non-local rules for
a specific language result in trees that resemble collapsed dependency
trees (de Marneffe and Manning, 2008, Ruppert et al., 2015) by delet-
ing the dummy dep labels. Due to the lack of concrete rules so far,
the bootstrapped treebanks for languages other than English do not
contain labels for syncategorematic words, and these dep labels are
collapsed. Figure 17 shows examples of bootstrapped and “collapsed”
UD trees for Swedish and Bulgarian in the context of this work. When
defined, the concrete rules “decollapse” these trees by introducing the
right UD labels for syncategorematic words.

6.1 UD test treebank
In order to evaluate the mapping described in this paper, we created
two treebanks of ASTs. The first treebank was constructed using ex-
amples in UD annotation guidelines for English dependency relations
7. The ASTs from the GF parser (Angelov and Ljunglöf, 2014) were
post-edited to correct the ambiguity choices in these examples. The
collection of examples from the UD guidelines ensure good coverage
of the dependency relations proposed in UD scheme. Similarly, in an
attempt to maximize the coverage of functions defined in the GF-RGL,
we created a second treebank composed of minimal examples used to
document the linguistic usage of abstract functions in writing resource
grammars for new languages8. The second treebank is relevant for two
purposes: the ASTs from the GF-RGL documentation ensure full cover-
age over the GF interlingua, and also provide minimal examples/test-
cases for purposes of UD documentation. These can be used as unit
tests to validate the UD annotation efforts. Unit tests are typically
used in software engineering to validate the software i.e. if the actual
output of the system matches the expected result. Additionally, these
examples can be compositionally combined to automatically create a
treebank of ASTs which can then be bootstrapped to UD treebanks
for languages in GF. We refer to the former treebank as UD treebank
and the latter as GF treebanks here, these should not be confused with
the treebanks provided in the UD and GF distribution. Using both

7
http://universaldependencies.github.io/docs/en/dep/all.html

8
http://www.grammaticalframework.org/lib/doc/synopsis.html

From Abstract Syntax to Universal Dependencies / 41

these treebanks we evaluate the precision of the mapping and make
qualitative analyses.

The UD treebank contains a total of 104 ASTs, 66 ASTs that are
covered by RGL and 38 ASTs that use the robust back-up rules in the
grammar enabled for wide coverage parsing and translation. As these
examples are hand-picked to document the annotation guidelines for
UD treebanks, the treebank does not have a specific genre. We will
report the precision of the mapping rules separately for these two sets.
One reason to set apart these two sets is the ad-hoc nature of recovering
UD labels in case of rules corresponding to chunking that are a small
part of the robust back-up rules. Another reason is that these rules
are implemented only for 15 of the 31 languages covered by the core
RGL. So, the subset of ASTs covered by the RGL are bootstrapped into
all 31 languages while the rest of them are bootstrapped into only 15
languages. Many of these examples have been used previously in this
paper as examples in Section 3, Section 4 and Section 5.

The GF treebank contains a total of 400 ASTs, that are covered by
the core RGL. These examples are used to document the usage of ab-
stract functions while writing concrete rules for a new language. Hence,
these examples provide a complete coverage over the RGL-grammar
and are minimal examples of different linguistic phenomena that can
be tested for cross-lingual consistency in UD annotations. We bootstrap
this treebank into all 31 languages in the RGL (these examples have
been previously used in this paper in Tables 1 and other tables).

6.2 Evaluation

Local Non-local
Abstract 132 11
Concrete 17 29

TABLE 8 Distribution of rules for English according to their types

The complete mapping described in this paper, contains a total of
185 rules, 143 of which are defined on the abstract syntax. The remain-
ing 46 rules are defined as either concrete local and non-local rules for
English. Table 8 shows the distribution of the rules in the complete
mapping for English. It is necessary to define concrete rules for each
language to construct fully labelled UD trees.

Figure 17 shows an example of bootstrapped trees for the Swedish,
Finnish and Bulgarian translations of the English sentence John was
killed generated using only the rules defined on the abstract syntax.

