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RÉSUMÉ
La reconnaissance d’entités nommées consiste à classer des objets textuels dans des catégories
pré-définies telles que les personnes, les lieux et les organisations. Alors que cette tâche suscite de
nombreuses études depuis 20 ans, l’application dans des domaines spécialisés reste un défi important.
Nous avons développé un système à base de règles et deux systèmes d’apprentissage pour résoudre
la même tâche : la reconnaissance de noms de produits, de marques, etc., dans le domaine de
la Cosmétique, pour le français. Les systèmes développés peuvent ainsi être comparés dans des
conditions idéales. Dans ce papier, nous présentons nos systèmes et nous les comparons.

ABSTRACT
Comparing Named-Entity Recognizers in a Targeted Domain : Handcrafted Rules vs. Machine
Learning

Named-Entity Recognition concerns the classification of textual objects in a predefined set of cate-
gories such as persons, organizations, and localizations. While Named-Entity Recognition is well
studied since 20 years, the application to specialized domains still poses challenges for current
systems. We developed a rule-based system and two machine learning approaches to tackle the same
task : recognition of product names, brand names, etc., in the domain of Cosmetics, for French. Our
systems can thus be compared under ideal conditions. In this paper, we introduce both systems and
we compare them.
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1 Introduction

The goal of Named-Entity Recognition (NER) is to classify textual objects in a predefined set of
categories like for example persons, organizations and localizations. The evaluation of NER tools in
campaigns such as MUC, CONLL03, ACE 2005 and 2008, suggests that NER is a solved problem.
However, as highlighted by (Marrero et al., 2013), the set of named entity types is very limited in such
campaigns (and annotated corpora are also limited) and it is important to highlight the difficulties that
NER systems face when dealing with entities in a fine-grained way (Sekine & Nobata, 2004).

In particular, with the development of e-Commerce and personalized marketing, new brands, product
names, and other relative entities, appear daily ; being able to detect such entities becomes crucial in
several applications. For example, on-line market-places (Amazon, eBay) need to extract features



about products provided in free text from different sellers. While NER is widely studied, there are
few works dedicated to the recognition of name of products and brands (Ritter et al., 2011; Zhao &
Liu, 2008). In this work, we decided to focus on the recognition of fined-grained entities, namely
products, name of ranges, brands, divisions, and groups in the domain of Cosmetics. A major difficulty
comes from the fact that in the cosmetic’s domain there is a high level of ambiguity. As indicated
by Díaz (2014), in his study about perfume onomastic, ambiguity is even stronger in the cosmetic
domain where any word could be considered as a name of perfume. For instance, perfumes can take
form of a number (No5), a date (1881), an address (24 Faubourg), a sentence (La vie est belle), or a
pronoun (Elle). Such a large spectrum for product names that can turn any common noun phrase into
a Cosmetics entity makes the task of building specific lexical resources very difficult.

Early, works on NER showed that large coverage specialized lexicons constitute the foundation of any
good NER system (McDonald, 1996) (Wakao et al., 1996). The lack of resources related to Cosmetics
makes hard to develop systems that can achieve high performances. Hence, recent works focused
on symbolic approaches based on hand-crafted linguistic rules which alleviate partially the scarcity
problem of annotated data (Bick, 2004) (Lopez et al., 2014). On the other hand, in the framework of
machine learning, NER is casted as a sequence labeling problem and is solved by structured methods.
For example, Conditional Random Fields (CRFs), are well-known to capture high-level semantics and
also can cope with grammatically degraded text, like in short texts, but are subject to the existence of
a significant volume of annotated data (Lafferty et al., 2001). Then, which approach should we adopt
when dealing with named entity recognition in a specialized domain ?

In this work we perform an empirical comparison between our rule-based system and machine
learning approaches, tailored to the cosmetics domain for French language. The three systems use
the same ensemble of basic linguistic features in order to obtain comparable systems and perform a
fair comparison. We study the behavior of the systems in two different types of resources : 1) a well
written corpus of journal articles, and 2) a corpus from a blog. In the following section (Section 2) we
introduce the data used to develop and to evaluate our systems (described in Section 3). Finally, we
compare the systems and discuss the results (Section 4).

2 Data

For the evaluation of the different systems two datasets were constructed. The first dataset, called
MAG, consists of 99 articles (published between 6 of February 2012 and 30 of April 2012) from four
French magazines on the domain of cosmetics : Beauté Infos, Féminin Pratique, Cosmétique Hebdo
and Cosmétique Mag. It contains 1,944 sentences. The second dataset, called BLOG, contains 118
consecutive articles (published between 14 of June 2014 and 19 of November 2014) from the French
blog http://www.justsublime.fr. It contains 2,613 sentences.

