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Introduction

It is with great pleasure that we introduce the Proceedings of the 8th SIGdial Workshop on Discourse
and Dialogue. In putting together the accepted papers for the workshop, we encountered an uncommon
but very welcome turn of events: we received many more papers with high recommendations from
our Program Committee than we had anticipated. If we had kept the number of papers accepted to
the maximum of previous SiGdial Workshops, several papers that had received all recommendations of
accept would have been rejected. Given the abundance of favorably rated papers, we felt strongly that
they should be given a chance for presentation. Besides the 18 full papers that were accepted for long
presentation (out of 46 submitted), we therefore also accepted a number of papers for short presentation
and created two poster sessions, to accommodate the extra girth. In addition, 5 out of 18 submitted
short papers and demo descriptions were accepted as such. This was all in keeping with the tradition and
purpose of the SlGdial venue to showcase promising new research approaches in discourse and dialogue,
as well as state-of-the-art implementations.

Readers may notice that the workshop program has papers grouped into four topics: Multi-
Party Dialogue, Spoken and Multimodal Dialogue Systems, Conversation Modeling and Dialogue
Management. This organization was purely for presentation convenience, and quite often papers that
were put under one rubric could be easily put under another.

We wish to thank the members of our illustrious Program Committee members for their advice in
selecting papers for the workshop. The review process was facilitated by the ACL START system,
which we received access to with the help of Antal van den Bosch and Claire Cardie. In preparing for
the workshop we received very helpful advice from David Traum, Wolfgang Minker, Laila Dybkjeer, and
Kristiina Jokinen.

The actual Workshop could not have happened if not for the generous support of many people. Tilburg
University staff managed the online and onsite registration, the production of the proceedings, and the
local arrangements at the conference site in Antwerp. In particular, we wish to thank Jeroen Geertzen,
Volha Petukhova, Femke Wieme and Lauraine Sinay. Torben Madsen, the SiGdial webmaster, helped
put up our website and Priscilla Rasmussen of ACL and Christian Wellekens of ISCA advertised the

event in their respective mailing lists.

We also thank the distinguished Prof. Herbert H. Clark of Stanford University for giving the SiGdial
2007 keynote address on “Rationality and Conversation.”

Finally, we wish to thank you, the SIGdial audience, for making our event a premiere forum for dialogue
and discourse researchers. We hope you enjoy the collection of papers before you.

Harry Bunt (Co-Chair) Simon Keizer (Local Chair) Tim Paek (Co-Chair)
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KEYNOTE ADDRESS

Rationality and Conversation

Herbert H. Clark
Department of Psychology
Building 420, Jordan Hall

Stanford University

Stanford CA, USA 94305-2130
email: clark@stanford.edu

Abstract

In the model of language use proposed by philosopher H. Paul Grice,
people in conversation recognize “a common purpose or set of purposes, or
at least a mutually accepted direction,” and they cooperate in contributing to
those purposes. Grice went onto argue, “Talking [is] a special case or variety
of purposive, indeed rational, behavior.” But Grice tacitly assumed a type
of omniscient rationality: People in conversation have perfect knowledge of
the language and the current common ground, and they have an unlimited
processing capacity in choosing what to say. In reality, people’s rationality
is bounded, and that leads to quite a different view of language use. | take
up some of the consequences of bounded rationality in language use.

1
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Collective States of Understanding

Arash Eshghi
Department of Computer Science
Queen Mary University of London
Mile End Road, London, E1 4NS
arash@ics. qnmul . ac. uk

Abstract

This paper uses an analysis of ellipsis
in multi-party interaction to investigate
the relative accessibility of dialogue con-
text/common ground to direct addressees
and side participants. The results show that
side-participants frequently make direct use
of the common ground established between
a speaker and addressee despite the fact that,
by definition, they did not directly collabo-
rate with the speaker on constructing it. Dif-
ferent individuals can thus reach the same
level of grounding through different levels
of feedback. We conclude that mutliparty
dialogue leads to distinct collective states of
understanding that are not reducible to the
component dyadic interactions.

1 Introduction

Patrick G. T. Healey
Department of Computer Science
Queen Mary University of London
Mile End Road, London, E1 4NS
ph@ics. qmul . ac. uk

In dyadic interactions, mutual-understanding or
‘grounding’ is achieved through direct collaboration
between the speaker and addressee. The speaker
expects the addressee to provide evidence that he
is understanding the speaker’s utterance “to criteria
sufficient for current purposes” (Clark and Brennan,
1991). In multi-party conversations the situation is
more complex.

For example, if A makes an anaphoric reference
to some entity, while addressing B with C present
as a side-participant, he intends both B AND C to
resolve the reference. However, by definition, the
speaker does not collaborate as actively with side-
participants. They “have to be satisfied with clear-
ing up misunderstandings in natural breaks in their
talk” (Clark and Schaefer, 1992). AP will nor-
mally wait until speaker and addressee have car-
ried out theirpresentationand acceptancephases,
before attempting to rectify any possible misalign-
ment with the speaker. On this account grounding

Goffman (1981) introduced a distinction betweerPetween speaker and direct addressee always takes

ratified participantsandoverhearerdn a conversa-

precedence.

tion. The former category is further decomposed By definition, SPs and D As give different ev-

into direct addressee§D A) and side participants

idence of grounding of a speaker’s utterances;

(SP) of an utterance. The ratified participants aré?A’s respond overtly and directly btPs provide
those who hold certain responsibilities towards eacveaker evidence of grounding — primarily continued
other for ensuring mutual-understanding (Clark angttention and withholding of repair. Consequently, if

Schaefer, 1992):

we understand level of grounding as being directly
dependent on the level of ‘evidence of acceptance’

Principle of Responsibility: In a conversation, theprovided then we expect differences in the relative
parties to it are each responsible for keeping trackccessibility of the common ground for the differ-
of what is said, and for enabling the other parties tgnt pairs of participants; roughly, Speaker&A >

keep track of what is said.

2

Speaker and P > SP andDA.
In a review article Branigan (2006) points out that

Proceedings of the 8th SIGdial Workshop on Discourse and Dialqoages 2-9,
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there isn’'t yet any empirical evidence thatds and the interaction into two successive conversations
S Ps differ in the accumulation of common groundwhere a direct comparison ¢fP and D A with re-
In this paper we provide evidence that, in at leastpect to the same interaction is not made. The clos-
one case, the common ground is, in fact, equally aest approximation is the comparison of the last trial
cessible toS Ps andD As. We argue that this is ev- of phase one and the first trial of phase 2 but this is
idence ofcollective states of understanditigat are equivocal. The Directof& P pairs are slower and use
not reducible to the component dyadic interactionsnore words than the original Director-Matcher pairs
It appears that in modelling multilogue we need tdut do make the same number of definite/nominal
account for the possibility that one participant cameferences. The task situation is also unusual in that
stand proxy, in terms of grounding, for another (ratin phase one thé P is positioned beside the Direc-
ified) participant. tor and opposite the Matcher. The participants mutu-
ally know that theS P has direct visual access to the
actual referents of the referring expressions whereas
The key empirical evidence relating to grounding byhe Matcher does not. Arguably this gives th&
S Ps comes from the tangram experiments carriedn unusually high degree of access to the common
out by Clark and co-workers. The essence of theggound.
tasks is that on each trial one person, the 'Director’ In this paper we compare the relative accessibil-
(D), describes a series of tangram figures so that aity of common ground to different participants in a
other, the "Matcher’ (M) can identify them. If the single multi-party conversation. In order to improve
same figure recurs on a number of trials the Directahe ecological validity of the analysis we focus on
and Matcher quickly converge on some concise defrelatively) naturalistic dialogues between three or
inite or nominal description for the figure. For ex-four participants. To provide a more sensitive index
ample, they go from “Okay the next one is ... resemef the kinds of information that are assumed to be
bles someone that looks like they’re trying to climbin the common ground we focus on the use of dif-
stairs. There’s two feet, one is way above the othderent kinds of ellipsis. We argue that, in fastP’s
and-"on trial one to “Um, stair climber” on trial 6 and D A’s are in all relevant respects equivalent and
( (Wilkes-Gibbs and Clark, 1992), p.184). that this is evidence for distinct collective states of

Wilkes-Gibbs and Clark (1992) carried out a twounderstanding that are not reducible to the compo-
phase variation on this basic task. The first phaseent dyadic interactions. Like Branigan(2006) we
has two conditions. In one an additional ‘sileSt”  argue that the ultimate difference betweghR and
sits next to the director. In another an ‘omniscienD A grounding if any, is due to the goals of these par-
overhearer’ QO) follows all of phase 1 on video ticipants in the conversation i.e. to what they indi-
but is not co-present in the room. In both conditiongidually judge to be ‘sufficient for current purposes’
the D is aware of the additional participants and thejn the context of the current activity.
are both able to see each figure as the D describes it.
In the second phase tt#&° or OO take on the role 2 Method
of matcher for another six trails. The D and former o o _ _
SP pairs are quicker, use fewer words and produc_%efore describing the analysis in more detail we first
more definite/nominal description types than the fjitroduce the corpus used.
and formerOO pairs; despite the fact that theP
andOO ostensibly have the same prior information.z'l The AMI Corpus

Although this is clear evidence that side-The AMI Meeting Corpus (Carletta, 2006) is a
participants reach a higher level of understandingiulti-modal (video, audio and text) set of 100 hours
than overhearers it is inconclusive about 2 - of meeting recordings. These consist of a set of natu-
DA contrast. TheSP - DA distinction relates to rally occurring and a set of scenario-based meetings.
participant status with respect to utterances in thia this paper 10 of the naturally occurring meetings-
same conversation (Goffman, 1981). The experiroughly 9 hours of conversation- have been anal-
mental device of two task phases effectively breakgsed. Only the video, audio and raw transcripts have

1.1 Side Participants in the Tangram Task



been used. For more information on AMI refer tomeaning of such elliptical expressions can be re-
http://www.idiap.ch/amicorpus. covered (resolved) by reference to previous utter-
ances/sentences the contents of which are immedi-
2.2 Side Participants to Strips of Dyadic Talk ately present in context.
For reasons which will become clear, in order to Ellipsis is central to this analysis since it indexes
make claims about a speaker’'s assumptions regaittie extent to which the meaning of an utterance de-
ing SP understanding, we extracted all strips ofpends directly on the context of the preceding dyadic
dyadic talk from each meeting. These are segmengxchange i.e. the extent to which participants as-
during which there is no explicit feedback (excepsume the common ground established during the
‘continued attention’) , from participants other thandyadic exchange is accessible to each other. More
speaker and addressee. This provides identifialb#@ecifically, at the point when the dyadic exchange
SP's and DA’s for each dyadic segment (see beends we have the opportunity to compare a) the pat-
low). Based on the turn taking model in (Sacks etern of use of ellipsis by the last speaker to $18
al., 1974), these dyadic segments of talk end in ongith b) the pattern used by titeP to the last speaker
of two ways: (LS).
If the LS addresses the& P elliptically they
1. Self-selected side participant (SPRSP wins  are demonstrating their assumption that thi&
the floor by exploiting a gap in the dyadic talk,grounded the antecedent referents/propositions dur-
or she interrupts the talk mid-utterance. ing the prior dyadic conversation. Conversely when
the SP self-selects (interrupts), the use of ellipsis
demonstrates the extent to which thé”’s directly
access the other participants’ common ground.
Ouir first level classification distinguishes four cat-

. . .. egories:
It is in general a current speaker’'s paralinguis-

tic behaviour (gaze and body orientation) and/or the
content of her utterance (e.g. use of personal pro-
nouns accompanied by gaze) which together deter-
mine whom she is directly addressing. Whef 2
is directly nominated (addressed) at the end of a e CT (continuation of talk) : In terms of seman-
segment, it's the same information which signals a  tic content, the utterance could intuitively be
change in the speaker's set bfAs. Note that the thought of as the continuation of the talk in the
DA is determined through reference exclusively to segment, i.e. utterance does not have a coherent
the speaker’s behaviour. Also we take into account  meaning without the background of the dyadic
that the speaker might be ‘addressing’ the other par-  talk.
ticipant in the dyad while making 8P the intended
recipient as when th& P is the ‘butt’ of a speaker's ~® BC (backchannel) Having been ‘silent’
joke (Levinson, 1988). throughout the dyadic segment, tB& merely
starts to backchannel again.

2. Nominated by Last Speaker (LS) Last
speaker hands the floor over toS&, by di-
rectly addressing her.

CD (context-dependent) Utterance contains
Syntactic Ellipsis, Anaphoric OR Definite ref-
erence.

3 Analysis of Ellipsis
e NC (new context) Introduction of a new con-
At the end of a dyadic segment the participants hold  text/topic.

certain assumptions about each other’s level of un-
derstanding. One way these assumptions are madeThis scheme yields the following segment types:
manifest is in theelliptical expressions employed by LScp, LScr, LSpe, LSnc, SPop, SPor,
the speaker. SPpc, SPyc.

Ellipsis is a mono/dialogical technique in pro- For a second, more detailed level of analysis that
ducing expressions, whereby single or multiple sertakes the kind of ellipsis into account we further de-
tence constituents are omitted. The ‘completetomposed thé'D category:

4



3.1 Ellipsis Taxonomy used merely to compare whatPs and D As

1. Non-Sentential Utterances (NSU)Fragmen- can ‘do’ elliptically.

tary but intuitively complete utterances, exclu-
sive to dialogue that are not sentential in their ing the ellipsis is an answer to a question,
outward form. These utterances have been like the above example.

coded according to the typology developed in e Request for confirmation (RC): Partly re-
(Fernandez and Ginzburg, 2002). We have fur- dundant, these are tag questions used to
ther collapsed these types according to their request confirmation or initiate disputa-
role/function in conversation, into the follow- tion. “A: | got an A in Biology. B: Did

ing more general categories: you? A: Yes. | got the results today.”

e Direct Answers (DA): Utterance contain-

e Direct Answers (DA): Fragments used as
answers to questions. IncludBslar An-
swersandShort Answers

¢ Clarification Requests (CR): Fragments in

Statement (ST): General category contain-
ing all statements, excluding Direct An-
swers.

Query: All elliptical questions excluding

question form, used to request clarifica- Requests for Confirmation.

tion or further elaboration of a previous 5 Anaphora (Anaph)
utterance. Include€larification Ellipses
andSluices

* Modifiers (MOD): In their fully resolved To provide a baseline comparison of ellipsis types
form, these are statements somehow mod-

ifying a previ utterance in convers in ordinary dialogue we also coded 10 peoples con-
ying a previous ance NVETSA- ersations from the British National Corpus (BNC).
tion. IncludesPropositional Modifiers

Factual Modifiers Fillers andFragments 4 Results and Discussion
introduced by Connectives

4. Definite/Nominal Reference (DR)

Table 1 shows dyadic segment type counts, for 10

2. Sentential Ellipsis These are contained in ut- AMI meetings (roughly 9 hours of conversation).

terances which are sentential, but semanticall ) :

ambiguous as a result of either the full omissior%('1 Segments of typd.S¢p: Assumptions

. . . about S Ps

a syntactic constituent or its replacement by an

auxiliary. In the case of stand-alone uses of\ll such segments indicate that the last speaker, in

propositional attitude verbs (know, see, believ@roducing elliptical utterances addressing'g, is

..), the whole of the antecedent utterance getdcitly making the assumption that th&P would

elided. Often the omitted/replaced syntacti®® able to resolve the ellipses employed, which in

constituent (not necessarily atomic/terminalfurn depends directly on th&F having grounded

can be uniquely identified and recovered fronthe antecedent utterance(s) of the ellipsis contained

context. Unlike NSU’s these are not exclusivevithin the segment, for which theP did not
to dialogue. Here’s an example: produce any explicit feedback. Note that ‘Contin-

o ued attention’ by theS P(s) is very frequently not
Verb_Phrase (VP) Ellipsis monitored by ar{y of th((a )particip);ntsqin thg dyad.
A:Will you please go to the market tomorrow?Eye contact is more or less exclusively maintained
B: | a}‘lready told you | W'”_‘ [Resolved Con- between the two and them alone. Nevertheless
tent: | alrf.\ady told you | will go to the market the SP is ‘expected’ by the last speaker to have
tomorrow’] grounded the antecedent utterance(s). Furthermore,
We have developed an ad hoc taxonomwyone of these segments were followed by any form
analogous to that for NSU’s, based on thef Repair/Clarification by theSP. In all of them
role/function of the utterance containing the elthe SP seems to be coping perfectly well with the
lipsis. Bear in mind that the taxonomy is beingelliptical utterance, and the conversation goes on



CD|CT | NC | BC Because it's would be the same as feature.

LS |20 |4 3 4 Or spec spectrum. | think data’s the same

SP|100 |33 |1 0 as spectrum . . .

I do | still don’t think that goes in. But .

yeah, | still don't like it. But

Final view, Bob?

smoothly. A: |don't have passionate feelings.

This evidence seems to support the claim in

(Branigan, 2006) that speakers have very similar Here, B’s last utterance explicitly addressing A, is

and at times even higher expectations frgh®s highly elliptical with no particular utterance as an-

compared to those fronW As, concerning the par- tecedent, i.e. the resolved content of the utterance

ticipant’s ability to resolve these ellipses/referenceslepends on the whole segment between B and C.

Nevertheless Branigan also proposes that theBeexpects A (Bob) to have grasped the issue under

expectations fron$ Ps should often be weaker. discussion. One would expect A here to initiate clar-

The following are excerpts from AMI, showing ification if he really didn’'t know what B was asking.

the different kinds of ellipsis employed by the last We think that the speaker's assumptions about

speakers: S Ps are among other things, strongly mediated by

the speaker’s prior beliefs (before the conversation)
about theS P and his relevant knowledge. In the

Anaphoric chains: distant antecedent recognisetheeting from which the above was extracted, A is

og)

os)

Table 1: Dyadic Segment Type Counts

@ aa

by S P a supervisor with whom the rest of the participants
check their results as they go along. So, firstly if
B: Yeah. But that still won't tell you. well cooperative, he should be ‘paying attention’ to the
howmanytangrams are there that they're dyadic interactions in which he is not directly in-
using? Fifteen or something. volved (most of the meeting). Secondly, the rest of
c: Uhno, noteven that. They've of thisrele- e participants believe to begin with, that he would
vanttype. ... understand such technical issues under discussion.
B: Uh-huh. So that's not gonna so that's not 5o perhaps, it is some notion of the well known ‘lab
gonna tell you anything abotieir rela- coat effect’ that could justify such high expectations
tive complexity. . . You still need some (e.g. see (Healey and Mills, 2006), page 5).
kinda scale fothese things Ca uh if you
look at'em, do you just know? 4.2 Segments of typ& Pop: Side participant
c:  Mm no. [laugh] Well | don’t. I'm not . access to ‘communal’ common ground
B:  No. | wouldn't either. What about him? | this section we will argue thasPs have the
| if Mister Geometry. | mean, you know. same kind of access through the same techniques,
Can you tell just by looking ahesehow to the ‘communal’ common ground, as the partic-
hard people find them? ipants directly involved in collaboratively securing
A: No, I'm afraid not. | wouldn’t know. it (speaker and addressee). These segments which

In the above excerpt, also note how similar C,Scomprise the largest class in this analysis, end when
(the DA) last utterancé is to A's (th&P) : VP a SP interjects producing an elliptical and hence

ellipsis in C's versus whole sentence ellipsis in ASONtEXt-dependent utterance. Again here, the an-
utterance. tecedents of the ellipses, lie within the dyadic seg-

ments.

Table 2 below shows the ellipses identified in
theseS P utterances. They have been classified ac-
B: [. . 6 utterances so far exchanged between B and  cording to the taxonomy described in section 3.1. In

] Data | think we should keep in. order to assess whether there is a difference between
c: OK. [laugh] the use of ellipsis types bg P’s and the baseline

The whole segment as antecedent



- typical frequency of use independent of both the:
number of participants in the conversation and the:
status of the participant upon employing the ellipsis:
- used in ordinary dialogue, we compared the frep:
guency of ellipses of each type with that found ing:

the BNC. Taking into consideration all categories in
Table 2 (merging Sentential and non-Sentential DAs

and ignoring DR since it wasn’t coded for the BNC)D:

there is a reliable differenc€qi2 = 14.6, p = 0.02).

However, as Table 2 indicates the main difference:
is in the relative frequency of direct answers whickc:

account for 26% of instances in the BNC but only

12% of instances in AMI. If this category is ignoredc:

we find no reliable difference betweétP’s and the
baseline C'hi? = 4.33, p = 0.50).

The difference in frequency of use of direct an-
swers is essentially an artefact of our coding schemg
As noted above th8 P ellipses are those where they

Um, no no no. (6)

No no no no. Yeah. (7)

Whatever um makes sense to you. (8)
Okay. (9)

Um [cough] but no, it it can continue into
the next segment and that'’s perfectly fine.
(10)

Yeah. Just okay. So it's put the hyphen
and then. (11)

Yeah. (12)

| think that's actually the only case where
you don't (13)

or where you're not supposed to capitalise,
right? (15)

Utterances 1 to 12 above form a segment of type
Pep which is terminated byC. The anaphora
"that” in 13 can only be resolved with 3 as an an-

have nominated themselves as next speaker by ip]a_cedent. An issue is here raised initially by B to

terjecting. Consequently, direct answers$is to

which D responds by asking a question (utterance

questions —which are by definition not directed ap)- All the way down to utterance 12 the question
SPs—are much rarer. Subject to this caveat, we cdf Under discussion exclusively betwesnand D.
conclude that the pattern of use of different ellipsi$’ €N produces utterance 13 which can intuitively

types byS P’s is not in fact distinguishable from the
pattern of use typical of participants in ordinary dia-

logue.

What now follows is a discussion over a set o
examples from AMI comparing the kinds of accesé

to context through various elliptical phenomen
possible byS Ps to those byD As.

4.2.1 Anaphora with distant whole utterance
as antecedent

B: Um so this person didn’t ha um the ob-
viously didn’t know about capitalisation.
So just about every utterance needs to be
capitalised and and needs the end punctu-
ation. (1)

D: Mm-hmm. (2)

D: You know, when you get like um some-
one’s talking and there’s they sort of pause
in the middle of a sentence that’s long
enough for it to put a break in, (3)

B: Yeah (4)

D: but they're actually sort of carrying on the
sentence, do you have to capitalise each
time you transcribe a bit of it's mid (5)

be thought of as an answer 1@'s initial question.
In other words it could have been produced By

(the DA) adjacently to the initial question. Note

pere thatC' has had to re-raise the context in or-

er to make her contribution. l.e. a simple “No”
(a Negative Polar Answer) lik&’s initial response,
or even the less elliptical “I think that's actually the
only case where you don't.”, would most probably
be infelicitous (the other party would be very likely
to initiate clarification). But this seems to be the
effect of antecedent distance alone, since all of the
NSU classes in (Fernandez and Ginzburg, 2002)
are possible by5 Ps at the end of the segments in
guestion, but clearly not at such high antecedent dis-
tances. This will be a little further elaborated in sec-

tion 4.4.

4.2.2 Non-Sentential Utterances (NSU)
Factual Modifier

c:  When | did my masters um | took uh SP1
and SP2 with Simon King.

A: You survived SP1 and SP2.[laugh]

C: Yes. And actually I've done quite well in
SP1, I've done it a bit worse in SP2 be-
cause it was a | a lot more challenging.



Non-Sentential Sentential Other

DA(NSU) | CR | MOD | ST | DA | Query | RC | DR Anaph | Tot
AMI 14 9 12 10 | O 4 6 11 58 124
Baseline(BNC)| 154 73 | 46 46 | 21 | 12 20 | not coded| 303 675

Table 2: Ellipses employed byPs terminatingS Pop segments compared to the baseline (BNC)

A:  We have two new teachers for SP2. participants always reach a collective state of under-
B: Too many. [laugh] standing. The claim is rather that such collective
states do exist, and that they're often assumed by the

The excerpt above shows an instance §faFac- parties involved.

tual Modifier (boldfaced in the excerpt) produced by Furthermore, it's interesting to see that had it been

B adjacently to its antecendent. The same utterange(the D A of the antecedent utterance) who didn’t

“Too many.” by theD A (B here) would have been ynderstand, she would have produced the CE locally

perfectly felicitous (implies in this case, equivalencgas opposed to a distance of 5 here) which is what's

of SP andD A access to context). generally expected in dyadic dialogue. This issue is
Among the NSU classes in (Fernandez anglrther discussed in section 4.4 for future work on

Ginzburg, 2002), Clarification Ellipsis (CE) is of adistance.

special status, since it is known to be a common

technique used in dyadic dialogue to ground utte-2.3  Sentential Ellipsis

ances which weren’t sufficiently understood by the These are the ellipses not covered by the NSU ty-

recipient. There were very few CEs identified in thigpology in (Fernandez and Ginzburg, 2002). The

analysis. However, we do know th&tPs can and taxonomy described in section 3.1 has been used to

do in fact initiate elliptical clarification, by exploit- classify these.

ing gaps in dyadic talk: local VP ellipsis byS P

Clarification Ellipsis (CE)
B: [5 utterances exchanged between B and C so far in

c: What does cutest spelling mean? (1) the segmeiptbut | | | do know the type of
B: oh, she spelled cutest um with an(2) scenario you're describing. 1 just it’s just
c: oh, okay. (3) hard to answer that without hearing some-
B: so that that's just something | pointed out. thing. Mm.
(4) c:  Mm-hmm. The um should be capitalised.
D: ohyeah. (5) B: yeah,they should all. | stopped marking
A: Cutest? §azing at D. Direct Addresee is D them, 'cause there are just too many.
here](6) c: yeah.
D: EST_(7) A: Shouldit? 'Cause the loose uh is continu-
A: Thank you.[laugh] (8) ing from one sentence isn't it?

D and A above are botK Ps to the dyadic segment Note also the chain of anaphora referring to the
between B and C. The CE produced by A is veryum’, and how it carries on across to tisé’’s (A's)
interestingly addressed at D who is alsc6& to utterance. This phenomenon is very frequen$ in
what's being clarified, which shows that in multi- utterances terminatin§ Pcp segments.

party dialogue althe ratified participants have obli-
gations/responsibilities towards one another.

This example also indicates clearly that there can
be varying levels of understanding among %8s The analysis indicates that the introduction of new
themselves. However, note that we are not claincontexts/topics byS Ps interrupting a dyadic seg-
ing by any means that in multi-party situations, thenent, is extremely unlikely. Consequently ib& is

4.3 Segments of type Py Implications for
our claims



to interrupt, she has to ‘stick to the topic’ already unalone since, prima facie, the SP’s don't ground to
der discussion in the segment. This further supportee same level, don't go through the same grounding
our claims, in that even if & P is not using ellipsis cycle as DAs with the speaker. Moreover it indi-
as direct access to the ‘communal’ common groundates that DAs can act as proxy for SPs in providing
she makes use of the information in there, to produaenderstanding evidence and, presumably, that they
a relevant utterance. An utterance thus produced, deave obligations to each other. Finally, this all seems
mantically depends on and is incoherent without thed make it simply a matter of winning the floor for
background of the ‘shared knowledge’ established Ps. Other than that there’s no difference between
between the speaker and addressee in the dyad. the ratified participants in multi-party conversation.

4.4 Future Work: Antecedent Distance of SP
ellipses andContext Re-raising References

The technique of re-raising context- avoiding highly- Branigan. 2006. Perspectives on multi-party dia-

- . . ~ logue. Special issue of Research on Language and
elliptical expressions or in the case of anaphora, giv- Computation
ing further descriptions of the discourse entities re- _ _ _
ferred to- is frequently adopted by %P in his at- J. Carletta. 2006. Announcing the ami meeting corpus.

. . The ELRA Newsletter

tempt to produce a distant second pair part to an
utterance far back within a dyadic exchange. Thigl.H. Clark and S.A. Brennan. 1991. Grounding in com-
technigue need not be exclusivet®s, asD As also munication.Perspectives on socially shared cognition
in dyadic dialogue might do this to produce an Uty \; cjark and E.F. Schaefer. 1992. Dealing with over-
terance which isn't locallyrelevant’, but counts as  hearers.
a second pair part to what’s been discussed further _ )
back. However it is expected to be employed a Io't?' Fernandgz and J. szburg. 2002. Non-sgntentlal ut-

. . terances: A corpus studyraitement automatique des
more frequently byS P’s in face-to-face multi-party  |anguages
dialogue.

This issue raises the following questions: Wh
is the correct notion of antecedent distance herg®G.T. Healey and G.J. Mills. 2006. Participation, prece-
What exactly is the threshold in terms of this notion dence and co-ordination in dialogue€Cognitive Sci-
for each ellipsis type, after which interjectirfyPs ence
need to avoid the ellipsis in order to prevent ambigus, | evinson. 1988. Putting linguistics on a proper foot-
ity/miscommunication? Or more formally with re- ing: Explorations in goffman’s concepts of participa-
spect to interaction protocols, how does antecedenttion.
distance fit into ellipsis felicity conditions in multi- Sacks, E. Schegloff, and G. Jefferson. 1974. A sim-

logue? plest systematics for the organization of turn-taking for
conversationLanguage

allErving Goffman. 1981Forms of Talk

5 Conclusion D. Wilkes-Gibbs and H.H. Clark. 1992. Coordinating

The evidence from this analysis shows that with beliefs in conversatiorMemory and Language

respect to common ground side participants in the
AMI corpus do not appear to be different in any
substantive respect from direct addressees. Speak-
ers assume tha® Ps reach the same level of un-
derstanding as the addressees. Additionalis
were shown to use elliptical techniques to access the
shared-context, in generally the same waylass

do. All things being equal, this is strong evidence
for collective states of understanding that could not
be predicted from considering the component dyads
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Abstract

The identification of occurrences of like and
well that serve as discourse markers (DMs)
is a classification problem which is stud-
ied here on a corpus of dialogue transcripts
with more than 4,000 occurrences of each
item. Decision trees using item-specific lex-
ical, prosodic, positional and sociolinguistic
features are trained using the C4.5 method.
The results demonstrate improvement over
past experiments, reaching the same range
as inter-annotator agreement scores. DM
identification appears to benefit from item-
specific classifiers, which perform better
than general purpose ones, thanks to the dif-
ferentiated use of lexical features.

1 Introduction

The identification of discourse markers (DMs) is an
essential step in dialogue understanding, especially
when the lexical items used as DMs are ambigu-
ous. Like and well are two frequent lexical items and
potential DMs, which are among the most difficult
ones to disambiguate, and they will serve here as a
case study for automatic DM identification. The task
will be discussed first from a linguistic and computa-
tional point of view. Previous attempts will be sum-
marized, followed by the data, features and classi-
fiers used here. The results will be discussed first
by comparing our highest scores with baseline ones,
then by analyzing the relevance to DM identifica-
tion of various features. The best performances are
shown to be comparable to inter-annotator agree-
ment scores and higher than state-of-the-art scores,
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and lexical collocations are shown to be the most
relevant features.

2 The Discourse Markers Like and Well

Despite the wide research interest raised by DMs
for many years, there is no generally accepted def-
inition or list of DMs (Andersen, 2001; Schiffrin,
1987). Items typically featured in this class are also
called discourse connectives, pragmatic markers, or
cue phrases, and include words and expressions such
as actually, and, but, I mean, like, so, you know
and well, which “generally have little lexical import
but serve significant pragmatic functions in conver-
sation” (Andersen, 2001, page 39).

For comparison purposes, we focus here on two
lexical items, like and well, in order to determine the
surface features that are most relevant to DM clas-
sifiers based on machine learning. These two items
are among the most frequent and the most ambigu-
ous DMs. Like, for instance, can be a preposition
or an adverb, a verb or even a noun. When used
as a DM, like is in reality much more than a filler,
and can be more precisely described as a loose talk
marker, signalling reported speech or an imprecise
formulation of the speaker’s belief, as in “He was
like, yeah, I can make dogs raise their ears” or “It
took, like, twenty minutes”—for more examples, see
(Popescu-Belis and Zufferey, 2006, pages 7-9).

Well can also fulfil a variety of pragmatic and non-
pragmatic functions (Schourup, 2001). When it is
not a DM, well can be an adverb or an adjective (“He
sings well”, “I am well”), or a noun or verb (‘water
source’). As a DM, well can introduce a rejection of
a previous request, or a disagreement with a previ-
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ous utterance, or can more generally mark hesitation
or turn-taking, as in “Well, actually, you don’t even
need to do that...” or “Oh, yes, but well, uh, yes,
but what I mean is that...”.

3 Evaluation of DM Identification

The automatic identification of DMs is a binary clas-
sification task over the entire set of occurrences of
the lexical item. Its evaluation requires a ground
truth classification, and metrics to compare a candi-
date classification to it. The simplest evaluation met-
ric is accuracy, i.e. the percentage of correctly clas-
sified instances (CClIs or C below). In addition, if
DM identification is seen as the retrieval of the DMs
among all occurrences of a lexical item, then recall
(1), precision (p) and their f-measure (f) can be used
to assess performance in a more detailed manner.

However, given that the distribution of DM vs.
non-DM occurrences of a lexical item is seldom
uniform, the above metrics should be corrected for
chance agreement. To our knowledge, there are
no widely used chance-corrected versions of recall
and precision—the Kullback-Leibler divergence is
seldom used for classification tasks—but a well-
known agreement metric that is chance-corrected
is the kappa (k) score (Carletta, 1996). Although
designed to measure inter-annotator agreement, £
quantifies the resemblance of two classifications by
factoring out agreement by chance.

The x score measures classification performance
between —1 and 1, with random classification scor-
ing 0. The x measure is quite strict as it was de-
signed to be sensitive to even small differences be-
tween coders. Therefore, a x value above 0.67 is of-
ten considered a sign of acceptable agreement, while
a value above 0.8 is considered very significant.
According to Landis and Koch (1977), strength of
agreement is fair for 0.2 < x < 0.4, moderate for
0.4 < k < 0.6, substantial for 0.6 < x < 0.8 and
almost perfect above. In any case, the inter-coder
agreement for the gold standard data represents the
upper bound that can be legitimately expected from
a classifier: even a perfect one cannot get closer to
the gold standard than the humans who defined this
standard.
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4 Previous Studies of DM Identification

DMs play a considerable role in discourse process-
ing tasks. For instance, some studies use discourse
connectives to infer discourse structure (Reichman,
1985; Grosz and Sidner, 1986; Marcu, 1998), while
others use DMs as cue words for discourse segmen-
tation (Passonneau and Litman, 1997).

Many DMs, especially connectives or cue words,
are not as highly ambiguous as like or well. Hutchin-
son (2004, page 686), for instance, targeted mainly
the problem of automatic categorization of the prag-
matic functions of discourse connectives, but only
acknowledged the potential ambiguity of and. Sim-
ilarly, Marcu’s (1998) algorithm for DM identifica-
tion, in relation to rhetorical parsing of written texts,
aims at a list of 450 potential DMs, but and and or
are ignored in many cases due to their ambiguity. It
is also likely that like and well did not appear often
in Marcu’s 7200-word test data, over which recall
was 80.8% and precision 89.5%.

Several studies have explicitly tackled DM iden-
tification in speech. Hirschberg and Litman (1993)
applied a model based on intonational information
to 34 DM types, and correctly classified 75.4% of
their 878 classifiable tokens. Another model cor-
rectly classified 80.1% of the tokens based on human
transcript and punctuation.

Siegel and McKeown (1994) proposed another
transcript-based method, using decision tree classi-
fiers constructed by a genetic algorithm, on a super-
set of the above data with 1,027 tokens. An inter-
esting baseline score was obtained by a binary de-
cision tree based only on the utterance-initial fea-
ture, which reaches 79.16% accuracy. The score of
the best decision tree found by the genetic algorithm
was only 79.20%. Although they did not improve
performance over baseline, decision trees “discov-
ered” some meaningful linguistic rules.

The relevance of machine learning techniques to
DM identification was further emphasized by Lit-
man (1996) in a set of experiments that extended and
completed earlier studies by improving manually-
derived classification models, using the same data
set (34 DM types, 878 tokens). Litman used the
C4.5 decision tree learner as well as an algorithm
constructing sets of conditional rules. The features
included prosodic features assigned by human an-



notators, textual features extracted from human tran-
scripts, including correct punctuation, part of speech
information assigned automatically, and the nature
of the token itself. Most of the prosodic and tex-
tual models that were learned automatically outper-
formed corresponding models defined a priori by
humans. The best performance using all available
features was 16.9% error rate (83.1% accuracy) on
the whole set.

DM identification was coupled to speech recogni-
tion, utterance segmentation, POS tagging, and re-
pair correction by Heeman and Allen (1999). The
best results are 97.26% recall, 96.32% precision,
and 6.43% error rate, which was not, however, com-
puted in the same sense as in the previous studies.

Comparison across studies is made difficult by
the fact that the exact list of DMs differs from one
study to another. In our study, only two DMs are
contrasted, but they appear to be particularly multi-
functional, hence difficult to disambiguate.

S Description of the Data

The ratio between the number of targeted DM types
(30—40) and the amount of data (often around 1,000
tokens) used in the previous studies did not allow
for in-depth analysis of each DM, especially when a
unique model was learned for all DMs. All studies
except Heeman’s were based on a monologue tran-
script (75 minutes, ca. 12,500 words), which was
annotated by one or two linguists. Heeman’s stud-
ies used transcripts from the TRAINS dialogue cor-
pus, which contained 8,278 DMs among ca. 60,000
words. However, the exact list of DM types is not
available (23 appeared as examples), nor the num-
ber of annotators or their agreement.

The data used here enables a more detailed study
of like and well as a much larger number of oc-
currences is available. We use the ICSI Meeting
Recorder Corpus of multi-party conversations, com-
prising transcripts of 75 meeting recordings with five
to eight speakers (Janin et al., 2003). The meetings
feature scientific discussions involving both native
and non-native English speakers (52 in all). A dis-
tributional study and the a posteriori feature analysis
show that there is no qualitative difference in the use
of the two DMs by native vs. non-native but fluent
speakers (Popescu-Belis and Zufferey, 2006, 6.3).
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The recordings have a total duration of about 80
hours, corresponding to nearly 800,000 words in
transcription. The segmentation into about 100,000
individual utterances is also available together with
automatically generated word-level timing, based on
forced alignment of transcript with audio, as well
as indications of interruptions and unfinished utter-
ances (Shriberg et al., 2004).

For this study, the DM and non-DM occurrences
of the lexical items like and well were annotated by
the two authors, with access to the dialogue tran-
scripts and audio. In an experiment involving four
non-expert annotators (Zufferey and Popescu-Belis,
2004), the observed inter-annotator agreement was
k = 0.74, but agreement between experts was not
tested systematically. There are 4,519 occurrences
of like, of which 2,052 (45%) serve as DMs, and
4,136 occurrences of well, of which 3,639 (88%)
serve as DMs.

6 Features Used for DM Identification

The present method focuses on surface features only,
since deeper analyses of an utterance seem to require
in most cases the prior identification of DMs. For in-
stance, it would not be realistic to assume the avail-
ability of a parse tree or of a deep semantic analy-
sis of an utterance, as their construction would pre-
cisely require knowledge of DMs. However, joint
models for POS tagging or parsing with DM identi-
fication could incorporate knowledge about DMs as
presented here.

Lexical features model the words immediately
preceding or following a DM candidate, and de-
pend on the width of the lexical window (2/V) and
the minimal frequency (F') of words used as pos-
sible values. One feature is defined for each posi-
tion with respect to the DM candidate: WORD(—N),
..., WORD(—1), WORD(+1), ..., WORD(+4NN). The
possible values of these variables are the words ob-
served around the DM candidates, above a certain
frequency F, or ‘other’, or ‘none’ if there is no such
position in the utterance (this implicitly includes in-
formation about the candidate’s position). For a win-
dow of width N = 1, i.e. using only WORD(—1)
and WORD(+1), the frequency thresholds of F' = 3,
F =10 and F' = 20 correspond respectively to 360,
150 and 90 word types as possible values.



DMs also have specific positional and prosodic
properties, but not all the prosodic features are easy
to extract automatically. The following features, de-
rived from the forced-alignment segmentation at the
word level and the ground truth segmentation into
utterances, will be used: INITIAL: set to ‘yes’ if
the candidate is the first word of an utterance, to
‘no’ otherwise; FINAL: set to ‘yes-completed’ if the
candidate is the last word of a completed utterance,
to ‘yes-interrupted’ if it is the last word of an in-
terrupted utterance and to ‘no’ otherwise; PAUSE-
BEFORE: the duration of the pause before the can-
didate, or 10 seconds if the utterance starts with it;
PAUSE-AFTER: the duration of the pause after the
candidate, or 10 seconds if it ends the utterance; DU-
RATION: the duration of the candidate. The first two
are positional features, while the latter three are very
elementary prosodic or temporal features.

The following speaker-related, sociolinguistic
features will also be used, with the following pos-
sible values: GENDER: ‘female’ or ‘male’; AGE:
an integer; EDUCATION: ‘undergraduate’, ‘gradu-
ate’, ‘PhD’, ‘professor’; NATIVE: ‘native’ vs. ‘non-
native’ English speaker; ORIGIN: ‘UK’, ‘US East’,
‘US West’, ‘US other’, and ‘other’. Such features
could be useful to a dialogue processing system that
is used frequently by the same persons.

For each category, the features were selected
based on potential linguistic and computational rel-
evance. In addition, the TYPE feature represents the
nature of the candidate DM, either like or well, al-
lowing the two lexical items to be processed differ-
ently, as in (Litman, 1996).

7 DM Classifiers

The choice of a classifier for DM identification is
constrained by the nature of the features: some
are discrete while others are continuous; the lex-
ical features are quite sparse and have an unclear
impact on classification. Here, four types of clas-
sifiers were tested using the WEKA toolkit (Witten
and Frank, 2000): Bayesian Networks (BN), Sup-
port Vector Machines (SVM), decision trees, and k-
nearest neighbours (£ = 3), which performed below
the first three, so its results are not reported here.
Decision tree classifiers are made of nodes that
test features of a DM-candidate, and of branches
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that correspond to the possible values of the fea-
tures. Each terminal node is labelled with one of the
two classes, DM or non-DM (Siegel and McKeown,
1994; Litman, 1996). Decision trees can be learned
from training data using the C4.5 method (Quinlan,
1993), which accepts both discrete and continuous
features. C4.5 constructs a nearly optimal decision
tree classifier for the training data, that is, a tree
that maximizes the number of correctly classified in-
stances (CCIs) over the training data, but not neces-
sarily recall, precision or kappa.

8 DM Identification Results

The best scores reached by the classifiers do not
differ substantially in our experiments, as the 95%-
confidence intervals computed using 10-fold cross-
validation (training on 90% of the data and testing
on 10%) are not disjoint. The best scores are ob-
tained by a Bayesian Network that uses only the dis-
crete features of the DMs—see first line of Table 1.
Decision trees will be used preferentially below, as
BN classifiers take longer to build and are more dif-
ficult to interpret than them, and their performance
is only slightly higher.

8.1 Highest Scores vs. Baseline Scores

Baseline scores for DM identification are at least
50% CCIs because of the binary nature of the classi-
fication problem. As shown in the last three lines of
Table 2, the majority classifier, which assigns to all
candidates the type of the most frequent class ob-
served in the training data reaches scores that are
well above zero for at least three metrics out of five.
Only ~ appears to be insensitive to this bias.

Method Test CCIs(%) « r p f ‘

MA]  [+w 65.75 0 66 1 .79
l 45.40 0 1 45 .62
w  87.99 0 1 .88 .94
ISM I+w  70.55 42 64 88 74

l 54.60 0 0 0 0
w 87.98 0 1 .88 .94

Table 2: Baseline scores for the majority classifier
(MAJ) and for an item-specific majority classifier
(ISM), tested on like and well together (noted [+w),
then separately for each item.



