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Introduction

It is with great pleasure that we introduce the Proceedings of the 8th SIGdial Workshop on Discourse
and Dialogue. In putting together the accepted papers for the workshop, we encountered an uncommon
but very welcome turn of events: we received many more papers with high recommendations from
our Program Committee than we had anticipated. If we had kept the number of papers accepted to
the maximum of previous SIGdial Workshops, several papers that had received all recommendations of
accept would have been rejected. Given the abundance of favorably rated papers, we felt strongly that
they should be given a chance for presentation. Besides the 18 full papers that were accepted for long
presentation (out of 46 submitted), we therefore also accepted a number of papers for short presentation
and created two poster sessions, to accommodate the extra girth. In addition, 5 out of 18 submitted
short papers and demo descriptions were accepted as such. This was all in keeping with the tradition and
purpose of the SIGdial venue to showcase promising new research approaches in discourse and dialogue,
as well as state-of-the-art implementations.

Readers may notice that the workshop program has papers grouped into four topics: Multi-
Party Dialogue, Spoken and Multimodal Dialogue Systems, Conversation Modeling and Dialogue
Management. This organization was purely for presentation convenience, and quite often papers that
were put under one rubric could be easily put under another.

We wish to thank the members of our illustrious Program Committee members for their advice in
selecting papers for the workshop. The review process was facilitated by the ACL START system,
which we received access to with the help of Antal van den Bosch and Claire Cardie. In preparing for
the workshop we received very helpful advice from David Traum, Wolfgang Minker, Laila Dybkjær, and
Kristiina Jokinen.

The actual Workshop could not have happened if not for the generous support of many people. Tilburg
University staff managed the online and onsite registration, the production of the proceedings, and the
local arrangements at the conference site in Antwerp. In particular, we wish to thank Jeroen Geertzen,
Volha Petukhova, Femke Wieme and Lauraine Sinay. Torben Madsen, the SIGdial webmaster, helped
put up our website and Priscilla Rasmussen of ACL and Christian Wellekens of ISCA advertised the
event in their respective mailing lists.

We also thank the distinguished Prof. Herbert H. Clark of Stanford University for giving the SIGdial
2007 keynote address on “Rationality and Conversation.”

Finally, we wish to thank you, the SIGdial audience, for making our event a premiere forum for dialogue
and discourse researchers. We hope you enjoy the collection of papers before you.

Harry Bunt (Co-Chair) Simon Keizer (Local Chair) Tim Paek (Co-Chair)
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KEYNOTE ADDRESS

Rationality and Conversation

Herbert H. Clark
Department of Psychology
Building 420, Jordan Hall

Stanford University
Stanford CA, USA 94305–2130

email: clark@stanford.edu

Abstract

In the model of language use proposed by philosopher H. Paul Grice,
people in conversation recognize “a common purpose or set of purposes, or
at least a mutually accepted direction,” and they cooperate in contributing to
those purposes. Grice went on to argue, “Talking [is] a special case or variety
of purposive, indeed rational, behavior.” But Grice tacitly assumed a type
of omniscient rationality: People in conversation have perfect knowledge of
the language and the current common ground, and they have an unlimited
processing capacity in choosing what to say. In reality, people’s rationality
is bounded, and that leads to quite a different view of language use. I take
up some of the consequences of bounded rationality in language use.
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Collective States of Understanding

Arash Eshghi
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Abstract

This paper uses an analysis of ellipsis
in multi-party interaction to investigate
the relative accessibility of dialogue con-
text/common ground to direct addressees
and side participants. The results show that
side-participants frequently make direct use
of the common ground established between
a speaker and addressee despite the fact that,
by definition, they did not directly collabo-
rate with the speaker on constructing it. Dif-
ferent individuals can thus reach the same
level of grounding through different levels
of feedback. We conclude that mutliparty
dialogue leads to distinct collective states of
understanding that are not reducible to the
component dyadic interactions.

1 Introduction

Goffman (1981) introduced a distinction between
ratified participantsandoverhearersin a conversa-
tion. The former category is further decomposed
into direct addressees(DA) and side participants
(SP ) of an utterance. The ratified participants are
those who hold certain responsibilities towards each
other for ensuring mutual-understanding (Clark and
Schaefer, 1992):

Principle of Responsibility: In a conversation, the
parties to it are each responsible for keeping track
of what is said, and for enabling the other parties to
keep track of what is said.

In dyadic interactions, mutual-understanding or
‘grounding’ is achieved through direct collaboration
between the speaker and addressee. The speaker
expects the addressee to provide evidence that he
is understanding the speaker’s utterance “to criteria
sufficient for current purposes” (Clark and Brennan,
1991). In multi-party conversations the situation is
more complex.

For example, if A makes an anaphoric reference
to some entity, while addressing B with C present
as a side-participant, he intends both B AND C to
resolve the reference. However, by definition, the
speaker does not collaborate as actively with side-
participants. They “have to be satisfied with clear-
ing up misunderstandings in natural breaks in their
talk” (Clark and Schaefer, 1992). ASP will nor-
mally wait until speaker and addressee have car-
ried out theirpresentationand acceptancephases,
before attempting to rectify any possible misalign-
ment with the speaker. On this account grounding
between speaker and direct addressee always takes
precedence.

By definition, SPs andDAs give different ev-
idence of grounding of a speaker’s utterances;
DA’s respond overtly and directly butSPs provide
weaker evidence of grounding – primarily continued
attention and withholding of repair. Consequently, if
we understand level of grounding as being directly
dependent on the level of ‘evidence of acceptance’
provided then we expect differences in the relative
accessibility of the common ground for the differ-
ent pairs of participants; roughly, Speaker &DA >

Speaker andSP > SP andDA.

In a review article Branigan (2006) points out that
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there isn’t yet any empirical evidence thatDAs and
SPs differ in the accumulation of common ground.
In this paper we provide evidence that, in at least
one case, the common ground is, in fact, equally ac-
cessible toSPs andDAs. We argue that this is ev-
idence ofcollective states of understandingthat are
not reducible to the component dyadic interactions.
It appears that in modelling multilogue we need to
account for the possibility that one participant can
stand proxy, in terms of grounding, for another (rat-
ified) participant.