42 / LiLT volume 13, issue 3 October 2016

FIGURE 17 Bootstrapped UD trees in Swedish, Finnish and Bulgarian and
the complete UD tree in English. The trees on the right are the collapsed

variants of the bootstrapped trees.

Also shown is the full UD tree for the English sentence generated using
both the abstract and concrete mappings.

Analyses of English dependency trees
The converted UD trees in the UD treebank have a 99% labelled attach-
ment score (LAS) to the gold UD trees. The dissimilarities in English
occur only in two cases: modal verbs and noun phrases, specifically
noun phrases with nummod labels. A 100% LAS score is achieved by
adding additional rules to handle modal verbs in our mappings. While
our mappings with these additional rules result in perfect matching
with the UD trees, we look at these two specific cases in some detail
below.

The UD annotation guidelines treat modal verbs in English the same
way as auxiliary verbs, with a POS tag AUX and aux label. The lexical

From Abstract Syntax to Universal Dependencies / 43

features of the word indicate its modality feature, but the label assigned
is the same as auxiliary verbs. This is expected since modal verbs in
English are realized as auxiliaries in English. However, modal verbs in
other languages can be realized in inflectional variants of the main verb,
for instance, English would as conditional forms in French.

Non-auxiliary modal verbs in GF receive a structure that is shared
across languages: they are verbs of the category VV, i.e. verbs that
take VP complements, similar to verbs like want or like in I want to
ask you something and I like to run. This analysis of modal verbs from
GF-RGL maps the modal verb to the head and the main verb to the
xcomp label as a child of the modal verb using the mapping defined for
the ComplVV function (complementation using non-finite arguments).
The labels to the arguments of the main verb remain the same though.

It is possible to give modals in English the aux label by adding non-
local abstract rules for the ComplVV function to match only modals:

(ComplVV can_VV ?) aux head
(ComplVV must_VV ?) aux head

However, by defining these mappings on the abstract functions, we
would map modal verbs in all the thirty languages to the aux label, even
in languages where modal verbs are not realized as auxiliary verbs. The
UD treebanks in some languages treat the modal verb as the head of
the clause, while other languages treat them consistently as auxiliaries
(English and Swedish in particular). The problem is that modal verbs
are not always realized as auxiliaries across languages. For instance,
can and must in English translate to pouvoir (or savoir) and devoir
in French, which are semantically modal but work otherwise just like
normal verbs. In the other direction, want is not modal in English,
but its equivalent wollen in German is. The RGL choice is to have a
uniform abstract category VV of VP-complement verbs and to treat the
property of being “modal” in the concrete syntax of each language9.

Alternatively, the mapping of modal verbs can be addressed using
concrete rules specific to a language. This allows our conversion method
to address the differences in the way modal verbs are treated in different
languages in UD. These rules are shown below. These concrete rules
relabel the edges of the converted tree in the case of modal verbs to
obtain the exact UD tree. What these rules say is that the head of
the ComplVV function i.e modal verbs in this case (can or must) are
relabelled using the aux label while the other argument i.e. the verb is

9
More concrete syntax distinctions are needed in languages like Finnish, where

VV can take its complement in at least five different infinitival forms, and Hindi,

where modal verbs interfere with verbalizers.

44 / LiLT volume 13, issue 3 October 2016

relabelled to be the head of the ComplVV function. Defining the mapping
for modal verbs using concrete rules for English is the best way to
address the different annotations used for modal verbs.

(ComplVV can_VV ?) head {*} aux head; xcomp {*} head head
(ComplVV must_VV ?) head {*} aux head; xcomp {*} head head

The other divergence from UD is in the case of noun phrases with nu-
merical modifiers: UD annotation scheme treats all numerical modifiers
occurring in NPs as modifiers of the head noun using the nummod label.
While this is valid in almost all cases, it is possible for the number to
require another label than a modifier. For example the phrase level 3 is
treated as a compound in GF, one where both level and 3 contribute to
the meaning. We retain this analysis by mapping this to the compound
label, rather than using the nummod label. Also, in instances of how
noun phrases with numerical heads, as in the case of these five will
come with me, there is a difference in how the NPs are analysed. As ex-
plained previously, we treat the quantifier as the head in the DetQuant
function, as such these modifiers are attached to the quantifier using
the nummod label. These can be addressed using non-local abstract rules
for the DetCN function where the Det argument is an ordinal number.