Dataset Sentences Tokens Brand Product Division Group Range
MAG 1,944 46,029 748 164 103 250 61
BLOG 2,613 52,982 334 539 0 3 40

TABLE 1: Details of the datasets used in the comparison. Number of sentences and tokens as well as
the partition of the five categories of named-entities in the three corpora.
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FIGURE 1: Word counts for the two datasets.

Both datasets were manually annotated by an expert according to five categories of named entities :
product (e.g. Shampooing Doux), range (e.g. Elsève), brand (e.g. L’Oréal Paris), division (e.g. L’Oréal
Produits Grands Publics), group (e.g. L’Oréal). Table 1 presents the properties for each annotated
dataset. We highlight the fact that product and brand names are well represented categories in our
datasets, while division, group, and range categories are less well represented. Figures 1a and 1b
present the distributions of the number of words for each sentence in MAG and BLOG. Interestingly,
the majority of the sentences contains less than 20 words and a lot of short sentences (under 10
words).

3 Methods and Setup

Our objective consists in recognizing 5 types of named entity : products, names of ranges, brands,
divisions, and groups in the domain of Cosmetics. We compare one rule-based method relying on a
syntactic analysis with two state-of-the-art machine learning approaches which we briefly describe in
the following sections.

3.1 Rule-based method

Our first system, called Renco (Reconnaissance d’Entités Nommées pour la COsmétique), is based
on a set of linguistic rules which use the output of a syntactic parser and a domain-specific dictionary
(Lopez et al., 2014). The training set for developing rules consisted of journalistic articles from French
magazines (Beauté Infos, Féminin Pratique, Cosmétique Hebdo and Cosmétique Mag). Obviously,
these articles are not included in MAG which is dedicated to the evaluation of the systems. Our
linguistic rules can be classified into two categories :

— lexico-syntactic evidence rules (based on the well-known principles of (Hearst, 1992) and
(McDonald, 1996)). Such rules are based on hyponymic and hyperonymic relations (for
example in parfum tel qu’Angel). We also used internal contextual rules where internal



evidence is a term included in an entity and that enables the annotation with a strong reliability.
For example Clarins Fragrance Group where Group indicates clearly the type of this named
entity.

— syntactic evidence rules consists of rules of coordination and hierarchical rules. The rules
of coordination are based on syntactic analysis of the noun phrase and rely on the linguistic
fact that in coordination, coordinates are of the same nature. Hierarchical rules are based
on semantics of prepositions and enable to structure the extracted data (for example Perfect
Mousse est un produit de Schwarzkopf ).

Each rule outputs a score when it is triggered and a final score is calculated for each type of entity.
The interested reader can refer, for a more detailed description of the system, to (Lopez et al., 2014).

3.2 Machine learning methods

We employ two machine learning approaches. A CRF approach is a discriminative method which
does not make any hypothesis over the data. CRF has exhibited state-of-the-art results in many NLP
tasks also for NER in the e-Commerce domain (Putthividhya & Hu, 2011). The second method is a
Learning to Search (L2S) approach which represents a family of algorithms for structured prediction
tasks (Daumé III et al., 2014). These methods decompose the problem in a search space with states,
actions and policies and then learn a hypothesis controlling a policy over that state-action space. In
this case each example in the training data is used as a reference policy (labels to be assigned at each
token) and the learning algorithm tries to approximate it. This technique resembles reinforcement
learning methods with the difference that in the latter one does not have a reference policy but
discovers it through trial-and-error.

3.3 Setup

Since the rule-based system computes a final score for each candidate type of a given entity, a
threshold has to be defined in order to decide which of the types will be used for the final annotation.
This threshold has been empirically defined according to (Lopez et al., 2014) and fixed to 0.80.

As for the machine learning methods an important step concerns the selection of features to be used by
the algorithms. In the spirit of a fair comparison of the symbolic and the statistical systems, for both
approaches, we try to use the same set of features as in the handcrafted rules : n-grams, part-of-speech
tag, the lemma, the stemmed form as well as suffixes and prefixes of the target word and the words
around it. We also use features indicating whether a word starts with a capital letter inside a sentence,
whether the word is capitalized or not and also whether the word equals ‘&’. Additionally, we add two
binary features when the previous word is “de” or “chez”. Table 2 summarizes the features generated.

Both the rule-based and the machine learning systems use the Holmes syntactic parser (Bittar et al.,
2014) in order to extract linguistic features such as Part-Of-Speech tags, lemma, forms, and syntactic
dependencies.