Method Train Test CClIs (%) K r p f

BN I+w  I+w 90.480+.646 .783+.016 .957+.004 .9044+.008 .930+.005
I+w 1 84.009+1.431 .6814.028 .896+.012 .784+.021 .836+.014
l+w w 97.537+.456  .880+.021 .991+.004 .9814+.005 .986+.003

SVM I+w  I+w  89.290+.571  .752+.014 .9644.006 .884+.008 .922+.004
l+w 1 82.908+1.216 .6614+.023 .914+.016 .7594+.020 .829+.013
I+w w 96.250+.841  .808+.037 .9924.005 .966+.009 .979+4.005

C4.5 I+w  I+w 88.862+.511 .7514+.011 .923+.007 .909+.006 .916+.004
l+w 1 81.046+.885  .618+.018 .802+.020 .7854+.013 .793+.013
l+w w 97.396+.443  .870+.026 .991+.002 .980+.005 .985+.002

Table 1: Best results obtained by three machine learning algorithms, trained and tested on like and well
together (noted /+w), and then also tested separately on each item (noted / and respectively w). The three
most significant metrics (scores in bold) yield clearly decreasing scores from the first to the third condition.

The use of the TYPE feature, allowing an item-
specific majority classifier to distinguish between
the lexical items like and well, increases the baseline
scores (see ISM in Table 2). This classifier, based
only on the following rules: “like is not a DM” and
“well is a DM”, reaches already x = 0.42.

The scores of the four classifiers from Table 1 are
significantly above the baseline. The fact that the
best score is K = (.78 shows that automatic DM
identification performances are in the same range as
human inter-annotator agreement. The best scores
are also higher than those obtained by the classifiers
that use only a subset of features, as shown in the
next sub-section.

The scores of the best BN classifier applied sepa-
rately to like and well are also shown in Table 1, 24
and 3™ lines. These are significantly higher for the
identification of DM well (x = 0.880, f = 0.986)
than for DM like (x = 0.681, f = 0.836). It is true
that well as a DM is much more frequent than like as
a DM (ca. 88% vs. 45%), so the baseline accuracy is
higher for well (CCI = 88% vs. CCI = 45%, see
224 and 3'4 lines of Table 2) but this effect should
be filtered out at least by the x metric—nevertheless,
which is still much higher for well than for like. Well
appears thus to be easier to identify than like, with
the features used here.

8.2 Relevance of the Features

The best-scoring decision tree uses four lexical fea-
tures (WORD(—2), WORD(—1), WORD(+1) and
WORD(—+2)), their possible values being all the word
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types occurring at least 10 times in this 4-word lexi-
cal window (F' = 10, N = 2). The best C4.5 learner
was set to construct binary trees with at least two in-
stances per leaf.

Four experiments were particularly informative.
First, using only the WORD(—1) lexical feature,
i.e. the lexical item preceding the candidate DM,
C4.5 constructs trees that contain at the uppermost
node the lexical collocations that are the most re-
liable indicators of a DM, with scores reaching
CCI = 86.5%, k = 0.68,r = 0.97,p = 0.85, f =
0.90, which are not much below the best possible
ones. When distinguishing like from well in the
decision trees, thanks to the TYPE feature in addi-
tion to WORD(—1), the scores increase to CCI =
87.4%,k = 0.72,r = 0.91,p = 0.90, f = 0.90
(note the high value of ).

Words situated after the candidate DM appear
to be much less informative: if only TYPE and
WORD(4-1) are used, CCI = 77.8% and x = 0.47.
When all lexical features encoded as WORD(n) are
used (n < 2), the results are getting even closer to
the best ones, but recall increases and precision de-
creases. The lexical features, and in particular the
word before the candidate, appear thus to be nearly
sufficient for DM identification of like and well. The
actual values of WORD(n) that serve as lexical indi-
cators are not, of course, the same for the two items.

Turning now to positional and prosodic fea-
tures, experiments using combinations of one, two
or three features are summarized in Table 3. A first
series of experiments with positional features (left



Positional Prosodic / temporal \

Features | CCIs(%) « r P f Features | CCIs(%) « r P f

T 70.5 042 0.64 088 074 | T 70.5 042 0.64 0.88 0.74
I 68.8 042 054 097 0.70 | B 74.2 0.50 0.65 094 0.77
T+I 73.4 046 0.70 0.87 0.78 || T+B 75.3 048 0.75 0.86 0.80
F 67.5 0.09 098 0.67 0.80 | A 67.5 0.09 098 0.67 0.80
T+F 72.5 046 0.64 091 0.75 || T+A 75.8 0.50 0.74 0.87 0.80
T+I+F 75.8 0.51 0.71 090 0.79 | T+A+B | 794 0.55 0.82 0.86 0.84

Table 3: Results with C4.5 decision trees using combinations of positional and prosodic / temporal features
(T: TYPE, I: INITIAL, F: FINAL, B: PAUSE-BEFORE, A: PAUSE-AFTER).

part of the table) shows that on average, classifica-
tion is improved as more features become available
among the following: TYPE (T), INITIAL (I), and FI-
NAL (F). These results are paralleled by a second se-
ries (right column), obtained with prosodic/temporal
features, PAUSE-BEFORE (B) and PAUSE-AFTER
(A), in which scores also increase when more fea-
tures are available. As the second series uses fea-
tures that implicitly encode more information than in
the first one, superior results are obtained. The best
decision trees using PAUSE-BEFORE contain the fol-
lowing rule: “like is a DM only when the pause be-
fore it is longer than 0.06 s”, indicating that a pause
approximately longer than 60 milliseconds is a good
indicator of a DM. A similar value (though with a
lower score) is found for the pause after DM like,
while no effect was observed for well. In addition,
other experiments have shown that DURATION is not
a relevant feature. Prosodic features appear thus to
be superior to positional ones, but remain inferior to
lexical features.

The sociolinguistic features alone do not permit
the construction of a classifier with a non-zero score
if the two lexical items like and well are not dis-
tinguished. When they are, the best decision tree
generated by C4.5 remains the majority classifier for
well (“all occurrences are DMs”’) and a more refined
classifier for like: a number of heavy DM-like users
are identified, for which all occurrences of like that
they produce are considered as DMs. The scores of
this classifier are: CCI = 77.3%,x = 047,r =
0.88,p = 0.80, f = 0.84. These values are clearly
above the scores obtained using TYPE only.

A number of sociolinguistic features appear to be
relevant in the case of like only (the baseline score
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being here x = 0). Using EDUCATION, the best
tree found by C4.5 reaches k = 0.39 with the fol-
lowing rule: “if the speaker is an undergraduate or
a graduate, consider all tokens of like as DMs; if
the speaker is a post-doc or a professor, consider all
tokens of like as non-DMs”. A similar correlation
(k = 0.40) holds for the region of ORIGIN (‘US
West’” implies heavy DM like user) and a stronger
correlation (k = 0.44) holds for AGE (‘under 30’ im-
plies heavy DM user). These experiments thus bring
statistical evidence that younger speakers from the
US West tend to overuse like as a DM, which cor-
roborates a view commonly held by sociolinguists,
who often consider the DM like as a feature of ado-
lescent speech (Andersen, 2001). Since in our data
there were a majority of speakers under 30 from
the US West, below PhD level, it is not possible to
identify the precise feature that correlates with DM-
like overuse among AGE, ORIGIN or EDUCATION)—
more subjects are needed to “decorrelate” these fea-
tures, though the present number (52) is sufficient to
explore each feature in part.

8.3 Automatic Attribute Selection

Two methods were used to compare the merits
of features, and appear to lead to similar results.
WEKA’s correlation-based feature subset selection
algorithm (CFS) aims at finding the best subset
of features by examining the individual predictive
power of each feature and at the same time minimiz-
ing redundancy within the subset. Alternatively, in-
dependent relevance scores for each feature can be
computed using two criteria: the information gain
and x? (Witten and Frank, 2000). Their rankings be-
ing very similar, only information gain is used here.



Like Well

Feature 1G Feature 1G
WORD(—1) 44 | WORD(—1) .39
WORD(+1) .21 | PAUSE-BEFORE .23
SPEAKER .15 | INITIAL .19
PAUSE-BEFORE .06 | WORD(+1) 15
AGE .06 | PAUSE-AFTER .10
PAUSE-AFTER .05 | FINAL .10
EDUCATION .04 | SPEAKER .04
INITIAL .03 | DURATION .03
COUNTRY .02 | AGE .01
FINAL .01 COUNTRY .005
GENDER .01 EDUCATION .004
DURATION .01 NATIVE .001
NATIVE .001 | GENDER .001

Table 4: Separate ranking of features for like and
well according to their information gain (IG). Sig-
nificant IG decreases are indicated by a line.

The CFS algorithm finds the following optimal
subset of attributes: {TYPE, PAUSE-BEFORE, INI-
TIAL, WORD(—1)}, thus confirming previous obser-
vations. The word before the candidate is a key fea-
ture, along with the specific processing of each DM
(TYPE), and the pause before the candidate (or its
utterance-initial character).

The ranking of each feature shows that the most
distinctive feature is the word before the candidate,
WORD(—1), followed at some distance by PAUSE-
BEFORE, INITIAL, WORD(+1) (the word after the
candidate) and TYPE. The ranking can also be done
separately with respect to like and well, as shown
in Table 4. The lists are similar to the one just de-
scribed for the joint identification task.

Attribute selection can also be used to determine
the most discriminative collocations, i.e. the words
that best indicate whether their neighbouring candi-
date is likely to be a DM or not DM (words must
be used individually as features in this case). The
best feature set found by CFS for like contains some-
thing, things, seems (if they precede like, then the oc-
currence is not a DM), or that (if it follows like, then
the occurrence is not a DM). Similar trials focused
only on well help to determine collocations such as
very well, as well, how well, which are relevant to
identify non-DM occurrences of well.
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9 Discussion

To summarize, the best scores for like and well are:
CCI = 90%,x = 0.78,7 = 0.96,p = 0.90, f =
0.93, obtained for a Bayesian Network; the best
scores of a C4.5 decision tree or an SVM are not
much lower. These scores are well above the base-
line ones, although this depends on how the base-
line is defined, as some very simple classifiers have
scores that are well above zero. These scores also
compare favourably to the ones obtained in previous
studies, although the DMs and evaluation measures
sometimes differ considerably.

The best scores obtained are comparable to inter-
annotator agreement values observed for non-expert
subjects (x = 0.74). This indicates that automatic
classifiers may have reached the highest possible
performance in the present experiments, and that
the set of features was sufficient to reach an accu-
racy comparable to human annotators. Improving
the scores seems thus to require also a more reliable
annotation, obtained for instance by allowing expe-
rienced annotators to discuss and to adjudicate their
individual annotations.

The most important features appear to be the lex-
ical collocations that can be learned from the train-
ing data. Among these, the word before a candidate
DM is the most useful one, especially as it implicitly
encodes also the utterance-initial character. Scores
obtained using only lexical features are within 5%
distance from the best overall scores. Decision trees
based only on lexical features, or even on TYPE and
WORD(—1) only, are not far from optimal ones. It
is therefore surprising that these features were not
used in Litman’s (1996) study, maybe from lack of
enough training data for each item.

Positional and prosodic features are significantly
less efficient than lexical ones, when used alone, al-
though they appear in the best decision trees just be-
low lexical features. The sociolinguistic features are
only slightly correlated to DM use, almost exclu-
sively for like: the most reliable indicators are the
identity and the age/education of the speakers.

The TYPE feature is crucial: like and well are
much better processed separately than as a unique
class. This conclusion confirms, on a large data
set, the theoretical insights arguing that DMs are not
a homogeneous class. Although some of the pre-



vious features do generalize to both lexical items
(such as PAUSE-BEFORE), many of the features are
item-specific, as found also by Litman (1996), and
in particular the lexical features, which appeared
to be the most relevant ones. Overall, this study
has shown that DM identification can reach accu-
racies that are comparable to inter-annotator agree-
ment scores, if item-specific classifiers using lexical
features are trained on large corpora.

Future work should focus first on the application
of the method to other ambiguous DM candidates,
such as you know. This requires, for each item, the
manual annotation of a sizeable amount of instances
for training and test, and possibly some adaptation
of the features. More elaborate prosodic features
should also be studied. Finally, DM classifiers could
be applied prior to POS tagging and parsing, or
could be integrated into POS taggers or parsers.
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Abstract

This paper addresses the problem of identi-
fying action items discussed in open-domain
conversational speech, and does so in two
stages: firstly, detecting the subdialogues in
which action items are proposed, discussed
and committed to; and secondly, extracting
the phrases that accurately capture or sum-
marize the tasks they involve. While the de-
tection problem is hard, we show that we can
improve accuracy by taking account of dia-
logue structure. We then describe a semantic
parser that identifies potential summarizing
phrases, and show that for some task proper-
ties these can be more informative than plain
utterance transcriptions.

1 Introduction

Multi-party conversation, usually in the form of
meetings, is the primary way to share informa-
tion and make decisions in organized work environ-
ments. There is growing interest in the development
of automatic methods to extract and analyze the in-
formation content of meetings in various ways, in-
cluding automatic transcription, targeted browsing,
and topic detection and segmentation — see (Stolcke
et al., 2005; Tucker and Whittaker, 2005; Galley et
al., 2003), amongst others.
In this paper we are interested in identifying
action items — public commitments to perform a
* This work was supported by the CALO project (DARPA
grant NBCH-D-03-0010). We also thank Gokhan Tiir, Andreas

Stolcke and Liz Shriberg for provision of ASR output and dia-
logue act tags for the ICSI corpus.
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given task — both in terms of detecting the subdi-
alogues in which those action items are discussed
(along with the roles certain utterances perform in
that discussion), and of producing useful descriptive
summaries of the tasks they involve. While these
summaries are the obvious end product in the first
instance (perhaps presented as an automatically-
prepared to-do list), subdialogue detection is also a
useful output per se, as it allows users to browse the
meeting recording or transcript in a targeted way.

Section 3 discusses the detection of subdialogues
— short passages of conversation in which the action
items are typically discussed, summarized, agreed
and committed to — using a hierarchical classifier
which exploits local dialogue structure. Multiple
independent sub-classifiers are used to detect utter-
ances which play particular roles in the dialogue
(e.g. agreement or commitment), and an over-
all super-classifier then detects the critical passages
based on patterns of these roles. We show that this
method performs better than a flat, utterance-based
approach; as far as we are aware, these are the first
results for this task on realistic data.

Section 4 then investigates the production of sum-
maries. For this, we use an open-domain seman-
tic parser to extract phrases from within the utter-
ances which describe one of two important proper-
ties: the task itself and the timeframe over which
it is to be performed. We describe how such a
parser can be built from generally available lexical
resources and tailored to the particular problem of
parsing speech recognition output, and show how a
regression model can be used to rank the candidate
parser outputs. For the timeframes, this produces

Proceedings of the 8th SIGdial Workshop on Discourse and Dialqoages 18-25,
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more informative results than the alternative of pre-
senting the entire 1-best utterance transcriptions.

2 Background

Subdialogue Detection User studies show that
participants regard action items as one of a meet-
ing’s most important outputs (Lisowska et al., 2004;
Banerjee et al., 2005). However, spoken action item
detection seems to be a relatively new task. There
is related work with email text: (Corston-Oliver et
al., 2004; Bennett and Carbonell, 2005) both showed
success classifying sentences or entire messages as
action item- or task-related. Performance was rea-
sonable, with f-scores around 0.6 for sentences and
0.8 for whole messages; the features used included
lexical, syntactic and semantic features (n-grams,
PoS-tags, named entities) as well as more email-
specific features (e.g. header information).
However, applying the same methods to dialogue
data is problematic. Morgan et al. (2006) applied
a similar method to a portion of the ICSI Meet-
ing Corpus (Janin et al., 2003) annotated for ac-
tion items by Gruenstein et al. (2005). While they
found that similar lexical, syntactic and contextual
features were useful (together with other dialogue-
specific features, including dialogue act type and
prosodic information), performance was poor, with
f-scores limited to approximately 0.3, even given
manual transcripts and dialogue act tags. One ma-
jor reason for this is the fragmented nature of con-
versational decision-making: in contrast to email
text, the descriptions of tasks and their properties
tend not to come in single sentences, but may be
distributed over many utterances. These utterances
may take many different forms and play very distinct
roles in the dialogue (suggestions, commitments,
(dis)agreements, etc.) and thus form a rather hetero-
geneous set on which it is hard to achieve good over-
all classification performance. For the same reasons,
human annotators also have trouble deciding which
utterances are relevant: Gruenstein et al. (2005)’s
inter-annotator agreement was as low as £ = 0.36.
In (Purver et al., 2006), we proposed an approach
to this problem using individual classifiers to de-
tect a set of distinct action item-related utterance
classes: task description, timeframe, ownership and
agreement. The more homogeneous nature of these
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classes seemed to produce better classification ac-
curacy, and action item discussions could be hy-
pothesized using a simple heuristic to detect clusters
of multiple classes. However, this was only eval-
uated on a small corpus of simulated meetings (5
c.10-minute meetings, simulated by actors given a
detailed scenario), and only on gold-standard man-
ual transcriptions. The first half of this paper ap-
plies that proposal to a larger, less domain-specific,
naturally-occurring dataset, and also extends it to in-
clude the learning of a super-classifier from data.

Note that while previous work in the detection
and modelling of decisions (Verbree et al., 2006;
Hsueh and Moore, 2007) is related, the tasks are
not the same. Firstly, our job is to identify pub-
lic commitments to tasks, rather than general de-
cisions about strategy, or decisions not to do any-
thing (see e.g. Hsueh and Moore (2007)’s exam-
ple Fig. 1). Secondly, our data is essentially open-
domain, making e.g. simple lexical cues less useful
than they are in a domain with repeated fixed topics.
Note also that our results are not directly comparable
with those of Hsueh and Moore (2007), who detect
decision-making acts from a human-extracted sum-
mary rather than a raw meeting transcript, making
positive examples much less sparse.

Summarization & Phrase Extraction Detecting
subdialogues and utterances, though, is only part of
the task — we need a succinct summary if we are
to present a list of action items to a user. Ideally,
this summary should contain at least the identity of
the owner, a description of the task, and a specifi-
cation of the timeframe. Ownership may occasion-
ally be expressed by explicit use of a name, but is
more often specified through the interaction itself —
proposals of ownership usually either volunteer the
speaker “I guess I'll ...” or request commitment
from the addressee “Could you maybe ...”. Es-
tablishing identity therefore becomes a problem of
speaker and addressee identification, which we leave
aside for now, but see e.g. (Katzenmaier et al., 2004;
Jovanovic et al., 2006; Gupta et al., 2007).

Timeframe and task, however, are expressed ex-
plicitly; but detecting the relevant utterances only
gets us part of the way. Example (1) shows an ut-
terance containing a task description:

(1) What I have down for action items is we’re sup-



posed to find out about our human subject

Arguably the best phrase within this utterance to
describe the task is find out about our human sub-
Jject, as opposed to other larger or smaller phrases.
Notably, although the utterance contains the phrase
action item — likely a strong clue to the detection of
this utterance as action item-related — this phrase it-
self is not particularly useful in a summary.

3 Subdialogue Detection

3.1 Approach

Following the proposal of (Purver et al., 2006), the
insight we intend to exploit is that while the relevant
utterances may be hard to identify on their own, the
subdialogues which contain them do have charac-
teristic structural patterns. Example (2) illustrates
the idea: no single utterance contains a complete de-
scription of the task, and while some features (the
phrases by uh Tuesday and send it, perhaps) might
suggest action items, they may be equally likely to
appear in unrelated utterances. However, the struc-
ture gives us more to go on: A proposes something
involving B’s agency, B considers it, and finally B
agrees and commits to something.

(2) A: Well maybe by uh Tuesday you could
Uh-huh

revise the uh

proposal

Mmm Tuesday let’s see

and send it around

OK sure sounds good

w>wQ»w

There are two ways in which this might help us
with the detection task. Firstly, if these action-item-
specific dialogue acts (AIDAs) form more homoge-
neous sets than the general class of “action-item-
related utterance”, we should be able to detect them
more reliably. Secondly, if they are more-or-less in-
dependent, we can use the co-occurrence of multiple
act types to increase our overall subdialogue detec-
tion accuracy. !

3.2 Data

Following (Purver et al., 2006), we take the relevant
AIDA classes to be:

'In fact, there is a third: the different information associated
with each act type helps in summarization — but see below.
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D description discussion of the task to be
performed

discussion of the required
timeframe

assignment of responsibility
(to self or other)

explicit agreement or com-
mitment

T timeframe

O owner

A agreement

Table 1: Action item dialogue act (AIDA) classes.

We annotated 18 meetings from the ICSI Meeting
Corpus (Janin et al., 2003), recordings of naturally-
occurring research group meetings. The meetings
are divided up by subject area; our set contains 12
from one area and 6 from 4 further areas. Three
authors annotated between 9 and 13 meetings each,
with all three overlapping on 3 meetings and two
overlapping on a further 4. Inter-annotator agree-
ment improved significantly on (Gruenstein et al.,
2005), with pairwise x values for each individual
AIDA class from 0.64 to 0.78. Positive examples are
sparser, though, with only 1.4% of utterances being
marked with any AIDA class. Note that while utter-
ances can perform multiple AIDAs (see (2) above),
there is a large degree of independence between the
class distributions. Cosine distances between the
distributions show high independence between A
and all other classes, and reasonable independence
for all other pairings except perhaps D-O (here, 0
represents total independence, 1 exact correlation):

A-T AD A-O T-D T-O D-O
0.06 0.03 0.07 023 029 0.55

Table 2: Between-class cosine distances.

3.3 Experiments

We trained 4 independent classifiers for the detec-
tion of each individual AIDA class; features were
derived from various properties of the utterances
in context (see below). We then trained a super-
classifier, whose features were the hypothesized
class labels and confidence scores from the sub-
classifiers, over a 10-utterance window. In all cases,
we performed 18-fold cross-validation, with each
fold training on 17 meetings and testing on the re-
maining 1. All classifiers were linear-kernel support



vector machines, using SVMlight (Joachims, 1999).

We can evaluate performance at two levels: firstly,
the accuracy of the individual AIDA sub-classifiers,
and secondly, the resulting accuracy of the super-
classifier in detecting subdialogue regions. The sub-
classifiers can be evaluated on a per-utterance basis;
it is less obvious how to evaluate the super-classifier
as it detects windows rather than utterances, and we
would like to give credit for windows which overlap
with gold-standard subdialogues even if not match-
ing them exactly. We therefore use two metrics; one
divides the discourse into 30-second windows and
evaluates on a per-window basis; one evaluates on
a per-subdialogue basis, judging hypothesized re-
gions which overlap by more than 50% with a gold-
standard subdialogue as being correct.

As a baseline, we compare to a standard flat
classification approach, as taken by (Morgan et al.,
2006; Hsueh and Moore, 2007); we trained a single
classifier on the same annotations, but for the simple
binary decision of whether an utterance is action-
item-related (a member of any AIDA class) or not.

3.4 Features

We extracted utterance features similar to those of
(Morgan et al., 2006; Hsueh and Moore, 2007): n-
grams, durational and locational features from the
transcriptions; general dialogue act tags from the
ICSI-MRDA annotations (Shriberg et al., 2004);
TIMEX temporal expression tags using MITRE’s
rule-based TempEx tool; and prosodic features from
the audio files using Praat. We also allowed “con-
text” features, consisting of the same utterance fea-
tures (suitably indexed) from the immediately pre-
ceding 5 utterances. Table 3 shows the complete set.

Lexical ngrams length 1-3

Utterance | length in words & duration in seconds
percentage through meeting

Prosodic | pitch & intensity min/max/mean/deviation
pitch slope
number of voiced frames

TIMEX Number of time expression tags

MRDA MRDA dialogue act class

Context features as above foruttsz — 1...7 — 5

logue act tagging accuracy low (Ang et al., 2005).
We therefore investigated the use of ASR output (ob-
tained using SRI’s Decipher (Stolcke et al., 2005))
for lexical features, both via 1-best transcriptions
and word confusion networks (WCNs), which en-
code multiple scored hypotheses for each word (Tiir
et al., 2002).> We also examined performance both
with and without MRDA dialogue act tag features.

3.5 Results

Overall Performance with unigram, utterance and
context features is shown in Table 4. While per-
utterance results are still low (f-scores all below 0.3),
commensurate with Morgan et al. (2006)’s results
with flat classification, we see that the use of the
super-classifier to detect subdialogue regions does
give us results which might be of practical use, with
overlap f-scores near 0.5. Words were the most
useful feature, with no improvement gained by in-
creasing n-gram length above 1; prosodic features
give no improvement. While MRDA and TIMEX
features do give small improvements at the sub-
classifier level, we see no overall subdialogue ac-
curacy gain — we are currently investigating whether
super-classifier improvements can help with this.>

Sub-classifiers Super-classifier

D T O A |30sec Overlap
Recall | .19 .15 21 .18 | .51 .59
Precn. | .18 46 27 .16 | .31 37
F1 A9 22 24 17| .39 45

Table 4: Structured classifier; lexical + utterance
features, S-utterance context.

Baseline comparison Comparison with the flat
baseline classifier (Table 5) shows that the struc-
tured approach gives a significant advantage; we hy-
pothesize that this is because commitments in di-
alogue arise via the interaction itself as much as
from individual utterances. Interestingly, although
our approach consistently outperforms the baseline,

Table 3: Features for subdialogue detection.

However, use of lexical and dialogue act features
brings up the question of robustness: ASR word er-
ror rates are high in this domain, and general dia-
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>While we do not know the exact ASR word error rate on our
meeting set, Stolcke et al. (2005) report 24% WER on meetings
from the same corpus.

3Note that although accuracies are much lower than those
reported by Hsueh and Moore (2007), the tasks are not the same:
in particular, they detect relevant dialogue acts from a manually
extracted summary, rather than a whole meeting. See Section 2.



the delta decreases as more contextual information
becomes available — Figure 1 shows how f-scores
vary as a unigram feature set is expanded to in-
clude unigrams from preceding utterances. It may
be that contextual features implicitly provide some
of the structural information explicitly modelled in
the structured approach. We plan to investigate this
effect on larger datasets when available.

30sec Overlap
Re Pr Fl1 | Re Pr Fl
Structured | .51 .31 .39 | .59 .37 45
Flat .65 23 34| .64 24 35

Table 5: Classifier comparison; lexical + utterance
features, S-utterance context.

structured —s—
flat —se—

Fl-score

o S S, S /
/ /

0.25 (”’___,______,,,)

o 1 2 3 4 a

Humber of preceding utterances

Figure 1: F-scores for structured vs. flat classifiers
with 95% confidence bars; unigram features from
increasing numbers of utterances in context.

Robustness Investigation of the effect of ASR
output shows a drop in overlap f-score of 8-9% (ab-
solute) or 17-20% (relative) — see Table 6. Use of
WCNs improves over 1-best hypotheses by 1-2%.
While this is a large drop, we are encouraged by the
fact that this overall loss in accuracy is smaller than
the loss at the sub-classifier level, where f-scores
drop by around 35% on average, and up to 50% (rel-
ative). This suggests that the presence of multiple
independent sub-classifiers is able (to some extent,
at least) to make up for the drop in their individual
performance. As more data becomes available and
sub-classifier performance becomes more robust, we
anticipate better overall results.
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Structured Flat
Sub-classifiers | Super
D T O A | Olap | Utt Olap

Manual | .19 22 24 17| 45 | .24 .35
I-best | .16 .19 .15 .11 | 36 | .19 .32
WCNs | .15 .14 18 07 | 37 | .19 .33

Table 6: Fl-scores against ASR type; lexical + ut-
terance features, S-utterance context.

Comparison to the baseline flat classifier shows
that the structured approach is less robust (unsur-
prisingly, perhaps, given its more complex nature);
the relative drop in the baseline overlap f-scores
is lower. However, the resulting absolute perfor-
mances are still higher for the structured approach,
although the difference is no longer statistically sig-
nificant over the number of meetings we have.

Summary We see that using our discourse-
structural approach gives significantly improved
performance over a comparable flat approach when
using manual transcripts. While there is a drop in
performance when using (highly errorful) ASR out-
put, performance is still above the baseline.

4 Parsing and Summarization

We now turn to the second task: extracting useful
phrases for summarization.

4.1 Approach

To extract timeframe and task descriptions, we ex-
ploit the fact that the critical phrases which contain
them display certain characteristic syntactic and se-
mantic features. Since the meeting topics and tasks
are not known in advance, we expect that any ap-
proach which learns these features purely from a
training set is unlikely to generalize well to unseen
data. We therefore use a general rule-based parser
with an open-domain, broad-coverage lexicon. The
grammar, however, is small: as our data is highly
ungrammatical, disfluent and errorful, we have de-
veloped a semantic parser that attempts to find basic
predicate-argument structures of the major phrase
types S, VP, NP, and PP, not necessarily trying to
find larger structures (such as coordination and rela-
tive clauses) where reliability would be low.



Lexical Resources Our lexicon is built from pub-
licly available lexical resources for English, includ-
ing COMLEX, VerbNet, WordNet, and NOMLEX.
Others have shared this basic approach (Shi and Mi-
halcea, 2005; Crouch and King, 2005; Swift, 2005).

COMLEX (Grishman et al., 1994) provides de-
tailed morphological and syntactic information for
the 40,000 most common words of English, as well
as basic lexical information (e.g. adjective grad-
ability, verb subcategorization, noun mass/count na-
ture). VerbNet (Kipper et al., 2000) provides seman-
tic information for 5,000 verbs, including frames
and thematic roles, along with syntactic mappings
and selectional restrictions for role fillers. Word-
Net (Miller, 1995) then provides us with another
15,539 nouns, and the semantic class information for
all nouns. These semantic classes are hand-aligned
to the selectional classes used in VerbNet, based on
the upper ontology of EuroWordNet (Vossen, 1997).
NOMLEX (Macleod et al., 1998) provides syntac-
tic information for event nominalizations and a map-
ping from noun arguments to VerbNet syntactic po-
sitions; this allows us to give nominalizations a se-
mantics compatible with verb events, and assert se-
lectional restrictions. To add proper names, we used
US Census data for people, KnowItAll (Downey et
al., 2007) for companies, and WSJ data for person
and organization names. Proper names account for
about 1/3 of the entries in the lexicon.

These resources are combined and converted to
the Prolog-based format used in the Gemini frame-
work (Dowding et al., 1993), which includes a fast
bottom-up robust parser in which syntactic and se-
mantic information is applied interleaved. To fa-
cilitate extracting semantic features, we use Mini-
mal Recursion Semantics (Copestake et al., 2005), a
flat semantic representation; we have also modified
Gemini to parse WCNs as well as flat transcriptions.
Gemini computes parse probabilities on the context-
free background of the grammar; in these experi-
ments, probabilities were trained on WSJ data.

4.2 Experiments

Our parsing approach intentionally produces mul-
tiple short fragments rather than one full utterance
parse. Combining this with the high number of paths
through a WCN means that our primary problem is
to extract a few useful phrases from amongst a very
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high number of alternatives. We approached this
as a regression problem, and attempted to learn a
model to rank phrases according to their likelihood
of appearing in an action item description (again us-
ing SVMlight). We cross-validated over the same
18-meeting dataset, considering only those utter-
ances manually annotated as containing timeframe
and task descriptions (the T and D AIDA classes).
To provide target phrases for evaluation, annotators
marked those portions of the manual utterance tran-
scriptions which should be extracted (note that these
often do not match any WCN path exactly).

For each segment returned by the parser we ex-
tracted features of three general types: properties
of the raw WCN paths, properties of the parsed
phrases, and lexical features reflecting the identity
of the words themselves — a list is given in Table 7.
As lexical features are likely to be more domain-
specific, and increase the size of the feature space
dramatically, we prefer to avoid them if possible.
Initial feature selection experiments indicate that the
most useful features are acoustic probability, phrase
type and verb semantic class, suggesting that syntac-
tic and semantic information are indeed valuable.

WCN phrase length (words & WCN arcs)
start/end point (absolute & percentage)
acoustic probability

acoustic probability shortfall (delta below
highest probability for this segment)
parse probability

phrase type (S/VP/NP/PP)

main verb VerbNet class

head noun WordNet synset
nominalization (yes, no)

number of thematic roles filled

noun class of agent thematic role (if any)
main verb

head noun

all unigrams in the phrase

Number of time expression tags

Parse

Lexical

TIMEX

Table 7: Features for parse fragment ranking.

4.3 Results

Choosing an evaluation metric is not straightfor-
ward: standard parse evaluation methods (e.g.
checking crossing brackets against a treebank) are
not applicable to our task of choosing useful frag-
ments. Instead, we evaluate success based on how
much of the human-annotated task descriptions are
covered by the top-ranked fragment chosen by the



regression model. For recall we take the total pro-
portion of the desired description covered; for preci-
sion, the total proportion of the chosen phrase which
overlaps with the desired description; we then pro-
duce a corresponding f-score. We compare to a base-
line of using the entire 1-best utterance transcription,
and the ideal ceiling of choosing the fragment with
the best f-score (still less than 1, due to ASR er-
rors and parse segmentation). For timeframe utter-
ances, we also compare to a second baseline of using
those fragments of the 1-best transcription tagged as
TIMEX expressions.

Results are shown in Table 8 for timeframe
phrases, and Table 9 for task description phrases.
For timeframes, the best feature set gives an f-score
of .51 and precision of .62, outperforming both base-
lines but still some way below the ideal ceiling. Se-
mantic classes and phrase-head lexical features help
performance, although including other unigrams did
not; TIMEX tags help, although a TIMEX-only
baseline does badly.

Recall Precision Fl1

Baseline 1: TIMEX .26 .36 31
Baseline 2: 1-best .76 27 .39
No sem/lex features .33 A7 .38
+ semantic classes .36 .53 43
+ head verb/noun .39 .59 47
+ TIMEX 43 .62 S1
Ceiling: best F1 .64 .80 1

Table 8: Fragment ranking results: timeframe.

However, results for description phrases are poor,
with no feature set outperforming the baseline. This
is partly as the baseline recall is already quite high;
note that using the parser does increase precision.
Lexical features actually harm performance, perhaps
unsurprisingly given the wider range of vocabulary
compared to timeframes. The problem is also more
difficult, hence the ideal figures are lower too; but in-
spection of errors suggests that inaccurate sentence
segmentation (based only on pause length in these
data) causes many of the problems, with many ut-
terances annotated as providing only single words
to the ideal phrase. We expect that improved sen-
tence segmentation will improve performance, and
are currently investigating this.
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Recall Precision Fl1

Baseline: 1-best .66 32 43
No sem/lex features 22 41 .29
+ semantic classes .35 41 .38
+ head verb/noun 31 41 .35
Ceiling: best F1 .50 78 .61

Table 9: Fragment ranking results: description.

5 Conclusions & Future Work

Both problems are hard, and overall performance
is correspondingly lower than that achieved on less
difficult tasks or less sparse data. However, they
do appear tractable, even on errorful ASR out-
put, with some encouraging initial performances ob-
tained. Importantly, we have shown the benefits of
using discourse structure in classification, and se-
mantic features in summarization.

To improve detection performance, we are inves-
tigating more effective super-classifiers, incorporat-
ing existing task lists to provide reliable information
about possible tasks to be discussed, and leveraging
user interaction for learning — allowing users to con-
firm, delete or edit hypothesized action items, and
using this as feedback to allow incremental learning
(Purver et al., 2007).

For summarization, one of the major limitations
of our approach is that we only consider phrases
from within a single acoustically-segmented utter-
ance, while many ideal descriptions combine infor-
mation from more than one. We plan to investi-
gate improved segmentation, and generation of sum-
maries from multiple utterances.
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Abstract

This paper analyzes opinion categories like
Sentiment and Arguing in meetings. We
first annotate the categories manually. We
then develop genre-specific lexicons using
interesting function word combinations for
detecting the opinions. We analyze rela-
tions between dialog structure information
and opinion expression in context of multi-
party discourse. Finally we show that classi-
fiers using lexical and discourse knowledge
have significant improvement over baseline.

1 Introduction

In this work, we bring together two areas of research
which have seen great interest in recent times.
Multi-party meetings have been analyzed with re-
gard to dialog acts, hotspots, argumentation and de-
cision points. Similarly, there is increasing activity
in the automatic extraction of opinions, emotions,
and sentiments in text (subjectivity) to provide tools
and support for various NLP applications.

We believe that opinion information can en-
hance an interactive agent’s ability to moderate a
meeting; enable a summarizer to specifically report
those opinions that influenced the decisions; and
enhance the capabilities of Question Answering
(QA) systems. As an example, consider a meeting
from the AMI corpus (Carletta et al., 2005) where
the participants have to design a new TV remote
control. The following opinions are expressed
regarding the TV remote:
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Ul. “It [the remote] is not as fast as a usual remote control”

U2. “That [remote feature] will be harder to learn”

U3. “We’ll definitely won’t go with that one [speech recog-
nition]”

U4. “We can skip speech recognition directly, because it’s
not reachable for twenty five Euros”.
Somebody who missed the meeting and had to find
out details about the decisions made, may want to
ask questions like:

Q1. “Why was the remote not rated highly?”

Q2. “Who argued against the speech recognition?”

Q3. “What were the points of persuasion against the speech
recognition feature?”
Question Q1 is answered by Utterances U/ and U2,
which express sentiments toward the remote. Q2
is best answered by retrieving the names of all par-
ticipants who had utterances similar to U3 and U4.
Similarly, U4, where the speaker is arguing for skip-
ping the speech recognition would be a relevant an-
swer for O3. In order to be able to answer such
questions, we explore two particular sub-types of
subjectivity: Sentiment and Arguing. In the ex-
ample utterances above, Ul and U2 express Sen-
timents, while U3 and U4 show speakers Arguing
for their views. These subjectivity subtypes have
proven useful for Question Answering on online
multi-party debates (Somasundaran et al., 2007).

There has been a fair amount of work on the Sen-
timent category. By contrast, little work has been
done on the Arguing category. We first define and
annotate these opinion types in AMI meetings. We
then perform inter-annotator agreement studies to
verify if the two categories can be reliably detected.

We develop an Arguing lexicon as a new knowl-

Proceedings of the 8th SIGdial Workshop on Discourse and Dialqoages 26—34,
Antwerp, September 20072007 Association for Computational Linguistics



edge source for automatically recognizing the Ar-
guing category. We use previously developed lex-
icons for Sentiment detection (Wilson et al., 2005;
Stone et al., 1966) to evaluate their portability to
multi-party meetings. Previous efforts in recogniz-
ing opinions (or subjectivity) in monologic texts
have focussed on knowledge from lexico-syntactic
sources. While these have proven useful, we believe
that in the conversational genre, reliably recogniz-
ing opinion expressions in utterances is a complex
discourse task. Thus, we explore the novel use of
dialog features for opinion recognition in combina-
tion with a lexicon. We find that this combination
of knowledge sources shows promising results.

The rest of the paper is organized as follows: We
introduce the data in Section 2 and our opinion def-
initions in Section 3. Then in Section 4 we present
our annotation categories. In section 5 we explain
the knowledge sources used for classification and
present our experimental results in Section 6. Re-
lated work is discussed in Section 7 and finally we
conclude in Section 8.

2 Data

For this work, we annotated 7 scenario-based team
meetings from the AMI corpus resulting in a corpus
of 4302 segments (6504 sentences) for our super-
vised learning experiments. In these meetings, four
participants collaborate to design a new TV remote
control in a series of four meetings, which repre-
sent different project phases, namely project kick-
off, functional design, conceptual design, and de-
tailed design.

In order to make the best use of the annotators’
time in this work, we decided not to annotate the
kick-off meetings as we believe them to be less rich
in our opinion categories.

Each meeting in the AMI corpus comes with rich
transcription and is annotated with dialog acts, ar-
gumentation, topics, etc. The corpus provides seg-
ment (turn) information for each speaker. Based on
the rich transcriptions, we split the segments further
into sentences. Sentence level classification tasks
have a finer granularity and are of interest for appli-
cations like QA. On the other hand, in the absence
of sentence boundary information, real time ASR
systems work at the segment level. As there is inter-
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est at both levels of granularity, we present results at
both the segment and sentence levels in this paper.
Some of the AMI annotations that are of in-
terest in this work are Dialog Acts and their Ad-
jacency Pairs. The AMI meeting is annotated
with 15 Dialog Act (DA) categories: Backchan-
nel, Stall, Fragment, Inform, Elicit-Inform, Sug-
gest, Offer, Elicit-Offer-Or-Suggestion, Assess,
Elicit-Assessment, Comment-About-Understanding,
Elicit-Comment-Understanding, Be-Positive, Be-
Negative, Other. Two DAs may be linked via an
Adjacency Pair (AP) relation. One of the DAs is the
source and the other is the target in the AP. There are
5 AP types, namely: Support/Positive Assessment,
Objection/Negative Assessment, Uncertain, Partial
agreement/support, Elaboration.

3 Opinion Definition

Our two opinion types are adapted from the work on
attitude categories in monologic texts by Wilson et
al (2005). They are defined as follows:

Sentiment: Sentiments include emotions, evalua-
tions, judgments, feelings and stances. For exam-
ple in the sentence “This idea is good”, “good” ex-
presses the sentiment.

Arguing: Arguing includes arguing for something,
arguing that something is true, or should be done.
Arguing brings out the participant’s strong convic-
tion and/or his attempt to convince others.

In multi-party discourse, speakers argue for
something in a variety of ways. As arguing opinions
are less well studied, we will examine some exam-
ples. Consider the following utterances, where the
lexical anchors that indicate Arguing are shown in
bold.

Al. “I think this idea will work”

A2. “This is the lightest remote in the world”

A3. “We ought to get this button”

A4. “Clearly, we cannot afford to use speech recognition”

AS. “It would be nice if we could have the curved shape”

A6. “I brought this up because this will affect the cost”

A7. “We want a fancy look and feel”

In Al, the speaker argues by explicitly stating his
conviction. In A2, the speaker simply asserts his ar-
gument, while in A3 the speaker argues for getting
the button by framing it as a necessity. In A4, the
speaker states his proposition categorically to argue



for it. Interestingly, in face to face conversations,
participants also use persuasive constructs, justifi-
cation or communal desire to argue for something
asin A5, A6 and A7 respectively.

In examples A/ to A7 above, there are overt lex-
ical anchors that indicate an arguing intent in the
speaker’s utterance. However, context, in addition
to lexical clues is needed to infer that arguing is tak-
ing place. As part of a casual conversation, the ut-
terance “I think John was at home” would not be Ar-
guing, despite the presence of “I think”. However,
in a debate about John’s whereabouts at the time of
a murder, the sentence could function as Arguing.
Here the context and the knowledge that there is a
disparity between the speakers helps us infer that
the sentence is intended to argue. Finally, some-
times arguing is done even in the absence of any
overt lexical anchor. Consider:

AS8. “The speech recognition is nice. Yes, speech recogni-

tion. It falls within our price range too”
In A8, we do not find any explicit markers. How-
ever, the speaker attempts to win approval for the
speech recognition by his affirmation and his posi-
tive evaluations (sentiment) of the speech recogni-
tion and its price. These various elements together
build up the argument.

4 Annotation Categories

Our annotation categories are Sentiment and Argu-
ing. We discuss the varied ways of arguing in our
annotation guide to help the annotators. As ex-
plained in Example A8 of Section 3 sometimes Ar-
guing is done without overt lexical anchors, which
makes such cases difficult to annotate reliably. We
assign these cases to a special category called Utter-

ance Arguing.

We adapt the basic annotation frame for our opin-
ion type from (Wilson and Wiebe, 2005). The rele-
vant components of the frame are:

e Text span: The span of text that captures the opinion
type. In the case of Utterance Arguing, this text span
may cover the whole utterance.

o Inferred: (true/ false) This feature indicates that the an-
notator used inference for this annotation. For example,
“very dark” is labeled as Sentiment in the sentence “This
(TV) remote is very dark”. This annotation is based on
the knowledge that participants consider a dark color un-
desirable for the remote.

o Annotator Confidence: (certain/ uncertain) The anno-
tators set this feature to uncertain when they are unsure
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Sentiment  Arguing UtteranceArguing
segments 0.826 0.716 0.372
sentences 0.789 0.677 0.326

Ignoring Annotator-uncertain cases

segments 0.838 0.716 0.382
sentences 0.805 0.677 0.332

Ignoring Annotator-uncertain and Inferred cases
segments 0.85 0.716 0.382
sentences 0.814 0.677 0.332

Table 1: Kappa values for Inter-annotator agree-
ment

of the annotation.