Analyses of bootstrapped dependency trees
Table 9 shows the percentage of labelled edges in the bootstrapped
treebanks. We report these numbers by calculating the fraction of edges
in the treebank for the language labelled using the dep relation. The
numbers in turn suggest the reduction in UD annotation efforts by
bootstrapping using the GF RGL and wide-coverage abstract syntax.
Note here that for these bootstrapping experiments, we only use the
rules on abstract syntax (for all languages, English especially). One
interesting result is that partial UD treebanks can be obtained even
for languages with incomplete grammars. If the linearization rules for
all the functions defined by the core RGL are missing in the concrete
syntax for a specific language, we say that the RGL grammar for the
specific language is incomplete. In Table 9, Amharic is one example of
a language with an incomplete grammar implementation.

In the case of the UD treebank, it can be seen that on average
across all languages, about 80% of the edges are labelled with the UD
labels from the RGL bootstrapped treebanks. There is a decrease in
this when we go to the wide coverage treebank. This is because of the
semantic constructions introduced in the wide coverage grammars, nec-
essary to achieve the abstractions required for interlingua-based MT.
These constructions require concrete mappings in order to construct

From Abstract Syntax to Universal Dependencies / 45

Language UD treebank GF treebankRGL Wide-coverage
Afrikaans 81.57 - 81.73
Amharic 73.60 - 75.29
Bulgarian 76.60 80.53 88.13
Catalan 82.18 76.13 83.10
Chinese 84.89 77.33 82.46
Danish 80.49 - 87.45
Dutch 83.62 68.10 84.23
English 84.12 81.17 93.13
Estonian 82.38 79.10 86.52
Finnish 81.84 74.09 91.27
French 82.81 79.61 93.47
German 83.09 77.47 95.27
Greek 83.09 - 88.13
Hindi 72.63 69.34 84.18
Italian 81.79 77.52 90.47
Japanese 71.39 71.09 84.94
Latvian 72.11 - 89.10
Maltese 83.92 - 90.29
Mongolian 72.22 - 87.34
Nepali 82.91 - 83.19
Norwegian 80.37 - 86.36
Persian 83.87 - 84.40
Punjabi 72.37 - 82.82
Polish 83.05 - 87.38
Romanian 69.58 - 86.75
Russian 87.30 - 87.92
Sindhi 68.21 - 84.59
Spanish 81.41 79.15 91.28
Swedish 82.56 83.05 93.89
Thai 83.72 73.12 85.29
Urdu 72.86 - 84.67

TABLE 9 Percentage of completeness in the bootstrapped dependency
treebanks. The Amharic grammar (underlined) is incomplete, i.e. does not

implement all RGL functions.

46 / LiLT volume 13, issue 3 October 2016

the dependency trees. In comparison, the GF treebank results in much
better scores. The percentage of labelled edges is higher in the GF tree-
bank because syncategorematic words have a much lesser incidence in
the unit tests corresponding to functions defined in the GF-RGL.

From the collapsed trees in the bootstrapped treebanks, we primar-
ily learned that the missing labels correspond to auxiliary verbs and
copula verbs in most instances. The fact that these are frequent in
all languages is clearly the reason for this. But this also suggests that
defining a very small fragment of concrete non-local rules will give us
huge improvements in connecting the bootstrapped treebanks with the
correct UD labels.

A full investigation of the quality of these bootstrapped treebanks is
pending due to the lack of manually annotated UD treebanks for this
collection of languages.

6.3 GF Penn Treebank
Previous work on parsing in GF has resulted in a version of the Penn
treebank mapped to the GF-RGL functions (Angelov and Ljunglöf,
2014). The GF-Penn treebank was created by mapping the annotation
schema used in Penn treebanks with the abstract functions in the RGL
using hand-crafted rules. This treebank is used to train statistical mod-
els for disambiguation in the parser and the wide-coverage translator.
In cases where a fragment of the sentence is not covered by the gram-
mar, the resulting AST is a tree, except that the missing functions
in the grammar are replaced by missing nodes. Hence, the GF-Penn
treebank is a GF annotation of the trees in the original Penn treebank
where constructions outside the scope of the grammar are marked using
a default function indicating incompleteness of the grammar. Nonethe-
less, the partially complete trees in the GF-Penn treebank are useful in
estimating the probability distributions over the grammar.