1.1 Side Participants in the Tangram Task

The key empirical evidence relating to grounding by
SPs comes from the tangram experiments carried
out by Clark and co-workers. The essence of these
tasks is that on each trial one person, the ’Director’
(D), describes a series of tangram figures so that an-
other, the ’Matcher’ (M) can identify them. If the
same figure recurs on a number of trials the Director
and Matcher quickly converge on some concise def-
inite or nominal description for the figure. For ex-
ample, they go from “Okay the next one is ... resem-
bles someone that looks like they’re trying to climb
stairs. There’s two feet, one is way above the other
and–” on trial one to “Um, stair climber” on trial 6
( (Wilkes-Gibbs and Clark, 1992), p.184).

Wilkes-Gibbs and Clark (1992) carried out a two
phase variation on this basic task. The first phase
has two conditions. In one an additional ‘silent’SP

sits next to the director. In another an ‘omniscient
overhearer’ (OO) follows all of phase 1 on video
but is not co-present in the room. In both conditions
the D is aware of the additional participants and they
are both able to see each figure as the D describes it.
In the second phase theSP or OO take on the role
of matcher for another six trails. The D and former
SP pairs are quicker, use fewer words and produce
more definite/nominal description types than the D
and formerOO pairs; despite the fact that theSP

andOO ostensibly have the same prior information.
Although this is clear evidence that side-

participants reach a higher level of understanding
than overhearers it is inconclusive about theSP -
DA contrast. TheSP - DA distinction relates to
participant status with respect to utterances in the
same conversation (Goffman, 1981). The experi-
mental device of two task phases effectively breaks

the interaction into two successive conversations
where a direct comparison ofSP andDA with re-
spect to the same interaction is not made. The clos-
est approximation is the comparison of the last trial
of phase one and the first trial of phase 2 but this is
equivocal. The Director-SP pairs are slower and use
more words than the original Director-Matcher pairs
but do make the same number of definite/nominal
references. The task situation is also unusual in that
in phase one theSP is positioned beside the Direc-
tor and opposite the Matcher. The participants mutu-
ally know that theSP has direct visual access to the
actual referents of the referring expressions whereas
the Matcher does not. Arguably this gives theSP

an unusually high degree of access to the common
ground.

In this paper we compare the relative accessibil-
ity of common ground to different participants in a
singlemulti-party conversation. In order to improve
the ecological validity of the analysis we focus on
(relatively) naturalistic dialogues between three or
four participants. To provide a more sensitive index
of the kinds of information that are assumed to be
in the common ground we focus on the use of dif-
ferent kinds of ellipsis. We argue that, in fact,SP ’s
andDA’s are in all relevant respects equivalent and
that this is evidence for distinct collective states of
understanding that are not reducible to the compo-
nent dyadic interactions. Like Branigan(2006) we
argue that the ultimate difference betweenSP and
DA grounding if any, is due to the goals of these par-
ticipants in the conversation i.e. to what they indi-
vidually judge to be ‘sufficient for current purposes’
in the context of the current activity.

2 Method

Before describing the analysis in more detail we first
introduce the corpus used.

2.1 The AMI Corpus

The AMI Meeting Corpus (Carletta, 2006) is a
multi-modal (video, audio and text) set of 100 hours
of meeting recordings. These consist of a set of natu-
rally occurring and a set of scenario-based meetings.
In this paper 10 of the naturally occurring meetings-
roughly 9 hours of conversation- have been anal-
ysed. Only the video, audio and raw transcripts have
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been used. For more information on AMI refer to
http://www.idiap.ch/amicorpus.

2.2 Side Participants to Strips of Dyadic Talk

For reasons which will become clear, in order to
make claims about a speaker’s assumptions regard-
ing SP understanding, we extracted all strips of
dyadic talk from each meeting. These are segments
during which there is no explicit feedback (except
’continued attention’) , from participants other than
speaker and addressee. This provides identifiable
SP ’s and DA’s for each dyadic segment (see be-
low). Based on the turn taking model in (Sacks et
al., 1974), these dyadic segments of talk end in one
of two ways:

1. Self-selected side participant (SP): aSP wins
the floor by exploiting a gap in the dyadic talk,
or she interrupts the talk mid-utterance.

2. Nominated by Last Speaker (LS): Last
speaker hands the floor over to aSP , by di-
rectly addressing her.

It is in general a current speaker’s paralinguis-
tic behaviour (gaze and body orientation) and/or the
content of her utterance (e.g. use of personal pro-
nouns accompanied by gaze) which together deter-
mine whom she is directly addressing. When aSP

is directly nominated (addressed) at the end of a
segment, it’s the same information which signals a
change in the speaker’s set ofDAs. Note that the
DA is determined through reference exclusively to
the speaker’s behaviour. Also we take into account
that the speaker might be ‘addressing’ the other par-
ticipant in the dyad while making aSP the intended
recipient as when theSP is the ‘butt’ of a speaker’s
joke (Levinson, 1988).

3 Analysis of Ellipsis

At the end of a dyadic segment the participants hold
certain assumptions about each other’s level of un-
derstanding. One way these assumptions are made
manifest is in theelliptical expressions employed by
the speaker.

Ellipsis is a mono/dialogical technique in pro-
ducing expressions, whereby single or multiple sen-
tence constituents are omitted. The ‘complete’

meaning of such elliptical expressions can be re-
covered (resolved) by reference to previous utter-
ances/sentences the contents of which are immedi-
ately present in context.

Ellipsis is central to this analysis since it indexes
the extent to which the meaning of an utterance de-
pends directly on the context of the preceding dyadic
exchange i.e. the extent to which participants as-
sume the common ground established during the
dyadic exchange is accessible to each other. More
specifically, at the point when the dyadic exchange
ends we have the opportunity to compare a) the pat-
tern of use of ellipsis by the last speaker to theSP

with b) the pattern used by theSP to the last speaker
(LS).