4.1 Inter-annotator Agreement

Two annotators (two of the authors) underwent
3 rounds of training. Then we calculated inter-
annotator agreement using Cohen’s kappa over a
previously unseen meeting (607 segments, 1002
sentences). Although the annotators tag expres-
sions, agreement is calculated over the segment or
the sentence. For this purpose, we assign a segment
(or sentence) the labels of all the expressions anno-
tated within it.

Table 1 shows the results of the agreement study.
Our inter-annotator kappa values are in the Substan-
tial Agreement Range according to Landis and Koch
(1977) for Sentiment and Arguing, and in the Fair
Agreement Range for Utterance Arguing. For Sen-
timent, when we exclude the labels from those in-
stances that were tagged as inferential or uncertain,
the agreement numbers go up to 0.85 for the seg-
ment and 0.814 for the sentence level respectively.

Compared to Sentiment, Arguing has lower
kappa values at at 0.716 at the segment and 0.677
at the sentence level. We do not see any changes
in the values when uncertain cases are removed.
In this meeting the segments or sentence unit typ-
ically contain multiple expressions tagged for Ar-
guing. Thus if an arguing label marked as uncertain
was excluded from a given unit, but the unit had an-
other label marked as certain elsewhere, then that
unit overall still got an arguing label which counted
toward the kappa calculation.

As expected, the Utterance Arguing category
proved to be difficult. This is because it requires
the annotators to infer whether the speaker is argu-
ing when the utterance does not have any definite
markers.



S Knowledge Used in Classification

In this section, we discuss the development of our
lexicon and the rationale for using dialog structures
as knowledge sources for our automatic classifiers.

Much work in sentiment and subjectivity detec-
tion in monologic texts has focussed on lexical and
syntactic features. In order to capture the lexical in-
formation we use lexicons. In the context of multi-
party meetings, we hypothesize that the discourse
flow and participant interaction act as useful indi-
cators of opinion expression. We use Dialog Acts
(DA) and Adjacency Pair (AP) features to capture
the flow of discourse. We also believe that the lex-
ical and discourse knowledge are complementary,
and we build a system using all the features to test
this hypothesis.

5.1 Sentiment Lexicon

We availed ourselves of previous work on Senti-
ment lexicon development, namely the General In-
quirer (GI) (Stone et al., 1966), and Wilson et al’s
(2005) Subjectivity Clue list. The former provides
a list of positive and negative words, while the
latter contains a list of word and expressions that
are strong/weak indicators of subjectivity, valence
shifters, or intensifiers. In all, this gives us 6 lexi-
con categories to which a sentiment word may be-
long: GI Positive, GI Negative, Strong Subjective
Clue, Weak Subjective Clue, Intensifier, and Va-
lence Shifter.

5.2 Arguing Lexicon

We assembled an Arguing lexicon for meetings as
follows. We inspected one AMI meeting (not used
for training or testing) for words, phrases or word
patterns that are indicative of Arguing. Then we
explored the ICSI Meeting Recorder Dialog Act
(MRDA) corpus (75 meetings, 72 hours) for sim-
ilar expressions in order to develop more general
patterns and increase the coverage of the lexicon.
This was done in two steps. In the first, all instances
of certain Dialog Act types (dispreferred answer,
negative answer, command, defending/explanation,
suggestion) were extracted and frequent n-grams
(I < n < 4) identified. In the second phase,
we manually inspected, for the highest ranking n-
grams, a sample of 10-15 actual instances in the
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Type Example
emphasis that’s why
the thing is
necessity ought to
had better
inconsistency | except that
it’s just that

Table 2: Examples from Arguing lexicon

ICSI corpus and retained those n-grams that seemed
promising. Finally, we looked over three ICSI tran-
scripts in full to assess the coverage of the annota-
tion concepts to be applied to the AMI data. This
process produced a lexicon of 226 entries, sorted
into 18 categories such as necessity, conditional,
emphasis, generalization, contrast, causation, etc. to
account for the various ways in which speakers ar-
gue.

As the entries given in Table 2 suggest, closed-
class items such as modal verbs, adverbs, or con-
junctions play a more important role in identify-
ing instances of our Arguing class than open-class
items. For instance, words like “oppose”, “support”,
and “conclude” which directly denote aspects of ar-
guing and reasoning are rare, whereas causal con-
nectives such as “so”, “because”, and “if”’ are fre-

quent.

We can understand the importance of closed-class
items in terms of the distinction that Wiebe (2002)
makes between direct subjective elements and ex-
pressive subjective elements. Direct subjective ele-
ments are exemplified, in the sentiment domain, by
words like “love” or “criticize” which directly de-
note a particular kind of private state of a source,
possibly in relation to a target, and which can real-
ize their source and, if present, their target as a syn-
tactic dependent. Expressive subjective elements,
exemplified by words like “jerk”” and “annoyingly”,
presuppose but do not denote a private state and can-
not occur in syntactic construction with the source
of the private state. Instead, the source is to be iden-
tified by the hearer from the candidate set made up
by the interlocutors and the human referents in the
discourse.

Applying this distinction to the Arguing category,
we find that in the spoken conversation of meetings,
where arguments are constructed in real-time, ex-
pressive subjective elements are prominent, with the



Speaker-C:: |<Su|3v3|—:5-r> we just come to an agreement. </succesT> LiciT-AssessMeNT> Okay? <ELiciT-AssessMENT>

<inForm> So the first one uh | stylish look and feel.</inFaorm>|

Speaker-B:: KAssess> Okay. </Assess>

POSITIVE ASSESSMENT

Speaker-A: :| <Assess> | rate that pretty highly. </Assess> |

POSITIVE ASSESSMENT

Speaker-B: :| <Assess> Well yeah, </A55Ess>| <Assess> | mean compared to most remote controls you see that's pretty good.

</Assess> <Asgess> | dunno like a six or something. What does anybody else think? <Assess> |

POSITIVE ASSESSMENT

Speaker-C:: kAssess> Yeah </Assess> <Inrorm>Uum me uh my only reservation with it was that we basically went with yellow

because it's the company's colour, </InFaorm> [<Aassess> and | don't know if yellow's gonna really be a hit. <Assess>]|

K—Eﬂwﬁﬂﬁﬁm

Speaker-B:: kAassess> Okay. </Assess>

Speaker-D:: |<A55555> I'm seeing five then. <Assess> K—pDE'T’VE ASSESSIMENT

Figure 1: Sentiment expression and discourse flow.

sources typically being the speakers. This makes
sense in particular for modal verbs such as “must”,
“need”, etc. as arguing directly concerns modal-
ity: speakers discuss what is, what could be, what
should be. By contrast, we find fewer direct subjec-
tive elements such as “require” or “argue”. These
elements, however, seem very suitable for reporting
on arguments.

5.3 Dialog acts and Adjacency pairs

We observe that there is an interplay between our
opinion categories and the dialog level annotations
in the AMI corpus. Consider the following AMI
meeting snippet where the participants rate their TV
remote control design on a number of metrics such
as learnability, look and feel, etc. using a scale from
one (worst) to seven (best).

Speaker-C:: we just come to an agreement. Okay?
So the first one uh , stylish look and feel .
Speaker-B:: Okay.

Speaker-A:: 1rate that pretty highly.

Speaker-B:: Well yeah, I mean compared to most
remote controls you see that’s pretty good. I dunno
like a six or something. What does anybody else
think?

Speaker-C:: Yeah um me uh my only reservation
with it was that we basically went with yellow be-
cause it’s the company’s colour , and I don’t know
if yellow’s gonna really be a hit.

Speaker-B:: Okay.

Speaker-D:: I'm seeing five then.

Figure 1 illustrates the opinion annotations (in bold
underlined text spans), DA annotations (as enclos-
ing XML tags) and AP annotations (as directed

30

links between segments ) of the above meeting snip-
pet. C introduces the first metric for evaluation, the
stylish look and feel. A has a positive Sentiment
about the remote in this regard and hence says he
rates it “pretty highly”. B shares A’s positive Sen-
timent. He too evaluates the remote favorably and
judges it as deserving a rating of six. Note that
here “six” is considered an inferred sentiment, as
it reflects the participant’s evaluation of the remote.
C, however, shows his negative Sentiment towards
the remote by pointing out his reservation about the
choice of the color yellow. C’s Sentiments convince
D, who then evaluates the look and feel at the lower
grade of 5.

The Dialog Acts and Adjacency Pairs that capture
the exchanges between the participants are indica-
tive of the Sentiments expressed. For example, it is
likely that a participant who has a positive evalua-
tion of an object might positively assess his preced-
ing speaker’s positive assessment of the same ob-
ject. We see this in Figure 1 when A and B both
show positive Sentiment towards the remote’s look
and feel. B shows a Positive Assessment of A’s As-
sessment. D, who evaluates the look and feel of the
remote at a lower grade (negative Sentiment) has a
Positive Assessment toward C’s Assessment (nega-
tive Sentiment) of the remote. Thus the participants’
sentiments towards objects are also reflected in their
interpersonal dialog acts and vice versa. We also



found interesting relations bettween arguing and di-
alog structure. Due to space considerations, this is
discussed in Appendix A

We believe Dialog structure (DA and AP) and our
opinion categories are complementary rather than
interchangeable. Dialog acts are focused on inter-
personal exchanges and discourse functions, while
opinion categories are focused on participants’ pri-
vate states usually towards objects (which may be
other participants). In our corpus we found that it is
not always necessary for a Sentiment instance to be
associated with an Assess Dialog Act. Consider the
utterance: “Okay, so when you have a lot of room
inside. So you can make it very easy to use. ’Cause
you can write a lot of comments besides it.” This
sentence was labeled as an Inform DA as it func-
tions to inform the participants of the roomy interior
of the remote control. Orthogonally, it was tagged
as a positive Sentiment (“very easy to use’’) and pos-
itive Arguing (“’Cause”).

6 Experiments and Results

In this section, we perform machine learning ex-
periments to test our hypothesis that our knowledge
sources from Section 5 are useful. We perform su-
pervised machine learning on our annotated corpus
of 4302 segments (6504 sentences) using a standard
SVM package (Joachims, 1999). The recognition
of each opinion category is formulated as a binary
classification problem. We do not attempt automatic
classification for Utterance Arguing as we consider
our inter-annotator agreement for this category to be
too low to form a reliable gold standard.

We use two baselines: a majority-class dumb
baseline that guesses false every time, and a smart
SVM classifier trained on a bag of words (BOW).
Then we add our opinion features individually or in
combination to the baseline classifier. The lexicon
features for the BOW+lex classifier are counts of
words from each lexicon type in the given segment
or sentence.

The AMI DA types introduced in Section 2 form
the additional features for the BOW+DA classifier.
The AP links described in Section 2 along with their
source DA and target DA form a DA-AP-DA chain.
These DA-AP-DA chains form the features for the
BOW+AP classifier. Since we do not make a po-
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Acc [ Prec | Rec [ F-measure

Segment Level classification
BOW 88.42 | 69.52 | 51.95 57.99
BOW+lex 88.84 | 70.1 | 53.07 59.16
BOW+DA 89.28 | 73.81 | 54.62 61.26
BOW+AP 88.73 | 70.1 | 53.07 59.16
BOW+DA+AP | 89.24 | 73.14 | 54.38 60.9
BOW+All 89.28 | 73.17 | 54.98 61.37

Sentence Level classification
BOW 89.43 | 69.22 | 46.69 54.62
BOW+lex 89.51 | 69.12 | 48.04 55.53
BOW+DA 89.80 | 71.11 | 49.07 56.7
BOW+AP 89.40 | 69.42 | 46.21 54.11
BOW+DA+AP | 89.79 | 71.29 | 48.87 56.54
BOW+All 90.3 | 73.22 | 51.32 59.20

Table 3: Arguing Classification Results.

larity distinction, we conflate Positive and Nega-
tive Assessment into a single category Assessment.
As there are 15 DAs and 4 APs (after conflation)
there are 15 x 4 x 15 = 900 possible combinations;
however of these, only 99 types actually occur in
our annotated corpus. The BOW+DA+AP classi-
fier has all the DA features and the AP features; the
BOW-+ALlI classifier uses DA, AP and lex features.

The accuracy of the majority-class Arguing clas-
sifier is 82.84% at the segment and 85.5% at the sen-
tence level. All the classifiers, including the smart
baseline (BOW), improve over this by about 7 per-
centage points at the segment and by about 4 per-
centage points at the sentence level. Table 3 shows
the performance of our Arguing classifiers. All re-
sults are reported over 20-fold cross-validation. The
results that are significantly better (p < 0.05) than
the smart BOW baseline are shown in bold. The re-
sults in Table 3 indicate that the DA features are use-
ful for detection of Arguing. The only classifier that
performs significantly better than the smart baseline
at both the segment and sentence level is the one
that uses all the features (BOW+all). This corrob-
orates our hypothesis that lexical and discourse in-
formation are complementary. The Arguing lexicon
significantly improves recall and f-measure for seg-
ments, but the results are not significant at the sen-
tence level. We think this is because our preliminary
lexicon with its lesser coverage can still succeed in
finding matches in the larger segmental units, but
fails in the smaller sentential units. We believe in-
creasing the breadth of coverage will remedy this.
Table 4 shows the performance of the Sentiment



Acc [ Prec | Rec | F-measure

Segment Level classification
BOW 86.87 | 80.84 | 48.53 58.77
BOW-+lex 88.29 | 81.43 | 56.14 65.18
BOW+DA 87.45 | 81.93 | 51.48 62.0
BOW+AP 87.27 | 81.02 | 50.69 61.11
BOW+DA+AP | 87.36 | 82.73 | 49.55 60.93
BOW+All 88.66 | 82.01 | 57.89 66.88

Sentence Level classification
BOW 88.23 | 82.41 | 44.08 56.61
BOW-+lex 89.77 | 81.99 | 54.70 64.89
BOW+DA 88.59 | 82.11 | 47.08 59.14
BOW+AP 88.67 | 82.68 | 46.73 58.97
BOW+DA+AP | 88.64 | 82.47 | 47.1 59.22
BOW+All 89.95 | 82.49 | 55.42 65.62

Table 4: Sentiment Classification Results

classifiers. Here too, using all features gives the
best performance at both the segment and sentence
level. Additionally, we also see that each of our
features, lexical or dialog-based, individually im-
prove the recall and f-measure. The accuracy of the
majority-class Sentiment classifier is 79.12% at the
segment and 82.16% at the sentence level. The best
classifier (BOW+All) improves over this by about
9 percentage points at the segment and 8 percent-
age points at the sentence level. We also see that
the lexicons from the monologue text genres help in
improving the recall significantly. It is encouraging
that resources developed for extracting sentiments
from monologic texts will be useful for processing
conversational data as well.

7 Related Work

Sentiment detection is being carried out across a va-
riety of genres and at various levels (e.g. document
level by Thomas et al. (2006), phrase level by Wil-
son et al. (2005)).

Like much other work on subjectivity (e.g. Na-
sukawa and Yi (2003)), we use lexicons as knowl-
edge sources in classification. Somasundaran et
al. (2007) use a lexicon for detecting Arguing in
text. In contrast, our work is on multi-speaker con-
versations. Biber (1988) in work on textual vari-
ation identifies a dimension of “Overt persuasion”
whose categories (e.g. modal verbs and condition-
als) are similar to the expressions we gathered in
our lexicon. Ducrot (1973) studies arguing related
items, but his work is on French and is not corpus-
based. A vast body of work exists within linguistics,
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rhetoric and philosophy that is relevant to arguing
(e.g.(Dancygier, 2006; van Eeemeren and Grooten-
dorst, 2004)).

With regard to meetings, the most closely re-
lated work includes the dialog-related annotation
schemes for various available corpora of conversa-
tion (Dhillon et al. (2003) for ICSI MRDA; Carletta
et al. (2005) for AMI; Burger et al. (2002) for ISL).
We think our annotation scheme complements the
annotations provided in these corpora in that it adds
finer granularity for statement-speech acts by distin-
guishing expressions of sentiment and arguing from
objective statements.

Our work also connects to research on hot spots
(Wrede and Shriberg, 2003), and efforts to anno-
tate the mental states of participants in meetings or
interviews on the basis of multi-modal data (Dev-
illers et al., 2005; Reidsma et al., 2006). The focus
of these kinds of research is different from ours in
that they target the actual mental states of the speak-
ers in the unfolding situation, while we focus on
subjective states communicated through language.
While often the same, they are not necessarily iden-
tical as language allows for displacement: partici-
pants may calmly report about other people’s anger,
report their past or expected future mental states,
etc. Our approach is similar to the one used by Gal-
ley et al. (2004) where adjacency pair information
is used to detect agreement/disagreement amongst
participants. Similarly, in the prediction of congres-
sional vote, Tomas et al. (2006) use adjacency pair
information to detect agreement amongst speakers.
Another closely related area is argument diagram-
ming of meetings (Rienks et al., 2005), where lines
of deliberation are analyzed without making a sub-
jective/objective distinction. Our work can also be
combined with ongoing work on decision detec-
tion (Hsueh and Moore, 2007; Purver et al., 2006).
While our annotations track opinions in the decision
making process, the decision detection research is
mostly concerned with its outcome.

8 Conclusion and Future Work

We presented the annotation of the Opinion types
Sentiment and Arguing on meetings. We developed
a new lexical resource for the Arguing category. We
showed that previously developed Sentiment lexi-



cons have good coverage in the new genre. We hy-
pothesized that dialog structure interacts with the
expression of opinions and confirmed this through
machine learning experiments. Finally, using all the
features gave the best performance, confirming our
hypothesis that both lexical and discourse informa-
tion is needed to detect opinions in multi-party con-
versations.

Our future work will involve increasing the
breadth and reliability of our arguing lexicon both
manually and via automatic means. We also plan
to use richer discourse and meeting level informa-
tion as well as study interactions between opinion

types.
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A Appendix A. Arguing Opinions and
Discourse Flow

Speaker—A:i <sucsesT> Yeah, maybe we have to skip that one. </sussesT>

INEEATIVE ASSESSMENT

A 4
Speaker-B:: FA55555> No no. I want that in. </Assess> |

NEGATIVE ASS

SMENT

Speaker-D:: KASSESs > NO, We Neei at. al's usable . ats really usable. </AsSSeESsS>

Figure 2: Arguing expression and discourse flow

As with the Sentiment opinions, for the Arguing cat-
egory, too, we found an interrelation with Dialog
Act exchanges. Consider the AMI meeting snip-
pet below where the participants are discussing a
beeping functionality. Speaker A has just suggested
skipping it.

Speaker-A:: Yeah, maybe we have to skip that one.
Speaker-B:: No no, | want that in.

Speaker-D:: No, we need that. That’s usable .
That’s really usable.

Figure 2 illustrates the annotations on this snippet.
A Suggests that they might skip the beeping func-
tionality. B Argues against this Suggestion with a
vehement “No no”. The “I want” in B’s utterance
acts as both Sentiment (positive towards the thing
wanted) as well as Arguing. Thus, there is a Neg-
ative Assessment link between the two. D, too, Ar-
gues against A’s Suggestion by stating that the beep-
ing functionality is a necessity. He justifies this
stance by evaluating the remote as usable and then
reinforces his argument though repetition and inten-
sification.
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Abstract In this work we build a model of compliance
- how helpful the agent will be - in a domain in
We present a model of compliance, for do-  which the agent may become reticent or adversar-

mains in which a dialogue agent may be- jal, along with the emotional components that direct
come adversarial. This model includes a set that agent’s decision.

of emotions and a set of levels of compli-
ance, and strategies for changing these. 2 Testbed Domain

Our testbed application is in the domainTactical
Questioningin which small-unit military personnel
We present an information-state based model dfold conversations with individuals to produce in-
compliance for an agent who is questioned. Théormation of military value (Army, 2006). We are
agent tracks several emotional and interpersonsgpecifically interested in this domain when applied
variables, which can be updated depending on the civilians, when the process becomes more conver-
dialogue act, content, and other features of uttesational and additional goals involve building rap-
ances. A compliance level is computed based guort with the population and gathering general in-
the values of these variables. This work is in théormation about the area of operations.
tradition of research in building affective dialogue We have developed an application for training in-
systems (André et al., 2004a) embodied as virtualividuals in conducting Tactical Questioning ses-
humans (Rickel et al., 2002), with emotional comsions with civilians. The scenario takes place in con-
ponents for training or tutoring purposes (Gratch antkmporary Iraq, where the trainee must talk to Has-
Marsella, 2005). san, a local government functionary. If the trainee
A model of emotion in an affective dialogue convinces Hassan to help him, the trainee will con-
system may, among other things, influence thdirm suspicions about an illegal tax being levied
system’s cognitive behavior (Becker et al., 2004)on a new marketplace; if exceptionally successful,
model the effects of social language (Cassell anithe trainee may even discover that the tax has been
Bickmore, 2003), or control behavior such as itplaced by Hassan’'s employer. But if Hassan be-
level of politeness (André et al., 2004b). Our studgomes adversarial, he may lie or become insulting.
is closer in spirit to (Traum et al., 2005), in which Figure 1 shows the beginning of a typical dialogue
a virtual human decides on a negotiation strategyith Hassan. Rather than working to determine what
based on its emotional appraisal of the topic, of itthe human user wants and then providing it, in turns
negotiation options, and of the human speaker. O@irand 8 Hassan provides replies that are off-topic or
study also overlaps somewhat in topic with (de Rosisf low information value. The trainee’s goal is to in-
et al., 2003), in which a computer decides whetharease the value of Hassan'’s responses by appealing
or not to deceive. to Hassan’s emotions and making him more compli-
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ant. Section 4 describes how this can happen.  any assumptions about cognitive consideration, joint
purpose, ethical consideration, or trust; compliant

1 Trainee Hello Hassan . . . .
2 Hassan Hello behavior might or might not be cooperative. The
3 Trainee How are you doing? ' components of our model were developed based on
4 Hassan  Well, under the circumstanceswe are fine 5 sty dy of Tactical Questioning domain documents
5 Trainee Id like to talk about the marketplace
6 Hassan | hope you do not expect me to tell you any- SUch as (Army, 2006) and (Paul, 2006).

thing More details about our model of compliance are
7 Trainee |just wantto know why people aren't using

the marketplace given in section 4.3. The following sections describe
8 Hassan |don'tfeel like answering that question how the human speaker’s utterances indirectly up-
date the agent’s level of compliance by means of a

Figure 1: Scenario Dialogue model of emotion.

3 System Implementation 4.1 Dialogue Features

A human trainee’s utterance is analyzed by statisti-

As a training application, Hassan incorporategy| classifiers to detect its principal dialogue move,
“human-in-the-loop” interactivity, and logs utter-gpic and degree of politeness.

ances, language features, and emotional states at evye define several dialogue moves relevant to the
ery turn, with the aim of producing a summary forgomain of tactical questioningdpeningmoves are
after-action review at which time a human trainer general greetings and introductio@mplimentary
and trainee may discuss the session. For this reasgiyyes are those in which the trainee compliments or
Hassan may react realistically to a trainee’s bribes @jtters the person being question&deneral Con-
threats of force, even though such actions are agaiRgi;sationincludes talk meant to build a sense of so-
policy for Tactical Questioning of noncombatants;g| honding between the agent and the trainee, as
(Army, 2006): these behaviors would be reviewegye|| as expressions of goodwill and off-topic state-
by & human trainer during or after the training séSments Task Conversatiois talk related to informa-
sion. tion the trainee is interested in: in the case of this
The natural language components of our dialogugcenario, questions about the marketplace and tax-
agent include a set of statistical classifiers Workation, about the agent and his business, and so on.
ing together with a rule-based dialogue managef:reateningmoves are those that include a threat
The Automated Speech Recognition output is SeRyainst the agent, ar@fferingmoves offer to pro-

to the classifiers, three of which detectlanguage fegige something. FinallyClosingdialogue moves are
tures, and three of which suggest possible replieghgse that end the conversation.

The Dialogue Manager uses its model of emotions The topic of the utterance will be a topic from one
and compliance to determine which of the suggestgg ihree sets, or 'other. The Information Request
replies, if any, are to be made back to the user, a§pjcs allow the agent to identify what the trainee is
described in the next section. Further system imp"?éferring to in Task Conversation dialogue moves:
mentation details are given in (Traum et al., 2007).tpe marketplace, taxation, and so on. The set of
Threat-related and the set of Offer-related topics re-
fer to the kinds of threats and offers that a trainee
may make in the course of a conversation.

In our training scenario, trainees have a specific set Finally, the third language feature to analyzed is
of information that they want to learn from Has-the utterance’s level of politeness. This will be iden-
san. In the general Tactical Questioning domain, tified as either polite, impolite, or neutral.
guestioner seeksompliance: that the interviewee _ _ _

at least answers any questions truthfully, and idealffy2 Emotional and Social variables

that the interviewee takes the initiative in offeringWe identify four emotional and social variables
information. Note that this is different fromoop- (emotions, for short) applicable to the domain. They
erationas in (Allwood, 2001), as it does not makehave been named to be intuitive to a trainer over-

4 Modd of Dialogue, Emotions, and
Compliance

36



seeing a sessionRespects Traineeepresents the  The agent’s level of compliance may not be im-
degree of trust and respect the agent feels for theediately apparent to the human speaker: for exam-
trainee. Feels Respectedepresents the extent tople, an agent replying in a neutral way with no infor-
which the agent feels honored and respecBmtial mation may be at the Reticent or Adversarial level,
Bondingrepresents how much of a social relationer it may be at the Compliant level and simply not
ship the agent feels for the trainee, dfehr repre- have any useful information to provide. Similarly,
sents how afraid the agent feels. answers with expected responses, such as greetings
These emotions are represented as integer valoe farewells, may be answered the same at many
components in an Information State dialogue marcompliance levels. Finally, if an agent is providing
ager (Traum and Larsson, 2003). They are updatdigh-information responses, the human participant
by rules based on the state of the information stat@ay not know if those are useful truths or plausible
components and the language features identified lies.
the trainee’s utterance. For example, a Complimen-
tary dialogue move would increase the agent’s Feefs4 Compliance and Emotions

Respected and Social Bonding values and decreggethe course of a dialogue, the agent's level of
crease the agent’s level of Fear but decrease its Feﬁ@ent’s emotions are checked to see if they change
Conversation dialogue move that was Polite woulglginee is to make the agent compliant by produc-
increase the Social Bonding value. ing utterances that will update the agent's emotions
in ways that will make the agent compliant. There

. _are three basic strategies that the trainee can pursue,
For this study, we focused on the effect of compliynich are defined by the ways in which emotions
ance on the agent’s verbal responses in terms of hQyect compliance.

much information the agent provides in response to |, the Empathicstrategy, the trainee attempts to

the trainee’s questions, whether the information ig,ske the agent sympathetic to the trainee, and there-
useful, to what extent the information is true, angqe to the trainee’s goals. This is modeled by hav-
whether the reply includes polite, neutral, or rudc?ng the agent's compliance level become Compliant
words. _ _ when the agent’s Respects Trainee, Feels Respected,
Our model of compliance consists of three levelsyng social Bonding scores all rise above a certain
which have the following effects. threshold. However, if those three emotions are be-

At the Compliantlevel, the agent will answer |o 3 given threshold, the agent's compliance level
the trainee’s direct questions truthfully, and will try e comes Adversarial.

to provide useful information. The agent will be

friendly and polite. pliant after the trainee makes an Offering dialogue

At the Reticentievel, the agent will not provide e whose Topic is from the set of Offers that the
any useful information. The agent may express th%tgent is defined as being receptive to.

they do not wish to comply, may reply with off- In the Threateningstrategy, the trainee uses a

topic remarks, or may make other low-informationrp, o ot gialogue move to raise the agent's Fear above
responses. The agent will generally be neither rudg certain threshold. If the trainee then makes a

nor polite, but may be dismissive. o Threat that the agent is vulnerable to, the agent will
At the Adversariallevel, the agent again will not become Compliant

provide any useful information, and may reply with

off-topic or low-information responses. Howevers Eyture Directions

the agent may also be rude or insulting. Further-

more, the agent may reply deceptively: offering, irAn evaluation of the entire system is described in
a neutral or polite way, high-information statementg¢Traum et al., 2007). We hope to perform an eval-
that are not true. uation of the compliance and emotion components

4.3 Compliance

In the Offering strategy, the agent becomes com-
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separately. One possibility is to do a semi-Wizard tems, Tutorial and Research Workshop, ADS 2004, Kloster

of Oz evaluation in which the ASR and language !rsee. Germany, June 14-16, 2004, Proceedipgges 178~

analysis tasks are performed by a human, to factor

out errors in those components. Another possibilit?e_?afthm_entlon the ArFmI\/}II.SngGB'O F’OAlice inée”i%er}ce Qpelnﬂio

is to compare the system’s performance in updating tigﬁinrgca eport FM 3-19.50. Appendix D: Tactical Ques-

its information state with the performance of human

coders in updating the information state, as was doffd'istian Becker, Stefan Kopp, and Ipke Wachsmuth. 2004.
! Simulating the emotion dynamics of a multimodal conversa-

in (Roque et al., 2006). Alternately, we could focus tional agent. InAffective Dialogue Systems, Tutorial and Re-
on how plausible the model of emotions and compli- search Workshop, ADS 2004, Kloster Irsee, Germany, June

ance is in terms of human processes by comparing it 1416 2004, Proceedingsages 154-165.

to data from human surveys, as was done in (Madustine Cassell and Timothy Bickmore. 2003. Negotiated col
lusion: Modeling social language and its relationshipctffe
and Gratch, 2006). . . in intelligent agents.User Modeling and User-Adapted In-
The model of emotion and compliance that we teraction 13:89-132.

have presented is motivated by the domain of Tac-
p y (f:'orella de Rosis, Cristiano Castelfranchi, Valeria Calafi

tical Questioning, and the features and policies tha{ and Giuseppe Grassano. 2003. Can computers deliberately
we have implemented have been guided by that do- deceive? a simulation tool and its application to turings im

main. As we continue to develop Hassan and other tation gameComputational Intelligencel 9(3).
Tactical Questioning agents, we plan to add capaenathan Gratch and Stacy Marsella. 2005. Some lessons
bilities that will allow us to build more general and for emotion psychology for the design of lifelike charaster

histi d dels of . d l Journal of Applied Artificial Intelligencel9(3-4):215-233.
sophisticated models of emotion and compliance. Special issue on Educational Agents - Beyond Virtual Tu-

tors.
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Abstract call DIHANA (Bened et al., 2006). The task that

we considered is the telephone access to information
In this paper, we present an approach for about train timetables and prices in Spanish. A set
automatically acquiring a dialog corpus by  of 900 dialogs was acquired in the DIHANA project
means of the interaction of a dialog manager using the Wizard of Oz technique. A set of 300
and a user simulator. A random selection  different scenarios was used to carry out the acqui-
of the answers has been used for the oper- sition. Two main types of scenarios were defined.
ation of both modules, defining stop condi-  Type S1 defined only one objective for the dialog.
tions for automatically deciding if the dia-  Type S2 defined two objectives for the dialog. This
log is successful or not. Therefore, an ini-  corpus was labeled in terms of dialog acts to train
tial corpus is not necessary to develop these the dialog model. The results of this work can be
two modules. In this work, we use a statisti-  found in (Hurtado et al., 2006).

cal dialog manager to evaluate the behavior g g ccess of statistical approaches depends on
of the corpus acquired using this approach.  yhe quality of the data used to develop the dialog
This dialog manager has been leamed from o461 A great effort is necessary to acquire and la-
th? S|mulateq corpus and hag been evaluated g 5 corpus with the data necessary to train a good
using a previous corpus acquired for the task o6l One solution for this problem consists of the
with real users. development of a module that simulates the user an-
swers. A summary of user simulation techniques for
reinforcement learning of the dialog strategy can be

Learning statistical approaches to model the diffound in (Schatzmann et al., 2006).
ferent modules that compose a dialog system haslin this paper, we present an approach to acquire a
reached a growing interest during the last decadabeled dialog corpus from the interaction of a user
(Young, 2002). Although, in the literature, theresimulator and a dialog manager. In this approach, a
are models for dialog managers that are manuallandom selection of the system and user answers is
designed, over the last few years, approaches usioged. The only parameters that are needed for the
statistical models to represent the behavior of the dacquisition are the definition of the semantics of the
alog manager have also been developed (Williamask (that is, the set of possible user and system an-
and Young, 2007), (Lemon et al., 2006), (Torres edwers), and a set of conditions to automatically dis-
al., 2003). card unsuccessful dialogs. We have acquired a cor-
In this field, we have recently developed an appus for the DIHANA task using this approach. This
proach to manage the dialog using a statistical modebrpus has been used for training our statistical dia-
that is learned from a data corpus. This work habg manager. Then, the Wizard of Oz corpus of the
been applied within the domain of a Spanish projedIHANA project has been used to evaluate the be-

1 Introduction
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havior of this dialog manager with real users. e The answer generator provides a error warning
when the selected answer involves the use of a
2 Our approach for automatically data not contained in the DR, that is, not pro-
acquiring a dialog corpus vided by the user simulator.

As stated in the introduction, our approach for ac- A user request for closing the dialog is selected
quiring a dialog corpus is based on the interaction afnce the system has provided the information de-
a user simulator and a dialog manager. Both modined in the objective(s) of the dialog. The dialogs
ules use a random selection of one of the possibtbat fulfill this condition before the maximum num-
answers defined for the semantic of the task (uséer of turns are considered successful.
and system dialog acts). A total of two million simulated dialogs were nec-
The user simulation simulates the user intentiogssary in order to acquire a dialog corpus following
level, that is, the simulator provides concepts and athe same characteristics of the DIHANA corpus and
tributes that represent the intention of the user utising the same set of scenarios developed for its ac-
terance. Therefore, the user simulator carries oquisition. The computer used for the acquisition was
the functions of the ASR and NLU modules. Theable to simulate 1,000 dialogs every 40 minutes.
semantics selected for the dialog manager is repre-Table 1 summarizes the statistics of the acquisi-
sented through the 51 possible system answers dien for the two types of scenarios that were defined.
fined for the task. The selection of the possible user,
answers is carried out using the semantics defined

Type S1 | Type S2

: . . e 5

for the user in the NLU module. Simulated dialogs 10 10
An error simulator module has been designed to| Successful dialogs 15383 | 1,010
Different dialogs 14,921 998

perform error generation and the addition of confi-
dence measures in accordance with an analysis o
the DIHANA corpus. This information modifies a6 1 statistics of the new corpus acquisition
the frames generated by the user simulator and also

incorporates confidence measures for the different .
. . Table 2 shows an example of a dialog correspond-
concepts and attributes. Experimentally, we have

detected 2.7 errors per dialog. This value can t{gg to a Type S1 scenario (to know timetables from

modified to adapt the error simulator module to the alencia to Barcelona for May the 30th).

£ Number of user turns per dialog 4.9 6.2

operation of any ASR and NLU modules. S1: (Opening:Nil:Nil)
Welcome to the railway information system. How can | help
. s you?
2.1 The corpus acquisition UL: Departure-Hour [0.9]
A maximum number of system turns per dialog was Destination: Barcelona [0.9]

. .. . Departure-Date: 05-31-2007 [0.1]
defined for acquiring a corpus. The dialog manager Arrival-Hour: 08.00-23.00 [0.9]

considers that the dialog is unsuccessful and decides2: (Confirmation:Date:Date)

to abort it when the following conditions take place; Do you wantto leave on May the 31th?
U2: Negation[0.9]
. . Departure-Date: 05-30-2007 [0.9]
e The dialog exceeds the maximum number of s3: (Answer:Departure-Hour:Departure-Hour)

system turns. ~ (New-Query:Nil:Nil) _
{Timetables informatiohAnything else?

. U3: Negation
e The answer selected by the dialog manager cor-,! (Closing:Nil:Nil)

responds with a query not required by the user Thank you for using the system.
simulator.

Table 2: An example of a Type S1 dialog extracted
e The database query module provides an efrom the acquired corpus

ror warning because the user simulator has not
provided the mandatory information needed to The dialog begins with a greeting turn generated
carry out the query. by the system (S1). In the first turn, the simulated
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user provides théestinationand theDeparture- where setA contains all the possible system an-
Date In addition, it facilitates thérrival-Hour (set  swers.
as optional data for the scenario). The error simula- As the number of all possible sequences of states
tor introduces in this first turn an error value in thes very large, we defined a data structure in order
Departure-Dateslot (it changes day 30 by 31) andto establish a partition in the space of sequences of
assigns confidence scores to the different slots. btates. This data structure, that we call Dialog Reg-
this case, a low confidence is assigned to this errgster (D R), contains the concepts and attributes pro-
neous value. vided by the user throughout the previous history of
In the second system turn, a confirmation for théhe dialog. Using théD R, the selection of the best
Departure-Dateis selected. Considering the infor-system answer is made using this maximization:
mation defined in the objective of the scenario, the
user simulator selectshNegationdialog act and pro- A; = argmax P(A;|DR;_1, Si_1)
vides the correct value for thBeparture-Dateac- Aied
cording to the objective (U2). In this turn, the error The last state§;_;) is considered for the selec-
simulator assigns a high confidence value to the iriion of the system answer due to the fact that a user
formation provided by the user. In the following systurn can provide kinds of information that are not
tem turn (S3), the dialog manager selects to makecantained in the DR, but are important to decide the
query about timetables to the database. As the neeext system answer. This is the case of the task-
essary information is available, the database queiydependent information.
module carries out the query and the dialog manager The selection of the system answer is carried out
provides the information defined as objective for thé@y means of a classification process, in which a mul-
dialog. Having this information, the user simulatottilayer perceptron (MLP) is used. The input layer
selects a request for closing the dialog in the followholds the codification of the paiD R;_1, S;—1) and

ing turn (U3). the output of the MLP can be seen as the proba-
bility of selecting each one of the 51 different sys-
3 Dialog management in the DIHANA tem answers defined for the DIHANA task. For the
project DIHANA task, the DR is a sequence of 15 fields,
. here each concept or attribute has a field associ-
We have developed a Dialog Manager (DM) base\g,[ed toit.
on the statistical modelization of the sequences o

dialog acts (user and system dialog acts). A det Evaluation

tailed explanation of the dialog model can be found

in (Hurtado et al., 2006). We represent a dialog as/ Statistical dialog manager was learned using the
sequence of pairsystem-turn, user-tujn corpus acquired with the dialog simulator technique
(M1 manager). The DIHANA corpus was used as

test set to evaluate the behavior of this dialog man-
(A1, U1), - (A, Ui), -+, (A, Up) ager with a real users corpus.
We also learned another dialog manager using the
whereA; is the greeting turn of the system, abig DIHANA corpus as training set (M2 manager). A 5-
is the last user turn. We refer to a péit;, U;) assS;, fold cross-validation process was used to carry out
the state of the dialog sequence at time the evaluation of this manager. Therefore, all the
The objective of the dialog manager at tirie to  DIHANA corpus is used for testing both M1 and M2
generate the best system answer. This selection, tigiglog managers.
is a local process, takes into account the previous We defined three measures to evaluate the perfor-
history of the dialog, that is to say, the sequence dhance of both dialog managers:

states of the dialog preceding tirte
ap g 1. The percentage of answers that follows the

P strategy defined for the acquisition of the DI-

Ai = al:ilenjxp(A”Sl’ v Sic) HANA corpus (ostrategy).
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2. The percentage of answers that are cohereau initial dialog manager, generated without many
with the current state of the dialog, but that noeffort and with very high performance. This initial
necessary follow this strateg¥ocorrect). dialog manager could be improved with a posteriori

. Interaction with real users.

3. The percentage qf answers that are con3|deredAS future work, we want to use this approach to
erroneous according to the current state of thgcquire a dialog corpus within the framework of a
dialog (oerror). new project called EDECAN. The main objective of

Table 3 shows the results obtained for the differerif® 0ngoing EDECAN project is to develop a dialog

measures after the evaluation. system for booking sports facilities in our university.
Using this approach, we want to acquire a corpus

M1 manager| M2 manager that makes possible the learning of a dialog manager
Yostrategy 54.57% 97.34% for the domain of the EDECAN project. This dialog
Yocorrect 88.83% 99.33% manager will be used in a supervised acquisition of
Joerror 11.17% 0.67% a dialog corpus with real users.
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Abstract

In a realistic Interactive Question Answer-
ing (IQA) situation, one third of the users
pose follow-up questions, i.e., go beyond
a single question per dialogue. We iden-
tify two different perspectives according to
which these follow-ups can be described: in-
formational transitions and context depen-
dency. By understanding exactly how infor-
mational transitions occur in IQA dialogues,
we propose a method to guarantee that focus
tree based IQA systems provide wide cov-
erage of follow-up questions that trigger the
respective set of informational transitions.

1 Introduction

This is an empirical study of follow-up questions
in Interactive Question Answering (IQA) dialogues
that we collected through a previous Wizard-of-Oz
study. In this paper, we show that user follow-up
questions are an interesting phenomenon because
they occur relatively frequently in IQA dialogues,
and are potentially difficult for an IQA system to un-
derstand. We will look at them from two different
perspectives: (i) which informational transition can
be identified between the follow-up and the dialogue
context, and (ii), how some of the follow-up ques-
tions are context-dependent in that they can only be
properly understood in combination with informa-
tion from the dialogue context. In understanding (i),
we try to find patterns and regularities in our data
that enable us to predict the topics that users of an
IQA system will ask about next. This knowledge
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will help in improving an IQA system, since we can
ensure that the system will be prepared to answer
the specific follow-up questions that we predicted
for a specific situation in an IQA dialogue. As for
(i1), on the other hand, we need to understand also
how users typically pose follow-up questions: as we
show in this paper, many follow-up questions are
context-dependent, and need to be combined with
information from the previous dialogue in order to
be understandable for the IQA system. After ana-
lyzing follow-up questions from these two perspec-
tives, we propose a new way of processing a certain
class of follow-ups in an actual IQA system on the
library domain.

2 Statistics of Follow-ups in IQA Dialogues

We conducted a Wizard-of-Oz experiment where the
participants were free to choose their question topic,
and the way in which to interact with the system. In
this experiment, we collected 63 user-librarian dia-
logues by letting spontaneous visitors of the library
web-site interact with what was announced as a new
IQA system, but was in reality a web-based instant-
messaging-like interface (Kirschner, 2006).

From the total of 192 user utterances in our cor-
pus (spread across 63 dialogues and 166 user turns),
we identified 35 that are both follow-up initiatives
(i.e., from the set of 90 questions or assertions that
are not from the very first user turn in each dialogue)
and that are also about a topic from the library infor-
mation domain, or some task related to this domain.

While from the set of 90 follow-up initiatives
the proportion of user utterances we marked as off-
topic is high (56, versus the 35 domain/task-related
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ones), we can assume that they will not pose a major
problem to the IQA system. We conjecture that in
most cases these utterances can be easily ignored by
the natural-language understanding module, which
should robustly spot only questions and assertions
about task-related topics. Moreover, the analysis
shows that many users do take the opportunity that
IQA dialogue offers and do ask follow-up questions.
Even more, the latter actually contains some of the
most important parts of the dialogues (besides the
first user question in each single dialogue), and the
most interesting and difficult user utterances for an
IQA system to process.

3 Informational Transitions

In some of the literature, the term thematic related-
ness is used to describe transitions between utter-
ances. We assume this is just a matter of different
terminology; for the sake of clarity, we define that
those follow-up questions that trigger some infor-
mational transition at the same time define the set
of thematically related follow-ups. Also, note that
throughout this paper, we use the term follow-up
(question) to denote any user question that is not the
very first question in a given IQA dialogue; thus, it
does not imply that the follow-up be in some specific
way related to the previous dialogue.