We performed experiments with converting the GF treebank into
the UD annotation scheme using our mapping. The entire treebank
has about 5% of missing functions, on average each such function has
two arguments. So, 10% of the edges on average are simply assigned
the dep label because the algorithm can not determine the mapping
corresponding to this function. We did not make any changes to the
mappings or the conversion procedure to address the case of missing
nodes.

The converted treebank is evaluated against a UD version of the
Penn treebank, these UD annotations are obtained from the Stanford
parser distribution (de Marneffe and Manning, 2008, de Marneffe et al.,
2014). We evaluate our converted treebank against this UD treebank by

From Abstract Syntax to Universal Dependencies / 47

Section LAS
WSJ-22 81.34
WSJ-23 83.21
WSJ-24 85.12

TABLE 10 LAS scores to compare our mappings to UDs against Penn UD
treebank

computing labelled attachment scores used in evaluating dependency
parser performance. This metric calculates the percentages of edges in
the treebank that are attached to their correct head and assigned the
correct dependency label. Table 10 shows the LAS scores on Sections
22, 23 and 24 of the GF-Penn treebank, against standard partitions of
the Penn treebank that are used to report parser accuracies.

Analysis of the converted UD treebank showed three major reasons
for failure to map the entire treebank to the UD labels.

i) About 5% of the edges in these sections are wrongly labelled due
to divergence in our mapping from UD annotation scheme. Most of
these correspond to the treatment of modal verbs (mentioned pre-
viously) and a small fraction of these edges correspond to numerical
modifiers mapped as children of the quantifiers in our mapping.

ii) About 7% of the wrongly labelled edges correspond to proper
nouns in the corpus. The UD annotation scheme selects the first
token in a name to be the head and all the rest of the tokens in
the name are labelled using the name label. Contrary to this, GF
treats the entire name as a single token and does not assign edges
between tokens in a proper noun.

iii) About 7% of the edges are wrong labelled due to the missing func-
tions in the GF treebank. We mentioned previously we did not
make any changes to the conversion algorithm or the mappings to
address these cases.

7 Conclusion

In this paper, we investigate the similarities and differences between
GF-RGL and Universal Dependencies (UDs). Our main result is a con-
version from GF-RGL abstract syntax trees to UD dependency trees.

The conversion from abstract syntax trees in GF to UD trees is
parameterized by a mapping defined on functions in the abstract syn-
tax, to encode the notion of “head” and the grammatical relation of
other modifiers with respect to the head. The mapping described in
this work has has two levels – rules defined on the abstract syntax

48 / LiLT volume 13, issue 3 October 2016

and rules defined on the concrete syntax. Rules defined on the abstract
syntax are by definition language-independent and “shared”. However,
rules defined on concrete syntax are defined for each language sepa-
rately, even if the UD labels for these may be shared across languages.
Furthermore, both abstract and concrete rules have two types – “local”
and “non-local”. In the case of “local” rules, the mapping between func-
tion and its arguments and their UD annotations (both the identity of
head and the UD labels) is determined using only the function, unlike
“non-local” rules where a mapping applies only in certain contexts.

The mapping from GF-RGL to UDs showed that a large part of the
GF-RGL and UD annotation scheme is language-independent. About
30 of the 40 UD labels are mapped using the abstract “local” and “non-
local” rules in our experiments. These parts of both GF-RGL and UD
scheme can be said to be language-independent. The parts of the map-
ping defined on the concrete syntax interestingly falls into two taxons
within the UD annotation scheme (clausal dependents such as aux,
auxpass, cop, mark, expl and compounding labels compound, mwe).