If the LS addresses theSP elliptically they
are demonstrating their assumption that theSP

grounded the antecedent referents/propositions dur-
ing the prior dyadic conversation. Conversely when
the SP self-selects (interrupts), the use of ellipsis
demonstrates the extent to which theSP ’s directly
access the other participants’ common ground.

Our first level classification distinguishes four cat-
egories:

• CD (context-dependent): Utterance contains
Syntactic Ellipsis, Anaphoric OR Definite ref-
erence.

• CT (continuation of talk) : In terms of seman-
tic content, the utterance could intuitively be
thought of as the continuation of the talk in the
segment, i.e. utterance does not have a coherent
meaning without the background of the dyadic
talk.

• BC (backchannel): Having been ‘silent’
throughout the dyadic segment, theSP merely
starts to backchannel again.

• NC (new context): Introduction of a new con-
text/topic.

This scheme yields the following segment types:
LSCD, LSCT , LSBC , LSNC , SPCD, SPCT ,
SPBC , SPNC .

For a second, more detailed level of analysis that
takes the kind of ellipsis into account we further de-
composed theCD category:
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3.1 Ellipsis Taxonomy

1. Non-Sentential Utterances (NSU): Fragmen-
tary but intuitively complete utterances, exclu-
sive to dialogue that are not sentential in their
outward form. These utterances have been
coded according to the typology developed in
(Fernandez and Ginzburg, 2002). We have fur-
ther collapsed these types according to their
role/function in conversation, into the follow-
ing more general categories:

• Direct Answers (DA): Fragments used as
answers to questions. IncludesPolar An-
swersandShort Answers.

• Clarification Requests (CR): Fragments in
question form, used to request clarifica-
tion or further elaboration of a previous
utterance. IncludesClarification Ellipses
andSluices.

• Modifiers (MOD): In their fully resolved
form, these are statements somehow mod-
ifying a previous utterance in conversa-
tion. IncludesPropositional Modifiers,
Factual Modifiers, Fillers andFragments
introduced by Connectives.

2. Sentential Ellipsis: These are contained in ut-
terances which are sentential, but semantically
ambiguous as a result of either the full omission
a syntactic constituent or its replacement by an
auxiliary. In the case of stand-alone uses of
propositional attitude verbs (know, see, believe
...), the whole of the antecedent utterance gets
elided. Often the omitted/replaced syntactic
constituent (not necessarily atomic/terminal)
can be uniquely identified and recovered from
context. Unlike NSU’s these are not exclusive
to dialogue. Here’s an example:

Verb Phrase (VP) Ellipsis:
A: Will you please go to the market tomorrow?
B: I already told you I will. [Resolved Con-
tent: “I already told you I will go to the market
tomorrow”]

We have developed an ad hoc taxonomy
analogous to that for NSU’s, based on the
role/function of the utterance containing the el-
lipsis. Bear in mind that the taxonomy is being

used merely to compare whatSPs andDAs
can ‘do’ elliptically.

• Direct Answers (DA): Utterance contain-
ing the ellipsis is an answer to a question,
like the above example.

• Request for confirmation (RC): Partly re-
dundant, these are tag questions used to
request confirmation or initiate disputa-
tion. “A: I got an A in Biology. B: Did
you? A: Yes. I got the results today.”

• Statement (ST): General category contain-
ing all statements, excluding Direct An-
swers.

• Query: All elliptical questions excluding
Requests for Confirmation.

3. Anaphora (Anaph)

4. Definite/Nominal Reference (DR)

To provide a baseline comparison of ellipsis types
in ordinary dialogue we also coded 10 peoples con-
versations from the British National Corpus (BNC).

4 Results and Discussion

Table 1 shows dyadic segment type counts, for 10
AMI meetings (roughly 9 hours of conversation).

4.1 Segments of typeLSCD: Assumptions
about SPs

All such segments indicate that the last speaker, in
producing elliptical utterances addressing aSP , is
tacitly making the assumption that theSP would
be able to resolve the ellipses employed, which in
turn depends directly on theSP having grounded
the antecedent utterance(s) of the ellipsis contained
within the segment, for which theSP did not
produce any explicit feedback. Note that ‘Contin-
ued attention’ by theSP (s) is very frequently not
monitored by any of the participants in the dyad.
Eye contact is more or less exclusively maintained
between the two and them alone. Nevertheless
the SP is ‘expected’ by the last speaker to have
grounded the antecedent utterance(s). Furthermore,
none of these segments were followed by any form
of Repair/Clarification by theSP . In all of them
the SP seems to be coping perfectly well with the
elliptical utterance, and the conversation goes on
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CD CT NC BC

LS 20 4 3 4
SP 100 33 1 0

Table 1: Dyadic Segment Type Counts

smoothly.
This evidence seems to support the claim in
(Branigan, 2006) that speakers have very similar
and at times even higher expectations fromSPs
compared to those fromDAs, concerning the par-
ticipant’s ability to resolve these ellipses/references.
Nevertheless Branigan also proposes that these
expectations fromSPs should often be weaker.
The following are excerpts from AMI, showing
the different kinds of ellipsis employed by the last
speakers:

Anaphoric chains: distant antecedent recognised
bySP

B: Yeah. But that still won’t tell you. well
howmanytangrams are there that they’re
using? Fifteen or something.

C: Uh no, not even that. They’ve of this rele-
vant type . . . .

B: Uh-huh. So that’s not gonna so that’s not
gonna tell you anything abouttheir rela-
tive complexity. . . You still need some
kinda scale forthese things. Ca uh if you
look at’em, do you just know?

C: Mm no. [laugh] Well I don’t. I’m not .
B: No. I wouldn’t either. What about him?

I if Mister Geometry. I mean, you know.
Can you tell just by looking atthesehow
hard people find them?

A : No, I’m afraid not. I wouldn’t know.

In the above excerpt, also note how similar C’s
(the DA) last utterance is to A’s (theSP ) : VP
ellipsis in C’s versus whole sentence ellipsis in A’s
utterance.