The general goal of all the approaches to be pre-
sented in this section is to explore specific relations
holding between two discourse segments or dialogue
turns. This is of primary interest in the context of
building an IQA application, since by understanding
how the conversation topic evolves via user follow-
up questions, we can improve the way the system
will understand and answer these follow-ups. In our
empirical approach, we want to analyze how infor-
mational transitions are used in real IQA dialogues.
Thus, a preliminary goal is to find a method of re-
liably identifying these phenomena in our dialogue
data. In what follows, we describe three previous
approaches to this problem, focusing on their gen-
eralizability and practical applicability for identify-
ing informational transitions in data. At the end of
this section, we will then propose a somewhat re-
stricted (but on the other hand more practical and
concise) method of identifying (a subset of) infor-
mational transitions.
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In the context of planning coherent discourse in
a natural language generation system, (McCoy and
Cheng, 1991) gives a comprehensive account of in-
formational transitions (there called focus shifts).
For each node type, they list certain focus shift can-
didates, i.e., the items that are likely to come into fo-
cus in a coherent discourse (cf. Table 1). While their
list of focus shift targets for the different node types
is comprehensive, this is at the same time a major
problem when it comes to a practical implementa-
tion: it is not at all clear how to (algorithmically)
determine the correct node types, and thus the viable
candidate targets for informational transitions.

In a related approach that targets IQA dialogues
rather than single-speaker discourse, (Chai and Jin,
2004) define informational transitions between sub-
sequent user questions in IQA dialogues in terms
of the question “topic”. The topic is either of type
entity or activity and closely resembles the
object and activity node types given in Table 1.
While the informational state is now described in
terms of only two types of elements (entity/object
and activity/action) instead of the five postulated
by (McCoy and Cheng, 1991), the rich set of dis-
course roles that these elements can introduce would
still render an automatic construction of a represen-
tation of the informational state extremely difficult.

A further description of informational transitions
in IQA dialogues is given in (Bertomeu et al., 2006).
Unlike the two previously mentioned approaches,
this work considers also system responses as pos-
sible sources for informational transitions. In fact,
the authors identify specific thematic relations that
may hold between a user follow-up question and the
immediately previous user question, some previous
user question, the immediately previous system an-
swer or some previous system answer. Interestingly,
this approach is based entirely on questions and an-
swers corresponding to (sets of) entities that can
be retrieved from a database. Thus, informational
transitions are defined here in terms of the exten-
sions of entities that are being referred to in themat-
ically related turns of the dialogue, and in terms of
which properties of these entities are being referred
to. However, the transitions also lack the generality
of the previously introduced approaches, since they
are only useful for analyzing similar kinds of (natu-
ral language database query) dialogues that contain



Node type Focus shift targets

object Attributes of the object, actions the object plays a prominent role in (e.g., is actor of)

action Actor, object, etc., of the action — any participant (Fillmore) role; purpose (goal) of
action, next action in some sequence, subactions, specializations of the action

attribute | objects which have the attribute, more specific attribute

setting objects involved in the setting; actions which typically occur in this setting

event actions which can be grouped together into the event

Table 1: Informational transition targets for different focus nodes (from (McCoy and Cheng, 1991, p. 112))

only rather constrained types of questions and an-
SWers.

We will base our work on the observations on
these three works.

3.1 Coverage vs. Conciseness: Searching for a
Definition of Thematic Relatedness

From (McCoy and Cheng, 1991), we adopt the gen-
eral idea of introducing candidate focus shift tar-
gets that represent coherent continuations of the dis-
course (or in our case, dialogue). To avoid the diffi-
culty of choosing between up to five different node
types that could represent the current focus of at-
tention, we restrict ourselves to just action-type
nodes. This is advantageous in two ways. On
the one hand, actions correspond to verbs, which
are inherently connected to some argument struc-
ture defining the verb’s semantic roles. By querying
available lexical resources like PropBank (Palmer et
al., 2005), we can retrieve the verb’s arguments. The
corresponding semantic roles of the verb yield pos-
sible topics of follow-up questions. Thus, we can
take advantage of existing lexical resources to au-
tomatically find focus nodes that represent follow-
up questions involving any of the semantic roles of
the verb. On the other hand, we conjecture that ac-
tions/verbs form a suitable and robust basis for de-
scribing the (informational) meaning of utterances
in IQA, since most user utterances include a pred-
icate (or an implicit reference to some predicate in
the dialogue history), and syntactic parsers can be
used to extract the main verbs of sentences. Taking
the main verb plus any arguments to represent the
core meaning of user questions seems to be an inter-
esting possibility for automatically detecting certain
informational transitions.

Once we adopt the action-based paradigm for fo-
cus nodes, we can instantiate two of the informa-
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tional transition relations proposed by (Chai and Jin,
2004). In the following, we define our own set of in-
formational transitions, starting from the definitions
in (Chai and Jin, 2004), but addressing their short-
comings mentioned previously.

First of all, we use verbs and their semantic roles,
plus a focus marker, as the only elements needed for
representing the informational perspective, and for
defining our transition types. This allows us to re-
place the somewhat unclear terms from the original
definitions in (Chai and Jin, 2004) with clearly de-
fined ones: verbs and arguments, as defined in Prop-
Bank. Secondly, we parametrize the transitions with
respect to their origin: last user question (U_1), or
last system response (S_1).

We restrict ourselves to transitions where the main
verb either stays the same, or the follow-up question
contains a synonymous verb, or no verb at all (to
account for fragmentary questions). We now define
the resulting three types of informational transitions.

1. Toric EXTENSION (U_1):
Example: Ul: “Can every student use inter-library
loan?” — U2: “Even high-school students?”

1. Either no verb exists in the follow-up question,
or the main verb of the follow-up question is
synonymous to the main verb in the last user
question.

2. Either the roles of the verb are filled differ-
ently by the follow-up (CONSTRAINT REFINE-
MENT), or different roles of the verb are filled
by the follow-up (PARTICIPANT SHIFT).

3. The question focus (the expected answer type)
stays the same.

2. TopIC EXPLORATION (U_1):
Example: Ul: “Can every student use inter-library



loan?” —U2: “How?”

1. Either no verb exists in the follow-up question,
or the main verb of the follow-up question is
synonymous to the main verb in the last user
question.

2. The question’s focus (the expected answer
type) changes.

3. TopriC EXPLORATION (5_1):

Example: Ul: “Can high-school students use the
library?” — S1: “Yes, if they got a library card.” —
U2: “So how do I get it?”

1. The main verb of the follow-up question is syn-
onymous to SOME main verb in the system re-
sponse.

2. Either the roles of the verb are filled differ-
ently by the follow-up (CONSTRAINT REFINE-
MENT), or different roles of the verb are filled
by the follow-up (PARTICIPANT SHIFT).

4 Context-dependent User Follow-up
Initiatives

Besides studying the thematic relatedness of follow-
up questions with respect to previous dialogues,
context-dependency yields a new perspective under
which to analyze follow-ups. We call a follow-
up question context-dependent if it requires any in-
formation from the dialogue context in order to be
fully understandable. Although this might not gen-
erally hold for more complex types of dialogue, we
found that in our corpus of IQA dialogues, every
user follow-up initiative that we consider context-
dependent according to the above definition actually
exhibits some discourse phenomena .

In a nutshell, our study shows that (1) discourse
phenomena can be resolved without global context
(or dialogue history), and (2) the last system re-
sponse S_1 was often the location of the antecedents
of discourse phenomena.

5 Conclusions

‘We showed that in a realistic IQA situation, one third
of the users pose follow-up questions, i.e., go be-
yond a single question per dialogue. We have then
introduced two different perspectives according to
which the follow-ups can be described and further
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categorized: informational transitions and context
dependency. For the latter, we have looked at dis-
course phenomena, and studied how these appear
in IQA dialogue data. As for informational tran-
sitions, we showed that a rather concise definition
is possible if we considerably reduce the scope of
the problem, thus limiting the types of informational
transitions we deal with. A concise definition is re-
quired for letting an IQA system predict informa-
tional transitions automatically, given some local di-
alogue history. The empirical evaluation of this def-
inition shows that it fails in predicting any larger
set of specific follow-up initiatives. The problem
of concisely identifying informational transitions in
IQA seems to be a more complex one, as the variety
of different thematic relations found in our corpus
alone suggests. While in future work we will try to
fine-tune our definitions to further extend the mod-
elling of follow-up initiatives in IQA, on the practi-
cal side we have started to extend our baseline IQA
system for the library information domain by im-
plementing the three proposed definitions of infor-
mational transitions, since they provide a principled
way of extending the system.
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Abstract ¢ Reduced costs of experimental assistants.

We present an approach to decreasing the  collecting speech data poses additional technical
cost of collecting speech data by @) dis-  challenges; the usual problems with data collected in
tributing experimental setups as a download-  his way (reliability; self-selection of subjects; data

able computer program that records dataand - gyajity) also have to be addressed. The methodol-
sends it back to an experiment server and gy we have devised (and implemented) to tackle
b) by ‘re-using’ subjects for instant quality  {hese questions will be described in the next section.
evaluation of the collected data. Asanexam-  Ag a concrete example of an experimental setting
ple of the kind of settings in which this ap- hich profits from this approach we briefly describe

proach can be used, we also shortly describe i, gection 3 a data collection we conducted. We

an experiment we have conducted; evalua-  ¢jose with a discussion of related work (Section 4)
tion of the collected data showed no nega- 4nq planned future work (Section 5).

tive effect of the ‘unsupervised’ collection
method. 2 Distributed Data Collection

1 Introduction In this section we describe the data collection
While running experiments in a distributed fash_methodology and the implementation we have built.

ion over the Internet has become accepted practié,/ge describe both in rather abstract terms here to un-
in Psychology, this methodology has so far rareljerline the generality of the approach; a more con-
been adopted where collection of speech data is ifif€€ xample is to follow in the next section.

1
volved:" In _the work reported here, we Wantedz_l Methodology
to make available the advantages of online experi- _ . _
mentation that are often cited (the following list is ! h€ @pproach is probably best explained by running

adapted from (Birnbaum, 2001)) to speech data coffirough one data coliection cycle. Figure 1 illus-
lection: trates the data flow through the different steps. First

(Step 0), the subject signs up for the experiment, us-

e Freedom from the constraints of testing people at a pat- ;
ticular time and place; ing a form presented by the (web-)server. At this

* Automatic coding and construction of data files (no datgooint, eligibility tests can be executed to filter out
entry by assistants); subjects that do not fit criteria that experimenters

e Opportunity to obtain large and heterogeneous sampIeS'might want to set (e.g., first language, handed-ness,

e Possibility to conduct cross-cultural research withoet th 2 .
expense of travelling; etc.)s Successful applicants then get access to the

1See e.g. (Birnbaum, 2001) for an introduction to conduct- 2A technical factor that limits the pool of potential subfect
ing psychology experiments over the Internet, and the discuis that broadband Internet access (for down- and uploadaxg m
sion below in Section 5 for speech-related work. terials) and a headset (for recording) is required on the sfd

47

Proceedings of the 8th SIGdial Workshop on Discourse and Dialqoages 47-50,
Antwerp, September 20072007 Association for Computational Linguistics



experiment software. The software at this point doefsom other subjects can be presented to the current
not contain the actual experiment script, which isubject, together with an evaluation questionnaire.
only downloaded when the subject starts the actué.g., in a simple recording experiment where the
experimental run (Step 1). The script, which conslides just contain sentences to read out, this phase
trols the stimulus items, the order in which they ardl would consist of presenting to the current subject
presented, and also the data that is to be evaluatdek pairs of slide and recording from a previous sub-
in Part Il (see below), is created on-the-fly by thgect. The task then would be to evaluate the quality
server (Step 2), according to what is needed in thef the recording (or even whether the audio indeed

current state of running the experiment. contains a reading of the sentencg!).
Finishing the run brings us back to Figure 1, and
Subject A Subject B Step 3, where the collected data is sent back to the
experiment server. In this step audio data can op-
tionally be compressed (lossy into MP3 format or
lossless usingz?2) to reduce the amount of data
to be transferred. Step 4 then implements a consis-
@ tency check. If there are criteria to do so, the data
A from Phase | might be pre-checked (e.g., recordings
server whose length deviates significantly from some pre-

set threshold or from the mean of the data collected
so far), and also the evaluation data from Phase I
can be checked. The goal here is to flag all (and
only) “suspicious” data, which can then be checked
by the experimenter, while trying to keep as much of

Il
part I | part Il the data collection as possible running without fur-

Figure 1: The Data Collection Cycle

I ther intervention.

. . I eval eval . . .
slide A slideB ... | In Step 5 finally the cycle starts again for a dif-

i slide A' slideB' - ) s . ) s
I ferent subject, this time with subject A's data being
records records i records records . ) . ,
response A response B I eval A' eval B' ava”able for evaluat|0n 18} B S Phase “

Figure 2: Schematic View of One Run 2.2 Implementation

On a more technical level, the data collection tool

Figure 2 shows schematically one run of the exproper can be seen as a GUI shell that organises the
periment software for one subject. The softwar@advancement of the “slides”, makes available facili-
presents a number of “slides” to the subject antles for recording data (audio, timings, GUI events,
records her reactions. These “slides” can contaietc.), and presents data for quality assessment / eval-
static information (e.qg., text to read out, instructionsiation. The presentation of the actual content of the
to follow, etc.) but can also offer interactive con-slides is left to code that interfaces with this shell.
tent (e.g., puzzles to solve by manipulating itemgWe are currently working out the best way of mak-
or questionnaires); the reactions to record can rangpg this interface as general as possible; the release
from GUI events (e.g. mouse clicks) to audio, andersion will at least include an option for simple dis-
the responses can be timed at sub-second accurgisly of static content and as an example the code
level. (In psychology terminology, a slide would beused in our data collection described below.)
a single stimulus, and the recorded reaction would In Phase I, the tool offers comprehensive audio
be the response.) controls to the user (a position slider and the usual

In Part Il of the experiment, and this to our knowl-tape-deck controls), it also allows to record all use

edge is an entirely novel strategy, material record I a way we're taking our cue here from community web-

the user. However, in 2007 these are not unrealistic requirsites that allow users to evaluate other users’ contrihatand
ments. hence collectively rank them.
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the subject makes of these controls (see discussidnand identify target location) and then to indicate
of our example task below in Section 3.3). the confidence in the action performed. The audio
The tool is implemented in C++ using the QTis presented through the player tool described above
toolkit (for platform independence). It runs on Win-and all actions (pause, repeat, skip) are recorded, as
dows and Linux computers (there currently are probwell as the judgement and the actual correctness of
lems with the audio library on Apple Macintosh)the execution.
which must be equipped with a soundcard and head- Using our tool, we presented 30 scenes for ex-
set. It weighs in at less than 5MB—a tolerableecution and as many scenes for evaluation to 10
download. subjects (native German speakers; mostly university
students). This resulted in 210 minutes of audio ma-
3 An Example: Collecting Puzzle Moves  terjal, 9 sets of evaluation judgements, and a large

gmount of additional behavioural data (actions dur-
initially built the tool; it is at the more complex end ing evaluation): The mean length of one scene de-

of the spectrum of possible uses and hence niceﬁ;ription was 41 sec, with successfully followed de-
illustrates the potential of this strategy scriptions being significantly shorter than those that
couldn’t be followed. Of the latter there were only

3.1 Collecting Data 36 (12%), however, which indicates that the sub-
bects took the recordings task seriously and produced

In this section we describe the setting for which w

The project in which this approach was develope
is interested in modelling a puzzle task at both th¥aluable data. o _
content level, where one of the questions is how ref- AS this is only a very indirect evaluation of the

erence is made to pieces of the puzzle, and at the dg€thodology, we also compared the audio quality of
\Jhe collected recordings with that of recordings from

ordination level, where one of the questions is ho _ _ i
different levels of interactivity shape the conversat€ corpus described in (Schlangen and Fernandez,
tion. 2007), which were collected with similar equipment
(consumer-level headsets) but in controlled studio

- conditions. We used as our metric for comparison
the “speech to noise ratio” as computed bysher
tool from theNIST Speech Quality Assurance Pack-
age® and, quite interestingly, found no significant
differences between the corpora.

In the following we describe briefly two questions
E g we addressed with these data.

3.2 Learning visual semantics

Figure 3: Example Pentomino Scene One of the goals of our project is to bridge natu-
ral language semantics, in particular for referring
More concretely, the task given in the data colexpressions, to perceptual features (along the lines
lection described here consists in describing veef e.g. (Roy, 2002)). To this end, we need a large
bally moves in a Pentomino puzzle game. Figure Bumber of descriptions in our domain. The inter-
presents one example scene; the move that is &tive material we have recorded in a different ex-
be described here involves naming the highlightegieriment (Fernandez et al., 2007) provided some,
piece on the right, describing the necessary rotatideit proved time-consuming to collect, annotate and
operation, and finally describing the target locatioisegment, which is why we set out to collect more
in the outline on the left. This is Phase linthe termi-~ s1.cre's an obvious catch in the methodology we haven't
nology described above. In Phase Il then scenes anentioned yet: when the first subject does her run, therg isn’
presented without highlights and the recorded conf"y data available to evaluate yet. In our case, we sepaated
. . the first subject phase I (collection) and phase Il (asse#3me
mands of other subjects are played, the task being 10 s p4ijaple fromnt t p: / / www. ni st . gov/ speech/ t ool s/

execute these commands (i.e., identify piece, rotatedex. ht m
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in a non-interactive setting. The quality assessmegtracy). As a novel strategy for overcoming reliabil-
data reported above convinced us that the descrijty problems connected to “unsupervised” data col-
tions collected in this way were not worse than thoskections it allows for immediate, equally “unsuper-
collected in the interactive setting. vised” quality assessment. We believe that there is

Using a simple set of visual features and a simpla wide range of use cases in which the tool can sup-
vector-based learning and recognition model implggort collection of spoken data, e.g. recording “think
mented as a baseline (aligning nouns with vectoaoud” protocols for cognitive tasks, collecting do-
of visual features; class / reference of test items dénain utterances with simulated dialogue systems,
termined by minimal distance) already achieved aand many more.

accuracy of 6294. We are currently exploring ways of letting the
S _ _ _ software run in the user’s web-browser (using Flash,
3.3 ‘Interactivity’ in a non-interactive setting or AJAX-style programming) rather than as an in-

In (Fernandez et al., 2007) we ran the puzzle exdependent executable, but first experiments indicate
periment in a fully interactive setting and in onethat this cannot yet provide the timing accuracy and
with restricted interactivity (push-to-talk). The com-reliability that our current tool has reachiéd.

pletely non-interactive material collected here gives

us a good further comparison. We were especiallReferences

interested in the use subjects made Pf the playﬂichael H. Birnbaum. 2001.Introduction to Behavioral Re-

tool to recreate some semblance of ‘interactivity’ search onthe Internet. Prentice-Hall, NJ, USA.

through stopping, skipping and repeating audio ma-
9 pping pping P 9 Alan W. Black and Keiichi Tokuda. 2005. The blizzard chal-

terial. The analysis of this is still going on. lenge — 2005: Evaluating corpus-based speech synthesis on
common datasets. IRroceedings of Interspeech2005, Lis-
4 Related Work bon, Portugal, September.

. . . . . Christoph Draxler. 2006. Web-based speech data collection
As mentioned in the introduction, conducting exper=""_ " S ko IProceedings of  Speech and Computer

iments over the Internet is common practice in PSy- (SPECOM2006)’, St. Petersburg, Russia, June.

chology these days (Blr_nbaum, 2001, IREIpS, 2602.)Raquel Fernandez, David Schlangen, and Tatjana Luch.200
However, these experiments rarely involve audio. pysh-to-talk ain't always bad! comparing different intera
(Font Llitjos and Black, 2002; Black and Tokuda, tivity settings in task-oriented dialogue. Rroceeding of
2005) present experiments on collectiegalua- DECALOG (SemDial’07), Trento, Italy, June.

tions of speech over the Internet; SpeechRecordefiiadna Font Llitjos and Alan Black. 2002. Evaluation and
(Draxler, 2006) offers recording over the Internet coIIe_ction of proper name pronunciations online. Rro-
much like our system, but with no provisions for ceedings of LREC2002, Las Palmas, Canary lslands.
recording other behavioural measures like reactioplf-Dietrich Reips. 2002. Standards for internet-basepegx
times. The combination of experiment / collection ™Menting.Experimental Psychology, 49(4):243-256.

with instant user-based quality assessment that op&b K. Roy. 2002. Learning visually-grounded words and syn-
approach offers is, to our knowledge, novel. ;’;;g fes(g')?”e description tas€omputer Speech and Lan-

5 Conclusions and Future Work David Schlangen and Raquel Fernandez. 2007. Speaking
through a noisy channel - experiments on inducing clarifi-
We have presented an implemented methodology for cation behaviour in human-human dialogue Phoceedings

distributed collection of speech data. The imple- O 'nterspeech 2007, Antwerp, Belgium, August.
mented tool is flexible in the kind of stimuli that can

be presented (static and dynamic) and can record au-

dio and other behavioural data (with sub-second ac-

®More detailed results will hopefully soon be reported. 8Acknowledgements:The work reported here has partially

‘See also http://psych. hanover.edu/ ... been funded by EU (Marie Curie Programme) and DFG (Emmy
resear ch/ exponnet. ht m for an up-to-date list of open Noether Programm). Thanks to the anonymous reviewers for
experiments. their helpful comments.

50



Beyond Repair — Testing the Limits of the Conversational Repir System

David Schlangenand Raquel Fernandez
Institute for Linguistics
University of Potsdam, Germany
{das| raquel }@ i ng. uni - pot sdam de

Abstract the controlled induction of understanding problems.

The remainder of the paper is structured as fol-
lows. In Section 2 we describe the method used in
our experiment, the results of which are then pre-
sented in Section 3. A general discussion and con-
clusions close the papér.

We report on an experiment on the effects of
inducing acoustic understanding problems
in task-oriented dialogue. We found that de-
spite causing real problems w.r.t. task per-
formance, many instances of induced prob-
lems were not explicitly repaired by the di- 3 The Noisy Channel Experiment; Method
alogue participants. Almost all repairs re-
ferred to the immediately preceding utter- 2.1 Overview
ance, with problems in prior utterances left  The experiment consisted in a voice-only coopera-
unacknowledged. Clarification requests of tive task with two participants: an instruction giver
certain forms were in this corpus more likely  (IG) had to describe in order of the numbering the
to trigger reformulations than repetitions,  placement of pieces on a puzzle (see Figure 1) to an
unlike in different settings. instruction follower (IF), who only had access to the
1 Introduction unsolved puzzle with unnumbered pieces.

Clarification requests (CRs), i.e., utterances that re-
quest repair of understanding problems, are typically

inter alia, (Purver, 2004; Rodriguez and Schlangen,
2004)). While much knowledge about the use of this
utterance type has been gathered this way, there are
principled limitations to this approach:

e If there is a CR, the problem that caused it must Figure 1. Solution and Outline
be inferred from its form and the original speaker’s
reply, as it cannot be directly observed. In half of the runs we manipulated one audio-

e As it is not obvious for the annotator whether therehannel by replacing (in real-time, at random points)
has been a problem or not, strategies dopiding all signal with noise, effectively blocking out the

to ask for clarification cannot be studied straightforspeech for the hearer. Around 10% of one speaker’s
wardly. The work described here is the second part of an exper-

¢ The effectiveness of the repair system can only inment whose first part has been described in (Schlangen and
directly be studied. Fernandez, 2007). The part described here shares theagener
. set up with that other work (i.e., introduction of noise ineon
In this paper, we present the results of an eXperfihannel), but uses different materials (a different taskl) @d-
ment where we addressed these limitations througty, and has a different focus for the analysis.
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signal was removed in this way. The random, auenging to the placement of one piece. We then
tomatic placement of noise meant that we had nannotated théransition statusat move boundaries,
control over which part of the utterance exactly wasplit into groundi ng st ate, where a) the partici-
masked, but we judged this preferable over morpants can be explicitlgonfidentabout their place-
controlled manual placement of noise, which necment (“OK, I've got it. Next one!”); b) ratheun-
essarily would have disabled real-time interactivityconfident(“Well, I'll put it there. Let's see what
The design is related to (Skantze, 2005), where disrappens.”); c¢) they can put the current sub-task
tortion was introduced through a simulated ASR, alhold and go back to a previous piece; d) which
though not in real-time. in turn then can be moved and placed with any of
We expected the manipulation to have an effedhese previous grounding outcomes, or carnrdse
on the effort needed to complete the task and each ednfirmed andsuccess, which we checked on the
its steps (placing individual puzzle pieces). Furthenideo recordings. Values for this feature aseic-
and more specifically, given previously observeaess failure, not moved(for moves that revisited
correlations between CR forms and problem typegreviously placed pieces, but did not move them),
we expected an increase in use of CR forms prevandon holdfor moves that are on hold while a pre-
ously connected to clarifying acoustic problems. Asious piece is repaired.
our design tells us exactly which part of the stimulus Within the moves, we marked regions belonging
was problematic, we also wanted to explore relation®gether thematically, and annotated them with the
between this and whether, and if so, how clarificafollowing categories: a) identification of th@ece
tion was requested. that is to be placed; b) specifying ibsientationand
c) location on the grid; other common dialogue ac-
tions were d) talking about thtask setugf‘l am sup-
26 subjects (13 pairs) participated in the experimenposed to do these in order”); e) tgeunding status
All were native English speakers (from a variety of(“well, let's see what happens”); f) notingroblems
native countries) that responded to a public call fo{*This doesn’t work. Something must be wrong.”);
participation. Half of them where college students)) giving adescription of the statef the board (“To
while the other half had a range of different occupathe left | have the Swiss cross, and nextto it...”). Ev-
tions. The age range was from 20 to over 40. Nonerything else was coded asdther.
of the subjects reported any hearing difficulties. Finally, we identified utterances that were CRs
The pairs of subjects were splitinto IG and IF andaind coded them with (Rodriguez and Schlangen,
placed in different sound-proof rooms, connected b004)’s scheme; for reasons of space, we refer to
an audio-line via headsets. They were then septiat paper or to (Schlangen and Fernandez, 2007)
rately briefed on the task. IG’s solution was disfor a description of the values.
played on a computer screen, IF’s puzzle board was
implemented in a computer program. All audio was Results
recorded; in the runs with the manipulation, both thg 1 Recordings
audio before adding noise and after adding noise was

recorded. IF's computer screen was video-taped. 1he 13 experimental runs resulted in 9 usable
recordings, as two runs had to be excluded be-

2.2.1 Data Analysis cause of equipment failure and two because subjects

For analysis, the recordings were transcribed ugborted the task or didn't follow instructions.
ing Praat (Boersma, 2001) and annotated usin:? _ _
MMAX (Miiller and Strube, 2001); the annotators>-2 Dialogue-based Analysis
had access to both the textual transcripts and the @bie pairs in the noise condition finished the task in
dio material. an average 1130 seconds, producing in average 653
We segmented the recordings intiterancegfol-  utterances; the pairs in the control group needed 618
lowing the guidelines in (Meteer and Taylor, 1995))seconds and 422 utterances. These differences are
and moves which we defined as all utterances bestatistically significant (Welch’s t-test; t=2.7, df=4.7,

2.2 Procedure
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success  failure nanoved onhold noise | no noise| signf.
noise 57.14% 17.86% 10.71% 14.29% all | 55/45| 57743
no-noise  89.19% 5.40% 2.70% 2.70% wrong | 54/46| 68/32 | *
corr. | 56/44 | 56/44
Iconf | 54/46 | 74726 | ***
conf | 57/43| 57/43

confid unconf ophold reconf
noise 61.90% 9.52% 21.43% 7.14%
no-noise  94.60% 0% 5.40% 0%

Table 1: Success of Moves. in Percent of all Movegable 2: Ratio IG/IF contributions, by move success

(top) and Grounding Status at Move-Transitions
3.4 Utterance-based Analysis

The recordings of the noise group have been seg-

for utterances). There are however no si nificantdif:n ented into 3249 utterances, those of the control
' g group into 1607. In the noise group, there were 561

ferences between the groupg’j w.r.t. how much utterances that contained noise, i.e., 30.1% of all IG

time was spent on different sub-tasks like identify- . .
. . . T ) utterances (only those can contain noise). Only 28 of
ing pieces or placements: the pairs in the noise co

- - 0 . . pn .
dition don’t do different things, they just do the sam(;t’hose (= 5.0%) tngger'ed a clarification request (that
X is, were coded as being the antecedent of one). In
things for longer / more often. .
the noise group, there was only one CR that was not
triggered by a noise utterance; in the control group
there were 8 CRs altogether.
The majority of turns (both of IG and IF; turn
Table 1 shows the distributions of move outcomesqeflned as sequence of utterance; before Spe?ker
. . . . hange), was one utterance long, this tendency being
The majority of moves in the no-noise condition en i th | o
with confident and successful placement. In co stronger in the control group (61.8% compared to
' "55.6% in the noise group; difference in length distri-

trast, in the noise condition only just over half of,_ """, "~ 9

ution is significant,“, p<0.001). However, there
the moves are actually successful, and consequen

ere turns of length up to 13 utterances.

there are more moves that are repairs of previous L . .
In all utterances within IG turns in the noise group

mistakes. The differences between the groups are ! -
significant 2, for both p<0.01) (i.e., at all distances from the speaker transition),

noise events were equally likely to occur. However,
The mean length of moves in terms of utteranceg noise event in an utteranatthe transition point—
is very similar for both groups (28.5 for noise groupihat is, in either the last utterance of a longer turn or
30.81 for control group), and indeed the differencen a single utterance turn—had a chance of 8.33% of
is not significant: there seems to be a constant Umggering a CR. A noise event one utterance away
per limit on how much time is spent on each Moverom the transition point only has a 0.87% likelihood
before the players move on, confidently or not.  of triggering a CR. There are no CRs in the corpus

Table 2 shows the ratio of contributions by IGWhose antecedent is further away.

and IF within each move, averaged over all moves Lastly, we turn to a more fine-grained analysis of
and separated accordingdmunding statusndde- the clarification requests that occurred. We com-
scription of state e.g., the “54/46” in the second pared the distributions of CR-features in this corpus
line means that 54% of contributions in moves irwith that resulting from the the other task done in
the noise group that ended in a wrong placemefifie same setting, where items like strings of num-
came from IG and 46% from IF. Problems in a movéders and sentences were read from a screen by IG
that lead to an unsuccessful conclusion and/or nofier the IF to write them down (see (Schlangen and
confident grounding only in the control group had~ernandez, 2007)).

an effect on the contribution ratio, leading to more What is interesting here is that despite the manip-
contributions by IG. (The differences are significantulation being the same, there were significant differ-
x? tested, * p< 0.05, *** p<0.001.) ences in the CRs that occurred: in the puzzle task

p<0.05 for length in seconds; t=2.8, df=7.6;(.05

3.3 Move-based Analysis
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of the present paper, there were significantly morkevel (Clark, 1996) and hence treat the CRs as being

CRs that did not point at the exact problem locatiosuch. Or, given the spontaneous, rather unplanned

(ext ent ), more CRs that did not present a hypothenature of these also often rather long description

sis severi ty), fewer CRs constructed through rep-utterances, there are memory limitations that make

etition of material (el - ant ec), and fewer replies verbatim responses harder.

to CRs that were repetitions, and more reformula- To summarise, our results show that a) clarifica-

tions or elaborationsafswer ). (All differences were tion is not automati¢c but underlies complex con-

tested with ay? test, p<0.01.) siderations about the value of the missing informa-

tion; b) CR forms are interpreted in a (task-)context-

dependent way.

We now briefly summarise these observations: Pairs In future work, we will look in more detail at the

in the noise condition needed significantly longer talialogue acts of the utterances at turn-boundaries.

finish the task, and this was not due to higher effofiVe also plan to test task-performance in the same

for repairing understanding problems, but rather teetting, but with the IF instructed to follow a clarifi-

higher effort needed for repairing task-level prob<ation policy of ‘always interrupt and clarify if there

lems, i.e. wrong placements. In fact, while therés noise’?

were more repairs in the noise condition than in the

control condition, most induced problems went unReferences

acknowledged — and as the performance diﬁerenc%ﬁul Boersma. 2001. Praat, a system for doing phonetics by

show, it seems to be valuable information that they computer.Glot International 5(9—10):341-345.

MISS. . . ) . Herbert H. Clark. 1996Using Language Cambridge Univer-
That CRs typically clarify the immediately pre- sity Press, Cambridge.

ceding utte,rance has been observed before (Pur_\/f%irie Meteer and Ann Taylor. 1995, Dysfluency

2004; Rodriguez and Schlangen, 2004). Our setting annotation stylebook for the switchboard corpus.

allows us to see the strength of this constraint: even http://www.cis.upenn.edu/bies/manuals/DFL-book.pdf.

if there are problems with earlier utterances withirthristoph Mller and Michael Strube. 2001. MMAX: A Tool

a turn—and we know that they are there, as we pro- for the Annotation of Multi-modal Corpora. IRroceedings

duced them—, they are a lot less likely to be repaired of the 2nd IJCAI Workshop on Knowledge and Reasoning

. in Practical Dialogue Systemgages 45-50, Seattle, USA,
than those in the last utterance of a turn. We specu- august.

Iate.that IF judgeq the information gain they WO[_JI atthew Purver. 2004.The Theory and Use of Clarification

achieve by clarifying too low to take the step to in-  Requests in DialoguePh.D. thesis, King's College, Unver-

terrupt IG’s turns. They rather settled on a more sity of London, London, UK.

mdependent strategy with more re“ance_ on terT[Ekepa Joseba Rodriguez and David Schlangen. 2004. Form,

tive placements (as shown by the grounding status), intonation and function of clarification requests in german

which for thi k turn [ ful task-orl_ented spoken dialogues. Fmoceedlngs_ of Catalog

ch for this tas. w ,ed out to be less successfu (SembDial04)pages 101-108, Barcelona, Spain, July.

than understanding 1G’s commands. It seems that

there needs to be a baseline of understanding befdp@vid Schlangen and Raquel Fernandez. 2007. Speaking
| | clarification i tt ted through a noisy channel - experiments on inducing clarifi-

utterance- evel clarincation s even altempted. cation behaviour in human-human dialogue Proceedings
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forms Of_ the CRs that are_ present are not S'_gmﬂGabriel Skantze. 2005. Exploring human error recoverytestra
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transfer results
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Abstract not sure what the average WER is. So, you want to

know how well the policytransfersbetween operat-
ing situations. Likewise, perhaps you have trained
a policy on a data set of cooperative users, but you
want to know how that policy will behave in contact
with less co-operative users. So, you want to know
how useful the policy is with different users.

These transfer issues are important because when
deploying a real dialogue application we will not
know these parameters exactly in advance, so we
cannot train for the exact operating situation, but
we want to be able to learn robust dialogue policies
which are transferable to different noise/user/time-
penalty situations, which we do not know about pre-
cisely before deployment.

Once a dialogue strategy has been learned
for a particular set of conditions, we need
to know how well it will perform when de-
ployed in different conditions to those it was
specifically trained for, i.e. how robust it is
in transferto different conditions. We first
present novel learning results for different
ASR noise models combined with different
user simulations. We then show that policies
trained in high-noise conditions perform sig-
nificantly better than those trained for low-
noise conditions, even when deployed in
low-noise environments.

1 Introduction

For any dialogue system, a major develophl Relatedwork

ment effort is in designing thealialogue policy The issue of policy transfer has been partially ex-
of the system, that is, which dialogue acyplored before as part of recent work on types of
tions (e.g. ask(destinationcity) or user simulations (Schatzmann et al., 2005). Here,
explict confirn) the system should perform. the authors explore how well policies trained on dif-
Machine-learning approaches to dialogue policieferent types of user simulation perform when tested
have been proposed by several authors, for examphath others. They train and test on three approaches
(Levin et al., 2000; Young, 2000; Henderson eto user simulation: a bigram model (Eckert et al.,
al., 2005). These approaches are very attractive997), the Pietquin model (Pietquin, 2004), and the
because of their potential in efficient developmentevin model (Levin et al., 2000). They show that
and automatic optimization of dialogue systems. strategies learned with a “poor” user model can ap-
We will address the issue of whether policiepear to perform well when tested with the same user
trained for one dialogue situation can be used sucnodel, but perform badly when tested on a “better”
cessfully in other dialogue situations (Paek, 2006).user model. However, the focus of (Schatzmann et
For example, perhaps you have trained an optal., 2005) is on the quality of the user simulation
mal policy for an operating environment where thdechniques themselves, rather than robustness of the
word-error rate (WER) is 5%, but you want to de-learned dialogue policies. We will focus on one type
ploy this policy for a new application where you areof stochastic user simulation but different types of
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users and on different environmental conditions. However, for our noise modelling, the

(Frampton and Lemon, 2006) train a policy forconpl eti onVal ue of a dialogue is defined
4-gram stochastic user simulation and test it on a %&s the percentage probability that the user goal is
gram simulation, and vice-versa, showing that th# the actual result set that they are presented with.
learned policy works well for the 2 different simula- See (Rieser and Lemon, 2007) for full details. In
tions. However, these simulations are trained on theur experiments Low Noise (LN) means that there
same dataset (Walker et al., 2001) and thus do nist a 100% chance of confirmed slots being correct
simulate differentypesof user or noise conditions. and an 80% chance of filled (but not confirmed)
Similarly (Henderson et al., 2005) test and train orslots being correct. In a real application domain we
different segments of the COMMUNICATOR data,will not know these probabilities exactly, but we
so the results presented there do not deal with thegant to be able to learn dialogue policies which are
issue of policy transfer. (Lemon et al., 2006) showransferrable to different noise situations, which we
that a single policy trained on a human-machine dido not know about precisely before deployment.
alogue corpus also performs well with real users o£2 Simulated users

a dialogue system.
We use 2 probabilistic user simulations: “Coopera-

2 Theexperimental set-up tive” (C) and “Uncooperative” (U). Each simulated
_ ) _ _ _user produces a response to the previous system di-

We experiment with a 3-slot information-seekinga|ogue move, with a particular probablility distribu-
system, resulting in 8 binary state variables (1 fofion conditioned on the previous system move. For
whether each slot is filled, 1 for whether each Sloéxample, if the system asks for slotl (e.g. “what
is confirmed, 2 for whether the last user move Wagne of food do you want?”) the cooperative user
‘yes” or “no”), resulting in 256 distinct dialogue regponds to this according to the a probability distri-
states. There are 5 possible system actions (eglytion over dialogue acts estimated from the COM-
implicit-confirm, greet, present-info). MUNICATOR corpus (Walker et al., 2001).

We use the SHARSHA Hierarchical Reinforce- |y contrast, the “Uncooperative” user simply has
ment Learning algorithm of REALL (Shapiro and 3 fiat probability distribution over the all the possi-
Langley, 2002) to learn over the policy space for obpje gialogue acts: it is just as likely to be silent as
taining 3 information slots. For all combinationsit s to supply information. This is not intended to
of Turn Penalty, noise, and user models we traie 3 particularly realistic user simulation, but it pro-
each policy on 32,000 iterations (approx. 8000 digjges us with behaviour that is useful as one end of

alogues). We then test each policy (including thg spectrum of possible behaviours.
hand-coded policies) over 1000 dialogues in the

conditions for which they were trained. Statistical?.-3 Basdline hand-coded policies

significance is measured by independent samplestthe hand-coded dialogue policies obey the same
tests, over 1000 test dialogues. commonsense constraints as mentioned above but

We use the hierarchical structure of REALLthey also try to confirm all slots implicitly or ex-

(Shapiro and Langley, 2002) programs to encodglicitly (based on standard rules) and then close the
commonsense constraints on the dialogue problemialogue, except for cases where particular dialogue
while still leaving many options for learning. Thelength thresholds are surpassed. For example, if the
hierarchical plans encode obvious decisions such asirrent dialogue length is greater than 10 the hand-

“ never confirm already confirmed slots”. coded policy willimmediately provide information.

2.1 Reward function 3 Resultsversus hand-coded policies

We use a reward function which incorporates nois . .

modelling, as in (Rieser and Lemon, 2007). Foreacﬁ] genera!, Iearnlng.tak.es about 500 dialogues b.e-

dialogue we have, as is now commonly used: fore a policy of confirming as many slots as possi-

reward = conpl etionVal ue ble in the shortest time is discovered. Early in the
- di al ogueLengt h=Tur nPenal ty training runs the learner experiments with very short
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dialogues (smaller length penalties), but usually renoves, which is less than the hand-coded length
ceives less completion reward for them and so learriereshold (10). The learned policies, on the
how to conduct the dialogue so as to trade-off besther hand, are able to discover their own local
tween turn penalties (TP) and completion value. Fdength/completion value trade-offs, and we see that,
example, in the High Noise, Cooperative user, turas expected, average dialogue length decreases as

penalty 5 case, after a policy is discovered, testingjurn Penalty increases.

the learned policy in the same situation (but with

learning and exploration turned off), the average dia- Learned Policy Hand-coded Policy
logue reward is 49.94 (see figure 1, plotting average! P | Av. Reward| Length | Av. Reward| Length
reward every 50 test dialogues, and table 1). 0 85.707 8.71 72.43 6.86
1 76.31** 9.36 64.62 6.80
Dialogues-Rewards for HNCoopPen5 5 49,94 ** 7.18 36.43 6.95
- 10 4.16 4.05 1.77 6.89
1 e : 1120 | -37.68 | 2.99 -63.76 6.80
earned Policy

*Hand-coded Policy

| Table 1: Results: Cooperative user, High Noise (**=
| significant atp < .01)

Rewards
5
& -
e
é
o
gy

K  ; 1 Similar results hold for the other combinations of
' = 7 Noise, User type, and Turn Penalty.

4 Transfer results

10 |

Y wm  m m  w  w  m  w  m am wln the following experiments we chose to inves-
Dinlagues tigate the representative TP=5 case. We thus

have 2 degrees of variation: user type (Coop-
T%rative/Uncooperative, C/U), and noise conditions
(High/Low, H/L). Testing all combinations of these

) ) learned policies, for 1000 dialogues each, we ob-
Contrast this now with the performance of thetained the results shown in table 5.

hand-coded policy in the same situation (high noise,

Figure 1: Testing: High noise, cooperative user,
5: Learned versus Hand-coded policy

cooperative user, TP=5), over 1000 test dialogues, Training

also shown in figure 1. The average reward for | Testing CL | CH | UL | UH

the hand-coded policy is 36.43 in these conditions, | C,L 73.66 | 74.72 | 54.86 | 54.48

which means that the learned policy provides arela- | C,H 49.64 | 50.08 | 21.07 | 25.36

tive increase in average reward of 37% in this case. | U,L 23.67 | 27.84 | 37.62 | 39.37

This result is significant gi < .01. UH 09.99 | 14.40 | 08.93 | 10.22
Table 1 shows all results for the High Noise, Co- | Average:| 39.24 | 41.76 | 30.62 | 32.36

operative user case, for turn penalties (TP) ranging
from O to 20. Here we can see that the learner is
able to develop policies which are significantly bet-

Table 2: Transfer results for learned policies

ter than the hand-coded policy. The exception is the Looking at table 2, we can see, for example, that

TP=10 case, where the learned policy is sighifi-
cantly better than the handcoded one=£ .25). For

training with a Cooperative user in Low noise (1st
column) and testing with the same conditions (1st

the significant results, the average relative increagew) results in an average dialogue reward of 73.66.
in reward for learned policies &3.4% However, taking the same trained policy (C,L 1st
Considering the average dialogue lengths in eaatolumn) and testing it with a Uncooperative user in
case, note that the hand-coded policy is able to coritigh Noise conditions (row 4) results only in an av-
plete the dialogues in, on average, fewer than &rage reward of 9.99. We would expect that the lead-
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ing diagonal of this table should contain the highegproperties. We showed that policies trained in high-
values (i.e. that the best policy for certain conditionsioise conditions perform significantly better than
is the one trained on those conditions), but surprighose trained for low-noise conditions, even when
ingly, this is not the case. For example, training @eployed in low-noise environments.

C,H policy and testing it for C,L gives better results Acknowledgements This work is funded by the
than training for C,L (and testing for C,L). This is EPSRC (grant number EP/E019501/1) and by Scot-
significant atp < .05. This shows that a C,H policy tish Enterprise under the Edinburgh-Stanford Link.
in fact transferswell to C, L conditions.