One application of the conversion detailed in this paper is to auto-
matically create UD treebanks from GF treebanks. Our experiments
using a small treebank showed that about 80% of UD treebank an-
notations can be ported using the abstract syntax in GF-RGL. The
remaining annotations can also be derived from GF, provided a small
effort is put into defining concrete rules in the mapping for languages
of interest. Other plausible applications and future directions of our
work include multilingual consistency checking in the UD annotated
treebanks and using these treebanks to estimate probabilistic ranking
of GF abstract syntax trees.

Acknowledgements
We would like to thank Krasimir Angelov, Filip Ginter, Richard Jo-
hansson, Joakim Nivre and the two anonymous referees for their valu-
able comments and suggestions. Special thanks to Annie Zaenen for her
technical comments in addition to all editorial help. The research was
funded by the REMU project (Reliable Multilingual Digital Commu-
nication, Swedish Research Council 2012-5746).

References

Aho, Alfred V. and Jeffrey D. Ullman. 1969. Syntax directed translations
and the pushdown assembler. Journal of Computer and System Sciences
3(1):37–56.

Angelov, Krasimir, Björn Bringert, and Aarne Ranta. 2014. Speech-enabled
hybrid multilingual translation for mobile devices. In Proceedings of the

References / 49

Demonstrations at the 14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 41–44. Gothenburg, Swe-
den: Association for Computational Linguistics.

Angelov, Krasimir and Peter Ljunglöf. 2014. Fast Statistical Parsing with
Parallel Multiple Context-Free Grammars. In Proceedings of the 14th Con-
ference of the European Chapter of the Association for Computational Lin-
guistics, pages 368–376. Gothenburg, Sweden: Association for Computa-
tional Linguistics.

Appel, Andrew. 1998. Modern Compiler Implementation in ML. Cambridge
University Press.

Bender, Emily M. and Dan Flickinger. 2005. Rapid Prototyping of Scalable
Grammars: Towards Modularity in Extensions to a Language-Independent
Core. In Proceedings of the 2nd International Joint Conference on Natural
Language Processing IJCNLP-05 (Posters/Demos). Jeju Island, Korea.

Böhmová, Alena, Jan Hajič, Eva Hajičová, and Barbora Hladká. 2003. The
Prague dependency treebank. In Treebanks, pages 103–127. Springer.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and
Christian Rohrer. 2002. The Parallel Grammar Project. In COLING
2002, Workshop on Grammar Engineering and Evaluation, pages 1–7.

Collins, Michael. 1996. A new statistical parser based on bigram lexical
dependencies. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics, pages 184–191. Association for Computational
Linguistics.

Curry, Haskell B. 1961. Some Logical Aspects of Grammatical Structure.
In Structure of Language and its Mathematical Aspects: Proceedings of
the Twelfth Symposium in Applied Mathematics, pages 56–68. American
Mathematical Society.

Dannélls, Dana, Mariana Damova, Ramona Enache, and Milen Chechev.
2012. Multilingual Online Generation from Semantic Web Ontologies.
In Proceedings of the 21st International Conference on World Wide Web,
pages 239–242. Lyon, France: ACM.

de Marneffe, Marie-Catherine, Timothy Dozat, Natalia Silveira, Katri Haver-
inen, Filip Ginter, Joakim Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic typology. In Proceedings
of the Ninth International Conference on Language Resources and Evalua-
tion (LREC’14), pages 4585–4592. Reykjavik, Iceland: European Language
Resources Association (ELRA).

de Marneffe, Marie-Catherine and Christopher D. Manning. 2008. The Stan-
ford Typed Dependencies Representation. In Coling 2008: Proceedings of
the workshop on Cross-Framework and Cross-Domain Parser Evaluation,
pages 1–8. Manchester, UK: Coling 2008 Organizing Committee.

Dowty, David R. 1979. Word Meaning and Montague Grammar . Dordrecht:
D. Reidel.

50 / LiLT volume 13, issue 3 October 2016

Dymetman, Marc, Veronika Lux, and Aarne Ranta. 2000. XML and Multilin-
gual Document Authoring: Convergent Trends. In Proceedings of the 18th
International Conference on Computational Linguistics, COLING 2000 ,
pages 243–249. Saarbrücken, Germany.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985.
Generalized Phrase Structure Grammar . Oxford: Basil Blackwell.