The whole segment as antecedent

B: [. . 6 utterances so far exchanged between B and

C] Data I think we should keep in.
C: OK. [laugh]

B: Because it’s would be the same as feature.
B: Or spec spectrum. I think data’s the same

as spectrum . . .
C: I do I still don’t think that goes in. But .
C: yeah, I still don’t like it. But
B: Final view, Bob?
A : I don’t have passionate feelings.

Here, B’s last utterance explicitly addressing A, is
highly elliptical with no particular utterance as an-
tecedent, i.e. the resolved content of the utterance
depends on the whole segment between B and C.
B expects A (Bob) to have grasped the issue under
discussion. One would expect A here to initiate clar-
ification if he really didn’t know what B was asking.

We think that the speaker’s assumptions about
SPs are among other things, strongly mediated by
the speaker’s prior beliefs (before the conversation)
about theSP and his relevant knowledge. In the
meeting from which the above was extracted, A is
a supervisor with whom the rest of the participants
check their results as they go along. So, firstly if
cooperative, he should be ‘paying attention’ to the
dyadic interactions in which he is not directly in-
volved (most of the meeting). Secondly, the rest of
the participants believe to begin with, that he would
understand such technical issues under discussion.
So perhaps, it is some notion of the well known ‘lab
coat effect’ that could justify such high expectations
(e.g. see (Healey and Mills, 2006), page 5).

4.2 Segments of typeSPCD: Side participant
access to ‘communal’ common ground

In this section we will argue thatSPs have the
same kind of access through the same techniques,
to the ‘communal’ common ground, as the partic-
ipants directly involved in collaboratively securing
it (speaker and addressee). These segments which
comprise the largest class in this analysis, end when
a SP interjects producing an elliptical and hence
context-dependent utterance. Again here, the an-
tecedents of the ellipses, lie within the dyadic seg-
ments.

Table 2 below shows the ellipses identified in
theseSP utterances. They have been classified ac-
cording to the taxonomy described in section 3.1. In
order to assess whether there is a difference between
the use of ellipsis types bySP ’s and the baseline
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- typical frequency of use independent of both the
number of participants in the conversation and the
status of the participant upon employing the ellipsis
- used in ordinary dialogue, we compared the fre-
quency of ellipses of each type with that found in
the BNC. Taking into consideration all categories in
Table 2 (merging Sentential and non-Sentential DAs
and ignoring DR since it wasn’t coded for the BNC)
there is a reliable difference (Chi2

6
= 14.6, p = 0.02).

However, as Table 2 indicates the main difference
is in the relative frequency of direct answers which
account for 26% of instances in the BNC but only
12% of instances in AMI. If this category is ignored
we find no reliable difference betweenSP ’s and the
baseline (Chi2

5
= 4.33, p = 0.50).

The difference in frequency of use of direct an-
swers is essentially an artefact of our coding scheme.
As noted above theSP ellipses are those where they
have nominated themselves as next speaker by in-
terjecting. Consequently, direct answers bySPs to
questions –which are by definition not directed at
SPs– are much rarer. Subject to this caveat, we can
conclude that the pattern of use of different ellipsis
types bySP ’s is not in fact distinguishable from the
pattern of use typical of participants in ordinary dia-
logue.

What now follows is a discussion over a set of
examples from AMI comparing the kinds of access
to context through various elliptical phenomena,
possible bySPs to those byDAs.

4.2.1 Anaphora with distant whole utterance
as antecedent

B: Um so this person didn’t ha um the ob-
viously didn’t know about capitalisation.
So just about every utterance needs to be
capitalised and and needs the end punctu-
ation. (1)

D: Mm-hmm. (2)
D: You know, when you get like um some-

one’s talking and there’s they sort of pause
in the middle of a sentence that’s long
enough for it to put a break in, (3)

B: Yeah (4)
D: but they’re actually sort of carrying on the

sentence, do you have to capitalise each
time you transcribe a bit of it’s mid (5)

B: Um, no no no. (6)
D: No no no no. Yeah. (7)
B: Whatever um makes sense to you. (8)
D: Okay. (9)
B: Um [cough] but no, it it can continue into

the next segment and that’s perfectly fine.
(10)

D: Yeah. Just okay. So it’s put the hyphen
and then. (11)

C: Yeah. (12)
C: I think that’s actually the only case where

you don’t (13)
C: or where you’re not supposed to capitalise,

right? (15)

Utterances 1 to 12 above form a segment of type
SPCD which is terminated byC. The anaphora
”that” in 13 can only be resolved with 3 as an an-
tecedent. An issue is here raised initially by B to
which D responds by asking a question (utterance
3). All the way down to utterance 12 the question
is under discussion exclusively betweenB andD.
C then produces utterance 13 which can intuitively
be thought of as an answer toD’s initial question.
In other words it could have been produced byB

(the DA) adjacently to the initial question. Note
here thatC has had to re-raise the context in or-
der to make her contribution. I.e. a simple “No”
(a Negative Polar Answer) likeB’s initial response,
or even the less elliptical “I think that’s actually the
only case where you don’t.”, would most probably
be infelicitous (the other party would be very likely
to initiate clarification). But this seems to be the
effect of antecedent distance alone, since all of the
NSU classes in (Fernandez and Ginzburg, 2002)
are possible bySPs at the end of the segments in
question, but clearly not at such high antecedent dis-
tances. This will be a little further elaborated in sec-
tion 4.4.

4.2.2 Non-Sentential Utterances (NSU)

Factual Modifier

C: When I did my masters um I took uh SP1
and SP2 with Simon King.

A : You survived SP1 and SP2.[laugh]
C: Yes. And actually I’ve done quite well in

SP1, I’ve done it a bit worse in SP2 be-
cause it was a l a lot more challenging.
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Non-Sentential Sentential Other
DA(NSU) CR MOD ST DA Query RC DR Anaph Tot

AMI 14 9 12 10 0 4 6 11 58 124
Baseline(BNC) 154 73 46 46 21 12 20 not coded 303 675

Table 2: Ellipses employed bySPs terminatingSPCD segments compared to the baseline (BNC)

A : We have two new teachers for SP2.
B: Too many. [laugh]

The excerpt above shows an instance of aSP Fac-
tual Modifier (boldfaced in the excerpt) produced by
B adjacently to its antecendent. The same utterance
“Too many.” by theDA (B here) would have been
perfectly felicitous (implies in this case, equivalence
of SP andDA access to context).