Looking at the 4 policies C,L, C,H, U,L, and U,H
we can see that C,H has the best transfer propertidd: Eckert, E. Levin, and R. Pieraccini. 1997. User mod-
Interestingly, C,H is the best policy for all of the test- elling for spoken dialogue system evaluation.Riro-

X A ceedings of ASRUpages 80-87.

ing conditions C,L, C,H, and U,H. But should we

then train only in High noise conditions? ConsidefMatthew Frampton and Oliver Lemon. 2006. Learning
the following set of results (highlighted in bold font more effective dialogue strategies using limited dia-
in table 5) logue move features. IRroceedings of ACL

. . . Henderson, O. Lemon, and K. rgila. 2005. Hy-
train C,H and test C,> train C,L and test C,L ’ br?d geeii(f)or’cgmeﬁt/guﬁ);v?sed Iii\?nging for%?glogui

train C,H and test C,1#- train C,L and test C,H Policies from COMMUNICATOR data. InJCAI
train U,H and test U,1>> train U,L and test U,L workshop on Dialogue Systems

train U_’H_and test U, > train U’L_ a-nd testU,H 0. Lemon, K. Georgila, and J. Henderson. 2006.
This indeed shows that it is better to train in High  Evaluating Effectiveness and Portability of Reinforce-
noise conditions than low noise, no matter what con- ment Learned Dialogue Strategies with real users: the

ditions you deploy in. These results are all signifi- TALK Townlnfo Evaluation. InProc. ACL/IEEE SLT

cant atp < .05 except for the case “train C,H andE. Levin, R. Pieraccini, and W. Eckert. 2000. A stochas-

test C,H> train C,L and test C,H"{ = .37). This tic model of human-machine interaction for learning

means that for cooperative users, training in High dialog strategies.|EEE Transactions on Speech and
. L . Audio Processing3(1):11-23.

noise isas good adraining in Low noise. These re-

sults show that, when training a policy for an operat¥im Paek. 2006. Reinforcement learning for spoken di-

ing environment for which you don’t have much data &/0gue systems: Comparing strengths and weaknesses
for practical deployment. IiDialogue on Dialogues

(i.e. the developer does not yet know the noise and Interspeech2006 - ICSLP Satellite Workshop.
user characteristics) it is better to train and deploy

a High noise policy, than to deploy a polic traineoO"Vier P.ietquin. 2004.A Framework for Unsupe.rviseld

for L?Jw noisepconc)ullitions Similr;r )r/esurits s)r:ow that Learning of Dialogue Strategies Presses Universi-
o ] ' X taires de Louvain, SIMILAR Collection.

policies trained on uncooperative users perform well

when tested on cooperative users but not vice vers¥. Rieserand O. Lemon. 2007. Learning dialogue strate-
gies for interactive database searchlniterspeech
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Abstract

We propose dynamically selecting n for n-
best outputs returned from a dialog system
module. We define a selection criterion
based on maximum drop among probabili-
ties, and demonstrate its theoretical proper-
ties. Applying this method to a dialog-act
detection module, we show consistent
higher performance of this method relative
to all other n-best methods with fixed n.
The performance metric we use is based on
ROC area.

1 Introduction

Recent years have seen increasing application of
machine learning in dialog systems. From speech
recognizer, to natural language understanding and
dialog manager, statistical classifiers are applied
based on more data available from users. Typi-
cally, the results from each of these modules were
sent to the next module as n-best list, where n is a
fixed number.

In this paper, we investigate how we can dynami-
cally select the number n for n-best outputs re-
turned from a classifier. We proposed a selection
method based on the maximum drop between two
adjacent probabilities of the outputs, where all
probabilities are sorted from the highest to lowest.
We call this method n*-best selection, where n*
refers to a variable n.

We investigated the theoretical property of n*-best,
particularly its optimality relative to the fixed n-
best where n is any fixed number. The optimality
metric we use is ROC (Receiver Operating Charac-
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teristic) area, which measures the tradeoff of false
positive and false negative in a selection criterion.
We test the empirical performance of n*-best vs. n-
best of fixed n for the task of identifying the confi-
dence of dialog act classification. In two very dif-
ferent datasets we use, we found consistent higher
performance of n*-best than n-best for any fixed n.

This paper is the first attempt in providing theo-
retical foundation for dynamically selecting n-best
outputs from statistical classifiers. The ROC area
measure has recently been adopted by machine
learning community, and starts to see its adoption
by researchers on dialog systems.

Even though n*-best method is demonstrated here
only for dialog act detection domain, it can be po-
tentially applied to speech recognition, POS (part-
of-speech) tagging, statistical parser and any other
modules that return n-best results in a dialog sys-
tem.

2 Dynamically selecting n for n-best out-
puts

The n-best method has been used extensively in
speech recognition and NLU. It is also widely used
in machine translation (Toutanova and Suzuki,
2007). Given that the system has little information
on what is a good translation, all potential candi-
dates are sent to a later stage, where a ranker
makes a decision on the candidates. In most of
these applications, the number of candidates n is a
fixed number. The n-best method works well when
the system uses multi-pass strategy to defer deci-
sion to later stage.

2.1

We call n*-best a variant of n-best where n is a

n*-best Selection
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variable, specifically the n*-best method selects
the number of classes returned from a model, such
that the number n* satisfies the following property:

n*=argmax(p, - P,.;) 1)

where p and p,,, are the probabilities of class n

and class n+1 respectively. In other words, n* is
the cut-off point that maximizes the drop p, — p,,,; -

2.2

We have the following observation: When the out-
put probabilities are ranked from the highest to the
lowest, the accumulated probability distribution
curve is a concave function.

Theoretical Property of n*-best

We further show that our derivation of n* is
equivalent to maximizing the second derivative of
the accumulative probability curve, when the num-
ber of classes approaches infinity. In other words,

n*=argmax(-P"(n+1)),

Due to the page limit, we omit the proof here.

3 Evaluation Metric

To compare the performance of the n*-best method
to n-best selection of fixed n, we need to define an
evaluation metric. The evaluation is based on how
the n-best results are used.

3.1 The Task: Dialog Act Detection

The task we study here is described in Figure 1.
The dialog-act classifier uses features computed
from the parse tree of the user utterance to make
predictions on the user’s dialog acts.

The n-best results from the dialog-act classifier are
sent to the decision component that determines
whether the system is confident about the result of
the classifier. If it is confident, it will pass the re-
sult to later stages of the dialog system. If it is not
confident, the system will respond “I don’t under-
stand” and save the utterance for later training.

The decision on how confident we are about inter
preting a sentence translates into a decision on
whether to select that sentence for re-training. In
this sense, this decision problem is the same as
active leaning.
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Sentence Resnonse
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Dialog-act Dialog
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Re-train |4 labeling [« Database

Figure 1. Detection Dialog Act with Confidence

3.2

Let S be the collection of data points that are
marked as low confidence and will be labeled by a
human. Let N, be the set of all new data. Let h be
the confidence threshold and n the number we re-
turn from n-best results. We can see that (Figure 2)
S is a function of both n and h. For a fixed h, the
larger n is, the smaller S will be.

Error Detection as Active Learning

N2

Figure 2 The Decreasing set of S as n increases

Our goal is to choose the selection criterion that
produces a good S. The optimal S is one that is
small and contains only true negative instances.

In active learning research, the most commonly
used evaluation metric is the error rate (Tur et al,
2005; Osugi et al, 2005). The error rate can also be

, wWhere TP is the number
P+FP

of true positives and FP is the number of false
positives. This measure does not capture the trade
off between giving the user wrong answers (false
positive) and rejecting too many properly classified

written as 1—



user utterances (false negatives). We find a better
measure that is based on ROC curve.

3.3 ROC curve and ROC Area

ROC (Receiver Operating Characteristic) curve is
a graphical plot of the fraction of true positives vs.
the fraction of false positive. ROC curve is an al-
ternative to classical machine learning metrics such
as misclassification rate.

An ROC space is defined by FPR (False Positive
Rate) and TPR (True Positive Rate) as x and y axes
respectively, where

FPR:l—l, R:7TP
FP+TN TP+FN

The best possible prediction method would yield a
point in the upper left corner or coordinate (0,1) of
the ROC space, representing the case in which all
only true positives are returned by a particular
model. The 45 degree diagonal line is called the
no-discrimination line and represents the classifier
that returns the same percentage of true positive
and false positive.

TPR
A

ROC
‘ No-Discrimination line

‘ OC Area

» FPR
Figure 3. ROC curve and ROC area

4  Experimental Results

We tested the performance of our n*-best method
on two datasets. The first dataset contains 1178
user utterances and the second one contains 471
utterances. We use these two sets to simulate two
situations: Case 1, a large training data and a small
testing set; Case 2, a small training data and a
large testing set.

4.1 Experimental data

All utterances in both datasets were hand labeled
with dialog acts. There can be more than one dia-
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log act associated with each utterance. An example
of training instance is: “(a cheap restaurant),
(Query:restaurant, Answer, Revision)” the first
part is the user utterance, the second part (referred

as L) is the set of human-labeled dialog acts. In

total, in the domain used for these tests, there are
30 possible user dialog acts.

We compared n*-best with fixed n-best methods
with n from 1 to 6. For each of these methods, we
calculate TP, FP, TN and FN for values of the
threshold h ranging from 0.1 to 1 in steps of 0.05.
Then we derived TPR and FPR and plotted the
ROC curve.

Figure 4 shows the ROC curves obtained by the
different methods in Case 1. We can see that the
ROC curve for n*-best method is better in most
cases than the other methods with fixed n.

Figure 5 shows the ROC curves in Case 2, where
the model is trained on a small dataset and tested
on a large dataset. We can see that the ROC curves
for all methods are nearer to the non-
discrimination line than in the previous case. This
suggests that the classifier has a lower discrimina
tion quality given the small set used for training.
However, the n*-best method still out-performs the
other n-best methods in the majority of scenarios.

ROC curves for Case 1

7

. T T T T
0 0.2 0.4 EPR 0.6 0.8 1

Figure 4. ROC curves from n*-best and n-best

To get a summary statistics, we calculated the size
of the ROC area. Figures 6 and 7 plot the size of
the ROC area of the various methods in the two
test cases. We can see that n*-best out-performs all
other n-best methods.



ROC curves for Case 2

Figure 5. ROC curves obtained by n* and n-best .

Areas under ROC-curves for Case 1
0.35
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Figure 6. ROC Area for n*-best and n-best
(n* is represented as n=0)

Areas under ROC-curves for Case 2

Area

0 1 2 3 4 5 6 7
n

Figure 7. ROC Area for n*-best and other n-best
methods (n* is represented as n=0)

5 Conclusions

We propose dynamic selecting n for n-best outputs
returned from a classifier. We define a selection
criterion based on maximum drop among prob-
abilities, and call this method n*-best selection.
We demonstrate its theoretical properties in this

paper.

62

We measured the performance of our n*-best
method using the ROC area that has been designed
to provide a more complete performance measure
for classification models. We showed that our n*-
best achieved better ROC curves in most cases. It
also achieves better ROC area than all other n-best
methods in two experiments (with opposite proper-
ties).

Our method is not limited to detection of dialog
acts but can be used also in other components of
dialog systems.
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Abstract

This paper presents and evaluates a
behavior-based approach to dialogue
management, where a system’s complete
dialogue strategy is viewed as the result
of running several dialogue behaviors in
parallel leading to an emergent coherent and
flexible dialogue behavior. The conducted
overhearer evaluation of the behavior-
based conversational recommender system
CORESONG indicates that the approach
can give rise to informative and coherent
dialogue; and that a complete dialogue
strategy can be modeled as an emergent
phenomenon in terms of lower-level au-
tonomous behaviors for the studied class of
recommendation dialogue interaction.

1 Introduction

The purpose of a recommender system is to produce
personalized recommendations of potentially useful
items from a large space of possible options that is
hard to manually browse or search. Conversational
Recommender Systems (CRSs) approach user pref-
erence acquisition from a dialogue point of view,
where preferences are captured and put to use in
the course of on-going natural language dialogue.
The approach is motivated by its aim to make in-
teraction efficient and natural (Burke et al., 1997;
Thompson et al., 2004), to acquire preferences from
the user in a context when she is motivated to give

This work is supported by the Swedish National Graduate

School for Language Technology (GSLT), and Santa Anna IT
Research.
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them (Carenini et al., 2003), as well as to facilitate
exploration of the domain and the development of
the user’s preferences (Wérnestal, 2005). A CRS’s
dialogue strategy to achieve these aspects of the in-
teraction is thus crucial for its performance and us-
ability. In particular, we are interested in explor-
ing robust and emergent factual and preferential di-
alogue with recommendation capabilities.

This paper presents our behavior-based approach
to dialogue management and reports on an evalua-
tion of the CRS CORESONG’s dialogue behaviors.

2 Dialogue Behaviors in Recommendation
Dialogues

By a dialogue behavior of a dialogue agent, we un-
derstand a conceptual and computational function-
ality in the agent’s dialogue strategy. Computation-
ally, a dialogue behavior is coded into a Dialogue
Behavior Diagram (DBD), that describes a state au-
tomaton where each state contains (one or more)
commands and transitions with optional conditions.
The DBD automaton is similar to the UML activity
diagram.

DBDs invoke, and use, results from other software
modules, denoted jointly as external resources (e.g.
databases and recommender engines).

Four DBDs constitute the complete recommenda-
tion dialogue model: Conventional, Direct Deliv-
ery, Indirect Delivery, and Interview. A more de-
tailed account of each of these behaviors are found
in (Wirnestal et al., 2007).

Delivery Behaviors On a fundamental level, the
goal for CORESONG (or any recommender system)
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is to provide the user with a delivery, such as an
explicitly requested piece of information from a
database resource, or a recommendation from a rec-
ommender engine. The direct delivery typically
uses a database that the user can query. In cases
where a successful database call has been made (that
is, a non-empty result set not larger than a prede-
fined size limit is returned as response to a user’s
request), a delivery is written to the out stream. In
order to support domain exploration and to drive the
dialogue forward (Wérnestal, 2005), positive pref-
erence statements trigger the system to fetch infor-
mation related to the preference from an external
database resource (e.g. utterances S3a, S4a and S5a
in Figure 1).

While the direct delivery behavior is functional
for information-providing dialogue, and can cater
for basic recommendations, it has been found that
human-like recommendations occur in a slightly
different fashion (Wirnestal et al., 2007). There-
fore, the indirect delivery behavior has been de-
signed (Wirnestél et al., 2007). It provides a moti-
vation before presenting the actual recommendation
(as exemplified by utterances S5b/S5c in Figure 1).
Since the system cannot know whether the sugges-
tion is previously familiar to the user, it delivers the
recommendations in the form of questions (S5c).

Interview Behavior The purpose of the interview
behavior is to collect relevant information about do-
main entity types (e.g. genres, artists or albums in
the music domain) or items. This is a useful dia-
logue behavior in cases where deliveries cannot be
completed due to e.g. ambiguous or incomplete user
requests. It is also useful in preferential interviews
used for recommendations, where the system ac-
quires user preferences to be used by a recommender
engine resource. A particular system may thus em-
ploy several interview DBD instances, connected to
different external resources.

2.1 Emergent Dialogue

We view the dialogue system’s complete behavior
as emerging from the different DBDs. By emergent
functionality in a system, we understand compo-
nents that operate simultaneously in order to achieve
a desired behavior. This is contrasted to hierarchi-
cal systems, where sub-functions are invoked from a
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Ul What genres are there?

S2a I found these genres in the database: [...].
S2b  I’d like to know more about your preferences.
S2¢  What else do you like?

U2  Ilike the genre Rock&Roll

S3a  These artists belong to the genre Rock&Roll: [...].
S3b  I'd like to know more about your preferences.
S3c  What else do you like?

U3 What songs were made by Elvis Presley?

S4a I found these songs by the artist Elvis Presley in the
database: [...].

S4b  I'd like to know more about your preferences.

S4c  What else do you like?

U4  Ilike the album Live at Madison Square Garden

S5a  These songs belong to the album Live at Madison
Square Garden: [...].

S5b  You might like the song Suspicious Minds because
it is a Rock&Roll song by Elvis Presley.

S5¢  Have you heard it?

U5 Yes

S6a  Ok. What do you think about it?

U6  It’s good

Figure 1: Dialogue log from CORESONG interaction (REC-
OMMENDER experiment configuration). [...] denotes lists of

genres, artists, albums or songs. S = system, U = user.

central component or representation.

Our approach to dialogue system design is
inspired by the layered subsumption architec-
ture (Brooks, 1991) where layers correspond to be-
haviors that are organized hierarchically, and where
higher-level behaviors can subsume lower-level lay-
ers by inhibition or modification.

A dialogue agent’s complete strategy is described
by a set of DBD instances that run as a DBD strata
machine. The DBD strata machine streams input
and merges each behavior’s output (see Figure 2).
There is no central representation of the complete
dialogue, and the individual behaviors do not model
each other since each DBD processes the incoming
token stream autonomously. Therefore, the outputs
from the DBDs need to be integrated (and typically
reduced) into a coherent system turn, and is man-
aged by two constructs in the Output Weaver: be-
havior priority and an order heuristic.

Behavior Priority DBDs are indexed with a prior-
ity and order the out statements accordingly (ascend-
ing order). The request with highest priority will be
chosen. This hinders the occurrence of two requests
back to the user which obviously could be confus-
ing. The order of CORESONG’s DBDs are (lowest
to highest priority): Conventional, Direct Delivery,



Indirect Delivery, and Interview (Figure 2). DBD in-
stances connected to the recommender engine have
higher priority than those of the music database'.

Order Heuristic Due to the behavior priority,
there is only one request action available each turn.
The order heuristic places this request at the end of
the output, so that informing system action state-
ments are guaranteed to precede the request. This
guarantees that the constrain request (S2c) in the
first system utterance in Figure 1 always occur af-
ter the direct delivery (S2a) even though their state-
ments origin from different DBD instances.

3 Experiment

To validate the behavior based approach to dialogue
management we conducted an “overhearer” exper-
iment (Whittaker and Walker, 2004) by using four
different behavior configurations of the CORESONG
system (see Table 1). The reason for using the over-
hearer model is to avoid natural language interpre-
tation problems (since the coverage of grammar and
lexicon is not our focus), and letting personal mu-
sic preferences that may not be covered by our rec-
ommender engine and database affect the subjects’
experience of dialogue interaction. The experiment
was run with 30 subjects.

3.1 CoreSong

Configuration of dialogue behaviors and attached
external resources is easily done in CORESONG by
switching DBD instances on or off. The two exter-
nal resources used by the DBD instances are (a) a
music information database and (b) a content-based
recommender engine (Burke, 2002).

A DBD instance implementation consists of defin-
ing LookUp calls, and the surface realization of the
action statements in the DBDs.

The Input Streamer (IS) feeds the interpretations
of user input to each of the DBD instances in the DBD
strata machine. Each DBD instance processes the in-
put and writes to an out stream using the command
out. The Output Weaver module (OW) then weaves
together each DBD instance’s output as outlined in
Section 2.1.

"Note that interview and delivery behaviors of the same ex-
ternal resource are naturally designed to be mutually exclusive.
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User NL PCQL DBD Strata Machine  Resources
€ = |Interp.[=> g INTERVIEW :] REC ]
0 | gen | | ow E INTERVIEW :] DB ]

DIRECT DELIVERY p DB ]

| INDIRECT DELIVERY p REC ]

CONVENTIONAL :]

Figure 2: The standard CoreSong behavior configuration,
with database (DB) and recommender engine (REC), interview
and delivery behaviors. Interp = Interpretation Module, Gen =
Generation Module, 1S = Input Streamer, OW = Output Weaver.

Table 1: Experiment configurations. DD = Direct Delivery,

IW = Interview, ID = Indirect Delivery, Db = Database,
R = Recommender Engine.

Config. | pp(Db) 1W([Db) DDR) IDR) IW(R)
Q-A X X

BLUNT X X X X
PRYING

REC X X X X

Four different DBD instance configurations were
used to generate the test dialogues, as shown in Ta-
ble 1. The different configurations effectively mod-
ify CORESONG’s complete dialogue strategy. Q-A,
for example, with only the database resource, re-
sults in a question-answer system without recom-
mendation capabilities, whereas the PRYING config-
uration supports a preference interview but with no
power to deliver answers to factual requests. The
BLUNT configuration has the power to deliver both
database results and recommendations; but the rec-
ommendations are not delivered with motivations
and follow-up questions as the indirect delivery
(RECOMMENDER configuration) is designed to do.
Figures 1 (RECOMMENDER) and 3 (BLUNT) exem-
plify the differences.

3.2 Procedure

Each subject was presented with the four test dia-
logues, one at a time, displayed in a web browser.
For each of the dialogues they were asked to fill



Ul What genres are there?

S2a I found these genres in the database: [...].

S2b  What else do you want to know?

U2 Ilike the genre Rock&Roll

S3a  These artists belong to the genre Rock&Roll: [...].
S3b  What else do you want to know?

U3 What songs were made by Elvis Presley?

S4a  These songs belong to the artist Elvis Presley: [...].
S4b  What else do you want to know?

U4  Ilike the album Live at Madison Square Garden

S5a  These songs belong to the album Live at Madison
Square Garden: [...].

S5b  You might like the song Suspicious Minds.

S5¢  What else do you like?

Figure 3: Dialogue sample for the BLUNT configuration.

out a questionnaire on a S5-point Likert-scale regard-
ing their agreement with four statements, intended
to determine informativeness, preference modeling,
coherence, and naturalness of the dialogue excerpts.
For example, the statement: “The system’s utter-
ances are easy to understand and provide relevant in-
formation” reflects informativeness (Whittaker and
Walker, 2004).

4 Results and Discussion

In general, the participants considered the Q-A and
RECOMMENDER configurations to have the high-
est informativeness (86.2% and 85.5% respectively).
This is expected, since they both are equipped with
the database direct delivery behavior. The PRYING
configuration, lacking in database delivery function-
ality, received a lesser rating on informativeness.
For our current work, the notion of coherence is of
high importance, since this quality of the dialogue
was thought to be at risk when abandoning a mono-
lithic dialogue strategy model. It is interesting that
the coherence measure is high for all configurations:
PRYING (70.3%), BLUNT (79.3%), RECOMMENDER
(84.1%) and Q-A (86.2%). Furthermore, the REC-
OMMENDER configuration was high-ranking in all
four aspects: Informativeness (85.5%), preference
management (80.0%), naturalness (79.3%), and co-
herence (84.1%).

The data for the configurations over the param-
eters were compared using a one-way analysis of
variance (ANOVA)?. Preference management was
perceived as significantly lower in the Q-A con-

2p < 0.001 n.s. for all differences reported below.
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figuration compared to the other three configura-
tions, where preferences indeed were modeled and
de facto influenced the dialogue. PRYING received
significantly lower ratings on coherence compared
to the other three configurations. This is most likely
due to that factual user queries were only used as in-
dicators of preferences, and were not responded to in
the way that configurations with delivery behaviors
did. The RECOMMENDER configuration received a
significantly higher rating on naturalness compared
to the other three configurations.

The results show that BCORN’s non-centralized
approach that views dialogue strategy modeling as
an emergent phenomenon is feasible, and encour-
ages future development of the approach. They also
imply that natural and coherent recommendation di-
alogue can be explained in terms of the suggested
dialogue behaviors.
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Abstract

We present a computational model for the
interpretation of linguistic spatial proposi-
tions in the restricted realm of a puzzle
game. Based on an experiment aimed at
analyzing human judgment of spatial ex-
pressions, we establish a set of criteria that
explain human preference for certain inter-
pretations over others. Each criterion is as-
sociated to a metric that combines the se-
mantic and pragmatic contextual informa-
tion regarding the game as well as the ut-
terance being resolved. By resorting to ma-
chine learning techniques we determine a
model of spatial relationships from the data
collected during the experiment. Sentence
interpretation occurs by matching the po-
tential field of each of its possible interpre-
tations to the model at hand. The system’s
explanation capabilities lead to the correct
assessment of ambiguous situated utter-
ances for a large percentage of expressions.

1 Introduction

The interpretation of spatial expressions is an im-
portant aspect of human cognition. Several ex-
perimental and theoretical studies have analyzed
how language is linked to the non-linguistic spatial
world with the goal to shed some light on the hu-
man mental processes that underlie the understand-
ing of linguistic utterances involving space. Find-
ings from these research endeavors have paved the
way for the development of computational systems
able to analyze, interpret and generate natural lan-
guage descriptions of space and the physical world.

In this work, we focus on the interpretation of
three types of linguistic relationships that form the
basis for spatial expressions: topological relations
like “near”, projective relations such as “left of”,
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and the relation “between”. Projective relations
need the specification of a frame of reference.

Within the scenario of a speech-operated 2D
puzzle game, we have been developing a comput-
ing system able to understand the meaning of and
consequently act upon linguistic instructions like
e.g. "land the green piece over the T-shaped one”
that can be ambiguous to a human who is not em-
bedded in the same situation and sharing the same
conversational context of the speaker/writer.

The paper is structured as follows. First, we dis-
cuss relevant related works. We then present the
motivation for this research and the computational
model that we developed based on the experiments
we carry out. Eventually, we propose a system
evaluation and a discussion on future extensions.

2 Related Work

Researchers in the field of language-oriented artifi-
cial intelligence have proposed several methods to
deal with the inherent ambiguity of language and
to handle traditional linguistic phenomena like pre-
supposition, quantification, anaphora, under speci-
fication, and elliptic expressions. In parallel to re-
search on these well-known sources of ambiguity,
the understanding of propositions that depend on
situational context has emerged as an active area of
study and the treatment of spatial information in
utterances has evolved into an ever growing field.

A relevant number of conceptual models that re-
late language to visual spatial information have
been proposed (Eschenbach 1999; Tapus et al.,
2005). Backed by theoretical works and/or empiri-
cal experiments (Costello & Kelleher, 2006; Logan
& Sadler, 1996), more and more computational
models that exploit the potential of verbal commu-
nication to interact with visual or spatial data have
been implemented particularly for natural language
interfaces to graphical systems and human-robot
interaction.
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The SHRDLU system (Winograd, 1971) is
probably the first relevant work that shows how
syntax, semantics, and reasoning about the world
can be successfully combined to produce a system
that understands natural language to control the
actions of a simulated robot arm. Following this
pioneering work, other prototypes and models have
been put forward for topological and projective
relations. Several works based on language model-
ing and visual context (Gorniak & Roy, 2004; Roy
et al., 2002; Roy & Mukherjee, 2005) involve as-
pects of grounded situation model. These ap-
proaches lead to the development of visual context
sensitive grounded systems that understand, learn
and generate natural language. A research method-
ology that addresses common problems in spatial
communication arising during human-robot con-
versation is outlined in (Moratz et al., 2001). In
(Kelleher et al., 2005) visual information, context
and salience are integrated to leverage the under-
standing and generation of spatial expressions in
the context of virtual reality applications. A variety
of metrics and potential field measures are intro-
duced in (Kelleher et al., 2006; Regier & Carlson,
2001) as a powerful tool to model and characterize
spatial relations among 2D objects as perceived by
human subjects. An integration of potential field
models with visual information to control a robot
that follows natural language commands to per-
form manipulative actions is presented in (Brenner
et al., 2007) for the task of action planning in situ-
ated communication. In (Gorniak & Roy, 2005;
Gorniak et al., 2006) the use of situated communi-
cation in computer games is investigated.

Excluding (Roy et al., 2002), the works outlined
above have not resorted to machine learning tech-
niques. Our work shares with (Kelleher et al.,
2005; Kelleher et al., 2006; Regier & Carlson,
2001) the idea of encoding spatial information us-
ing a set of local metrics. It differentiates from
them in the way we perform the assessment of the
values of the metrics.

3 Resolving Spatial Expressions

3.1 Situated Communication in Pentomino

Pentomino is a popular recreational math puzzle
game. The game consists of twelve different pieces
that are built as arrangement of five square units
joint along their edges. The objective is to fill up a
given game board using all pieces. To accomplish
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this task, players can select, rotate, translate, flip,
remove, mirror, and land pieces onto the board. In
early studies on human-human communication to
play Pentomino, we noticed that subjects resort
extensively to localization expressions when they
intend to collaboratively resolve a puzzle thus
making this game an excellent prototyping arena
for situated natural language understanding.

Our model is integrated into a digital version of
Pentomino where speech can be used as a com-
plementary input mode (Corradini et al., 2007). We
exploit the game semantics and pragmatic along
with context information available from both the
visual display on the user interface and the game
history to interpret spatial expressions used to play
the game. At anytime, the player is allowed to cus-
tomize a few application settings that affect the
visual feedback and thus in turn visual-grounding
(Roy et al., 2002; Roy & Mukherjee, 2005) of con-
text information that bridges the symbolic realm of
linguistic concepts with entities in the game world.

3.2 An Experimental Study

To investigate human interpretation of spatial
situations, we run a psycholinguistic experiment
that parallels the task of an automated system for
playing Pentomino. We collected data from 38 par-
ticipants (22 males and 16 females) both native and
non-native English speakers with age ranging from
13 to 72 years (1 = 31.3, o = 13.5). Subjects were
given a set of 40 image-text pairs and instructed
about the game objective and rules. We showed the
subjects a snapshot of a puzzle game and the next
instruction to carry out in text format as a single
separate instruction. Subjects were then asked to
update the board according to their interpretation
of the instructions with the goal to maximize the
possibility to finish the game after carrying out the
move. We chose such a setting both to elicit con-
trolled spatial interpretations in different situations
and to collect data that can give insights on factors,
motivations, and mechanisms that play a role in
turning the mental picture of a linguistic sentence
into an actual spatial configuration.

A post-study analysis of the corpus of 1520 task
solutions showed that while all subjects implicitly
used themselves as frame of reference (see Figure
1) a few different configurations were proposed for
each single task. One annotator searched for prag-
matic and semantic errors in the solved tasks. We
considered as a pragmatic error any spatial ma-



nipulations that, once performed, would at once
appear to lead to no game solution i.e. result in the
creation of one or more islands of cells with less
units than the number of squares making up a sin-
gle Pentomino piece. We refer to these small holes
onboard to as smHoles (see Figure 1). We classi-
fied as semantic errors all cases of spatial actions
and instructions that violate the game rules or were
impossible to carry out. A second annotator scored
24 randomly selected user forms i.e., a 63.2% ran-
dom sample. Compared to the first annotator there
was a 98% match on what the error events were. In
total, we found an average 8.3% of pragmatic er-
rors (U = 4.8, 0 = 4.6) and a negligible 0.02% (u =
0.6, o = 1.5) of semantic errors. After removing
these error cases from our corpus, we analyzed the
remaining 1394 picture-instruction couples (91.7%
of the data) to infer a best estimate of the space
considered by the subjects given a spatial relation
among reference objects.

UP
R
- i
F G
H
T T
/
DOWN Ly smHole

Figure 1. (left) A correct semantically and pragmati-
cally interpretation of the instruction used in Section
1; (right) a pragmatically incorrect one. Text around
the borders indicates the implicit frame of reference.

The computational model we developed bases on
both the analysis of the data collected and the fact
that in the context of a restricted language and lim-
ited number of visual entities, subjects tend to refer
to objects by listing their properties and attributes
such as color, shape and size (Roy, 2002).
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From data of our experiment, we realized that for
relations of the kind “near”, “under”, “left to” etc.,
over 97% of the subjects considered locations on
the board grid that are within a certain small dis-
tance to the referent. In the case of “between” rela-
tions, 87% of the subjects considered points at lo-
cations mid-way to the referents. According to the
relation at hand, we refer to the area including the
points that satisfy the proximity requirement as
region of interest or Rol in short. It restricts the set
of possible locations referred to in the utterance.

Criteria & Metrics
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We define a series of metrics over the Rol based
on the notion of field potential (Kelleher et al.,
2006). They describe degrees of likelihood of act-
ing upon an object at a given location according to
a set of criteria that capture and incorporate the
most commonly used interpretation strategies
adopted by subjects of our experiment. Given a
sentence that refers to object Obj via a spatial rela-
tion Rel to another reference object Ref, they are
motivated by the observation that people tend to:

C1) operate on Obj that is as closer as possible
to Ref (Proximity criterion)

C2) operate on Obj at positions that maximize
the number of physical contacts with other
game entities such board edges or other pieces
(Adherence criterion)

C3) operate on Obj at positions that maximize
the intersection area between Obj and the Rol
(Communality criterion)

C4) operate on Obj at positions that either
minimize distance between Obj’s and Ref’s
centers of mass or, in case of a “between” rela-
tion, are equidistant from those of all other ref-
erents (Center of Mass criterion)

C5) Play uniformly i.e. they concentrate on a
region on the board which try they fill in incre-
mentally before moving to other distant areas of
the board (Location Saliency criterion)

C6) Avoid the creation of smHoles since they
make the game unsolvable (Fillability criterion)

The criterion C6 captures aspects relative to game
pragmatics and semantic knowledge. Criteria C1 to
C4 reflect game’s geometrical considerations at a
given time. The criterion C5 accounts for the dia-
logue context in terms of game history. For each
criterion we defined a corresponding metric to
quantify its salience value at a specific location.

34

Anytime a spatial utterance is processed, we try to
carry out the underlying instruction at each point in
the Rol. If this is possible, we then calculate the
normalized metric values on those points. We thus
have a kind of field potential whose intensity is
modulated by the degrees of likelihood of each
criterion after the particular instruction is executed
at a given location. To select the correct placement,

Spatial Expression Resolution & Results



we use multiple linear regression to model the rela-
tionship between these likelihoods and an expected
response variable depending on the location by
fitting a linear equations to the observed data. The
model is defined by the k parameters £,..f; of the
system of linear equations:

Yi(P) = po+ prfu(P) + ...+ pufis(P) (1)

Here k is the number of criteria, fix(P) the values
(the independent variables) of the metrics applied
at location P in the Rol, Yi(P) the expected good-
ness value (the dependent variable) at P, i an index
running over the number of possible placements of
the piece being manipulated and for each of the 5
units making up that piece. In our model, Yi(P) is
set to 1 for all units P of the piece 1 if its manipu-
lation can be found in our corpus of human inter-
pretations, to 0 otherwise. Ultimately, the values p;
act as weighing coefficients for the metrics’ values.
We use equation (1) as a combined likelihood to
gauge how close a spatial configuration is to the
model of human interpretations. Specifically, we
rank any location in the Rol according to the value
obtained by summing up equation (1) over each
point of the piece after this is operated upon.

We used half of the data for the determination of
the model parameters and half for the evaluation.
By taking the maximum value of the ranked list,
the model interpreted spatial descriptions as hu-
mans did in our experiment in 61.4% of the ex-
pressions. Correct interpretations were ranked ei-
ther second or third in 16.2% of the cases.

4 Discussion and Conclusion

We implemented a computational model that at-
tempts to approximate human interpretation and
judgment of situated language in the micro-world
of a 2D puzzle game. We believe that the probabil-
istic nature of our method can be very useful in a
dialogue system for spawning clarification requests
or suggesting the location for a certain instruction.
Our system confirms that adopting an approach
that considers several sources of information such
as context, semantic and pragmatic evidence can
be beneficial to the understanding of situated utter-
ances (Gorniak & Roy, 2005). The metrics, now
tailored for our restricted game domain, are ex-
tendible to other grid-like scenarios and spatially
aware systems, even in 3D. The resolution of spa-
tial relations is also portable to the case of one-to-
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many relations by applying our strategy between
the one object and each one of those in the group.
We are expanding the system to include a few
more metrics and dialogue capabilities between
player and system, for error resolution and in con-
texts that need clarification to resolve ambiguities.
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Abstract Part of the reason for this is that we are still fairly
early in the search space, considering all of the pos-
We present Hassan, a virtual human who en-  sible techniques applied to the various domains that
gages in Tactical Questioning dialogues. We  require spoken dialogue capability. Another issue
describe the tactical questioningdomain, the s that there are several different goals for dialogue
motivation for this character, the specific ar-  systems, and optimizing on one may lead to sub-
chitecture and present brief examples and an  optimality for other goals. Some of these goals in-

evaluation. clude: task success & efficiency, correct understand-
) ing & output, user satisfaction, believability/realism,
1 Introduction authorability, reusability, revisability, and short de-

Virtual Humans can be useful for tutoring or training’€/oPment time.
in a variety of interactive situations in which experi- Given the different relative importance of these
ential learning can be beneficial, such as in (Traur@oals and the specific features of the domain can
et al., 2005a) and (Rickel et al., 2002). Virtual huléad to different choices for the spoken language
mans contain a number of components, including &chnology components. For example, the virtual
virtual body, usually embedded in a virtual world,humans in (Rickel et al., 2002; Traum et al., 2005b)
actions that the agent can perform, including move?ut @ premium on depth of understanding within
ments and sound, cognitive capabilities to decideomplex domains (teamwork, negotiation), but were
on which actions to do and updating internal statomewhat narrow in the scope of what the virtual
and perceptual abilities for recognizing the actionumans could talk about, and had a heavy author-
of users and other things in the world. ing burden, requiring experts to create new domains.
In this paper we present Hassan, a virtual humaan the other hand, question-answering characters
for training in Tactical Questioning dialogues. We(Leuski et al., 2006) have a lower burden for depth,
focus on the spoken dialogue components. A conkut must handle a broader range of questions and
panion paper (Roque and Traum, 2007) describ&aintain believability and user satisfaction.
the dialogue manager and emotion model more fully. For our current endeavor, tactical questioning (see
Currently there is no single “best practice” modefSection 2), we require capabilities between these
for building virtual humans or especially their spoiwo extremes. We need the authorability and general
ken dialogue components. While generally theréobustness of characters like SGT Blackwell (Leuski
are separate modules for speech recognition, nattal., 2006) but with more of the emotional and cog-
ral language understanding, dialogue managemem',tive modeling of the situation from agents like Dr
and output (e.g., Generation and Synthesis, or teRerez (Traum et al., 2005b).
selection and audio clip playing), there is no consen- In this paper, we present Hassan, a Virtual Human
sus on the best ways of engineering these modulder Tactical Questioning implemented using this in-
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termediate architecture. In section 2, we describe thdrainee  Hello Hassan
assan Hello

Tactical Questioning Domain and the Hassan sce-rainee  How are you doing?
nario. In section 3, we describe the components ofHassan  Well, under the circumstances we are fine

the system. In section 4, we describe the preliminary'’ainee 1 like to talk about the marketplace
Hassan | hope you do not expect me to tell you any-

evaluation, and we conclude with future directions thing
in Section 5. Trainee | just wantto know why people aren’t using
the marketplace
Hassan |don't feel like answering that question

2 Domain: Tactical Questioning Trainee | think you know something about a tax
) o . . . Hassan |am simply doing business. Itis rude of you
Tactical Questioning dialogues are those in which to imply otherwise

small-unit military personnel, usually on patrol, hold
conversations with individuals to produce informa-
tion of military value (Army, 2006). We are specifi- mmm
cally interested in this domain when applied to civil- .
ians, when the process becomes more conversatiol - P
and additional goals involve building rapport with e =57
the population and gathering general informatiol ... ...
about the area of operations. Hassan is a virtu [z
human designed to act as a roleplayer and allo -
trainees to practice tactical questioning and get fee
back from experienced instructors on their perfo
mance on several learning goals.

The scenario for Hassan takes place in contemp
rary Irag. In afictional storyline, the US authoritieg
have built a marketplace as part of the reconstructig
effort, but the local population continues to use th@
old, broken-down marketplace instead. It is the goal . .
of the trainee to discover why. To do this, the traine&'9Uré 2: Hassan, a Virtual Human for Tactical
talks to Hassan, a local politician. If the trainee conQ@UeStioning, with some other components
vinces Hassan to help him, the trainee will confirm
that a tax has been levied on the new marketplace . .

can run autonomously, its emotional state can also

and that the tax has been placed by Hassan's ®6 modified at run-time by an instructor. The vir-

ployer; if exceptionally successful, the trainee ma¥ . . .

. ual environment is set in the Unreal Tournament
even learn where that employer lives. If Hassan be- me engine, similar to the agent in (Traum et al
comes adversarial, he may lie and tell the trainee thggosb) ?t als’o uses the rtbgody character con- v

an American soldier is collecting the tax. Figure JIroller (Thiebaux et al., 2007) to control the move-

222\’\/8 the beginning of a typical dialogue with Hasfnents of the character, including lipsynch and non-

verbal communicative behaviors, and the Nonverbal
Behavior generator (Lee and Marsella, 2006) to se-
lect and synchronize non-verbal behaviors with the
Figure 2 shows several components of Hassan duwutput text.

ing a session. The virtual environment includes the The language components include a speech rec-
embodied character, which is the only componerdgnizer, a set of statistical classifiers to recognize
the trainee usually sees. Above that is a speechialogue features and suggest responses, and a di-
capture component showing the Automated Speeetiogue manager, to maintain a current cognitive
Recognition (ASR) results of an utterance. Also visand emotional model and chose the appropriate re-
ible is a GUI showing the state of various of Hassponse. Our initial version of Hassan used the same
san’s emotional components. Although the systemrchitecture as SGT Blackwell, with a single clas-

Figure 1: Scenario Dialogue

nnnnnn

3 Virtual Human Implementation
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sifier to pick the answer, and rudimentary dialoguaterprocess communication protocols. The classi-
manager to avoid repetition where possible and Heation can be between input and output text (e.g.,
able to answer further on the same topic. Our initighe answer to a question), or between input text and
tests showed that this was inadequate for the tactioalitput features (NLU) or input features and output
guestioning domain, where one needs not just loc&éxt (NLG). It has been used in a variety of ways
coherence between questions and answers, but aiscour Virtual Human agents. The NPCEditor al-
an emotional progression of the character in whictows inputting and annotation of training data, train-
the kinds of questions and behavior early on in thang a classifier, and run-time performance all within
conversation will effect the kinds of answers giverthe same software platform. The classification tech-
later on. E.g., a trainee can increase or reduce feaniques and their use to select answers is described in
In order to address this issue, we added a mofkeuski et al., 2006).
sophisticated information-state based dialogue man-
ager which can track several states that are impo ?? 8 Dialogue Features
tant to deciding how compliant an agent should belhe NPCEditor statistical classifiers identify three
We also introduced a number of statistical classifiergtterance features of the user utterance: a dialogue
(built using our NPCEditor software) to pick outmove, a main topic and a level of politeness. The
important dialogue features as well as the best aget of dialogue moves for the Tactical Questioning
swer given a particular compliance level. Figure 3Domain are shown in Figure 4. The main topic is
shows the natural language components of our di@h aspect of significance for the domain and charac-
logue agent, including a set of NPCEditors workinger. There are different topics for requests (e.g. mar-
together with a rule-based Dialogue Manager. Wietplace, taxation), threats (e.g. loss of status) and

discuss each of these components briefly below. offers (e.g. security, recognition, or secrecy). Po-
liteness is one opoalite, neutral or impolite. These

NPCEditors Dialogue Manager three features work together to inform the decisions
dial — made by the dialogue manager.
y g g
i —+ | Compliance, . . . .
omplance Opening greetings, introductions, ...
Voice [politeness | — Complimentary compliments, flattery, ...
ASR| — " |politeness . ) ,
[AsR] - i ro0l ' General Conversation non-task-related talk
Task Conversation task-related talk
N .+ reply Threatening threats
Offering offers to provide something
Closing moving to end the conversation
t . .
Figure 4: Dialogue Moves

Figure 3: Architecture of Language Components 3.4 Dialogue Manager

The dialogue manager of the system is based on
the information-state approach (Traum and Larsson,
2003). It tracks a set of four information state vari-
The trainee talks to Hassan using a headset micrables relating to respect, bonding and fear, and cal-
phone and a push-to-talk button. The ASR compazulates from these a currezdmpliancelevd for the
nent uses the Sonic statistical speech recognition etharacter. The utterance features from the classifiers
gine (Pellom, 2001), with custom acoustic and lanare used to update these variables, which may result
guage models (Sethy et al., 2005). in a change in compliance level. A response is se-

) o o lected by choosing the response given by the classi-
3.2 NPCEditor: Statistical Classification fier for that compliance level (or an exception reply
Our NPCEditor tool allows one to build statisticalfor special circumstances). More about the dialogue
classifiers for “non-player characters”. It allows sevimanager and compliance computation can be found
eral output modes including email, chat, and severa (Roque and Traum, 2007).