Hallgren, Thomas and Aarne Ranta. 2000. An Extensible Proof Text Editor.
In Logic for Programming and Automated Reasoning: 7th International
Conference, LPAR 2000 Proceedings, vol. 1955 of LNCS/LNAI , pages 70–
84. Springer.

Kaljurand, Kaarel and Tobias Kuhn. 2013. A Multilingual Semantic Wiki
Based on Attempto Controlled English and Grammatical Framework. In
Proceedings of The Semantic Web: Semantics and Big Data: 10th Interna-
tional Conference, ESWC 2013 , pages 427–441. Springer.

Khegai, Janna. 2006. GF Parallel Resource Grammars and Russian. In
Proceedings of the COLING/ACL 2006 Main Conference, pages 475–482.
Sydney, Australia: Association for Computational Linguistics.

Ljunglöf, Peter. 2004. The Expressivity and Complexity of Grammatical
Framework . Ph.D. thesis, Department of Computing Science, Chalmers
University of Technology and University of Gothenburg.

McCarthy, John. 1962. Towards a mathematical science of computation.
In Proceedings of the Information Processing Congress (IFIP) 62 , pages
21–28. Munich, West Germany: North-Holland.

Montague, Richard. 1974. Formal Philosophy . New Haven (Conn.) (etc.):
Yale University Press. Collected papers edited by Richmond Thomason.

Nivre, Joakim. 2015. Towards a Universal Grammar for Natural Language
Processing. In CICLing 2015: Proceedings of Computational Linguistics
and Intelligent Text Processing , vol. 9041 of LNCS , pages 3–16. Cairo,
Egypt.

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg,
Jan Hajic, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Univer-
sal Dependencies v1: A Multilingual Treebank Collection. In Proceedings of
the Tenth International Conference on Language Resources and Evaluation
(LREC 2016). Paris, France: European Language Resources Association
(ELRA).

Petrov, Slav, Dipanjan Das, and Ryan McDonald. 2012. A Universal Part-
of-Speech Tagset. In Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC-2012), pages 2089–2096.
Istanbul, Turkey: European Language Resources Association (ELRA).

Ranta, Aarne. 2004. Grammatical Framework: A Type-Theoretical Grammar
Formalism. The Journal of Functional Programming 14(2):145–189.

Ranta, Aarne. 2009a. Grammars as Software Libraries. In From Semantics
to Computer Science. Essays in Honour of Gilles Kahn, pages 281–308.
Cambridge University Press.

References / 51

Ranta, Aarne. 2009b. The GF Resource Grammar Library. Linguistic Issues
in Language Technology 2(2).

Ranta, Aarne. 2011. Grammatical Framework: Programming with Multilin-
gual Grammars. Stanford: CSLI Publications.

Ranta, Aarne, Ramona Enache, and Grégoire Détrez. 2012. Controlled Lan-
guage for Everyday Use: The MOLTO Phrasebook. In Controlled Natural
Language: Second International Workshop, CNL 2010, Revised Papers, vol.
7175 of LNCS/LNAI , pages 115–136. Springer.

Rayner, Manny, David Carter, Pierrette Bouillon, Vassilis Digalakis, and
Mats Wirén. 2000. The Spoken Language Translator . Cambridge: Cam-
bridge University Press, 1st edn.

Ruppert, Eugen, Jonas Klesy, Martin Riedl, and Chris Biemann. 2015. Rule-
based Dependency Parse Collapsing and Propagation for German and En-
glish. In Proceedings of International Conference of the German Society
for Computational Linguistics and Language Technology . Essen.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.
1991. On multiple context-free grammars. Theoretical Computer Science
88(2):191–229.

52 / LiLT volume 13, issue 3 October 2016

1 Appendix: GF-RGL and UD Reference

This Appendix gives a listing of GF-RGL categories and UD tags and
labels.