Among the NSU classes in (Fernandez and
Ginzburg, 2002), Clarification Ellipsis (CE) is of a
special status, since it is known to be a common
technique used in dyadic dialogue to ground utter-
ances which weren’t sufficiently understood by the
recipient. There were very few CEs identified in this
analysis. However, we do know thatSPs can and
do in fact initiate elliptical clarification, by exploit-
ing gaps in dyadic talk:

Clarification Ellipsis (CE)

C: What does cutest spelling mean? (1)
B: oh, she spelled cutest um with an I, (2)
C: oh, okay. (3)
B: so that that’s just something I pointed out.

(4)
D: oh yeah. (5)
A : Cutest? [Gazing at D. Direct Addresee is D

here.](6)
D: E S T (7)
A : Thank you.[laugh] (8)

D and A above are bothSPs to the dyadic segment
between B and C. The CE produced by A is very
interestingly addressed at D who is also aSP to
what’s being clarified, which shows that in multi-
party dialogue allthe ratified participants have obli-
gations/responsibilities towards one another.

This example also indicates clearly that there can
be varying levels of understanding among theSPs
themselves. However, note that we are not claim-
ing by any means that in multi-party situations, the

participants always reach a collective state of under-
standing. The claim is rather that such collective
states do exist, and that they’re often assumed by the
parties involved.

Furthermore, it’s interesting to see that had it been
B (theDA of the antecedent utterance) who didn’t
understand, she would have produced the CE locally
(as opposed to a distance of 5 here) which is what’s
generally expected in dyadic dialogue. This issue is
further discussed in section 4.4 for future work on
distance.

4.2.3 Sentential Ellipsis

These are the ellipses not covered by the NSU ty-
pology in (Fernandez and Ginzburg, 2002). The
taxonomy described in section 3.1 has been used to
classify these.

local VP ellipsis bySP

B: [5 utterances exchanged between B and C so far in

the segment] but I I I do know the type of
scenario you’re describing. I just it’s just
hard to answer that without hearing some-
thing. Mm.

C: Mm-hmm.The um should be capitalised.
B: yeah,they should all. I stopped marking

them, ’cause there are just too many.
C: yeah.
A : Shouldit? ’Cause the loose uh is continu-

ing from one sentence isn’t it?

Note also the chain of anaphora referring to the
‘um’, and how it carries on across to theSP ’s (A’s)
utterance. This phenomenon is very frequent inSP

utterances terminatingSPCD segments.

4.3 Segments of typeSPNC : Implications for
our claims

The analysis indicates that the introduction of new
contexts/topics bySPs interrupting a dyadic seg-
ment, is extremely unlikely. Consequently if aSP is

8



to interrupt, she has to ‘stick to the topic’ already un-
der discussion in the segment. This further supports
our claims, in that even if aSP is not using ellipsis
as direct access to the ‘communal’ common ground,
she makes use of the information in there, to produce
a relevant utterance. An utterance thus produced, se-
mantically depends on and is incoherent without the
background of the ‘shared knowledge’ established
between the speaker and addressee in the dyad.

4.4 Future Work: Antecedent Distance of SP

ellipses andContext Re-raising

The technique of re-raising context- avoiding highly
elliptical expressions or in the case of anaphora, giv-
ing further descriptions of the discourse entities re-
ferred to- is frequently adopted by aSP in his at-
tempt to produce a distant second pair part to an
utterance far back within a dyadic exchange. This
technique need not be exclusive toSPs, asDAs also
in dyadic dialogue might do this to produce an ut-
terance which isn’t locally‘relevant’, but counts as
a second pair part to what’s been discussed further
back. However it is expected to be employed a lot
more frequently bySPs in face-to-face multi-party
dialogue.

This issue raises the following questions: What
is the correct notion of antecedent distance here?
What exactly is the threshold in terms of this notion
for each ellipsis type, after which interjectingSPs
need to avoid the ellipsis in order to prevent ambigu-
ity/miscommunication? Or more formally with re-
spect to interaction protocols, how does antecedent
distance fit into ellipsis felicity conditions in multi-
logue?

5 Conclusion

The evidence from this analysis shows that with
respect to common ground side participants in the
AMI corpus do not appear to be different in any
substantive respect from direct addressees. Speak-
ers assume thatSPs reach the same level of un-
derstanding as the addressees. Additionally,SPs
were shown to use elliptical techniques to access the
shared-context, in generally the same way asDAs
do. All things being equal, this is strong evidence
for collective states of understanding that could not
be predicted from considering the component dyads

alone since, prima facie, the SP’s don’t ground to
the same level, don’t go through the same grounding
cycle as DA’s with the speaker. Moreover it indi-
cates that DAs can act as proxy for SPs in providing
understanding evidence and, presumably, that they
have obligations to each other. Finally, this all seems
to make it simply a matter of winning the floor for
SPs. Other than that there’s no difference between
the ratified participants in multi-party conversation.
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Abstract

The identification of occurrences of like and
well that serve as discourse markers (DMs)
is a classification problem which is stud-
ied here on a corpus of dialogue transcripts
with more than 4,000 occurrences of each
item. Decision trees using item-specific lex-
ical, prosodic, positional and sociolinguistic
features are trained using the C4.5 method.
The results demonstrate improvement over
past experiments, reaching the same range
as inter-annotator agreement scores. DM
identification appears to benefit from item-
specific classifiers, which perform better
than general purpose ones, thanks to the dif-
ferentiated use of lexical features.

1 Introduction

The identification of discourse markers (DMs) is an
essential step in dialogue understanding, especially
when the lexical items used as DMs are ambigu-
ous. Like and well are two frequent lexical items and
potential DMs, which are among the most difficult
ones to disambiguate, and they will serve here as a
case study for automatic DM identification. The task
will be discussed first from a linguistic and computa-
tional point of view. Previous attempts will be sum-
marized, followed by the data, features and classi-
fiers used here. The results will be discussed first
by comparing our highest scores with baseline ones,
then by analyzing the relevance to DM identifica-
tion of various features. The best performances are
shown to be comparable to inter-annotator agree-
ment scores and higher than state-of-the-art scores,

and lexical collocations are shown to be the most
relevant features.