3.1 Automated Speech Recognition
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Abstract

We describe our system for breaking a film
review (as an instance of semi-structured
document into its formal and functional
constituents. Based on a corpus study, we
devised a set of 25 zone labels indicating
the role that a unit can play within the re-
view. We identify formal zones with a set
of symbolic rules, while the distinction be-
tweendescriptiveandevaluativeparagraphs

is drawn with a statistical classifier. The ap-

graphs) and content structure: Units playing a dis-
tinct functional role for the review are very likely to
be separated in the logical structure as well. This
lead us to the goal of automatically identifying the
content structure of such documents. Our underly-
ing application is automatic summarization: Identi-
fying the zones of the film review is a prerequisite
for ensuring that the summary contains information
from all relevant zones (e.g., movie title, director,
description of story, author’s evaluation).

Following Stegert (1993), we distinguish between

formal andfunctionalelements of reviews, with the
former being ‘constituents’ whose presence is char-
acteristic for the genre, and the latter making con-
tributions to the communicative goal of the author.
The formal zones follow conventionalized patterns
Many text genres can be characterized sasni- of shape and of linear order. They include the title,
structured They do not display a completely con-the name of the reviewer, list of cast, copyright no-
ventionalized structure (as, e.g., mangather re- tice, etc. As for the communicative goal of a film
ports or cooking recipesdo), but there neverthe- review, it is typically twofold: inform the reader
less are some rules and tendencies that allow tlaout the contents of the film, and provide a sub-
reader to quickly recognize a document as an irjective evaluation. The running-text paragraphs of a
stance of the genre, and to isolate important poreview belong to these twioinctionalzones, and our
tions. As a case in point, we are working withinitial corpus study had revealed that they are almost
film reviews coming from various newspapers an@lways confined to paragraphs: Authors very rarely
web sites. While their overall structure is definitelymix description and opinion within a paragraph in
not identical, there are similarities on what portiongheir reviews. In the following, we discuss related
(henceforthzone$ to expect, and in what order to work, then explain our approach to identifying for-
expect them. Furthermore, in our corpus studiesal zones, and finally turn to opinion classification.

with English and German film reviews, we found  CorpusThe basis of our current implementation
a very clear correspondence between logical dogs a corpus consisting of 213 German film reviews
ument structure (breakup in headers, lines, pargom 7 different web sites. The reviews contain a

1The research reported in this paper was funded by Buertal _Of 4,252 paragraphs, i.e., zones that we aim to
desministerium fur Bildung und Forschung, grant 03WKH22. identify.

proach achieves between 70 and 79% preci-
sion in recognizing the zones in our corpus.

1 Introduction?
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2 Related Work

The genre of film reviews has become relatively
popular in computational linguistics, but the prob;
lem addressed is typically that of classifying an en
tire review as either positive or negative (e.g. Chag

. . <cast> List of actors, possibly with their
valit and Zhou (2005)). Our work in effect takes roles
a significant further step: We first break down the <credits> gredits (Prtéducer, ?amgra, etc.)
: ; ; : <countryyear> ountry and year of production
review into |t§ various content zones, and then se  date> Date of review
opinion classification only as one subproblem, per-<director> Director of film
taining to a subset of the paragraphs. <format> Technical format of film (16:9, 4:3
L e . PAL, black/white, etc.)
The subtask of opinion identification has received _genre. Genre of film (Comedy, Thriller,
much attention in recent years. Subjectivity in nat- Documentary, etc.)
ural language encompasses a range of different phes'anguage- Language of film

nomena, including the means to express opinion
emotions, or evaluations. Example applications a
automatic classification of opinion texts (e.g. edito
rials) vs. factual texts (e.g. business texts or new

(Wiebe et al., 2004) or positive vs. negative ratings %ourceII ( )

; . . . <rating> verall rating (5 stars, etc.

in reviews (Turney, 2002',.Pang e.t al., 2902, Zhuang<runtime> Length of film

et al., 2006). The classification is applied to docu- <show-locdate- Screening locations and dates

ments (e.g., Wiebe et al. (2004)) or sentences (Yu<structure> EXpllﬁltly-S_trulcturlngd A eé?_ment,
. . usually a single-word headline

and Hatzivassiloglou, 2003). . <tagline> Very short “grabbing” headline

In contrast to the above approaches, which are ex<title> Title of film
clusively developed for English, we aim at learning <DATA> ?(":'é%?ts”;g);{“gg:o;: enumerated
subjectivity clues for German data. Moreover, in _qy4-pATAS DVD release information

Tag

Description

<audience-restriction

<author>
<authorplace>

_<authorrating>

<language-subtitles
S»<Iega|-notice>
e<note>

5)<quote>

Age restrictions for viewing (in the
U.S.: MPAA rating)

Author of review

Author of review and source of
publication

Author of review and overall rating

Language of subtitles
Copyright statement for review
Various meta-notes (e.g., review
has been published earlier at diffe
ent source)

Quotation taken from film or othe

=
]

our classification task, paragraphs rather than d
uments or sentences are being classified.

3 Formal zones

Table 1: Tag set for formal zones

The inventory of formal zones we determined irare highly relevant for text summarization certainly

the corpus study is shown in Table 1.

Recalinclude theti t1 e zone, but also zones that are

that we are tagging zones paragraph-wise, whiatonsiderably less frequent, likéi r ect or (3%),
is warranted by the aforementioned relatively cleanat i ng (0.4%) oraut hor r at i ng (1%).

layout—function correspondence in the genre; at the o
same time, this decision leads to the occasional neddl !dentifying formal zones
for zones that combine different information. WeAfter hand-annotating portions of our corpus, we in-
thus found tha&wut hor is often given together with spected the various instances of the formal zones and
thepl ace of publication, and often with his or her found that they display striking formal characteris-
overall r at i ng for the film. The other frequent tics that can quite well be captured in regular ex-
case of “mixing” information are enumerations ofpressions. A very simple caseliggal - noti ce,
cast and contributors (credits); for these, we use thehich invariably contains the copyright symbol or
tag DATA, which also has a variant for DVD-relatedthe word itself. Less simple yet tractable is a zone
information (see bottom of the table). like aut hor , since person names can be recognized
Our corpus for evaluation (see below) contains Ay the number of words, capital letters, optional
total of 1,156 zones. Zones that occur most often araiddle initials. Also, information about the posi-
DATA (which make up 18% of all zones),i t1 e tion of the text span plays an important role here:
(16%) andstructure (15%). The zones that the author is always given toward the beginning or
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the end of the text. The same holds fort|l e, 4 Functional zones

which in addition regularly occurs in neighbourhoodFunctional Zones are paragraphs with free text. We

to aut hor (but the order can vary). What we aredi tinquish two main t f functional zones: d
not exploiting for the time being is layout informa- stinguis 0 main types ot functional zones. de
scriptive zonesdescri be) and comment zones

tion such as HTML tags of the original documents; 1t). Descriotions ar raaraphs that d
Instead, we convert all input to plain text, and thuéco.rTTre ) escriptions are paragrapns that de
. . scribe the story, different aspects or peculiarities of
our approach operates in the same way for both Irt‘ﬁ film. without commenting about it. They ther
ternet and newspaper material. € ' out comme ) g abou - €y here
_ _ o fore can be considered as ‘objective’ information. In
Given the observations on regularities in the forgontrast, comment zones are paragraphs that contain
mal zones, we decided to follow a symbolic apexpressions of opinions by the author, i.e., ‘subjec-
proach for them, i.e., we wrote recognition rules engye jnformation. In our application (text summa-
coding features like the ones just mentioned. Agzation), it is very important to be able to reliably
a convenient tool for this purpose, we used LAPISjistinguish between the two types.In our data, there

(Miller, 2002), a toolbox for “lightweight text pro- 4 slightly morecomment paragraphs (54%) than
cessing”. The data set for developing these rulegescr i be paragraphs (46%).
(i.e., for first taking inspiration and then fine-tuning

the rules), consisted of 101 film reviews. The eval4.1 Identifying functional zones

uation was then performed on a set of 112 unseqfeature set For classifying the functional zones,
reviews. we used as training features a bag-of-"words” ap-
proach. In a detailed evaluation of tf*idf measures
used as relevance weights, we found that 5-grams
perform best for German data, so our bag of “words”
The symbolic rules perform  excellently consists of weighted character 5-grams. All 5-grams
on the zonesrating, author_rating, occurringinthe paragraph thatisto be classified are

audi ence-restriction and format (all Weighted according to thef x idf measure, where
with 100% precision and 100% recall). Results fof/ 1S the frequency of the 5-gram in the paragraph,
other zones relevant for summarization aret | e ~ andidf is the inverse document (i.e., paragraph) fre-
(P: 61%, R: 65%)di r ect or (P: 42%, R: 78%). duency according to a reference corpus: a large col-
Average performance of the rules is 70% precisiofgction of internet film reviews.

and 63% recall. Training procedure Pang et al. (2002) compare
An error analysis of the automatid t | e zone different machine learning methods and achieved
classifications reveals that zones that erroneously gatcuracies between 72.8% and 82.9%, depending on
classified as i t| e are DATA (33% of the mis- the training features and the method. In their evalua-
classifications)t agl i ne (25%), andst ruct ure tion, Support Vector Machines (SVM) perform best
(17%). On the other hand,i t | e is often mis- for many of the feature combinations.
classified as agl i ne (53%) ordi r ect or (15% In our approach, we also use SVM. Our feature
— this happens with 2-words film titles likBroke- sets, however, do not consist of words or POS tags
back Mountai. Very often, indeed, none of the but 5-grams. We used the tool SVMLight (Joachims,
rules matched &i t | e zone, and the rules did not 1999) and performed a threefold-crossvalidation on
come up with a classification at all (28%). To overthe 213 reviews, which contain 1,159 functional
come such problems, we are currently adding a postenes..
processing step that reconsiders all the tag assign- )
ments in the light of the overall situation — in this#-2 Evaluation
step we can use non-local information like the corThe table below presents the results from the func-
pus observations thatut hor ortitl e (as a sin- tional zone classification. Overall accuracy is quite
gle text span) appears at least once in the documegatisfactory, at 79.34%Conmrent zones are classi-
but no more than twice (see Section 5). fied more successfully thatescri be zones.

3.2 Evaluation
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Zone type || Precision Recall | Accuracy al., 2006) to utilize the zone information so that the
comment 81.60%  79.69% 29.34% quality of summaries for the particular genre of film
describe || 76.83%  78.94% reviews will be improved considerably.

5 Conclusion and outlook References

For many applications, including summarizationP. Chaovalit and L. Zhou. 2005. Movie review mining:
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of_ po_rtlons an_d their relative relevance for the ap Intl Conference on System Sciences
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Ph.D. thesis, Computer Science Department, School
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arate knowledge source. Finally, we are currently

adapting our implemented text summarizer (Stede et

Stegert. 1993Filme rezensieren in Presse, Radio und
FernsehenMiinchen: TR-Verlagsunion.
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Abstract

In the past few years, we have been devel-
oping a robust, wide-coverage, and cogni-
tive load-sensitive spoken dialog interface,
CHAT (Conversational Helper for Auto-
motive Tasks). New progress has been
made to address issues related to dynamic
and attention-demanding environments,
such as driving. Specifically, we try to ad-
dress imperfect input and imperfect mem-
ory issues through robust understanding,
knowledge-based interpretation, flexible
dialog management, sensible information
communication, and user-adaptive re-
sponses. In addition to the MP3 player and
restaurant finder applications reported in
previous publications, a third domain, navi-
gation, has been developed, where one has
to deal with dynamic information, domain
switch, and error recovery. Evaluation in
the new domain has shown a good degree
of success: including high task completion
rate, dialog efficiency, and improved user
experience.

1 Introduction

In the past few years, we have been developing
a robust, wide-coverage, and cognitive load-
sensitive spoken dialog interface CHAT under a
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joint NIST ATP project with Bosch RTC, CSLI of
Stanford University, ERL of VW of America, and
STAR lab of SRI International. The CHAT system
is specifically designed to address imperfect
speech and imperfect memory of human users,
when they use the system to interact with devices
and receive services while performing other
tasks—typically, these tasks are their primary, and
sometimes even critical tasks, such as driving.

Examples of imperfect speech are speech disflu-
encies, incomplete references to proper names, and
phrase fragments, while examples of imperfect
memory include very limited number of names
memorized or non-exact names memorized. Imper-
fect speech and memory happen quite often. In one
reported Wizard-Of-Oz experiment for the restau-
rant finder domain [Weng et al 2006], 29% of the
proper names used by people were partial names.
The imperfect speech and memory issues accom-
panied with multi-tasking pose a big challenge to
the development of a robust dialog system. Over
the course of the project, we have developed a
number of technologies in various modules of the
dialog system to deal with these two issues [Weng
et al 2004; Zhang and Weng 2005; Mirkovic and
Cavedon 2005; Pon-Barry et al 2006; Varges 2005;
Purver et al 2006]. Specifically, in this paper, we
describe progress made over the past year when a
navigation domain and related use cases are intro-
duced. Evaluation conducted for the navigation
domain shows high task completion rates and user
satisfaction.
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Antwerp, September 20072007 Association for Computational Linguistics



The paper is organized as follows: Section 2 de-
scribes the updated CHAT system architecture and
its functionality; Section 3 is devoted to ap-
proaches used to address the imperfect speech and
memory issues; Section 4 gives a description of
data collection setup, evaluation scenarios, as well
as evaluation results; finally, we conclude with a
comparison with other work.

2 The CHAT System and Its Functionality

The CHAT system has adopted many state-of-art
technologies and has grown beyond its heritages
over the years. This progress is reflected in several
core aspects, including the spoken language under-
standing (SLU) module, the dialog manager (DM),
the content optimizer (CO), the knowledge man-
agement (KM), the response generation (RG), as
well as the overall system architecture.

The SLU module integrates multiple under-
standing strategies with components such as edit
region detection algorithm [Zhang and Weng,
2005; Zhang et al 2006]", partial name identifier,
shallow semantic parser, and deep structural
parser. This approach enables understanding at
finer levels when faced with imperfect input from
the distracted multi-tasking user, and/or from
speech recognition errors.

The DM, originated from the CSLI dialog man-
ager [Lemon et al 2002], follows the information-
state-update approach [Larsson and Traum 2000].
It uses a dialog move tree to keep track of multiple
dialog threads and multiple applications [Mirkovic
and Cavedon 2005; Purver et al 2006]. The latest
version also supports mixed initiative dialogs for
all the three domains.

The KM controls access to knowledge base
sources and their updates. Domain knowledge is
structured according to domain-dependent ontolo-
gies. The current KM makes use of OWL, a W3C
standard, to represent the ontological relationships
between domain entities.

The CO module acts as an intermediary between
the dialog management module and the knowledge
management module, controls the amount of con-
tent, and provides recommendation to users. It re-

! Edit region detection algorithms identify disfluent ar-
eas in an input utterance, such as hesitation, repeat, or
correction. For example, “Get a, hmm, take me to
Dave’s house”.
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ceives queries from the DM, resolves possible am-
biguities, and queries the KM. It performs an ap-
propriate optimization strategy based on the re-
turned results [Pon-Barry et al 2006].

The RG module uses a hybrid rule-based and
statistical approach. It takes query results from the
KM via CO and generates natural language sen-
tences as system responses to user utterances. The
query results are converted into natural language
sentences using a rule-based bottom-up production
system. Finally, a scoring and ranking algorithm is
used to select the best generated sentence [Varges
2005].

The architecture of the CHAT system is similar
to its previous versions [Weng et al 2004; Weng et
al 2006]. However, a couple of enhancements have
been made to deal with multiple applications and
random events from external devices or services.
One enhancement is the introduction of an Appli-
cation Manager (AP). The AP module isolates the
application dependent information and operations
from the core dialog system.

MP3
@B:H AT Restaurant I Application
Navigation Manager
Knowledge | Knowledge Content
Base Manager Optimizer
Natural = ]
Langusge e Pkt
Understanding g |
Y J
Prosody Speech
Detection Recognition

J

J
Speech
Synthesis

v

Figure 1 The CHAT System architecture.

Another major improvement is the modularity
and configurability. The current version of the
CHAT system is highly modularized and configur-
able. All the modules in Figure 1 are shared across
the different domains. Domain specific models or
parameters are supplied to the system in a config-
urable manner. Explicit on-the-fly domain switch
becomes very simple — people can just say “switch
to X” or other commonly used phrases to switch to
the domain X. Implicit domain switch is also pos-
sible, where the users do not have to use explicit



statements for switching to another domain. For
example, having selected a desired restaurant in the
restaurant domain, the user may then say “find me
a fast route to restaurant XYZ”, without preceding
this request with an explicit statement such as
“switch to navigation”. However, due to extra bur-
den on the system when all the applications are
included, this feature is not set as a default. Addi-
tionally, because of the high modularity and con-
figurability, it is much easier to add any new appli-
cation.

In the added navigation domain, a few new
functionalities are provided in the CHAT system:

1. Destination entry. One may either tell the
system his or her address or use a selected
Point Of Interest (POI) as the destination.
In address input mode, different expres-
sions for addresses, even ones with partial
street or city names, are allowed.

2. Route selection. One may negotiate with
the system with different criteria during
the conversation for route selection. The
criteria include distance, speed, mid-point,
avoidance, or highway preference. For ex-
ample, the driver can tell the system to
find the shortest route to a destination that
avoids a specific street. Or, he or she can
also ask the system to find the fastest route
that goes by a specific location and avoids
highway.

3. Dynamic information or random events.
While driving in a driving simulator, one
can access dynamic information, such as
the speed limit and the distance to destina-
tion. In addition, the dialog system can
process random events, such as instruc-
tions from the navigation unit, and com-
municate the events to the user. In the
meantime, the user can ask for a repeat of
information if he or she did not hear the
message clearly.

The three selected applications for the CHAT
system, i.e., MP3 music player, restaurant finder,
and navigation, represent three important applica-
tion categories: entertainment, service, and naviga-
tion. When combining the three application do-
mains together, the CHAT system can demonstrate
a very useful scenario, which allows people to ne-
gotiate a POI (restaurant) or explicitly enter a des-
tination; find the best route; and, on the way to the
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destination, access dynamic location-based infor-
mation (“what is my next turn”) or entertain self
(“play a song in playlist X”).

To give a concrete impression of what the
CHAT system can do, an example dialog is given
here:

User: Switch to restaurant.

System: Ok. Switched to the restaurant finder.

User: Can you find me a Chinese restaurant in
Palo Alto with good service?

System: There are 11 Chinese restaurants in
Palo Alto that have good service. Here are the first
few: Little Garden Restaurant China Delight Man-
darin Gourmet Restaurant Should | continue?

User: Hmm...tell me more about, Garden Res-
taurant?

System: Little Garden Restaurant is an expen-
sive Chinese restaurant. Dress code is casual, ser-
vice is good and rating is three stars. It’s on El
Camino Real in Palo Alto.

User: Switch to navigation.

System: Ok, switched to Navigation system.

User: Take me to Little Garden Restaurant, but
stop by Bosch Page Mill Office.

System: Ok, | will plan a route to Little Garden
Restaurant that goes by Bosch Page Mill Office.
Would you like anything else?

User: Get me the fastest route.

System: Ok, | will plan a fast route to Little
Garden Restaurant that goes by Bosch Page Mill
Office. Would you like anything else?

User: Um...nope.

System: OK, | will plan a route now. Please wait
... I calculated a route to Little Garden Restaurant
that goes by Bosch Page Mill Office. It is 4.3 miles
long and should take around 12 minutes. Now | am
starting guidance...

User: Switch to music player.

System: Ok. Switched to mp3 music player.

User: What songs do you have by Alicia Keys?

System: There are 16 songs by Alicia Keys.
Here are the first few: GoodBye, Jane Doe, and
Caged Bird

User: Play “Caged Bird.”

System: Playing the song “Caged Bird.”

User: Add it to a playlist.

System: Which playlist do you mean, car or
work?

User: What’s on the car playlist?

System: Interlude, A Womans Worth, and
Whatever.



User: Add it to the car playlist then.

System: | added the song “Caged Bird” to car.

User: Switch to navigation.

System: Ok. Switched to navigation system.

User: Where am | right now?

System: You are on Page Mill Road in Palo
Alto.

User: How far away am | from my destination?

System: You need to travel 2.5 miles to get to
destination Little Garden.

During the conversation, click-to-talk is used to
start the recognition. To reduce the effect of early
speaking or early cutoff, we use a circular buffer to
locate the start of an utterance, and use prosody
information to identify precisely the ending of an
utterance [Shriberg et al 2000]. This mechanism is
integrated with the Nuance V8.5 recognizer.

In the next section, we will discuss the addi-
tional improvements made to address the issues of
imperfect speech and memory.

3 Dealing with Imperfect Input and Mem-
ory

Two threads of research have been explored to deal
with imperfect input: improve the robustness in the
concerned modules; and provide error recovery
strategies.

Improving robustness. To accommodate partial
names in human utterances, separate ngram name
models are trained on name databases of different
classes for the SR module. A disfluency model is
separately trained and integrated in the Statistical
Language Model (SLM) for the recognizer. The
partial or full proper names and disfluent regions
are then identified by a proper name identifier and
edit region detector, respectively. To understand
the output from the recognizer, its SLU module
adopts multi-component understanding strategies.
A deep understanding component provides detailed
information for each component in an utterance,
which may be used for sophisticated dialogs. This
module may also provide the boundary information
for unknown proper names. On the other hand, a
shallow semantic parser extracts domain-specific
information, including flat or structured semantic
classes. This provides a backoff strategy in the
case the deep understanding module does not pro-
duce valid parses. These two components comple-
ment each other for better understanding and con-
versation.
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Error recovery strategies. Individual under-
standing strategies do not always produce the cor-
rect interpretation in their 1% candidate. To correct
errors, similarly, we experiment and integrate two
different approaches: delay the final decision to a
late stage; and design dialog strategies to clarify or
confirm user’s intention. In the first approach, the
SLU passes the top n-best alternatives as well as
their likelihood scores to DM. The DM makes the
final decision based on the n-best output from the
SLU module, the possible dialog moves, and the
dialog context (active dialog threads) [Purver et al
2006]. To deal with possible misunderstanding, we
also developed dialog strategies such as clarifica-
tion, confirmation, or even rejection when the sys-
tem is not confident about its understanding. An-
other way to improve the communication is to
convey back implicitly or explicitly the interpreted
results and allow user to revise his or her constraint
specification when any mismatch is noticed. Revi-
sion and addition of constraints onto previously
stated ones are realized across all the three do-
mains.

To handle imperfect memory issue, we continue
our research in two directions: regulate the amount
of information through presentation strategies; and
allow the users to ask for the repeat of information
already presented.

Regulated information presentation. During
the conversation, user utterances are interpreted,
and internal queries are constructed based on the
constraints extracted from the utterances. These
queries are sent to the Content Optimizer and
Knowledge Manager for obtaining results that sat-
isfy the constraints. Quite often, the results and
their quantity would either overwhelm the user or
leave them in a position where he or she does not
know how to proceed. This can be a serious dis-
traction or cognitive load problem in our investiga-
tion, as the user is occupied by other critical tasks,
such as driving. One consequence is that people
may not remember all the items enumerated, when
the returned result list is long. In such case, the
system proposes additional criteria so as to narrow
down the results. In the event there is no result
from the databases, the system proposes a relaxa-
tion of the constraints from the user. This has led
to better user satisfaction [Pon-Barry et al 2006].

Information repetition. When the user focuses
on other critical tasks, it is not always easy for him
or her to remember the statements from the system.



One additional functionality allows the user to ask
for the repeat of information just presented. This
new functionality is very useful especially in the
navigation domain where the navigation instruc-
tions occur at random and people may not always
pay attention to the instructions at the time of
speaking.

In addition, as mentioned earlier, the CHAT sys-
tem allows the user to use partial names, anaphora,
or ordinal references’, which alleviates the imper-
fect memory issue and reduces the cognitive load
of the user.

After the CHAT system is equipped with the
above approaches and strategies, it shows a great
improvement in terms of dealing with various phe-
nomena caused by imperfect input and imperfect
memory. Since most of these approaches and
strategies are very collaborative in nature, they
lead to a positive effect on user experience. This is
partially reflected in the evaluation results reported
in Section 4.

4 Experiments and Evaluation Results

For the navigation domain, the experimental setup
is to drive and talk in a driving simulator. Three
virtual cities are designed in the simulated envi-
ronment with different streets, buildings, and busi-
nesses. Approximately 50 streets are setup in the
tri city virtual environment — a limited number due
to the cost of street design in the virtual world.
Five different routes are designated to control the
experiments and about 2500 restaurant names are
included in the database for POI queries. Each res-
taurant is associated with a street name, a street
number, and a city name. There is some duplica-
tion between city names and street names in the
environment. Conducting experiments in a simu-
lated environment addresses bias concern that
arises when real cities are used for the task—some
subjects may be more familiar than others in terms
of streets and navigation. Using simulated envi-
ronments also enables us to control the variation of
different factors in the experiments, such as traffic.

As in the other two domains, WOZ data collec-
tion was used to bootstrap the development of the
CHAT system for the navigation domain [Cheng et
al 2004]. For the WOZ data collection, 20 subjects

2 Examples of the ordinal references include “the second
one”, or “that last one”.
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were recruited for performing navigation related
tasks while driving in the three cities in the driving
simulator. In addition, 14 subjects were recruited
for dry runs, and 20 subjects were used for evalua-
tion. The scenarios used in dryruns and evaluation
are a subset of the scenarios used in the WOZ data
collection.

The WOZ data collection gives us insight into
how human subjects interact with an ideal dialog
system, helps us in selecting research topics we
need to address, and provides us data for improv-
ing the language coverage in both NLU and NLG
modules.

Since the CHAT dialog system is designed as a
task-oriented system and is not intended for any
general conversation, careful attention was given
to the development of the dialog tasks for the sub-
jects to perform in the WOZ data collection, dry
runs, and evaluation. Specifically, we developed
the following two guidelines:

1. Task-constrained. We try to make goals
of each task transparent and explicit (to
form the intended mental context), so that
the collected speech would not become ir-
relevant, unusable, or very sparse (see an
example below).

2. Language-neutral. The language used in
the instructions for communicating these
task goals to the participant and in the sce-
nario descriptions was created in such a
way to avoid “copying behavior”. One in-
struction explicitly asks the participants to
“try to phrase your requests in your own
words, rather than simply repeating the de-
scription of the scenarios”.

We call this task design approach as task-
constrained and language-neutral. This approach
is used for both the restaurant finder and naviga-
tion domains. An example of a task description
from the navigation is given here.

Task description: You have just picked up your
business clients from the airport and would like to
take them out to a reasonably priced lunch. You
think that they would prefer Chinese food. Use the
Navigation System to (1) find a Chinese restaurant,
and (2) plan a route to the restaurant.

Eight task categories are used in the evaluation
with examples such as “plan routes to destinations
(e.g., restaurant POIs or address input)” and “query
about road conditions”. Each subject is given a
practice trial and three test trials. The purpose of



the practice trial is to familiarize the subjects with
the procedure and tasks, and to reinforce the lan-
guage-neutral guideline. A total of 16 tasks from
the eight task categories are designed, and they are
designated to the three test trials. The evaluation
procedure is very similar to the one used for the
restaurant finder domain [Weng et al 2006].

Initial comparison of expressions used in the
navigation scenario/task descriptions and expres-
sions used by the subjects shows that the copying
behavior is largely avoided. We found that only
18.13% of the subject expressions mimic the sce-
nario/task expressions. In quantifying the copy be-
havior, it is counted as a copy if an expression is
used in a task description and a subject repeats this
same expression. For example, in the task “get
clarification of the most recent route instruction”,
if the subject says “clarify the most recent instruc-
tion”, this is counted as a complete copy; if the
subject says “clarify the last instruction”, this is
counted as half of a copy; and if the subject says
“repeat the last instruction”, this is counted as a
non-copy. Certain expressions do not have a clear
alternative, such as “the current location”. In these
cases, we do not count them as a copy, and there
are only two of such expressions.

This initial result indicates that our guidelines
are effective in the experiments.

Among other metrics, three major measurements
are used in the evaluation of CHAT*s performance
for the navigation tasks: task completion rate, dia-
log efficiency, and user satisfaction. The task com-
pletion rate is defined as the percentage of tasks
completed during the evaluation. The CHAT sys-
tem reaches an overall 98% task completion rate
for the navigation tasks. To measure the dialog
efficiency, we use the number of turns required to
complete a task. Here, one turn was defined as one
user utterance to the system during a dialog ex-
change between the user and the system while at-
tempting to perform a task. The CHAT system is
able to complete the tasks with 2.3 turns on aver-
age. Although it is not directly comparable be-
tween the two different domains, this number is
much smaller than the average number of turns
needed for the restaurant finder tasks (4.1 turns)
reported one year earlier. Using the user satisfac-
tion rating system by CU-Communicator [Pellom
et al 2000], we reached a score of 1.98 with 1 indi-
cating “strong agreement” and 5 indicating “strong
disagreement” to each of the following statements:
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4. It was easy to get the information I

wanted.

5. | found it easy to understand what the sys-
tem said.

6. | knew what | could say or do at each point
in the dialog.

7. The system worked the way | expected it
to.

8. 1 would use this system regularly.

We computed a one-sample 2-tailed t-test to see
if mean ratings for the navigation system was sig-
nificantly different from the mean rating of 1.76
for the best of the CU Communicator Systems (i.e.,
goal user satisfaction rating). Results showed that
this difference was not significant (t (19) = 1.17, p
> .05). This suggests that participants were no less
satisfied with our navigation system than those
participants who evaluated the CU Communicator
System.

To get a better understanding of the improve-
ment, we examine the word recognition accuracy
for the two domains: for the navigation tasks, the
accuracies with and without Out-Of-Vocabularies
(O0Vs) included are 85.5% and 86.5%, respec-
tively; for the restaurant finder tasks, the accura-
cies are 85% and 86%, accordingly. Thus, the im-
provements are more likely a result of the new or
refined implemented approaches.

5 Conclusions

Previous dialog applications include travel plan-
ning, flight information, conference information,
bus information, navigation, hotel reservation, and
restaurant finder [Pellom et al 2000; Polifroni et al
2003; Bohus et al 2007]. However, these applica-
tions are independently developed using single or
completely different frameworks. In our case, we
have integrated three representative applications
and allow explicit or implicit domain switch with
shared dialog contexts. The most related work is
the GALAXY-II [Seneff et al 1999]. However, in
their work, different applications are managed by
different turn managers.

In terms of content presentation, [Polifroni et al
2003] discussed ways of organizing the content
based on fully automated bottom-up clustering,
while our approach focuses on semi-automated but
configurable strategies that make use of the system
ontology, and on external domain configurations
for content organization and presentation.



More sophisticated dialog management research
has recently focused on collaborative aspects of
human machine dialogs [Allen et al 2001; Lemon
et al 2002; Rudnicky et al 1999]. However, such
research on conversational dialog systems has
typically focused on dealing with dialogs that users
need to pay full attention to. In addition, most of
this research only deals with simple expressions
where the meanings are mainly embedded in the
semantic slots. For research in which elaborated
expressions are considered, the coverage is typi-
cally small. Another thread of research is targeted
at broad coverage but simple dialogs, which is ex-
emplified by the work at AT&T [Gorin et al 1997].

While extending the research on the collabora-
tive aspects, our effort specifically focuses on deal-
ing with the conversational phenomena in multi-
tasking and distracting environments, specifically
imperfect input and imperfect memory. While
dealing with imperfect input can be traced back far
in time [Carbonell and Hayes, 1983; Weng 1993;
Lavie & Tomita 1993; He and Young 2003], the
CHAT system integrates models ranging from dis-
fluency, partial and full proper names, shallow se-
mantic parsing, and deep structural parsing. The
interpretation only occurs when all the contextual
information and alternatives are gathered. For the
imperfect memory issue, we explore information
presentation and other strategies to enable the user
to access the information comfortably. All these
approaches and strategies lead to high task comple-
tion rate and dialog efficiency as well as user satis-
faction across the three domains, especially for the
navigation. Collectively, the CHAT system shows
very interesting use scenarios and promising per-
formance.
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Abstract

In this paper, we describe a telephone dia-
log system for location-based services. In
such systems, the effectiveness with which
both the user can input location informa-
tion to the system and the system delivers
location information to the user is critical.
We describe strategies for both of these is-
sues in the context of a dialog system for
real-time information about traffic, gas
prices, and westher. The strategies em-
ployed by our system were evaluated
through user studies and a system employ-
ing the best strategies was deployed. The
system is evaluated through an analysis of
700 calls over atwo month period.

1 Introduction

The availability of online maps and mapping soft-
ware has led to a dramatic increase in location-
based services, such as route planning, navigation,
and locating nearby businesses, e.g. (Gruenstein, et
al., 2006). While much of the effort has been fo-
cused on bringing these applications and services
to desktop computer users, there is a demand for
these services to be available to mobile users.

A significant portion of the mobile users will
utilize these services from a vehicle while driving.
The automotive environment is a particularly chal-
lenging, because operating a vehicle is a hands-
busy and eyes-busy task, making the use of touch
screens or pointing devices potentially unsafe. In
contrast, using of speech as both an input and out-
put modality is a natural and safe means of inter-
acting with information (Tsimhoni, et a., 2004).

In this paper, we present a telephone dialog sys-
tem caled Commute UX (Commute User Experi-
ence) that provides location-based information to
in-car commuters. The system provides informa-
tion about traffic, gas prices, and westher, based on
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real-time data obtained via web services. It was
built as a telephone dialog system to enable any
user with an ordinary cell phone to access these
services without the need for a data plan or addi-
tional hardware or software installed in the car. An
example dialog is shown in Figure 1.

The most critical part of a dialog system for lo-
cation-based services is of course, how well the
system understands locations spoken by the user.
In the proposed system, the definition of location is
varied by a context manager, based on the granu-
larity required for a particular task. For example,
some tasks may require only knowing the user's
current city or neighborhood while others require
the system to know the user’'s precise location.
The system engages with the user to obtain the re-
quired location information in the most efficient
way. In addition, the system can be personalized to
aparticular user, so common locations or “ personal
points of interest” are known by the system.

We have found that reliably conveying spoken
locations to a user is equally important in dialog
systems that provide location-sensitive information.
We present a method for automatically converting

S: Welcome to Commute UX. Would you like
traffic, gas prices, or weather?

U: I need the closest gas station in Redmond.

S: In that case, I need you to tell me the

intersection where you are.

I'm on the corner of 148%™ and 35%.

: You are at the corner of 148%™ Avenue NE
and NE 35" Street, right?

: Yes.

: The nearest gas station is at the corner
of NE 24" Street and 148" Avenue NE.

: What else can I help you with?

: How’s the traffic to Seattle?

I'1ll get the traffic between Redmond and

Seattle, right?

: Yes.

: The traffic between Redmond and Seattle,
via SR-520, is ..

: What else can I help you with?

: Nothing, thanks.

: Good-bye.

0n g ngn [ n

nagn

Figure 1. An example dialog from Commute UX
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addresses into more descriptive locations using
intersections and landmarks, in a manner that more
closely resembles the way in which humans con-
vey location to each other.

The Commute UX system was deployed to ali-
mited group of real users and we evaluated the per-
formance of the system based on an analysis of
approximately 700 calls made to the system over
an eight-week period. In addition, users of the sys-
tem were surveyed in order to obtain a subjective
evaluation.

2 System architecture

The architecture of Commute UX is depicted in
Figure 2. In each turn, the system receives a voice
input from the user, processes the input, and reacts
to the user accordingly. Six functional modules are
involved in this process: the speech recognizer, the
semantic parser, the dialog manager, the context
manager, the information retriever, and the re-
Sponse manager.
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The task of the speech recognizer is to convert the
voice input into text, from which semantic infor-
mation will be extracted and processed. Its per-
formance directly affects the task completion rate
and the user satisfaction. Note that the acoustic
model used by the speech recognizer is usually
independent of the task. However the language
model (LM) is highly task-dependent and its qual-
ity usually determines the recognition accuracy of
the speech recognizer.

The design of the LM is both a science and an
art, where a balance needs to be made between the
accuracy of the keyword recognition and the flexi-
bility of the speaking style it can support. In our
system, we have used a strategy that trains a statis-
tical LM from the dlots (e.g., city name, road name,
gas type) and information bearing phrases learned
from sample queries (e.g. “... the closest gas sta-
tion in <City> ..."”) and augments it with a filler
word N-gram (Yu, et al., 2006) to model the insig-
nificant words. The filler part of the LM absorbs
hesitations, by-talk, and other non-information
bearing words unseen in the training sentences.
The filler word N-gram is pruned from a generic
dictation LM.

Speech recognizer
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2.2  Semantic parser

Semantic parser extracts the semantic information
from the recognized text output from the speech
recognizer. Converting information into its seman-
tic representation has two benefits. First, semantic
representation is more concise and consistent than
the phrases. Using semantic representation grestly
simplifies the subsequent processing in the later
stages. Second, semantic representation is modality
independent. By converting information into the
same semantic representation, we make the rest of
the system isolated from different input modalities.
Adding new modalities thus becomes simple and
cheap.

Extracting semantic information, however, is not
trivial, especially since the output from the speech
recognizer contains errors and users may convey
multiple semantics in one utterance. The semantic
information extracted includes the task classifica-
tion, which is a generic call-routing problem, e.g.
(Kuo, et a., 2002; Carpenter, et a., 1998), and
task-specific semantic slots (e.g. origin city, desti-
nation city, time of day for weather forecast). Slot
labeling is performed using a Maximum Entropy
classifier (Berger et a., 1996) trained from the
same LM training sentences.

2.3 Dialog manager

The task of the dialog manager is to determine the
appropriate actions to take, given the current dialog
context and the newly extracted semantic informa-
tion. Note that both the speech recognizer and the
semantic parser are not certain about their results.



The confidence from them needs to be taken into
consideration when decision is to be made.

The dialog management is based on a two-level
state machine in our system: the turn level and the
dialog level. The turn level state machines are pre-
built configurable and reusable dialog components
such as system-led dialog component and mixed
initiative dialog component. These state machines
define the basic behaviors of a turn. For example,
what to do when the confidence is low, medium,
and high, and what to do when silence or mumble
is detected. The dialog level (inter-turn) state ma-
chine defines the flow and strategy of the top level
dialog. For example, what to do if the system can-
not get what the user has said after trying twice. In
our system, the top level state machine is designed
so that it supports both free-form mixed initiative
and strict system-led dialog. If the system cannot
decipher some of the semantic dots in users free-
form utterances, the system will fall-back to the
system-led dialog and guide the user step by step
to achieve the user’s goal. The user can also yield
to the system-led dialog from the very beginning.

The dialog manager gets context information
from the context manager and the information re-
guested by the user through the information re-
triever. The information and prompts are delivered
to the user through the response manager.

24 Context manager

The context manager plays a key role in Commute
UX. Contexts in our system include the user in-
formation (e.g., user registered places, user's
name, and past requests), the dialog history, and
the semantic information confirmed so far. By
maintaining current and accurate context informa-
tion, the context manager can resolve semantic
conflicts and make the system synchronous to the
user’s perceived state.

One important task of the context manager is to
update the LM and the semantic model based on
the context. By choosing the context dependent
LM and the semantic model, the system can great-
ly reduce the perplexity and achieve higher recog-
nition accuracy and lower number of turns.
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The information retriever provides an interface
between the dialog manager and the backend in-
formation sources. In our system, the information
is from three major sources: the relatively stable

Information Retriever
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geographical database, which contains information
such as cities, streets, intersections, and points of
interest (POI); the rapidly changing real time in-
formation such as gas prices, traffic conditions,
and weather conditions; and the user’s registered
information such as telephone numbers and per-
sonal points of interest (see Section 3.2).

2.6

The response manager presents information to the
user or prompts the user for additional information.
In our current system, the only presentation modal-
ity isvoice and so the task of the response manager
is to utilize the prompt database, synthesize the
best audio output, and present the audio to the user.
The system employs several strategies to decide
the best manner in which to speak information to
the user, aswill be discussed in Section 4.

Response M anager

3 Understanding locations from the user

The crux of any dialog system focused on location-
based services, such as Commute UX, isto reliably
understand the locations spoken by the user. How-
ever, the notion of location and the required granu-
larity of location can vary significantly based on
the task. For example, for traffic or weather appli-
cations, a broad definition of location, such as
neighborhood, city, or zip code, can be adequate,
e.g. “How’s the traffic between Sesattle and Belle-
vue’. However, for other tasks such as finding the
nearest gas station, or route planning, the user
needs to convey a precise location to the system.
Finaly, there is another distinction between per-
sonal locations that can vary based on the user, e.g.
home and work, and geographic entities that have
standard names and meanings.
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In order to perform recognition of locations, a geo-
graphic database is crawled and the relevant in-
formation, such as the entity name, entity type and
geolocation (latitude/longitude) or bounding box,
is stored in a relational database. The database
structure enables us to hierarchically categorize
locations in a given state: zip codes contain cities,
cities contain neighborhoods and points of interest,
etc. All of these entities are valid locations in the
application and are thus added to the grammar.
When the user makes a query, the parser proc-
esses the recognized text and isolates any locations

Recognizing: from regionsto points



in the spoken utterance. These locations are then
passed to the back-end database to find the location
data for that entity. The database is searched from
most specific location (persona point of interest)
to the most general (city or zip code) in order to
determine the user’ s intended location.

In some cases, the task itself dictates the scope
of the location grammar. For example, traffic in-
formation is only available on major highways, and
not local roads. Because we cannot provide a user
with traffic information on loca roads, a traffic
guery does not require the same precision in origin
and destination as atask such as route planning. As
a result, we simplify the task and alow users to
make traffic queries only on the roads themselves
(“How’s the traffic on I-5 north?’), or between
cities, neighborhoods, or personal points of interest
(“How’s the traffic between Bellevue and Seat-
tle?’). This enables the dialog to be much more
concise (the user does not have to convey two ex-
act addresses) and because the grammar is more
constrained, the accuracy is higher.

There are cases where the user’s query can lead
to ambiguities. For example, suppose the user asks
for the traffic between two cities, and there are two
common routes between the origin and destination.
Our system will choose the most common route,
and attempt to resolve the ambiguity by informing
the user of the route it has chosen:

U: How’s the traffic between Bellevue and
Seattle?
S: The traffic between Bellevue and Seat-

tle, via I-90 is light, with an aver-
age speed of ..

In this case, the system informed the user that traf-
fic information provided was for the route taking
Interstate 90. The user, who presumably knows
both routes, can then query for the other route, by
asking, “How about via 5207" The context man-
ager maintains the origin and destination cities
from the previous query and adds Highway 520 as
aroad to be included in the route between Bellevue
and Sesattle. The routing engine will then determine
the route between these two cities that takes this
highway, and then the corresponding traffic infor-
mation can be retrieved and delivered to the user.
There are many instances where the user needs
to convey an exact location to the system, not sim-
ply a city or neighborhood region. For example, if
the user needs to find the closest gas station, or
would like directions between two places. The
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most obvious way to convey an exact location is
using an address. However, users often do not
know a valid address for their current location, es-
pecialy while they are driving. Even if an address
were known, recognition errors make the use of
addresses inefficient in conveying location. This
was confirmed in (Venkataraman et al., 2003),
where an iterative multi-pass approach using a
class-based language model was proposed to im-
prove the recognition of spoken addresses. The
difficulty is even more apparent when one consid-
ers that state-of-the-art recognition accuracy for a
five digit number in noise conditions that are real-
istic for mobile scenarios is about 90%. This
means that one out of ten house numbers or zip
codes will be misrecognized.

In (Seltzer et al., 2007), we proposed the use of
intersections as a convenient and reliable means of
conveying location. While the use of intersections
aleviates some of problems found in address rec-
ognition, it is still a challenging problem. For ex-
ample, there are over 3500 unique street names,
and over 20,000 intersections in the city of Seattle.
In addition, streets and intersections are highly
acoustically confusable and often spoken infor-
mally, with incomplete specifications. For exam-
ple auser might say “the corner of Third and Den-
ny” rather than “the corner of Northeast Third
Avenue and Denny Way”.