1.1 GF-RGL categories
Figure 18 shows the hierarchy of categories in the core RGL. The same
picture appears in (Ranta, 2011), whereas Ranta (2009b) provides a
systematic linguistic discussion of the RGL categories and functions.
Table 11 lists the same categories with explanations, minimal linguistic
examples and corresponding UD parts of speech.

FIGURE 18 The categories of core RGL.

1.2 UD tags and labels
Table 12 shows the hierarchy of core UD labels used to annotate tree-
banks in the UD annotation project. Table 13 shows the universal
part-of-speech tags and the morphological features annotated in the
UD treebanks. We recommend the UD Documentation 10 for readers
interested in further details about the UD annotation efforts.

10
http://universaldependencies.org/docs/

References / 53

Category Explanation Example UD POS
A adjective old ADJ
AP adjectival phrase very warm phrasal
Adv adverb or adverbial phrase in the house ADV
Ant anteriority simultaneous, anterior syncat
CN common noun (without determiner) red house phrasal
Card cardinal number seven NUM
Cl declarative clause, with all tenses she looks at this phrasal
Comp complement of copula, such as AP very warm phrasal
Conj conjunction and CONJ
Det determiner phrase those seven DET,phrasal
IAdv interrogative adverb why ADV
IComp interrogative complement of copula where phrasal
IDet interrogative determiner how many DET,phrasal
IP interrogative pronoun who PRON
Imp imperative look at this phrasal
Interj interjection alas INTJ
N common noun house NOUN
NP noun phrase (subject or object) the red house phrasal
Num number determining element seven phrasal
Numeral cardinal or ordinal in words five/fifth NUM
Ord ordinal number (used in Det) seventh NUM
PConj phrase-beginning conjunction therefore CONJ
PN proper name Paris PROPN
Phr phrase in a text but be quiet please phrasal
Pol polarity positive, negative syncat
Predet predeterminer (prefixed Quant) all DET
Prep pre/postposition, or just case in ADP
Pron personal pronoun she PRON
Punct punctuation mark ! PUNCT
QCl question clause, with all tenses why does she walk phrasal
QS question where did she live phrasal
Quant quantifier (’nucleus’ of Det) this/these DET
RCl relative clause, with all tenses in which she lives phrasal
RP relative pronoun in which PRON
RS relative clause, tense fixed in which she lived phrasal
S declarative sentence she lived here phrasal
SC embedded sentence or question that it rains phrasal
Subj subjunction if SCONJ
Temp temporal and aspectual features past anterior syncat
Tense tense present, past, future syncat
Text text consisting of several phrases He is here. Why? phrasal
Utt sentence, question, word... be quiet phrasal
V one-place verb sleep VERB
V2 two-place verb love VERB
V2V verb with NP and V complement cause VERB
V3 three-place verb show VERB
VA adjective-complement verb look VERB
VP verb phrase is very warm phrasal
VPSlash verb phrase missing complement give to John phrasal
VQ question-complement verb wonder VERB
VS sentence-complement verb claim VERB
VV verb-phrase-complement verb want VERB
Voc vocative my darling phrasal

TABLE 11 Main RGL categories and corresponding UD POS tags. The tag
"phrasal" means that the category has only complex phrases. "syncat"

means that the category is linearized to abstract features, to which words
are assigned syncategorematically.

54 / LiLT volume 13, issue 3 October 2016

Core dependents of clausal predicates
Nominal dep Predicate dep
nsubj csubj
nsubjpass csubjpass
dobj ccomp xcomp
iobj
Non-core dependents of clausal predicates
Nominal dep Predicate dep Modifier word
nmod advcl advmod

neg
Special clausal dependents
Nominal dep Auxiliary Other
vocative aux mark
discourse auxpass punct
expl cop
Noun dependents
Nominal dep Predicate dep Modifier word
nummod acl amod
appos det
nmod neg
Case-marking, prepositions, possessive
case
Coordination
conj cc punct
Compounding and unanalysed
compound mwe goeswith
name foreign
Loose joining relations
list parataxis remnant
dislocated reparandum
Other
Sentence head Unspecified dependency
root dep

TABLE 12 Dependency labels used in UD, organized as a taxonomy, as
shown in Nivre et al. (2016)