2 The Discourse Markers Like and Well

Despite the wide research interest raised by DMs
for many years, there is no generally accepted def-
inition or list of DMs (Andersen, 2001; Schiffrin,
1987). Items typically featured in this class are also
called discourse connectives, pragmatic markers, or
cue phrases, and include words and expressions such
as actually, and, but, I mean, like, so, you know
and well, which “generally have little lexical import
but serve significant pragmatic functions in conver-
sation” (Andersen, 2001, page 39).

For comparison purposes, we focus here on two
lexical items, like and well, in order to determine the
surface features that are most relevant to DM clas-
sifiers based on machine learning. These two items
are among the most frequent and the most ambigu-
ous DMs. Like, for instance, can be a preposition
or an adverb, a verb or even a noun. When used
as a DM, like is in reality much more than a filler,
and can be more precisely described as a loose talk
marker, signalling reported speech or an imprecise
formulation of the speaker’s belief, as in “He was
like, yeah, I can make dogs raise their ears” or “It
took, like, twenty minutes”—for more examples, see
(Popescu-Belis and Zufferey, 2006, pages 7–9).

Well can also fulfil a variety of pragmatic and non-
pragmatic functions (Schourup, 2001). When it is
not a DM, well can be an adverb or an adjective (“He
sings well”, “I am well”), or a noun or verb (‘water
source’). As a DM, well can introduce a rejection of
a previous request, or a disagreement with a previ-

10



ous utterance, or can more generally mark hesitation
or turn-taking, as in “Well, actually, you don’t even
need to do that. . . ” or “Oh, yes, but well, uh, yes,
but what I mean is that. . . ”.

3 Evaluation of DM Identification

The automatic identification of DMs is a binary clas-
sification task over the entire set of occurrences of
the lexical item. Its evaluation requires a ground
truth classification, and metrics to compare a candi-
date classification to it. The simplest evaluation met-
ric is accuracy, i.e. the percentage of correctly clas-
sified instances (CCIs or C below). In addition, if
DM identification is seen as the retrieval of the DMs
among all occurrences of a lexical item, then recall
(r), precision (p) and their f-measure (f ) can be used
to assess performance in a more detailed manner.

However, given that the distribution of DM vs.
non-DM occurrences of a lexical item is seldom
uniform, the above metrics should be corrected for
chance agreement. To our knowledge, there are
no widely used chance-corrected versions of recall
and precision—the Kullback-Leibler divergence is
seldom used for classification tasks—but a well-
known agreement metric that is chance-corrected
is the kappa (κ) score (Carletta, 1996). Although
designed to measure inter-annotator agreement, κ
quantifies the resemblance of two classifications by
factoring out agreement by chance.

The κ score measures classification performance
between −1 and 1, with random classification scor-
ing 0. The κ measure is quite strict as it was de-
signed to be sensitive to even small differences be-
tween coders. Therefore, a κ value above 0.67 is of-
ten considered a sign of acceptable agreement, while
a value above 0.8 is considered very significant.
According to Landis and Koch (1977), strength of
agreement is fair for 0.2 < κ ≤ 0.4, moderate for
0.4 < κ ≤ 0.6, substantial for 0.6 < κ ≤ 0.8 and
almost perfect above. In any case, the inter-coder
agreement for the gold standard data represents the
upper bound that can be legitimately expected from
a classifier: even a perfect one cannot get closer to
the gold standard than the humans who defined this
standard.

4 Previous Studies of DM Identification

DMs play a considerable role in discourse process-
ing tasks. For instance, some studies use discourse
connectives to infer discourse structure (Reichman,
1985; Grosz and Sidner, 1986; Marcu, 1998), while
others use DMs as cue words for discourse segmen-
tation (Passonneau and Litman, 1997).

Many DMs, especially connectives or cue words,
are not as highly ambiguous as like or well. Hutchin-
son (2004, page 686), for instance, targeted mainly
the problem of automatic categorization of the prag-
matic functions of discourse connectives, but only
acknowledged the potential ambiguity of and. Sim-
ilarly, Marcu’s (1998) algorithm for DM identifica-
tion, in relation to rhetorical parsing of written texts,
aims at a list of 450 potential DMs, but and and or
are ignored in many cases due to their ambiguity. It
is also likely that like and well did not appear often
in Marcu’s 7200-word test data, over which recall
was 80.8% and precision 89.5%.

Several studies have explicitly tackled DM iden-
tification in speech. Hirschberg and Litman (1993)
applied a model based on intonational information
to 34 DM types, and correctly classified 75.4% of
their 878 classifiable tokens. Another model cor-
rectly classified 80.1% of the tokens based on human
transcript and punctuation.

Siegel and McKeown (1994) proposed another
transcript-based method, using decision tree classi-
fiers constructed by a genetic algorithm, on a super-
set of the above data with 1,027 tokens. An inter-
esting baseline score was obtained by a binary de-
cision tree based only on the utterance-initial fea-
ture, which reaches 79.16% accuracy. The score of
the best decision tree found by the genetic algorithm
was only 79.20%. Although they did not improve
performance over baseline, decision trees “discov-
ered” some meaningful linguistic rules.

The relevance of machine learning techniques to
DM identification was further emphasized by Lit-
man (1996) in a set of experiments that extended and
completed earlier studies by improving manually-
derived classification models, using the same data
set (34 DM types, 878 tokens). Litman used the
C4.5 decision tree learner as well as an algorithm
constructing sets of conditional rules. The features
included prosodic features assigned by human an-
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notators, textual features extracted from human tran-
scripts, including correct punctuation, part of speech
information assigned automatically, and the nature
of the token itself. Most of the prosodic and tex-
tual models that were learned automatically outper-
formed corresponding models defined a priori by
humans. The best performance using all available
features was 16.9% error rate (83.1% accuracy) on
the whole set.