To reliably recognize intersections, we employ
an information retrieval approach. We construct a
database of streets and intersections in a particular
city. The intersections are treated as documents in
a database, and phonetic-level features are derived
from the word stings comprising these “docu-
ments’. When the user utters an intersection, the
recognized text is parsed into two street names and
the phonetic level features are extracted each street
name. Intersection classification is then performed
using a vector space model with TF-IDF features.
This approach allows the system to reliably recog-
nize intersections in the presence of recognition
errors and incomplete street names. Details about
this method and an evaluation of its performance
can be found in (Seltzer et al., 2007).

3.2

One key feature of the Commute UX system is
an optional website registration for users. Users
can create an account where they provide their
phone number and specify any number of personal

Per sonal Points of I nterest as L ocations



points of interest (PPOI). These PPOI are specified
by a friendly name (e.g. “Jan€'s school”), an op-
tional forma name (e.g. “Washington Middle
School™), and an address. A back-end web service
converts this address to a geolocation and this in-
formation is stored in the database. By default, the
user is prompted to register home and work as per-
sonal locations. Users can then add additional
PPOI. Each time a user changes some PPOI, the
database is updated and the recognition grammars
are regenerated to reflect the current list of unique
PPOI friendly names and formal names. When a
user calls the system, caller ID is performed as
grammar entries corresponding to that user’s PPOI
are activated. The caller's phone number and the
recognized PPOI are then used to retrieve the cor-
responding location form the database.

After a limited internal deployment, we have
276 registered users who created a total of 625
PPOI, but only 97 unique PPOI friendly names in
the grammar. The three most popular PPOI were
“home”, “work”, and “gym”.

The presence of PPOI aso enables the system to
assume some default behaviors. For example, if a
registered user cals the system during common
commuting times, the system will automatically
fill the semantic dlots with the home and work lo-
cations of that user and asks if the user would like
the traffic information from home to work (or vice
versa).

4 Rendering spoken locationsto the user

The ability for the user to understand and remem-
ber the locations spoken by the system is as impor-
tant as the system’s ability to understand the loca
tions input by the user. Conveying locations to us-
ers in spoken dialog systems is problematic for
several reasons. First, depending on the quality of
the TTS voice, understanding a spoken location
can be quite difficult, even in optimal conditions.
In a vehicle, the environmental noise can make
intelligibility even harder. The situation is exacer-
bated by the high cognitive load required by driv-
ing, so the user cannot fully focus on the system’s
output speech. In addition, because the user's
hands and eyes are typically busy, s’he cannot
write down the location as the system speaks it,
and therefore must try to remember the location as
closely as possible.
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4.1 Automatically rendering locations using
inter sections and landmarks

To enable users to more easily understand loca-
tions, spoken by the system, we modeled the sys
tem’s output on the manner in which humans con-
vey locations to each other. For example, a user
calling a business to ask its location will often be
told by the clerk, “We re on the corner of 40" and
148" rather than “We're located at 14803 40"
Street.” Similarly, humans will often use land-
marks, such as “We're on Main Street near the
Shell Station” or “We're on the corner of Fifth and
Mercer, near the Space Needle.

To create a similar capability in our system, we
crawled a geographic database containing al
streets and intersections along with their lati-
tude/longitude coordinates in a particular city. In
addition, we also crawled a database of points of
interest (POI), aso labeled with their geographic
coordinates. These points of interest included a
variety of entities, such as schools, libraries, parks,
and government buildings. The information about
streets, intersections and POl was stored in a data-
base.

Using thisinformation, locations that we want to
convey to users, for example the location of a gas
stations, are processed as follows. The address of
the entity is converted to geographic coordinates.
Using these coordinates, the intersections database
isqueried to find all intersections within 0.05 miles
(approximately half a block). If multiple intersec-
tions are returned, they are ranked according to an
intersection importance metric, defined as the sum
of the total number of other intersections of which
each constituent street in the given intersection is a
member. The top ranked intersection is selected.
Following the intersection search, the POI database
is queried to identify any POI within 0.1 miles (one
block) from the entity of interest.

After this process, each location we can return to
the user is represented by its original address, as
well as the nearest intersection and/or landmark, if
either was found. For those locations that do have a
nearby intersection and landmark, we have various
ways to present the location to the user summa-
rizedin Table 1.

4.2

We performed a user study to determine which of
these four methods of rendering an address was

User preferencesfor spoken locations



and 131% Avenue, near City Hall

Address only 14803 Northeast 51° Sireet Question type | Number | Sum | Accuracy (%)

Address & POI 251 Rainier Avenue North, near Address only 67 575 85.82
Renton Chamber of Commerce

Intersection only The corner of East Madison Street Address & POI 65 53.5 82.31
and 17" Avenue Intersection only 65 54.0 83.08

Intersection & POI | The corner of NE Woodinville Road Intersection & POI 69 47.7 69.13

Table 1. Address representations in Commute UX

preferred by users of a spoken dialog system. Us-
ers of the study ran a program on their desktop
PCs. Each tria of the study was as follows. The
system randomly selected an address from our da-
tabase of gas station locations. This location was
rendered in one of the four styles described in the
previous section. The user listened to a TTS engine
speak the location. Once the location was spoken,
the user was asked to type in as much of location
as they could remember. The user could not start
typing until the TTS output was complete. The sys-
tem then randomly chose another address from the
database, and rendered it in a style randomly se-
lected from other the three remaining methods. The
user again listened to the TTS engine speak the
location and had to type in as much of the location
as they could remember. After the user completed
these two locations spoken in different ways, s’he
was asked which, if any, of the two styles was pre-
ferred. This completed a single trial of the study.
Each user performed a minimum of threetrials.

Preferences for location rendering were evalu-
ated based on 40 users who completed a total of
133 trials. The users data was hand-scored and
analyzed in terms of accuracy and user preference.
Users ability to accurately remember spoken loca-
tions in these different styles was scored as fol-
lows. Addresses and intersections both contain two
critical elements (the number and the street name
in the former, the two street names in the latter).
For locations spoken as addresses or intersections,
each element the user correctly identified (within a
tolerance of 0.1 miles) is given 0.5 points. Correct
recognition of both elements therefore received 1
point. Correct recognition of a spoken POI re-
ceived 1 point regardless of whether the other ele-
ments are correct. Thus, each address transcribed
by the user was scored from zero to one in the fol-
lowing way:

(1)

92

Table 2. Recognition rate for various address
representations.

where 1, I, and r,, areeither O or 1 and are the

recognition of the first element, second element,
and POI.

The averaged recognition results for each one of
the four address representations are shown in Ta
ble2. While the first three representations have
approximately the same recognition rate, it is sub-
stantially lower for “Intersection & POI”. Thisrep-
resentation was typicaly the longest and is there-
fore the most difficult to remember.

The user preferences are evaluated as follow.
For each trial, the preferred representation receives
one point. If the user had no preference between
the two styles, both are assigned 0.5 points. The
final score is weighted with the recognition rate —
we weight more these preferences which are prop-

erly recognized:
Z por ®

where p' is the preference score of the i-th ses-
sion, where the address is represented in k-th way;
r¥) is the recognition result for the same session,

computed by equation (1). Both the non-weighted
and weighted average preference scores are shown
in Figure 3. Rendering a spoken location using the
intersection is clearly preferred, followed closely
by the combination of intersection and POI. Be-
cause the combination of intersection & POI re-
sulted in the lowest recognition accuracy, we set
the system to refer to locations using the nearest
intersection whenever possible. In feedback solic-
ited from the users after this study, several partici-
pants stated that POl helped only when they were
familiar with the area. Otherwise, it was not help-
ful and added confusion. This indicates that loca-
tion-based services targeting commuters and resi-
dents may want to use POI in describing locations

ke [1,4] )
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Figure 3. User preferences for address conveying.

to users, while those targeting tourists or business
travelers should not.

5 Initial Deployment and Evaluation

The initial version of the Commute UX dialog sys-
tem can process requests for information about
traffic, cheapest and nearest gas stations, and
weather in Washington State. The system was
demonstrated to approximately 800 Microsoft em-
ployees in Redmond, WA campus at the beginning
of March, 2007. It was made available to all Mi-
crosoft employees but no additional effort was
made to actively recruit users. The results pre-
sented in this paper are based on an eight week
period between March 12, 2007 and May 6, 2007.
During this time, a total of 276 users enrolled at
the Commute UX website, specifying a phone
number and PPOI.

5.1 Analysisof calls

The system received 698 calls during this time
period, or 12.5 calls per day. Of these calls, 62.2%
were from registered users, while 37.8% were from
non-registered users. There were cals from 214
unique phone numbers, of which 55% were regis-
tered users. This trandates to approximately 3.3
calls per user. However, the distribution of calls
per user is not uniform, a 40 users accounted for
50% of the calls during this time period.

From these calls, there were total of 927 tasks
that users tried to perform. A task is defined as the
user's attempt to obtain a piece of information
from the system. In our system, the possible tasks
are obtaining a traffic report, the location of the
cheapest or nearest gas station, or a weather report.
The traffic is the most frequently called with 55%
of al queries, followed by the gas prices with 27%,
and weather with 17%.

Table 3 shows the average number of turns for
each of the three tasks and across al tasks. The
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Task Type All Registered |Non-register ed
Traffic 3.56 3.33 4.08
Gas Prices 3.73 3.54 4.14
Weather 3.80 3.61 441
Total 3.65 3.44 4.14

Table 3. Averaged number of turns per task type.

results are shown for all users as well as for regis-
tered and non-registered users aone. Non-
registered users use 0.7 more turns than registered
users. The only difference between registered and
non-registered users from the system’'s point of
view is the presence of PPOI. We believe that the
use of PPOI enables users to obtain the information
they want efficiently with fewer dialog turns.

This theory is further validated when we exam-
ined the task completion rate. Figure 4 shows the
task completion rates for the various tasks as a
function of al users, registered and non-registered
users. Overadll, there is a 65.6% task completion
rate. It is interesting to note, however, that regis-
tered users obtain a consistent task completion rate
of about 70% across al tasks, while the task com-
pletion rate of non-registered users varies dramati-
cally from 48% for the traffic task to 64% for the
weather task. The traffic application is the only
application that requires multiple locations: both an
origin and destination. Coincidentally, traffic is
aso the application that is most likely to use PPOI
as many users query the system for traffic informa-
tion during their commutes between home and
work. For calls made during these times, the regis-
tered users have only to confirm that they would
like the traffic report between home and work,
while non-registered users have to convey two lo-
cations to the system for the same request. Thus,
the use of PPOI resultsin fewer turnsin the dialog,
and leads to a significantly higher task-completion
rate for registered users.

5.2

To obtain a more subjective evaluation of the
Commute UX system, we sent out a web-based
survey to users of Commute UX who had made at
least one call to the system and those who partici-
pated in the user study discussed in Section 4.2,
whether they were registered or not. From this so-
licitation, we received 23 responses.

The survey asked the users to state their level of
agreement to a series of statements, using a five-
step scale that ranged from Strongly Agree to

User evaluation
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Figure 4. Completion ratio (%) per task.

Strongly Disagree. The questions and the re-
sponses are shown in Figure 5. As the results show,
a majority of the respondents find the system use-
ful and believe the system understands their speech.
It is interesting to note that most users believe they
are speaking in a natural manner, yet a similar
number claim to only answer the questions the sys-
tem asks. This contradicts our usua notion that
system initiated dialog is not perceived as natural.

The other interesting conclusions from this data
concern personalization. We note that several peo-
ple use PPOI but most do not use PPOI other than
the default “home” or “work” locations. Finaly,
we note that there are a significant number of users
that always ask for the same information from the
system. This indicates that there is a large opportu-
nity for further improvement in task completion
with additional personalization and user-specific
grammar adaptation in this domain.

6 Discussion

In this paper, we presented a telephone dialog
system for location-based services. It utilizes sev-
era key technologies for both recognizing and
rendering spoken locations. We performed a user
study to evaluate the users' response to various
ways of describing a spoken location in terms of
addresses, intersections, or points of interest, and
designed our system to operate in the manner that
both provided the best accuracy and was most pre-
ferred by users. The system also enables users to
improve their experience with personal points of
interest. The use of these persona locations re-
sulted in dialogs with a higher task completion rate
and fewer turns per task. A subjective user evalua-
tion of the system revealed that most users had a
positive experience with the system, but that there
were opportunities for additional improvement
through further personalization and user adaptation.
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| always ask for the same information
from Commute UX

| often use Personal Points of Interest
other than work and home

| often use my Personal Points of Interest

| know that | can give more information
than the system asks for

| know that | can speak in a natural manner
to Commute UX

When | use Commute UX, | just answer
the questions the system asks me

When | use Commute UX; | speakina
natural manner to ask for information

With reasonable effort, | can get the
information | expect from Commute UX

Commute UX is easy to use

Commute UX understands my speech

Commute UX is useful

LG

Strongly Disagree Neutral Agree Strongly
agree

disagree

Figure 5. User survey results.
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Abstract

Especially in noisy environments like in
human-robot interaction, visual information
provides a strong cue facilitating a robust
understanding of speech. In this paper, we
consider the dynamic visual context of ac-
tions perceived by a camera. Based on
an annotated multi-modal corpus of people
who verbally explain tasks while they per-
form them, we present an automatic strategy
for learning action-specific language mod-
els. The approach explicitly deals with the
asynchrony of actions and verbal descrip-
tions and includes an automatic parameter
optimization based on a perplexity measure.
Results show that a significant improvement
of the word accuracy can be achieved using
a dynamic switching of action-specific lan-
guage models.

1 Introduction

While speech recognition is an easy task for hu-
mans even under difficult acoustic conditions, cur-
rent ASR systems still cannot compete with hu-
mans (Potamianos et al., 2003). This is especially
true in human-robot interaction, where one has to
deal with spontaneous speech effects, noisy environ-
ments, communicative gestures, and a frequent ref-
erencing to visual objects and events. In this case,
speech recognition and understanding becomes a
multi-modal issue. This has also been emphasized
by several psychological studies that suggest a very
early interaction between vision and speech pro-
cessing (Spivey et al., 2001). For the practical de-
velopment of speech understanding components for

* Partially supported by the Federal Ministry of Education
and Research Germany (Joint Project DESIRE)
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robotic interfaces, there are three implications. First,
there is a need for multi-modal corpora in order to
train and evaluate more sophisticated speech recog-
nition models. Secondly, visual and acoustic speech
events need to be synchronized and aligned with re-
gard to semantic content for learning as well as inter-
pretation. Thirdly, new strategies for the early inte-
gration of visual information into the speech recog-
nition process need to be developed. In this paper,
we focus on the first and second issues and show
first results for the third.

The integration of speech and visual context can
be treated on different levels of processing that de-
pend on the kind visual information considered.
Motivated by the McGurk effect (1976) audiovi-
sual speech recognition (AVSR) systems have been
developed. These systems integrate acoustic fea-
tures with those extracted from the speakers face.
This is an approximately synchronous process dur-
ing speech production. In AVSR, typically Hidden
Markov Models (HMMs) are used for modelling the
acoustic and visual features. The approaches mostly
differ in the handling of slight asynchrony between
the two feature streams. The methods range from
simple feature concatenation which does not allow
asynchrony at all up to more flexible HMM archi-
tectures (e.g. Product-HMMs) allowing ca. 100 ms
of asynchrony in practice (Potamianos et al., 2003).

Other systems proposed integrate features from a
static visual scene into speech recognition. Knowl-
edge inferred from a visual scene can be used to gen-
erate grammars for object descriptions (Naeve et al.,
1995). These grammars are used as language model
to improve speech recognition. Deb Roy (2005) re-
ports a system, which fuses knowledge of the visual
semantics of language and the specific contents of
a visual scene during speech processing. Based on
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the current scene layout the system generates pos-
sible word sequences for object descriptions from
a probabilistic grammar. These are weighted by a
likelihood associated with each object in the scene.
The result is a bi-gram model, which is dynami-
cally updated using a visual attention mechanism in-
corporating the partially processed utterance. This
model is used to bias speech recognition. Both ap-
proaches have in common that the scene informa-
tion remains static during speech processing. Thus,
the synchronization problem can be neglected and
the integration is done on the level of utterances.
In this case also late integration schemes are pos-
sible that infer a joint multi-modal meaning after
a word sequence has been recognized (Wachsmuth
and Sagerer, 2002).

The timing and synchronization becomes relevant
when dynamic visual events are considered as vi-
sual context. Two different cases can be distin-
guished. On the one hand, communicative gestures
like pointing provide information that is directly re-
lated to the syntactic structure of the sentence. As a
consequence, these are approximately synchronized
with the corresponding noun phrases and partially
marked in the wording. In this area, different re-
search groups have started to collect multimodal cor-
pora (Green et al., 2006; Wolf and Bugmann, 2005;
Maas and Wrede, 2006). However, in these set-
tings, the scene environment is still static and the
kind of visual information provided is of limited use
in speech recognition.

On the other hand, human actions or action se-
quences that are verbally commented are the most
informative but also most flexible case. Usable cor-
pora for speech recognition training as well as eval-
uation are still rare. Integrating this information into
speech recognition broaches two problems. First,
humans do not execute actions synchronously while
describing a task verbally. The degree of asynchrony
lays in a range of several seconds as reported in
(Wolf and Bugmann, 2006). Hence, it is not possible
to integrate this information using HMM architec-
tures as used in AVSR. Second, the actions change
in the course of an utterance. Thus, the contextual
information is not static as in the previous systems
utilizing visual scene contents.

In this paper, we present a corpus-based method
for training and optimising action-specific language
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models. The goal is to improve recognition accu-
racy by using these models during speech process-
ing. Training data for the language models is col-
lected using a scenario described in section 2. Sec-
tion 3 describes our method of associating utterance
parts to actions. The resulting action-specific train-
ing data is used in an automated language model
training and optimisation process. The results of this
process are discussed in section 4.

2 Scenario and data collection

Figure 1: A test subject describes a task while per-
forming it.

Our scenario resembles a situation in which a user
teaches a new task to a robotic system. A test sub-
ject sits in front of a table with several objects (e.g.
a cup and a plant) on it that can be utilized for differ-
ent manipulative actions (Figure 1). Only a subset of
the objects is relevant for the following demonstra-
tion. The subject is instructed to explain some sim-
ple tasks to the system while performing the corre-
sponding action sequence. In order to suppress deic-
tic gestures and too complex descriptions they have
to imagine, that their communication partner is intel-
ligent and knows the setup. The tasks are watering
a plant, preparing tea and preparing coffee. In order
to generate more varying utterances the test subjects
have to perform each task twice with three different
object layouts. The second time they are addition-
ally instructed to name colours and object relation-
ships if possible. The utterances are recorded using
a headset microphone and the scene is recorded by
video. A corpus is collected containing the utter-
ance transcriptions and time intervals, which anno-
tate the actions. The actions performed are anno-
tated in the video based on an abstraction hierarchy



as depicted in Figure 2). The choice of the compo-
sitional granularity was based on two reasons. First,
the corresponding primitives can be detected using a
pre-trained trajectory based action recogniser (Li et
al., 2006). Secondly, the verbalization happened on
that level due to the instructions given.

The resulting corpus consists of 195 utterances
from 11 test subjects (17.7 utterances per person).
The overall length is about 38 minutes. The aver-
age utterance length is about 12.7 s with about 33
words per utterance. The entire corpus includes
6429 words with a lexicon size of 288 different
words. The videos are annotated with 11 different
actions. The average length of an action interval is
1.75s. All in all 999 intervals with an overall length
of about 29 minutes have been annotated. Each ut-
terance contains 5.5 actions in average.

action

take putdown pourin

!—V—‘—V—\ \}\ \\‘\\

tea cup sugar milk tea cup milk tea sugar milk water

Figure 2: Hierarchic structure of actions used for an-
notation.

The following section describes how action-spe-
cific language models are created using this corpus.

3 Action-Specific Language Models

Speech recognition models are typically formulated
distinguishing acoustic and language models. The
standard technique for language models are n-grams
that have proven their effectiveness over many years
(Rosenfeld, 2000). For acquiring realistic language
models, n-grams need to be trained using a repre-
sentative sample. In the present approach, we as-
sume that the wording will be biased by the ac-
tion, which the speaker performs and describes in
parallel. Thus, we aim at the estimation of action-
specific language models. In order to gain corre-
sponding action-specific samples two problems need
to be solved. First, a method is required, which is
able to associate speech with action intervals in or-
der to extract action-specific parts from an utterance.
Secondly, our approach requires temporal informa-
tion (word intervals) for both the actions and the
speech. The utterance transcriptions from the above-
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described corpus are not annotated with temporal in-
formation in contrast to the video annotation. Man-
ual annotation on that level of detail is expensive.
Thus, we use an automated approach, which is de-
scribed in the next section. Afterwards we elaborate
on our approach to the first problem.

3.1 Gaining Time Information

The temporal information of an utterance with a
known transcription can be gained by using a so-
called forced alignment. Our speech recogniser
(Fink, 1999) uses Hidden Markov Models (HMMs)
as acoustic models. Existing models trained on a
speech corpus are used. Words not in the lexi-
con are defined by new compound models based on
phoneme HMMs. In a forced alignment, the model
topology is restricted in accordance with each utter-
ance transcription. This means the order of word
models is fixed for each transcription ensuring a cor-
rect alignment although the acoustic quality varies
depending on the speaker. Since the transcription
does not contain pauses or spontaneous speech ef-
fects, the model topology needs to be adapted ac-
cordingly. An “<other>" model for these effects is
optionally allowed between words. Figure 3 shows
a schematic diagram of the model topology. For

nehme die Pflanze

o A o

<other> L <other> J
Figure 3: Schematic diagram of a HMM topol-

ogy with fixed word model order and optional
“<other>" models.

each utterance, a sequence of MFCC feature vectors
is extracted following standard speech recognition
techniques. The Viterbi algorithm is used to calcu-
late the state sequence s through the model topology
which produces the feature vector sequence o with
the maximum probability given the HMM A:

ey

s* = argmax P(o, s|\)
S

After the Viterbi alignment, the resulting state se-
quence can be used to calculate the time interval for



each word since the frame length used during fea-
ture extraction is known. After this step, the tem-
poral information is available for both the utterance
transcription and the action annotation. The follow-
ing section explains the next step where the temporal
information is used to associate utterance parts with
actions.

3.2 Pairing of Speech and Actions

The main problem when speech has to be associ-
ated with action intervals is that the utterance parts
semantically belonging to actions are asynchronous
on the time-line (Wolf and Bugmann, 2006). Thus,
a distance measure d(w;, a;) is calculated between
each word w; and action a;. A set of tolerance pa-
rameters is used to decide if a word is assigned to an
action. By choosing these parameters appropriately,
the asynchrony between speech and actions can be
respected. Since the time shift is not longer than
several seconds this procedure is suitable. Multiple
cases have to be handled when calculating with tem-
poral intervals, which are systematically structured
by Allen’s calculus (Allen, 1983). Our method uses
a subset of these relationships. Each type of action
uses independent tolerance parameters to the left hg
and the right h”. They are used depending if w; is
before or after a; respectively. Pauses detected dur-
ing the forced alignment give hints about the change
of an action. Thus, silence is weighted additionally
using a penalty parameter g; so that silence between
an action and a word further increases the temporal
difference. Figure 4 illustrates the distance measure
when silence has to be considered.

. wg o <silence>
t1 to 15 t6
a;
t3 t4

Figure 4: The distance function between two word
intervals under the above constellation is defined as

d(w;,a;) =t —ta+gj - (t3 — t5).

A word is associated with an action if the follow-
ing condition is true:

l

—h; < d('lUi,CLj) < hj 2)

Figure 5 gives a simple example about the assign-
ment strategy. The tolerance parameters are deter-
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mined automatically and individually for each lan-
guage model using an optimisation method, which
is described in section 3.4.

3.3 Language Model Training

The objective of the language model training is to
create a n-gram-model for each action type, which
predicts the action-specific utterance parts most ac-
curately. These models could directly be trained
with the results of the above assignment strategy but
it is likely that these models become too specific.
Therefore, the training data is structured using the
hierarchy defined in figure 2. The top level refers to
the complete utterance. The second level addresses
utterance parts on a more general action level e.g.
“take” or “put”’. The third level reaches the high-
est level of granularity with action-object specific
utterance parts. During training each level can be
weighted using an individual factor (see figure 6).
The set of weighting factors is specific for each lan-

1x complete utterance

1x take putdown pourin

5x tea cup sugar milk tea cup milk tea sugar milk water y

J1y10ads asow

Figure 6: Structure of the training data using the ac-
tion hierarchy. The highlighted path shows by ex-
ample, which parts are used and weighted to train
one language model.

guage model. Thus, each language model has an in-
dividual degree of specialisation depending on these
factors. The training data required in this process is
generated using the speech and action pairing pro-
cess with an individual parameter set. Both the pair-
ing parameters and the weighting factors are opti-
mised specifically for each language model using a
method described in the following section.

During model estimation, absolute discounting
and backing-off are used to handle unseen events.
The counts ¢(yz) of a word z with history y are
modified with an absolute value 3 in order to gain
probability mass for unseen events so that the rela-
tive frequencies are defined as:

(4 _ C(yz) — B
[ (zly) W)

Where c(y-) denotes all events with history y.

Vyzc(yz) > 5 (3)



<other> |ich| nehme jetzt die Tasse und gielle damit die Pflanze links <other>
action—-take—cup action—pourin—-water action—putdown—cup
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32

Figure 5: Augmented utterance transcription and action annotation on one time axis (¢[s]). Assuming pourin-
water has a tolerance of 0.5 s to the left and O s to the right the part “Tasse und gie3e damit die Pflanze links”

is assigned to this action.

3.4 Parameter Optimisation

In the above sections, we have introduced several pa-
rameters. The tolerance parameters and the penalty
factors for silence sum up to 33 in total considering
all 11 action types. In addition, the weighting factors
in the training data structure count 33 in total. This
large number of free parameters cannot efficiently
be determined manually. Thus, we use an optimisa-
tion method, which uses the perplexity to measure
the quality of the action-specific models. We firstly
describe the method in general and go into detail in
the next paragraph.

In order to compute the perplexity a test sample
is required. Since our corpus is relatively small, the
choice of the test sample has large influence on the
perplexity. Therefore the perplexity is computed us-
ing a leave-one-out cross validation (Kohavi, 1995).
The utterances of one person are used as testing data
on each run; the others are used for training. Firstly,
a parameter set with the above parameters is gener-
ated. This parameter set is used to train language
models with the method described in the last two
sections. The testing data is gained using the same
parameter set. Secondly, the perplexity is computed
for each excluded test subject. The average perplex-
ity regarding an action-specific language model is
the final measurement of this model and the under-
lying parameter set. Thus, a parameter optimisation
also finds the tolerance parameters for speech action
assignment. The asynchrony between speech and
actions is respected this way. This method depends
on the assumption that actions frame semantic units,
which are verbalised similarly. Therefore, a correct
assignment of speech to actions results in a better
perplexity rating.

In detail, the optimisation is realised by evaluating
a large number of parameter sets automatically. The
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tolerance parameters to the left and the right are var-
ied in arange from O to 3 seconds using an increment
0.5. The silence penalty is varied in a range from 0
to 2 analogously. The training data is weighted zero
or once on utterance level. The action-level weight-
ing is varied between 0 and 5. On the action-object
level, weighting factors from 1 to 10 have been ex-
plored. We have chosen 12 sets of these factors in
order to evaluate models with different degrees of
specialisation. All combinations of these parame-
ters result in 2 892 different sets. Each one is used
to generate a complete set of action-specific bi-gram
language models. Unseen events are handled using
absolute discounting with 5 = 0.8. Due to the large
number of parameter sets and the resulting complex-
ity, this factor has not been made subject to optimi-
sation. Furthermore, the discounting factor has in-
significant influence regarding this method as infor-
mal tests have shown.

After the action-specific language models have
been created the perplexity is computed so that each
combination of language model and the underlying
parameter set is associated with one. This way the
perplexity can be used as optimisation criterion to
find the best language model for each type of action.
In the following section we present first results gath-
ered using these models during speech processing.

4 Results

The language models’ quality is evaluated by assess-
ing the corresponding speech recognition perfor-
mance. Our speech recogniser uses a standard time
synchronous integrated search strategy to weight hy-
potheses generated by the acoustic model addition-
ally with the language model. We have implemented
a strategy, which enables the speech recogniser to
switch language models during speech processing



’ WACC % WCORR % ’ WAcc % WCORR %
Action-Specific 65.98 £1.1 68.77 Action-Specific 70.56  £1.1 73.20
Base Model 69.39 +1.1 71.96 Base Model 69.39 +1.1 71.96
Difference —3.41 -3.19 Difference 1.17 1.24
Random Usage 48.61  £1.2 51.36 \ ] Random Usage 69.22 £1.1 71.97 ‘

Table 1: Recognition results (expand strategy) using
optimised action-specific language models, trained
with utterance parts on action-object level only.

Action Base Model Diff
perp.  perp.
take-cup 20.84 16.55 4.29
take-tea 3490 1697 17.93
take-sugar 2417 14.04 10.12
take-milk 22.68 19.28 3.40
putdown-tea 28.39 9.83 18.56
putdown-cup 23.01 15.11 7.90
putdown-milk  30.48 12.03 18.45
pourin-tea 41.21  11.95 29.27
pourin-sugar 20.39 12.50 7.89
pourin-milk 36.32 12.54 23.78
pourin-water 34.51 16.10 1841

Table 2: Comparison of the perplexity regarding the
action-specific models against the perplexity using
a standard bi-gram trained on the whole utterances.
The language models are trained with utterance parts
on action-object level only.

using a set of switch points. In our case these
switch points are generated from the action anno-
tation. Two strategies have been implemented. The
stick strategy uses exactly the interval borders and a
default model when no annotation is available e.g.
between two intervals. The expand strategy expands
each action interval as far as possible so that an
action-specific model is always used. All results
are computed using a leave-one-out cross validation
as described in section 3.4. The audio data belong-
ing to the excluded test subject for each run is used
for evaluating the speech recognizer. Afterwards
the word accuracy Wacc and the word correctness
W orr are calculated.

In order to see how the degree of specialisation af-
fects the recognition results it is possible to apply re-
strictions during optimisation. In the following, we
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Table 3: Recognition results (expand strategy) using
optimised action-specific language models, trained
using the utterance level always once. Weighting
factors have been made subject to optimisation.

Action Base Model Diff
perp.  perp.
take-cup 20,43 17,59 2,84
take-tea 26,59 25,15 1,44
take-sugar 23,36 18,98 4,38
take-milk 22,68 21,63 1,05
putdown-tea 26,36 20,57 5,80
putdown-cup 22,51 20,91 1,60
putdown-milk 30,46 21,95 8,01
pourin-tea 27,27 22,51 4,77
pourin-sugar 20,33 15,40 4,93
pourin-milk 31,34 25,46 5,88
pourin-water 29,53 24,62 491

Table 4: Comparison of the perplexity regarding the
action-specific models against the perplexity using
a standard bi-gram trained on the whole utterances.
The language models are trained using the utterance
level always once.

Action Tolerance [s] Silence-
left right  penalty

take-cup 2.00 1.00 2.00
take-tea 3.00 3.00 0.00
take-sugar 0.00 3.00 1.00
take-milk 3.00 2.50 0.00
putdown-tea 2.50 0.00 0.50
putdown-cup 3.00 0.50 0.50
putdown-milk 0.50 0.00 1.00
pourin-tea 0.50 2.50 1.00
pourin-sugar 0.50 1.00 1.50
pourin-milk 0.00 2.00 0.00
pourin-water 2.50 1.50 0.00

Table 5: Tolerance parameters found by the optimi-
sation process (cp. table 4). The language models
are trained using the utterance level always once.
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Figure 7: Overview of the average perplexity against word accuracy for all evaluation results. Models that
are more specific have a lower perplexity. The difference between random and correct usage is larger for
models that are more specific. The optimal results are slightly more specific than the standard bi-gram. Non-
optimal models with up to 80 % of the top rated models thrown away do not reach this result. The keywords
expand and stick denote the switching strategy where expand means each action interval is expanded as

much as possible.
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Table 6: Weighting factors determined during pa-
rameter optimisation (cp. table 4).

present detailed results using very specialised mod-
els on the one hand and results where the degree of
specialisation has also been made subject to optimi-
sation on the other hand. The results are compared
against recognition results using a standard bi-gram
model trained on the complete utterance level (base
result). Another comparison is made against results
where an action-specific model is randomly selected
for each action interval during speech recognition in
order to evaluate their level of specialisation.

Table 1 shows results using very specific models
trained with utterance parts on action-object level
only. The models are too specific since the results
are less good than using a standard bi-gram model.
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The perplexity difference in table 2 shows that these
models are much more specific to the action context
than the standard bi-gram model. The random usage
result confirms that parts not belonging to the cor-
responding action context are not well described by
the model.

Since very specific models with a low perplexity
do not improve recognition results restrictions are
applied during optimisation. The results in table 3
are generated using language models, which have
been trained using the utterance level always once.
The other weighting factors have been made subject
to optimisation. The results are significantly better
in comparison to the standard model. In contrast to
the very specific models, the perplexity difference to
the base model is smaller (see table 4). The random
usage results emphasise the high level of generalisa-
tion. Table 5 shows the optimised tolerance param-
eters. The according weighting factors are shown in
table 6. As one can see, the action-level seems to be
of less importance to the specialisation and is there-
fore rarely used.

We have evaluated more action-specific models
optimised under different restrictions. These re-
sults are summarized in figure 7. In order to verify
that our method actually finds action-specific mod-
els which have better results than others trained dur-
ing the optimisation process we have additionally
evaluated non-optimal action-specific models with a
lower perplexity. These models are selected by leav-
ing different percentages (from 10 % up to 80 %) of
the top rated models unconsidered during the opti-



misation process. The figure shows that these mod-
els indeed create worse recognition results than the
fully optimised ones.

5 Outlook

We have demonstrated an approach to include visual
context into speech recognition realised by means
of action-specific language models, which are auto-
matically trained and optimised. The action-specific
utterance parts required for training are gained us-
ing an automatic associating method between ac-
tions and speech. The method only requires manual
annotation on a level of low detail. The perplexity is
used as optimisation criterion for the training param-
eter sets and a detailed analysis shows the adequacy
of this approach. In order to ensure a certain level
of generalisation the complete utterance level has to
be always used. The optimisation under this restric-
tion delivers the best results, which are significantly
improved in comparison to speech processing with a
standard bi-gram model.

Although this approach is able to improve speech
recognition, the pairing of speech and actions hap-
pens on a heuristic level. Further research has to
show in how far this association delivers seman-
tically correct results. In contrast to knowledge-
based methods, our approach can easily be trans-
ferred to other domains due to the automated pairing
and training process.

Further applications of action-specific language
models could make it possible that action hypothe-
ses are extracted during speech recognition. In or-
der to realise that, multiple models could be matched
against each other during speech processing.
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Abstract

We present our iterative approach to ena-
bling natural dialogic interaction between
human users and a wheelchair, based on
the alternation of empirical studies and dia-
logue modelling. Our approach incorpo-
rates empirically identified conceptual
problem areas and a dialogue model de-
signed to manage the available information
and to ask clarification questions. In a
Wizard-of-Oz experiment employing the
first version of the model, we test how ver-
bal robotic reactions can enable users to
provide the information needed by the
wheelchair to carry out the spatial task. Re-
sults show that the output must be extraor-
dinarily coherent, temporally well-placed,
and aligned with the user's descriptions, as
even slightly deviating reactions systemati-
cally lead to confusion. The dialogue
model is improved accordingly.

1 Introduction

Most advanced work on dialogue systems focuses
on human-computer interaction scenarios in which
either the user requires information from an expert
system (e.g., Kruijff-Korbayova et al. 2002), or the
user and the system negotiate a joint task such as
making reservations (Rieser & Moore 2005), or the
system engages in tutoring the user within a
specific area of interest (Clark et al. 2005). In such
tasks, there are typically no particular complic-
ations with respect to time or space: Although the
dialogue takes place in real time, there are no
fundamental context-related effects of temporal
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delay or spatial mismatch. Complementing this
research, there is a growing interest in dialogue
systems employed in real time in spatially
embedded interaction scenarios, such as situated
human-robot dialogue. Such scenarios typically
employ robots designed to accomplish service
tasks for users instructing them by using natural
language. Work in this area often focuses on a
number of specific techniques designed to
overcome the particular complexity of such a
situation (e.g., Lemon et al. 2003, Spexard et al.
2006, Kruijff et al. 2007). Our own work fits into
this latter endeavour by focusing on the
spatiotemporal matching problems that are typical
for a dynamic setting. Our users are involved in the
process of reaching a spatial goal together with the
robot in a wayfinding setting. The particular
challenge in our framework lies in reaching mutual
agreement in relation to the actual surroundings in
spite of the fact that humans' and robots'
spatiotemporal concepts differ in crucial respects.
Related work also focusing on route descriptions
is addressed, for example, by the Instruction-Based
Learning group (e.g, Bugmann et al. 2004), and by
MacMahon et al. (2006). Our current focus is on a
detailed qualitative analysis of the discourse flow
between human and robot, using a realistic interac-
tion scenario with uninformed users that is tailored
to the actual technological requirements. This par-
ticular approach is not to our knowledge adopted
elsewhere (though see Gieselmann & Waibel 2005
for a different scenario), but is specifically needed
to establish and improve the relationship between
implemented functionalities and humans' intuitive
reactions at being confronted with an autonomous
transportation device. In this paper, we first de-
scribe our approach including earlier empirical re-
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sults and a sketch of the first version of our dia-
logue model. Then we present the results of an-
other empirical study testing the model, discuss the
ensuing improvements, and conclude by outlining
the next steps in this iterative process.

2 Previous work

One of the prominent aims in the SFB/TR 8 Spatial
Cognition (Bremen/Freiburg)® is to enable smooth
and efficient spatiotemporally embedded language-
based interaction between humans and robots. For
this purpose we explore uninformed users' natural
preferences in tasks resembling the future func-
tionalities of our robots in basic respects, coupling
technological development with empirical investi-
gations. In the long run, our system will implement
ontological knowledge as described in Hois et al.
(2007), the development of which is also based on
our targeted empirical findings, in addition to a
careful examination of the existing literature on
spatial language semantics and usage (Tenbrink
2007). Our dialogue system architecture is de-
scribed in Ross et al. (2005). While the system it-
self is not restricted to application in a particular
robot, we focus here on an application with the
autonomous wheelchair "Rolland" (Lankenau &
Rdofer 2000). In Shi & Tenbrink (forthc.), we de-
scribe the first steps in adapting the system for an
indoor route description scenario. The main focus
in that work is on matching the users' spontaneous
utterances with the robot's implemented conceptual
route graph (Krieg-Brickner & Shi 2006). In the
following we summarize the results.

2.1

Our first empirical study was designed to collect
spontaneous utterances and examine users' general-
ized strategies in a scenario resembling the tar-
geted robotic task. Our users were told to move
with the robotic wheelchair through an office envi-
ronment and describe a range of places and loca-
tions to the robot. After that, they were asked to
instruct the robot to move to one of these places.
From the collected natural language data, we ex-
tracted the following potentially problematic con-
sequences of our users' linguistic choices and

Empirical results

! Funding by the DFG is acknowledged. Also, special
thanks to Kerstin Fischer who was crucially involved in
the preparation of the empirical work reported here.
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strategies. Most typically, the utterances may con-
tain a reference to an object or location in the real
world that the robot is incapable of resolving. This
may be due to the vocabulary available to the ro-
bot, to the name tags attached to objects and loca-
tions in the robot's internal map, to the user's em-
ployment of a different expression than that ex-
pected by the robot, or to the robot's inability to
establish the exact spatial relationship that the user
refers to. The latter point is enhanced by the fact
that natural spatial utterances are typically under-
specified (Tversky & Lee 1998); they only point to
a vague spatial direction that needs to be matched
to other knowledge sources, and they often lack
information about a required ingredient (such as
the relatum). Since the robot's perceptual abilities
differ from the human's, there is a high potential
for mismatches especially in the (normal) case of
underspecification. On top of that, the utterances
we collected in our scenario reflect a high degree
of uncertainty on the part of the users.

A different problem is that users are unsure
about the level of granularity or detail suitable for
the instruction. Some instructions directly refer to
the goal location, while others only give directional
information such as "straight on — to the left".
Since the robot has access to higher-level informa-
tion, this method is not efficient as it leads to a
continuous need for interaction. Also, to match
instructions with the implemented conceptual route
graph, the robot needs information about spatial
boundaries of the route segments, which is often
not provided, at least not explicitly. The informa-
tion provided by the users is also often too vague
to be matched to the robot's knowledge.

2.2

The first version of our proposed dialogue model
was designed to deal with each of the identified
problem areas. In the case of reference resolution
problems, underspecification, and missing bounda-
ries, the robot asks for more information. If a con-
flict between the description and the robot's inter-
nal map is detected, the robot makes an assertion to
inform the user about this disparity. In case of am-
biguities, the robot may provide a suggestion to the
user. These ideas were integrated within a dialogue
model based on the COnversational Roles model
(COR) (Sitter & Stein 1992). Figure 1 shows a de-
piction of a clarification subdialogue ask(robot,
user), initiated by the robot, a part of the dialogue

Dialogue system



model. In the diagram request, reject, accept, sug-
gest and assert are dialogue acts, while instruct
(user,robot) is another subdialogue within the dia-
logue model. Circles represent dialogue states; the
marked one is the final state. The subdialogue
instruct(user,robot) may involve iterative
processes such as those described by Clark &
Wilkes-Gibbs (1986), in which the agreement on a
particular Kind of reference may take several turns.

ask(robot.user)
robot.reque .
bot . user.reiect
I’O ot.sugges ‘

user.accep

150N

‘1asn)1on

70q0.

robot.assert

Figure 1  Clarification subdialogue

Our examination of the collected data shows that
our formal model should theoretically capture the
majority of the potential communication problems
identified on the basis of the (monological) first
study. In order to account for dynamic dialogue
processes, and to put the dialogue model to the
test, we conducted a second study in which the
robot reacted verbally to the users' utterances. This
is particularly important since our cases of
clarification relate neither directly to the semantic
nor the pragmatic level of understanding (cf.
Schlangen 2004), but rather, to the cognitive
domain: the robot needs to know precisely how the
users' cognitive representation should be matched
to its own internal conceptual map. Therefore,
standard clarification mechanisms such as various
forms of reprises or clausal, constituent, or lexical
clarifications (Purver et al. 2003) do not readily
apply in this particular situationally embedded
domain of interaction. Our second study is
presented next.

3 Empirical investigation

17 German and 11 English native speakers partici-
pated in this experiment. The setting in this second
study exactly matched that of the first, except that
in this case, in the second (route instruction) phase
a human "wizard" was seated behind a screen who
triggered prefabricated robotic utterances follow-
ing a certain schema based on the dialogue model
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developed before. The schema was devised based
on our knowledge about the range of variability in
the users' spontaneous utterances, as gained from
the first study. The wizard's instructions were as
follows: If the user simply states the goal location
or reference to a room without providing further
information, the robot informs the user that this
location is unknown to it, and requests further in-
formation. If the user provides an underspecified
spatial direction such as "then left", the robot sug-
gests a precise location to turn according to its in-
ternal knowledge, or requests clarification in a
number of predefined ways, formulated so as to
induce the speaker to provide the relevant informa-
tion on a suitable level of granularity. These reac-
tions account for those cases in which boundaries
cannot be inferred from probable interpretations of
combined utterances (which should often be
possible at least to a certain degree). The wizard
could also assume a representation mismatch and
react by letting the robot assert: "Sorry, this does
not match with my internal map". Thus, using a
range of preformulated utterances, the wizard was
able to produce a reasonably natural dialogue with
the user without natural language generation while
sounding "automatic" as suitable for the robot. The
design was intended to presume a high amount of
mismatch and need for clarification (Fischer 2003).

As before, the linguistic data were recorded,
transcribed, segmented into TCUs, ("turn construc-
tional units", cf. Selting 2000),% and analyzed using
the methodology of a detailed qualitative discourse
analysis. In particular, since we are interested in
the cognitive elements and spatial information con-
tent, we categorized the route instruction data with
respect to whether each TCU contained:

1. a directional or motion-based term, such as
"straight on" or "turn left"

2. a reference to a spatial location: either a
landmark (or sub-goal) or the goal itself,
e.g., "go to the office"

3. areference to a path entity ("the hallway").