References / 55

Open class words Closed class words Other
ADJ adjective ADP preposition/postposition PUNCT punctuation
ADV adverb AUX auxiliary SYM symbol
INTJ interjection CONJ coordinating conjunction X unspecified POS
NOUN noun DET determiner
PROPN proper noun NUM numeral
VERB verb PART particle

PRON pronoun
SCONJ subordinating conjunction
Lexical Inflectional

(Nominal) (Verbal)
PronType Gender VerbForm
NumType Animacy Mood
Poss Number Tense
Reflex Case Aspect

Definite Voice
Degree Person

Negative

TABLE 13 Top table shows the Part-of-speech tags in UD. Table below
shows morphological features in UD. Both tables shown verbatim as-in

Nivre et al. (2016)

2 Appendix: Dependency conversion algorithm and

specification language

Figure 19 shows the BNF grammar of dependency configurations.

Rule ::= Fun Label+

| Fun Relabels

| Tree Label+

| Tree Relabels

Relabels ::= Relabel ; Relabels

| Relabel

Relabel ::= Label Part Label Label

Part ::= "." Field

| "(" Words ")"

| "{*}"

Tree ::= "(" Fun Arg* ")"

Arg ::= "(" Tree ")"

| "?"

Fun ::= Ident

Label ::= Ident

Words ::= QuotedString

| QuotedString "," Words

FIGURE 19 BNF specification of the dependency configuration syntax.
Label+ refers to one or more labels using the syntax of regular expressions.

Shown below in Algorithm 1 is the conversion algorithm used to obtain
dependency trees from abstract syntax trees.

56 / LiLT volume 13, issue 3 October 2016

Data: Abstract syntax tree T, configuration on abstract syntax C

abstract

and concrete syntax C

concrete

Result: Dependency tree D

Decorate T with labels to get T

L

and list of concrete configurations

T

L

, concreterelabels decorate(T)

Convert T
L

to dependency tree D
Dpartial getdependencies(T

L

)

Apply concrete mappings to get complete dependency tree

UD relabeledges(Dpartial, concreterelabels)

Function decorate(tree)

decoratedtree tree

concreterelabels Table() # initialize an empty table

foreach node in AST tree do

funcontext get subtree dominated by node

funname get function name at node

abstractconfigs C

abstract

[funname]

for config in abstractconfigs do

context, labels unpack(config)

if match(context, funcontext) then

add labels to children of node in decoratedtree

break loop

concreteconfigs C

concrete

[funname]

for config in concreteconfigs do

context, relabelops unpack(config)

if match(context, funcontext) then

store relabelops for node in table concreterelabels

break loop

return decoratedtree, concreterelabels

Function getdependencies(tree)

D DependencyTree() # initialize an empty dependency tree

foreach word in Linearization(tree) do

find lowest node parent in tree spanning the word

foreach leaf in AST T do

find UD label by traversing unlabelled edges up the AST

find head by traversing unlabelled edges from the dominating node

store the word, parent, head function and UD label in D
return D

Function relabeledges(deptree, concreterelabels)

foreach node in Table concretelabels do

relabelops concreterelabels[fun]

foreach relabelop in relabelops do

(label, words, newlabel, newhead) unpack(relabelop)

for word in children of node in deptree do

if word matches words then

assign new UD label newlabel and head newhead in

deptree

return deptree

Algorithm 1: Algorithm for converting ASTs to dependency trees

References / 57

Data: Context for a node in AST nodecontext and context pattern in

configuration configcontext

Result: True or False

remove branches from nodecontext that are not heads from node context

foreach arg in nodecontext do

pat next(configcontext) # pattern of next argument

if argmatch(arg, pat) then

return False;

return True;

Function argmatch(tree, treepattern)

if treepattern is "?" then

return True # match everything

funname, patargs = unpack(treepattern)

topnode, args = unpack(tree)

if funname does not match name of topnode then

return False

else

if patargs is Empty then

return True # Local rule

foreach argument in args and pat in patargs do

if not argmatch(argument, pat) then

return False

return True

Algorithm 2: Algorithm used to match contexts in configurations to
AST