DM identification was coupled to speech recogni-
tion, utterance segmentation, POS tagging, and re-
pair correction by Heeman and Allen (1999). The
best results are 97.26% recall, 96.32% precision,
and 6.43% error rate, which was not, however, com-
puted in the same sense as in the previous studies.

Comparison across studies is made difficult by
the fact that the exact list of DMs differs from one
study to another. In our study, only two DMs are
contrasted, but they appear to be particularly multi-
functional, hence difficult to disambiguate.

5 Description of the Data

The ratio between the number of targeted DM types
(30–40) and the amount of data (often around 1,000
tokens) used in the previous studies did not allow
for in-depth analysis of each DM, especially when a
unique model was learned for all DMs. All studies
except Heeman’s were based on a monologue tran-
script (75 minutes, ca. 12,500 words), which was
annotated by one or two linguists. Heeman’s stud-
ies used transcripts from the TRAINS dialogue cor-
pus, which contained 8,278 DMs among ca. 60,000
words. However, the exact list of DM types is not
available (23 appeared as examples), nor the num-
ber of annotators or their agreement.

The data used here enables a more detailed study
of like and well as a much larger number of oc-
currences is available. We use the ICSI Meeting
Recorder Corpus of multi-party conversations, com-
prising transcripts of 75 meeting recordings with five
to eight speakers (Janin et al., 2003). The meetings
feature scientific discussions involving both native
and non-native English speakers (52 in all). A dis-
tributional study and the a posteriori feature analysis
show that there is no qualitative difference in the use
of the two DMs by native vs. non-native but fluent
speakers (Popescu-Belis and Zufferey, 2006, 6.3).

The recordings have a total duration of about 80
hours, corresponding to nearly 800,000 words in
transcription. The segmentation into about 100,000
individual utterances is also available together with
automatically generated word-level timing, based on
forced alignment of transcript with audio, as well
as indications of interruptions and unfinished utter-
ances (Shriberg et al., 2004).

For this study, the DM and non-DM occurrences
of the lexical items like and well were annotated by
the two authors, with access to the dialogue tran-
scripts and audio. In an experiment involving four
non-expert annotators (Zufferey and Popescu-Belis,
2004), the observed inter-annotator agreement was
κ = 0.74, but agreement between experts was not
tested systematically. There are 4,519 occurrences
of like, of which 2,052 (45%) serve as DMs, and
4,136 occurrences of well, of which 3,639 (88%)
serve as DMs.

6 Features Used for DM Identification

The present method focuses on surface features only,
since deeper analyses of an utterance seem to require
in most cases the prior identification of DMs. For in-
stance, it would not be realistic to assume the avail-
ability of a parse tree or of a deep semantic analy-
sis of an utterance, as their construction would pre-
cisely require knowledge of DMs. However, joint
models for POS tagging or parsing with DM identi-
fication could incorporate knowledge about DMs as
presented here.

Lexical features model the words immediately
preceding or following a DM candidate, and de-
pend on the width of the lexical window (2N ) and
the minimal frequency (F ) of words used as pos-
sible values. One feature is defined for each posi-
tion with respect to the DM candidate: WORD(−N ),
. . . , WORD(−1), WORD(+1), . . . , WORD(+N ). The
possible values of these variables are the words ob-
served around the DM candidates, above a certain
frequency F , or ‘other’, or ‘none’ if there is no such
position in the utterance (this implicitly includes in-
formation about the candidate’s position). For a win-
dow of width N = 1, i.e. using only WORD(−1)
and WORD(+1), the frequency thresholds of F = 3,
F = 10 and F = 20 correspond respectively to 360,
150 and 90 word types as possible values.
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DMs also have specific positional and prosodic
properties, but not all the prosodic features are easy
to extract automatically. The following features, de-
rived from the forced-alignment segmentation at the
word level and the ground truth segmentation into
utterances, will be used: INITIAL: set to ‘yes’ if
the candidate is the first word of an utterance, to
‘no’ otherwise; FINAL: set to ‘yes-completed’ if the
candidate is the last word of a completed utterance,
to ‘yes-interrupted’ if it is the last word of an in-
terrupted utterance and to ‘no’ otherwise; PAUSE-
BEFORE: the duration of the pause before the can-
didate, or 10 seconds if the utterance starts with it;
PAUSE-AFTER: the duration of the pause after the
candidate, or 10 seconds if it ends the utterance; DU-
RATION: the duration of the candidate. The first two
are positional features, while the latter three are very
elementary prosodic or temporal features.

The following speaker-related, sociolinguistic
features will also be used, with the following pos-
sible values: GENDER: ‘female’ or ‘male’; AGE:
an integer; EDUCATION: ‘undergraduate’, ‘gradu-
ate’, ‘PhD’, ‘professor’; NATIVE: ‘native’ vs. ‘non-
native’ English speaker; ORIGIN: ‘UK’, ‘US East’,
‘US West’, ‘US other’, and ‘other’. Such features
could be useful to a dialogue processing system that
is used frequently by the same persons.

For each category, the features were selected
based on potential linguistic and computational rel-
evance. In addition, the TYPE feature represents the
nature of the candidate DM, either like or well, al-
lowing the two lexical items to be processed differ-
ently, as in (Litman, 1996).

7 DM Classifiers

The choice of a classifier for DM identification is
constrained by the nature of the features: some
are discrete while others are continuous; the lex-
ical features are quite sparse and have an unclear
impact on classification. Here, four types of clas-
sifiers were tested using the WEKA toolkit (Witten
and Frank, 2000): Bayesian Networks (BN), Sup-
port Vector Machines (SVM), decision trees, and k-
nearest neighbours (k = 3), which performed below
the first three, so its results are not reported here.

Decision tree classifiers are made of nodes that
test features of a DM-candidate, and of branches

that correspond to the possible values of the fea-
tures. Each terminal node is labelled with one of the
two classes, DM or non-DM (Siegel and McKeown,
1994; Litman, 1996). Decision trees can be learned
from training data using the C4.5 method (Quinlan,
1993), which accepts both discrete and continuous
features. C4.5 constructs a nearly optimal decision
tree classifier for the training data, that is, a tree
that maximizes the number of correctly classified in-
stances (CCIs) over the training data, but not neces-
sarily recall, precision or kappa.