We use the Begin-In-Out (BIO) encoding in order to assign the labels and to transform the problem to
a chunking task. We provide an example of the labeling on a snippet of the training data :



Il rejoint Pierre Fabre en 2008 comme directeur des marques Ducray et A - Derma
O O B-G I-G O O O O O O B-B O B-B I-B I-B

Group Brand Brand

Feature Description
w0,w−n,w+n Current token and window of -n :+n for n={1,2}
CAPS All letters are capital
CapInitial First letter is capital
Lemma(w),Stem(w) Lemma and stem of current token
POS(w) Part-of-speech tag of current token
w == & Current token is &
w−1==(de || chez) Previous word is “de” or “chez”
affix(-3w :3w) Prefixes/suffixes of words around current token

TABLE 2: Features used for the machine learning approaches.

As tools we use the Vowpal Wabbit 1 system which implements several L2S algorithms and the CRF++
toolkit 2 implementing L-BFGS and MIRA optimization for CRF. For tuning the hyper-parameters
of each method we perform a random search coupled with cross-validation on the training set. For
L2S we tuned the following parameters : learning_rate ∈ [0.1, 4], passes ∈ [2, 15], search_history
∈ [1, 10]. For CRF, the regularization parameter c ∈ [0.0625, 16], max_iter ∈ {128, 256, 512}, and
we used L-BFGS for learning.

Each dataset is split randomly in a training and a test set with 80% and 20% respectively. We evaluate
the different systems solely in the test set using precision, recall and f-measure for each type of entity.

4 Results

Table 3 presents the results for the different systems across the two datasets in terms of precision (P),
recall (R), and F-measure (F1). We omit the results for the non-entities for clarity of presentation.

Regarding MAG, it appears that the rule-based system obtains the best performance regardless the
type of entities with F1 between 74.8 and 90.7 (standard deviation : 0.07). Both machine learning
approaches obtain lower results. We observe that the CRF has a large variation in its performances :
F1 goes from 20.9 to 81.9 (standard deviation : 0.27). Similarly, L2S results vary from 45.7 to 84.8
(standard deviation : 0.18). L2S and CRF gets a good precision but with a very low recall for products
and ranges. Both learning methods outperform Renco for divisions that are under-represented in our
corpus.

Concerning BLOG, all the systems obtain lower performances with this dataset certainly due to the
lower quality in terms of grammar and structure implying a negative impact on the syntactic analysis.
L2S obtains better results than Renco and CRF regarding brand names and ranges of product :
respectively F1=0.80 and 0.76. However, Renco obtains the best results concerning recognition of

1. http ://hunch.net/vw
2. http ://crfpp.googlecode.com



MAG BLOG
Renco L2S CRF Renco L2S CRF

Brand Pr. 93.19 84.30 82.79 73.63 76.85 83.13
R. 88.30 75.80 71.77 81.0 83.0 69.0
F1. 90.68 79.83 76.88 77.14 79.80 75.40

Product Pr. 83.05 78.78 64.28 69.10 68.42 63.52
R. 68.05 36.11 12.50 67.69 60.0 55.38
F1. 74.80 49.52 20.93 68.39 63.93 59.17

Division Pr. 94.59 95.45 86.00 - - -
R. 63.63 76.36 78.18 - - -
F1. 76.08 84.84 81.90 - - -

Group Pr. 1.0 70.45 92.18 - - -
R. 72.27 70.45 67.04 - - -
F1. 87.17 70.45 77.63 - - -

Range Pr. 1.0 66.66 77.77 75.0 88.88 1.0
R. 65.21 34.78 30.43 50.0 66.66 58.33
F1. 78.94 45.71 43.75 60.0 76.19 73.68

TABLE 3: Results for all competing methods across the two datasets. Hyphenation is used when there
are no predictions for the category or no tags were present in the dataset.

product names : F1=0.68. Renco, L2S, and CRF has a similar standard deviation (0.08) which can
be explain by the fact that nor divisions neither groups were quantitatively representative in BLOG.
Both L2S and CRF obtain better or comparable precision in the case of products with that of Renco
but at the expense of lower recall.

Concluding, Renco showed a stable behavior in both corpora with lower performance in the BLOG
dataset where L2S and CRF exhibit a more robust behavior. Note that the development set of Renco
consists only of journalistic articles.

5 Conclusion and Further Work

In this work we presented an empirical comparison of a symbolic approach and machine-learning
approaches for named entity recognition in the cosmetics domain. The different systems were
compared on two datasets (journalistic articles and blog posts). The rule-based system outperformed
both learning approaches in the journalistic corpus while the latter exhibited a more robust behavior
in the blog corpus which contains noisy text.

For future work, we envisage to enhance the generation of features for the machine learning approaches
by a) using dense distributed representations (Mikolov et al., 2013) and b) transform the rules of
Renco to features. We also intend to introduce an approach for learning automatically the weights of
the rules inside LRB towards a hybrid system.
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