These distinctions were further examined with re-
spect to whether the landmarks or (sub-)goals in 2.
as well as the path entities in 3. were spatially an-
chored as in "the office on the left" or "the first

2 TCUs are defined on the basis of interactionally rele-
vant completion, taking syntactic, semantic, pragmatic
linguistic evidence as well as activity-related factors
into account.



hallway on the left", and whether they occurred
together with a path-describing term such as "past
the office” or "down the hallway". These aspects
reflect insights on basic elements of route descrip-
tions (e.g., Denis et al. 1999, Gryl et al. 2002). A
specific spatial segment could be described in full
by combining all three categories: "go straight on
down the hallway in front of you towards the third
office on your right". However, most TCUs con-
tain only parts of this information. Other parts may
be expressed in or inferable from adjacent TCUs.
The component analysis serves here for a first
evaluation of the data, though they cannot capture
the intricate diversity of the users' distinctions (cf.
Klippel et al. in press). More detailed annotations
are possible and desirable for our subsequent work,
for instance, integrating qualitative and quantita-
tive distance and orientation information (which
plays a minor role for the present analysis). In ad-
dition to the component-related analysis (section
3.1), we pursued a procedural approach by analys-
ing the development of particular stretches of dis-
course in detail. In sections 3.2 through 3.4 we pre-
sent the generalized results of this analysis in rela-
tion to the utterance categories presented in 3.1
along with a number of examples.

3.1

In the 11 English and 17 German dialogues, we
identified 123 English and 244 German TCUs
produced by the user and directed to the robot. In
the following, we do not differentiate further
between the languages since we do not focus on
language differences here. 103 (less than one third)
of the TCUs were non-spatial (such as answering
"Yes" to a robot's question).

Of the remaining 264 TCUs, about one third
(31.44%) were purely direction-based (category 1).
Almost half of the 264 TCUs (45.08%) contained
mention of a location (category 2); one-third of
these were neither spatially anchored nor part of a
path-description; rather, they presupposed knowl-
edge of the mentioned place, as in "go to the stuga-
room". Almost one-third (29.55%) of the 264
TCUs contained a path entity (category 3), half of
these occurring together with a path-describing
term, and one-third specifying the path entity spa-
tially. Thus, as with landmark entities, the identity
of path entities is typically presupposed. We now
turn to a closer look at a number of samples in or-
der to investigate the success of our first dialogue

Component analysis
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model reflected by our wizard's reactions. Here we
did not establish abstract categories for measuring
dialogic success, as we felt this would not do jus-
tice to the flexibility of the discourse processes.

3.2

Some of the dialogues turned out to be entirely
unproblematic, they appeared to be completely
covered by the dialogue model and did not exhibit
any communication problems. Here is an example
(D1) (numbers in brackets refer to pauses in
seconds; the examples segment the utterances here
into idealized turns rather than TCUs).

ROBOT I'm ready.

USER please go to the stugaraum

ROBOT Oh, I'm sorry, | must have missed that location.
Can you please explain to me how to get there?

Smooth dialogue with clarifications

USER leave this room (1) then (2) turn left (2) follow the
hallway (2) and then take (1) another left

ROBOT s this the first possibility to turn?

USER yes (2) then continue left continue down that

hallway

Up to which point do | go straight?

you go straight until the last room on the left side
Okay, | think I got it. I am taking you to the
Stugaroom now.

okay go

I am sorry, my batteries are too low. Please
recharge them first.

This example shows how the speaker first assumes
full knowledge on the part of the robot, by simply
referring to the goal location (category 2). The
clarification question induces the speaker to pro-
vide more specific information structured in seg-
ments according to relevant decision points, em-
ploying categories 1 and 3. Then the robot suggests
that the left turn is the first possibility to turn,
which is confirmed. Utterances of category 2 (here:
"continue down that hallway") are underspecified
with respect to the end boundary, motivating an-
other clarification question by the robot. The user
gives the information, and the robot is satisfied.

3.3

Some utterances do not reflect a level of
granularity that is suitable for the robot. Our
preformulated utterances in some cases success-
fully motivated a shift in this respect as intended
by the form of the robot's requests, as shown in the
following example D2.

USER  to go to the stugaroom (1) turn (4) 180 degrees (2)
exit (1) room three four four zero. turn (1) left (3)
go straight (1) ahead

ROBOT
USER
ROBOT

USER
ROBOT

Shift of granularity level



ROBOT Up to which point do | go straight?

USER to the - | don't know (5) go straight (1) turn left to
the (3) to the copy room (3)

ROBOT When I'm left of the room with the photocopying
machine, what do | do?

USER  you go straight until (1) you get to the stugaroom
The user starts out with category 1 descriptions
accompanied by hesitations and pauses, omitting
information about the boundaries of actions. After
the robot's first question the user starts to mention
places (category 2) but seems to be uncertain about
the correct spatial relations. The robot's second
question then seems to encourage the user so that
the last part of the route instruction is provided
fluently and on a level of granularity more directly
matching the robot's internal spatial knowledge
(combing categories 1 and 2). — In the following
example D3, the robot asserts confusion with re-
spect to its internal map:

ROBOT tut mir leid, aber das passt jetzt gar nicht zu meiner
internen Karte. (I'm sorry, but this does not match
with my internal map).

USER hm

ROBOT bis wohin fahre ich geradeaus? (Up to which point
do | go straight?)
bis zur zweiten Linkskurve (until the second left
turn)

Here, the robot's request for a spatial goal serves to
remedy the confusion and is readily taken up by
the user.

USER

3.4  Spatiotemporal congruity

As exemplified by the previous examples, our pre-
formulated answers turned out to be successful
whenever they fit sufficiently to the user's descrip-
tions by precisely filling in gaps or underspecifica-
tions. However, these clarifications need to be pre-
cisely temporally adjusted; as Rieser & Moore
(2005:245) point out, "clarification should not be
postponed, and immediate, local management of
uncertainty is critical.” Our example D4 illustrates
how a very slight delay may cause confusion and
non-clarification of the underspecified item.

USER  you turn left, go straight, turn...

ROBOT Up to which point do I go straight?

USER after the copyroom continue straight
The question about when exactly to cease going
straight remains unanswered; the user essentially
blends the next route segment (which involves
going straight) with the robot's question. This
confusion is due to the users' choice of rapidly
sequencing category 1 utterances that leave
boundaries underspecified, which according to the
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dialogue model triggers the robotic reaction of
explicitly asking for boundaries.

Getting back on track is extremely difficult once
the discourse flow has been interrupted in an
unsuitable way. This may lead to confusions in the
represented spatiotemporal sequence, as in the
following example D5.

USER  wenn wir aus dem Raum A 3440 heraus fahren
biegen wir links ab fahren dann geradeaus (coming
out of the room A 3440 we turn left and then go
straight)

ROBOT wo soll ich abbiegen? (where should I turn?)

USER links. dann an der ndchsten Abbiegemdglichkeit
nach links biegen wir dort ab (left. then at the next
possibility to turn left we turn).

Here, the robot's question is probably intended to
refer to the user's description of going straight. But
the user mentally goes back to the previous
expression turn left, and then returns immediately
to the point where he was interrupted. Matching
this kind of non-sequential information to the
robot's internal map is certain to cause severe
problems. In this case, the user's interpretation of
the robot's clarification question could probably
have been avoided if the robot had acknowledged
the user's description so far (by saying "Okay"
prior to asking the question), so that the user
knows the question refers to the current route
segment rather than a previous one.

3.5 Discussion

Our analysis of utterance components shows that a
substantial amount (one third) of speakers' spon-
taneous route descriptions towards the robot were
based purely on spatial directions, rather than pro-
viding information about the boundaries of a route
segment or the location of a spatial goal or sub-
goal (landmark). Taken by itself, this result is simi-
lar to our monologic study reported in Shi & Ten-
brink (forthc.) where the proportion of purely di-
rectional TCUs is nearly 40%. Such instructions
are informative when given together with addi-
tional information in adjacent turns (Tversky &
Lee 1998). However, the robot may not always be
able to integrate this information suitably, given
the implemented features of the conceptual Route
Graph. Also, some of our participants relied en-
tirely on underspecified directional information,
leading to the need to infer implicit actions
(MacMahon et al. 2006). In both cases, a sophisti-
cated dialogue model can support the inference
processes by filling in missing information with



respect to both the implemented spatial model, and
the real world in which the interaction takes place.

The present Wizard-of-Oz  study was
purposively designed to assume more mismatches
than would normally be the case using any
sophisticated spatial language understanding
system. Nevertheless, the need for conceptual
clarification questions will remain, particularly
with increasing spatiotemporal complexity. Such
procedures are well known also from human-
human interaction (which may be assumed as a
"gold standard" for our research), e.g., Filipi &
Wales (2004). In the present study, the clarification
attempts by the robot worked best for the discourse
flow when they could be integrated into the user's
current mental representation of the spatial as well
as the discourse situation. In other cases,
clarification questions could induce spatiotemporal
distortions not encountered in our previous mono-
logical experiments (Shi & Tenbrink forthc.), thus
complicating the dialogue rather than enhancing it.

Robotic requests that include a new starting
point, such as "When | am left of the room with the
photocopying machine, what do | do?" were taken
up easily by the users especially in cases of earlier
confusion. To generalize this idea, it is important
that the robot informs the user about its current
state of knowledge in as much detail as possible,
and suggests a solution concerning how to proceed
further. This will be specifically helpful in the case
of spatiotemporal sequencing confusions. Also, it
is important that the robot acknowledges what it
has understood so far, to let the user know where
exactly there is an information gap that needs to be
filled in, and to align the spatiotemporal concepts
that the interactants are currently referring to.
These results are related to Rieser & Moore's
(2005) finding that it is better for systems to ask
for confirmation of a hypothesis than to merely
signal non-understanding.

In general, our brief investigation of a situated
dialogic interaction in which a robot's reactions
were simulated shows that requesting clarification
about spatial representations is a non-trivial
endeavour in which even slight deviations in
timing or in confirming common ground may lead
to severe distortions (see also Stoia et al. 2006).
With a real robotic system, speech recognition
problems will complicate the situation consider-
ably (Moratz & Tenbrink 2003), although more
standard clarification procedures (Purver et al.
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2003, Schlangen 2004) are then applicable to cover
some of the problems.

4 Improvement of the dialogue model

Regarding the results of our analysis, the dialogue
model used as motivation for the empirical studies
(cf. section 2.2) needs to be extended. This con-
cerns, in particular, an improvement of the clarifi-
cation procedures, the amount of feedback pro-
vided by the robot, and a more precise matching
process between system knowledge and the lin-
guistic input by the user. Specifically, the precise
discourse history is important since specific re-
quests providing information about successfully
integrated knowledge are more useful than generic
clarification questions, as motivated above. More-
over, the robot's internal map represented as a
Conceptual Route Graph and the robot's current
position on the map should be used for informing
the user in detail about current disparities, in order
to classify various requests, and to make precise
suggestions (see below). In the former version, this
information was only used to detect mismatches,
not to inform the user within the clarification sub-
dialogues. To achieve an effective and natural dia-
logue with users, the dialogue model needs to take
account of information from both dialogic and in-
ternal sources. Consequently, the first extension of
the dialogue model augments it by integrating the
dialogue history as well as the internal map with
the robot's current position (denoted as [H, M]).
The COnversational Roles model is a generic
situation-independent dialogue model. Dialogue
models based on the COR model cover discourse
patterns that are independent of the dialogue
context. By integrating the dialogue history as a
parameter in the extended dialogue model we add a
crucial element from the well-known information
state approach (Traum & Larsson 2003) into the
dialogue modelling process. As a result the model
benefits from both approaches: the flexibility of
the information state approach and the well defined
structure of the COR based modeling approach.
With respect to the mapping of user utterances to
the robot's internal map, the general utterance "this
does not match with my internal map" did not
seem to be helpful for the users but rather caused
confusion (cf. D3). Precise suggestions such as "Is
this the first possibility to turn?" seemed more
promising (cf. D1). In our improved model, we



substitute the three simple dialogue acts, request,
assert and suggest (see Fig. 1 above) by subdia-
logues. Each subdialogue uses the discourse his-
tory and the internal map representation to support
detailed classifications. Figure 2 represents the
sample subdialogue request(robot,user). First, the
robot acknowledges the part of the instruction that
it has understood, based on [H, M]. The user can
react by rejecting this account and providing a fur-
ther instruction, in which case the robot does not
formulate the request in the intended way. How-
ever, if the user does not react or reacts by accept-
ing the robot's description, the robot continues by
requesting information about entities, boundaries,
or orientations, depending on the current require-
ments, in a way that is aligned to the users' descrip-
tions as much as possible (using the dialogue his-
tory). The dialogue will then continue with the user
providing the missing information.

reauest(robot.user)[H.M1
robot.request.

robot. boundary

acknowledge user.accept

robot.request.

robot.request.
orientation

user.reiect
Figure2  'Request’ subdialogue

5 Conclusion and Outlook

We presented a detailed qualitative analysis of a
Wizard-of-Oz study specifically tailored to the in-
tended functionalities of the robotic wheelchair
Rolland, employing the first version of our dia-
logue model. Results show that the model is suc-
cessful in encouraging the user to provide missing
information and to use a suitable level of granular-
ity. However, clarification questions from the robot
need to be formulated and placed with specific
care, as even slight confusions and temporal mis-
placements of the robot's utterances can lead to
severe communication problems and distortions of
the user's spatiotemporal representation. Our pro-
posed solution is to let the robot inform the user
about its internal state of knowledge in as much
detail as possible, and to formulate requests and
suggestions in a way that is aligned to the user's

109

descriptions. The next step in our iterative ap-
proach is to test this revised model empirically.

The construction of dialogue models is the first
step towards the development of dialogue systems
based on empirical findings. We are now develop-
ing a general approach to specify straightforwardly
Recursive Transition Networks in a formal specifi-
cation language, using the model-checker tech-
nique to analyse features, complexity and coverage
of dialogue models. Then, dialogue models will be
constructed from empirical data by extracting the
discourse patterns from annotated dialogues, and
analysing the relations between discourse patterns
and dialogue models. This procedure will enable us
to assert how many dialogues fall into a given dia-
logue model, which may serve as a basis for evalu-
ating a dialogue's success and efficiency and com-
paring various instances of dialogue systemati-
cally. This approach also supports the mechanical
comparison of dialogue models and can thus be
used in the dialogue model evaluation process in
future iterations.
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Abstract

We present City Browser, a web-based plat-
form which provides multimodal access to
urban information. We concentrate on as-
pects of the system that make it com-
pelling for sustained interaction, yet acces-
sible to new users. First, we discuss the ar-
chitecture’s portability, demonstrating how
new databases containing Points of Interest
(POIs) may easily be added. We then de-
scribe two interface techniques which miti-
gate the complexity of interacting with these
potentially large databases: (1) context-
sensitive utterance suggestions and (2) mul-
timodal correction of speech recognition hy-
potheses. Finally, we evaluate the platform
with data collected from users via the web.

1 Introduction

Multimodal dialogue interfaces, which provide a
graphical input and output modality in addition to
speech, do not currently tend to be available to
the wide audience of users that can be found for
more traditional, telephone-based speech-only dia-
logue systems. At the moment, most development
and testing of such systems occurs in the laboratory,
under controlled experimental conditions. In this pa-
per, we focus on efforts to convert our restaurant-
guide multimodal dialogue system previously de-
scribed in (Gruenstein et al., 2006; Gruenstein and
Seneff, 2006) into City Browser, a full-fledged plat-
form for providing urban information multimodally
via the world wide web. Because City Browser
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is available via the web, it has millions of poten-
tial users on all sorts of Internet-connected devices,
which may or may not have keyboards. However,
it is a major challenge to actually reach out to these
users with an interface that is compelling and capa-
ble enough to afford a sustained interaction, yet ac-
cessible and intuitive enough to be usable by people
who likely have no past experience with multimodal
dialogue systems.

In this paper, we identify a core set of capa-
bilities which make City Browser compelling as a
generic platform for presenting geographic infor-
mation. The platform provides capabilities to sup-
port multimodal exploration of databases containing
Points of Interest. Exploration is enhanced by allow-
ing users to access information about public trans-
portation, obtain driving directions, and locate ad-
dresses on the map. However, over the course of
developing the system, it has become apparent that,
even as the platform becomes more useful, it also
tends to become more difficult to use — a trend often
noted by dialogue system designers.

We present two novel user-interface components
which are intended to make multimodal dialogue
systems more usable in the face of growing com-
plexity. The first is a suggestions module which
takes advantage of the visual modality to provide
high-quality, context-sensitive suggestions to the
user about what she can say or do next. The second
is a multimodal error correction framework, which
provides the user with an interactively correctable
N-best list of recognizer hypotheses.

Finally, because our interest is in understanding
how real users interact with multimodal dialogue
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systems outside of the laboratory environment, we
describe our nascent, web-based data collection ef-
forts in which users interact with City Browser from
their own computers. In particular, we focus our
analysis on the response of naive users to the pres-
ence of the suggestions module and correctable N-
best list.

2 A Platform for Accessing Urban
Information

The City Browser platform grew out of our work
with a multimodal dialogue system which was ini-
tially restricted to information about restaurants.
The system’s overall client-server architecture for
speech recognition, linguistic processing, and ges-
ture interpretation has previously been described in
detail (Gruenstein et al., 2006). The interface is web
based and users need only a web browser equipped
with the Java plug-in to access the system. The in-
teraction is centered around a map, as pictured in the
screenshot in Figure 5 (in the appendix). In addition
to speech input, users can draw on the map, as well
as click on displayed Points of Interest (POIs). An
example of a dialogue with the system is given in
Figure 1. City Browser currently has knowledge of
10 major U.S. metropolitan areas, typically encom-
passing 20-50 miles around a major city. Harvesting
new data from the web for additional metropolitan
areas is a semi-automatic process [see (Gruenstein
and Seneff, 20006)].

As we observed users interact with our prototype
containing only restaurant information, we realized
that, while perhaps of some interest, the system was
not useful enough for a genuinely compelling inter-
action. Several frequently requested features were
unavailable. In particular, users wanted to find an
address on the map and then search near it, obtain
driving directions between points of interest, and
find out about available public transportation op-
tions.

City Browser expands on our previous prototypes
by providing these new features. Users can now plan
an outing by finding a restaurant of interest and then
figuring out how to drive or take public transporta-
tion to get there; or they can look for an address, find
out how to get there, and look for restaurants nearby.
Moreover, when using an address to anchor a search,
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: Welcome to City Browser

: Show me 32 Vassar Street in Cambridge.

: Here is 32 Vassar Street in Cambridge. [shown on map]

: Are there any Indian restaurants near here?

: There are 10 Indian restaurants near 32 Vassar Street in
Cambridge. [results displayed]

: What is the nearest subway stop to India Pavilion?

: Central square station is located at Massachusetts Av-
enue and Western Avenue, Prospect Street, and Maga-
zine Street. It is on the Red Line.

: Are there any museums in this area? [circles an area of
the map)

: The Museum of Fine Arts is located at 465 Huntington
Avenue in Boston.

: How do I get to there from 77 Massachusetts Avenue in

Cambridge?

Here are driving directions from 77 Massachusetts Av-

enue in Cambridge to the Museum of Fine Arts. [gives

link to directions]

5102

Figure 1: An example interaction. U;: User; S;:
System. Gestures and system actions are bracketed.
Some system remarks were shortened for brevity.

it need not be fully specified, as in 32 Vassar Street,
Cambridge, Massachusetts. Instead, it might only
be a street name (Vassar Street in Cambridge), or
just a city (Cambridge).

In addition to these core map-based functionali-
ties, it was also apparent that users wanted to be
able to access POIs besides restaurants: they were
especially interested in POIs such as tourist attrac-
tions, banks, parking garages, and gas stations. In
order to support this, we have moved from providing
access to a restaurant database, to creating a more
generic platform for accessing multiple types of POI
databases at once. Given a small amount of meta-
data and a new database of POlIs, the language pro-
cessing components of City Browser can easily be
updated to support the new database. In particular,
support is provided for databases with some or all
of the following attributes: (1) Name The name of
the POI (e.g. Museum of Fine Arts), to be used for
natural language generation. (2) Aliases Alternative
names for the POI, for the language model. (3) Ad-
dress or Position The address of the POI, or a loca-
tion expressed as a latitude and longitude. (4) Phone
Number The POI’s phone number. (5) URL Link to
a webpage with more information about the object.
(6) Description A brief description of the POI.

Our currently deployed version of City Browser
uses these generic database capabilities to provide
access to a database of museums. The architecture



also accommodates the subway station databases for
providing public transportation information, the ge-
ographical database of cities, streets, and neighbor-
hoods, as well as the existing restaurant database.

2.1 Comparison to Similar Systems

The most similar system we are aware of is
MATCH (Johnston et al., 2002), which provided ex-
tensive multimodal capabilities for accessing urban
information. There is significant overlap between
City Browser and MATCH. For instance, both pro-
vide multimodal access to restaurant and public tran-
sit information. A major feature of the MATCH
system which is lacking in City Browser is hand-
writing recognition; we have not concentrated on
this modality, as we do not currently assume our
users will have access to a pen-based interface. An-
other similar interface is AdApt (Gustafson et al.,
2000), which provides apartment rental information
in downtown Stockholm.

To the best of our knowledge, City Browser stands
out in that it provides support for POI databases
containing thousands of entries, extending through-
out a metropolitan area; in particular, the restaurant
databases are comparable in size to those of com-
mercially available, web-based restaurant databases.
Moreover, City Browser supports a multitude of
metropolitan areas, rather than just one or two cities.
As we have just described, it also supports the ar-
bitrary addition of new databases of POIs. City
Browser provides links to driving directions and
supports the recognition of arbitrary addresses with
any street name in the metropolitan area. Finally, as
noted, City Browser is fully web-based; and beyond
a web browser, requires only the standard Java plug-
in to operate. It is the combination of these factors
which make City Browser uniquely accessible to a
potentially large audience, even as a prototype.

3 Suggestions Module: What Can I Say?

City Browser is designed to be a highly user-driven
interface. The task is generally exploratory in na-
ture, rather than transactional, as tends to be more
typical for dialogue systems. In testing earlier it-
erations of the system, we observed that users of-
ten had trouble formulating queries “out of thin air,”
given their lack of experience using such a system.
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However, given the large bounds of the system’s ca-
pabilities, it is difficult to imagine a system-directed
dialogue, as there are many paths of exploration.

Natural interaction with increasingly complex and
intelligent systems is a fundamental challenge in di-
alogue system research. As capabilities increase,
systems often become much more difficult to use.
Users can’t easily distinguish an error in which an
in-domain phrase is misrecognized, from one in
which an out-of-domain phrase is spoken. We uti-
lize City Browser’s multiple modalities to gain lever-
age in attacking this problem, by designing a sug-
gestions module which visually provides users with
contextually-specific suggestions as to what they
might say next at the current point in the dialogue.

On the right-hand side of the GUI, as shown in
Figure 5 of the appendix, we show a list of sug-
gested utterances labeled What Can I Say?. In fact,
these suggestions extend beyond simply what a user
can say, by indicating gestures that can be made to
accompany certain utterances. As in any dialogue
system, particular utterances and actions may only
be relevant at a given point in the dialogue; to ad-
dress this, we have created a module which dynami-
cally produces a relevant set of suggested utterances
at each new turn in the dialogue. This serves two
purposes. First, it allows us to offer relevant sug-
gestions given the current state of the dialogue, tai-
lored specifically to the current context. Second,
even as the same templates are used, their content
words (such as city names, street names, and cui-
sine types) are continually changed, giving the user
a general impression of the range of the system’s
knowledge. For instance, a user might be surprised
to see a city 20 miles away from the center of the
metropolitan area mentioned, indicating that the sys-
tem has knowledge of many surrounding suburbs.

Dynamic suggestions, which are dependent on the
current dialogue state, are instantiated from hand-
crafted templates and filled in using the current
metropolitan region’s POI databases. Suggestions
are also tailored to any POIs of interest currently
visible on the map. Finally, appropriate follow-up
queries are inferred from the user’s previous utter-
ance. Figure 2 gives an overview showing how the
list of suggestions is generated. The different cate-
gories of suggestions generated include the follow-
ing:



Previous Utterance:

Show me cheap Indian restaurants in Cambridge

Key-Value Semantics:

clause=request, topic=restaurant, cuisine=indian, price_range=cheap,city=cambridge

{q restaurant

Matching DB entry :name "india castle"

:phone " (617)

864-8100"

(subset of attributes :streetnum "928" :street "massachusetts avenue" :city "cambridge"
shown): :state "ma" :cuisine ( "indian" ) :recommendation "recommended"
:price_range "low" :neighborhood "harvard square" }
{gq restaurant
:name "dakshin" :phone " (508) 424-1030"
Random DB entry: :streetnum "672" :street "waverly street" :city "framingham"
:state "ma" :cuisine ( "indian" ) :recommendation "xnonex"
:price_range "low" }
TEMPILATE REALIZATION
Global

I'm looking for $PRICE_RANGE $CUISINE restaurants on
$STREET in $CITY.
What is the nearest SSUBWAYNAME station to ADDRESS?

Are there any $CUISINE restaurants here? [outline a region
with the mouse]

I’'m looking for cheap Indian restaurants on Waverly street in
Framingham.

What is the nearest T station to 672 Waverly Street in Framing-
ham?

Are there any Indian restaurants here? [ouline a region with the
mouse]

Show me the SATTRIBUTE ones.
Tell me about these. [Circle a few SENTITY_TYPESs with the
mouse]

Subsetting

Show me the recommended ones
Tell me about these. [Circle a few restaurants with the mouse]

What’s the phone number of SNAME?
Give me driving directions to $NAME from $ADDRESS

Are there any subway stops near SNAME

Anaphoric

What’s the phone number of India Castle?

Give me driving directions to India Castle from 672 Waverly
Street in Framingham

Are there any subway stops near India Castle?

Contrastive
What about in Framingham?

What about in SCONTRAST_CITY?

Figure 2: This figure shows inputs to the suggestions module, examples of each type of template used
to create suggestions, and the actual suggestions which are realized by combining each template and the
input shown at the top. The inputs to the module are (1) the previous utterance and its key-value semantic
representation, (2) the database entries which matched that query, and (3) other randomly selected database
entries. This information is used to fill in values in each type of template on the left, yielding the realizations

of those templates on the right.

Globally relevant suggestions These are utter-
ances which always apply, such as map commands
(pan right and zoom in), queries about addresses,
driving directions, public transportation, and points
of interest. The POI databases in the current
metropolitan region are used to fill in the templates,
as shown in Figure 2. The database entries are used
in such a way as to guarantee that each suggested
utterance, if uttered (and correctly recognized), will
actually yield one or more results. This is very im-
portant, since, as some users get to know the system,
they read the suggestions verbatim. This helps them
to verify that the system is working, and to become
more comfortable using it. Figure 2 shows exam-
ples of different types of suggestions which might
be rendered from a single database entry.
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Subsetting suggestions There are two forms for
specifying subsetting suggestions. First, multimodal
ones, such as Tell me about these [Circle a few
restaurants with the mouse ], allow the user to zero in
on a smaller set. Second, suggestions which subset
by attribute show how POI properties can be used
to narrow down the set, as in, Show me the highly
rated ones. A rank-ordered list of properties for each
POI type is used for this type of narrowing down;
for restaurants we use the price_range and recom-
mendation properties. Any of these properties which
were not mentioned in the user’s previous utterance
are used to create novel suggestions.

Anaphoric suggestions A user will often want to
get more information about a particular attribute of
either a single POI in focus or a focus set. We pro-
duce two types of suggestions for these cases. If a



single entity is currently salient, we offer anaphoric
suggestions relating to an attribute of that entity,
such as Tell me its phone number. For a set of en-
tities, we offer suggestions about the properties of
individual members, such as Can you tell me the ad-
dress of the Museum of Fine Arts? In addition to
querying about a particular property, users may also
use one of the in-focus entities as a reference point
for searching for something else, as in Are there any
subway stops close to the Royal East?

Contrastive suggestions A nice aspect of using
natural language to access this type of information is
that it is quite easy and natural to build on a dialogue
by retaining some attributes of a search query and re-
placing others. For example, if a user has just said
Can you show me the subway stations in Cambridge,
it is quite natural to follow up with a query such as
What about in Brookline?. We again use the key-
value representation of the user’s previous utterance,
but this time we look for keys which were explic-
itly mentioned by the user. We then produce sugges-
tions in which one or more of these keys is changed
to a different value (which, as usual, is drawn from
actual database items). In addition, we offer multi-
modal contrastive suggestions, such as What about
near here? [Click on a point on the map].

Our suggestions system resembles some-
what the multimodal help system developed for
MATCH (Hastie et al., 2002). MATCH relied
on the user explicitly asking for help, while we
offer newly updated suggestions at every turn
unobtrusively along the side of the screen. While
both the MATCH system and our suggestions
system are sensitive to the dialogue context, we
are more aggressive about actively incorporating
information from the various databases used in the
system. We are also more sensitive to the semantic
content of previous queries, allowing our module
to offer more targeted subsetting suggestions. On
the other hand, the MATCH system’s capability to
actually demonstrate how to draw or write during a
multimodal command is quite useful, and we hope
to incorporate a similar capability in the future.

The system can also be seen as providing simi-
lar functionality to targeted help systems like those
described in (Hockey et al., 2003) and (Gorrell,
2003). However, while these algorithms provide
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help prompts based on an out-of-domain utterance
which was not correctly recognized, the sugges-
tions module described here makes use of the visual
modality to try to avoid out-of-domain utterances in
the first place. The two approaches could likely be
beneficially paired.

4 Multimodal Error Correction

One of the most potentially frustrating aspects of in-
teracting with a dialogue system like City Browser
is inaccurate speech recognition. Our previous re-
search in this area has focused on dynamic language
modeling mechanisms which aim to minimize er-
rors involving proper nouns. Nonetheless, errors
arising from the misrecognition of proper nouns are
still quite common in City Browser, as well as er-
rors having to do with numbers (e.g. “thirty” v.s.
“fifty”’). Other dialogue system designers working
in domains with large sets of proper names have also
noted this difficulty (Weng et al., 2006).

While extensive research has been performed on
multimodal error correction techniques for dictation
systems [e.g. (Suhm et al., 2001)]- especially with
regard to techniques which display alternative hy-
potheses — we are not aware of dialogue systems
which make use of alternatives-based multimodal
error correction techniques. Extensive arguments
have been made, however, for the potential of mul-
timodal interaction to decrease understanding error
rates (Oviatt, 1999).

For City Browser we have currently deployed
a straightforward mechanism for alternatives-based
multimodal error correction, which utilizes the fact
that a class n-gram is used as the recognizer’s lan-
guage model — a common mechanism for dialogue
system language modeling. Our corrections mecha-
nism presupposes that a large number of errors arise
from the misrecognition of content words, rather
than the structure of the utterance itself. We dis-
play a correctable N-best list which uses semantic
knowledge derived from the class n-gram to create
alternatives lists. City Browser displays the recog-
nizer’s top hypothesis, which it has taken to be cor-
rect and already responded to, and allows users to
correct it in two ways. First, a drop-down menu is
available which allows the user to replace the top hy-
pothesis with any of up to 15 of the top hypotheses
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Figure 3: Correctable N-best list. We show a portion of the /N-best list generated from the utterance Show
me 32 Vassar Street in Cambridge along with the drop-down menus available on the user’s output. The
image on the top-left corner shows what the user sees momentarily during active processing.

which appear on the /NV-best list. Second, the classes
of the language model are leveraged to create poten-
tial confusion sets for the members of each class. In
particular, whenever a recognition hypothesis is gen-
erated by the recognizer, any word or word sequence
in the hypothesis which was chosen from one of the
language model classes is tagged as such. A sepa-
rate list is constructed from all words that appear in
each class in the top 50 hypotheses on the N-best
list. If a class member appears in the top hypothe-
sis, a drop-down menu allows the user to change the
value of this class member to that of any other, and
then resubmit the altered hypothesis to City Browser
for processing. Figure 3 shows an N-best list gener-
ated by the recognizer, and the resulting drop-down
menus which are then available to correct this recog-
nition result.

Typically we expect that this capability would be
used primarily to make a single token replacement
in which one misrecognized class member is re-
placed with another. We expect that, with less fre-
quency, users will examine the /N-best list itself to
choose a new candidate hypothesis, as this is a more
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cognitively demanding task. By combining these
methods, more complex corrections are possible: a
user may first choose a candidate hypothesis with
the correct syntactic form, but incorrect class mem-
bers. They can then perform token replacements to
change these class members. This is potentially eas-
ier than examining a deep /V-best list, as the top-left
screenshot in Figure 3 shows. Currently, users can
only modify the recognition hypothesis using the
provided drop-down menus; though in future work
we hope to develop mechanisms which allow the
user to type and/or speak to correct parts of the ini-
tial hypothesis. However, users are currently free to
ignore the correction mechanism by speaking a new
utterance.

In our in-lab pilot testing, we realized that users
often did not realize that this corrections capability
existed, despite help tooltips which point it out. To
better advertise the capability, City Browser briefly
displays each of the available token replacements for
1.2 seconds as soon as the recognition hypotheses
are available. The benefit here is two-fold. First, it
allows the user to easily see if the correct alternative



exists, without having to activate the drop-down list
with their mouse. Second, it provides feedback that
the system is working even as the input is still being
processed and the GUI updated. This both increases
the perceived responsiveness of the system, and puts
the user in a position to detect the error and make the
correction more quickly.

S Preliminary Data Collection Results

We have previously evaluated earlier iterations of
the system on several small sets of users using a
tablet computer in the laboratory (Gruenstein et al.,
2006; Gruenstein and Seneff, 2006). After devel-
oping new capabilities, we are now collecting data
from users via the web, using their own hardware.
We hope that this methodology will enable us to col-
lect a large corpus of data from a wide variety of
users, and will allow us to identify issues involved
in deploying live dialogue systems.

Subjects are currently being recruited via email
lists with an incentive of a $20 Amazon.com gift
certificate. Subjects are led through one warm-up
task to ensure that their audio set-up is functional,
then through 10 scenario-based tasks of generally in-
creasing complexity. The tasks are worded in such
a way as to make it difficult to simply “read back”
the task description to the system. Several of the
tasks are designed to be potentially frustrating if
users simply read them back, mentioning concepts
that the system does not understand (e.g. “highway
93”). This allows us to gather data about how users
react when the system encounters out-of-vocabulary
words, or concepts the system can’t parse or under-
stand. In some cases, it also allows us to collect
data about how users might want to interact with the
system, if capabilities involving these concepts were
available. Figure 6 (in the appendix) shows one of
the scenarios used to collect data.

We have transcribed and begun to annotate the
data collected from the first 25 users who interacted
with the system, and attempted all, or almost all,
scenarios. A total of 1,277 recorded utterances led
to recognition hypotheses from these users. The
word error rate across all users was 26.0%, similar
both to our previous results, and those obtained for
small sets of users interacting with MATCH (Ban-
galore and Johnston, 2004; Johnston et al., 2002)
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Figure 4: Per-user interaction analysis. Top: cor-
rectly, partially correctly, and incorrectly interpreted
utterances. Middle: turns with token or candidate
corrections. Bottom: turns where suggestions win-
dow was scrolled.

and AdApt (Hjalmarsson, 2002) systems. In or-
der to coarsely gauge the system’s performance, we
have manually labeled each utterance according to
whether the system’s response was entirely correct,
partially correct (e.g. contained a subset of the in-
formation requested), or incorrect.

Figure 4 shows the number of utterances per user,
broken down by the appropriateness of the system’s
response. Quality of interaction varied quite a bit
among users, with some having much more success-
ful interactions than others. We observe that system
performance is far from perfect, and are currently
further analyzing the causes of the errors. A pre-
liminary analysis shows that audio problems such
as inappropriate microphone input level and end-
pointing errors are responsible for a significant por-
tion of the errors. These types of errors are to be
expected when reaching out to a wide range of users
using their own hardware, as many users have lim-
ited experience using their computer microphone.

We also used log data to glean some knowledge
of users’ awareness of the /N-best corrections capa-
bilities and the suggestions interface. Figure 4 also
shows how many times each user used the correc-
tions framework. This is broken down into foken
replacements, in which an individual token (such as
a city or street name) was replaced and candidate re-
placements, in which an entirely different candidate



hypothesis was chosen. We found that about half
the users (12 of 25) used the corrections capability
at least once. In fact, all of these 12 used it more
than once.

Finally, to get a very rough idea of whether or
not users were at least noticing the suggestions of-
fered by the system, we counted turns in which a
user scrolled the suggestions window. The sugges-
tions window can usually fit more than 10 sugges-
tions — depending on screen resolution — when the
system first starts. As results are returned, it shrinks
to accommodate showing the list of these results,
and only the top 5 or so suggestions are usually
shown. Users can scroll the window to see all of
the currently available suggestions, and this action
is logged by the system. Almost all (23 of 25) users
scrolled this window at least once; most of them
scrolled it during at least several turns. Figure 4
graphs this data. We are encouraged that users are
interested enough to scroll the suggestions window,
and note that they are likely looking at these sug-
gestions more often than indicated by scrolling, as
the top few suggestions (which can be seen without
scrolling) are usually intended to be the most rele-
vant to the current context.

6 Summary and Future Work

We have presented City Browser, a web-based plat-
form for developing multimodal interfaces which
give users access to POI databases. We have shown
how City Browser can easily accommodate new POI
databases. In addition, we have described two as-
pects of the system which make it easier for users
to interact with the unfamiliar technology: a sug-
gestions module and a multimodal error correction
interface technique. Finally, we present a prelimi-
nary evaluation of these features using data collected
from users via the web, using their own computer
hardware. We show that users generally do discover
and make use of the suggestions feature, while about
half use the correctable /N-best list.

In the future, we plan to expand the capabilities
of City Browser based on observations of user in-
teractions and their feedback. We are particularly
interested in improving both the suggestions gener-
ating and multimodal error correction modules. For
example, we believe that a full-blown semantic rep-
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resentation of utterances could be incorporated to
allow users to correct structured representations of
City Browser interpretations rather than text strings.
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City Browser
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Figure 5: Screenshot of the City Browser interface running inside a web browser. At the top, there is a
large button that the user presses to start speaking, with a bar underneath which moves as users speak.
Immediately below the bar is the top recognition hypothesis for the user’s previous utterance, shown as a
correctable N-best list. In the upper right corner are the current suggestions of what to say next; below that
is a list of restaurants recently returned in an earlier query. These restaurants are shown as the numbered
markers on the map at the center. There is also a portion of the overlayed subway map, shown as the line
passing through the shaded circle, which has been displayed in response to the user’s current query. The
shaded circle on that line marks the nearest subway station to the restaurant under discussion, and can be
clicked for more information. In the top left corner of the map is a control which allows the user to change
the current metropolitan area. To the right of it, are buttons which allow the user to go back (undo the
previous utterance) and start over. The standard Google Maps controls are also overlayed on the map for
zooming, panning, and switching to satellite or hybrid view.

You have a friend visiting who wants to go to a couple of different museums in Boston while she’s here. She’s a sports nut, so
you plan to take her to the Sports Museum near the Fleet Center in the morning. Then, you’d like to take her to the Museum of
Fine Arts in the afternoon. You are planning on taking the subway to get around starting in Kendall Square. Figure out a plan
for doing this. Also, you’d like to find a nice place to eat lunch within walking distance of the Sports Museum, and an Italian

place for dinner that is not too far from the Museum of Fine Arts.

Figure 6: Example data-collection scenario
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Abstract

This paper presents the results of an anal-
ysis of user reactions towards system fail-
ures in turn-taking in human-computer dia-
logues. When a system utterance and a user
utterance start with a small time difference,
the user may stop his/her utterance. In addi-
tion, when the user utterance ends soon after
the overlap starts, the possibility of the ut-
terance being discontinued is high. Based on
this analysis, it is suggested that the degrada-
tion in speech recognition performance can
be predicted using utterance overlapping in-
formation.

1 Introduction

Many kinds of spoken dialogue systems have been
developed in the last two decades. Most previous
systems employed a fixed turn-taking strategy, that
is, they take a turn when the user puts a certain
length of pause after his/her utterances, and they re-
lease the turn immediately when the user barges in
on a system utterance. In order to improve the us-
ability of spoken dialogue systems, the turn-taking
strategy needs to be more flexible.

Thus far, there have been several approaches to
this problem. Some methods try to decide when to
take a turn based on not only the length of pause
but also the content and prosody of the user utter-
ance [e.g., (Sato et al., 2002; Ferrer et al., 2003;
Schlangen, 2006)]. Other methods try to decide how
to appropriately react to the user barge-in utterances,
not just simply stopping whenever a barge-in utter-
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ance is detected [e.g., (Strom and Seneff, 2000; Rose
and Kim, 2003)].

Despite these efforts, achieving appropriate turn-
taking is still difficult. The features used by these
methods are not always perfectly obtained. In addi-
tion, even humans cannot sometimes decide whether
the system should take a turn or not (Sato et al.,
2002).

Consequently, in addition to efforts towards im-
proving turn-taking, we need to find a way to make
the system cope with turn-taking errors. As a first
step, we investigated how users behave when the
system made mistakes in turn-taking. We have
found that users tend to stop their utterances in cer-
tain situations. We expect this to be useful in avoid-
ing misunderstanding caused by speech recognition
errors of such discontinued utterances.

2 Analysis of User Reactions to
Turn-Taking Failures

2.1 Dialogue Data

We analyzed two sets of human-system dialogue
data using the following two different dialogue sys-
tems in Japanese. One was a car-rental reservation
dialogue system in which the user could make a
reservation for renting a car by specifying the date,
hour, and locations for rental and return, along with
the car type. The other was a video recording sys-
tem in which the user could set the date, time, chan-
nel, and recording mode (long play or short play) for
recording a TV program.

Both systems performed frame-based dialogue
management. They employed the Julian speech rec-
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ognizer directed by network grammars (Kawahara et
al., 2004) with its attached acoustic models. The vo-
cabulary size for speech recognition was 225 words
for the car-rental reservation system and 198 words
for the video recording system. These systems also
employed NTT-IT Corporation’s FineVoice speech
synthesizer. When collecting the data, a micro-
phone and headphones were used. For each dia-
logue, the microphone input and the system output
were recorded in a stereo file.
The contents of the data sets are as follows:

e Set C: (Car-rental reservation)

Each of the 23 subjects (12 males and 11 fe-
males) engaged in 8 dialogues (total 184 dia-
logues). In each dialogue, users tried to make
one reservation. 134 dialogues were success-
fully finished within 3.5 minutes, 38 failed, and
12 were aborted because of a system trouble.

e Set V: (Video recording reservation)

This consists of 117 dialogues (9 dialogues by
each of the 13 subjects (9 males and 4 fe-
males)). These subjects are different from the
subjects for Set C. In each dialogue, the user
tried to set the timer to record two programs.
In 41 dialogues, the user successfully set up the
recordings for two programs within 3 minutes.
In 36 dialogues, the user set up only one of the
programs. In 34 dialogues, the user could not
set up the recordings, and 6 were aborted.

Both systems had variations in dialogue and turn-
taking strategies so that a variety of dialogues were
recorded. Thresholds for confidence scores for gen-
erating confirmation requests were changed, param-
eters for speech interval detection were changed, and
whether the system stopped its utterances when the
user barged in was changed. For each subject, dif-
ferent strategies were used for different dialogues.
We will not explain these variations in detail since,
as we will explain later, we focused on the phenom-
ena of turn-taking failures rather than the causes of
them.

After collecting data, both user and system utter-
ances were transcribed as pronounced. Utterance
segmentation was done manually based on pauses
longer than 300ms, by using an annotation tool.
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[ set\ case [ (ol) | (02) | (03) ]| total |
C 67 | 446 7 520
\% 46 | 202 1 249

The start time of the user utterance is between the start
and end times of a system utterance.

(ol)

(02) The start times of one or more system utterances are
between the start and end time of the user utterance.
(03) Both (ol) an