8 DM Identification Results

The best scores reached by the classifiers do not
differ substantially in our experiments, as the 95%-
confidence intervals computed using 10-fold cross-
validation (training on 90% of the data and testing
on 10%) are not disjoint. The best scores are ob-
tained by a Bayesian Network that uses only the dis-
crete features of the DMs—see first line of Table 1.
Decision trees will be used preferentially below, as
BN classifiers take longer to build and are more dif-
ficult to interpret than them, and their performance
is only slightly higher.

8.1 Highest Scores vs. Baseline Scores

Baseline scores for DM identification are at least
50% CCIs because of the binary nature of the classi-
fication problem. As shown in the last three lines of
Table 2, the majority classifier, which assigns to all
candidates the type of the most frequent class ob-
served in the training data reaches scores that are
well above zero for at least three metrics out of five.
Only κ appears to be insensitive to this bias.

Method Test CCIs (%) κ r p f

MAJ l+w 65.75 0 .66 1 .79
l 45.40 0 1 .45 .62
w 87.99 0 1 .88 .94

ISM l+w 70.55 .42 .64 .88 .74
l 54.60 0 0 0 0
w 87.98 0 1 .88 .94

Table 2: Baseline scores for the majority classifier
(MAJ) and for an item-specific majority classifier
(ISM), tested on like and well together (noted l+w),
then separately for each item.
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Method Train Test CCIs (%) κ r p f

BN l+w l+w 90.480±.646 .783±.016 .957±.004 .904±.008 .930±.005
l+w l 84.009±1.431 .681±.028 .896±.012 .784±.021 .836±.014
l+w w 97.537±.456 .880±.021 .991±.004 .981±.005 .986±.003

SVM l+w l+w 89.290±.571 .752±.014 .964±.006 .884±.008 .922±.004
l+w l 82.908±1.216 .661±.023 .914±.016 .759±.020 .829±.013
l+w w 96.250±.841 .808±.037 .992±.005 .966±.009 .979±.005

C4.5 l+w l+w 88.862±.511 .751±.011 .923±.007 .909±.006 .916±.004
l+w l 81.046±.885 .618±.018 .802±.020 .785±.013 .793±.013
l+w w 97.396±.443 .870±.026 .991±.002 .980±.005 .985±.002

Table 1: Best results obtained by three machine learning algorithms, trained and tested on like and well
together (noted l+w), and then also tested separately on each item (noted l and respectively w). The three
most significant metrics (scores in bold) yield clearly decreasing scores from the first to the third condition.

The use of the TYPE feature, allowing an item-
specific majority classifier to distinguish between
the lexical items like and well, increases the baseline
scores (see ISM in Table 2). This classifier, based
only on the following rules: “like is not a DM” and
“well is a DM”, reaches already κ = 0.42.

The scores of the four classifiers from Table 1 are
significantly above the baseline. The fact that the
best score is κ = 0.78 shows that automatic DM
identification performances are in the same range as
human inter-annotator agreement. The best scores
are also higher than those obtained by the classifiers
that use only a subset of features, as shown in the
next sub-section.

The scores of the best BN classifier applied sepa-
rately to like and well are also shown in Table 1, 2nd

and 3rd lines. These are significantly higher for the
identification of DM well (κ = 0.880, f = 0.986)
than for DM like (κ = 0.681, f = 0.836). It is true
that well as a DM is much more frequent than like as
a DM (ca. 88% vs. 45%), so the baseline accuracy is
higher for well (CCI = 88% vs. CCI = 45%, see
2nd and 3rd lines of Table 2) but this effect should
be filtered out at least by the κ metric—nevertheless,
which is still much higher for well than for like. Well
appears thus to be easier to identify than like, with
the features used here.

8.2 Relevance of the Features

The best-scoring decision tree uses four lexical fea-
tures (WORD(−2), WORD(−1), WORD(+1) and
WORD(+2)), their possible values being all the word

types occurring at least 10 times in this 4-word lexi-
cal window (F = 10, N = 2). The best C4.5 learner
was set to construct binary trees with at least two in-
stances per leaf.

Four experiments were particularly informative.
First, using only the WORD(−1) lexical feature,
i.e. the lexical item preceding the candidate DM,
C4.5 constructs trees that contain at the uppermost
node the lexical collocations that are the most re-
liable indicators of a DM, with scores reaching
CCI = 86.5%, κ = 0.68, r = 0.97, p = 0.85, f =
0.90, which are not much below the best possible
ones. When distinguishing like from well in the
decision trees, thanks to the TYPE feature in addi-
tion to WORD(−1), the scores increase to CCI =
87.4%, κ = 0.72, r = 0.91, p = 0.90, f = 0.90
(note the high value of κ).

Words situated after the candidate DM appear
to be much less informative: if only TYPE and
WORD(+1) are used, CCI = 77.8% and κ = 0.47.
When all lexical features encoded as WORD(n) are
used (n ≤ 2), the results are getting even closer to
the best ones, but recall increases and precision de-
creases. The lexical features, and in particular the
word before the candidate, appear thus to be nearly
sufficient for DM identification of like and well. The
actual values of WORD(n) that serve as lexical indi-
cators are not, of course, the same for the two items.

Turning now to positional and prosodic fea-
tures, experiments using combinations of one, two
or three features are summarized in Table 3. A first
series of experiments with positional features (left
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Positional Prosodic / temporal
Features CCIs(%) κ r p f Features CCIs(%) κ r p f

T 70.5 0.42 0.64 0.88 0.74 T 70.5 0.42 0.64 0.88 0.74
I 68.8 0.42 0.54 0.97 0.70 B 74.2 0.50 0.65 0.94 0.77
T+I 73.4 0.46 0.70 0.87 0.78 T+B 75.3 0.48 0.75 0.86 0.80
F 67.5 0.09 0.98 0.67 0.80 A 67.5 0.09 0.98 0.67 0.80
T+F 72.5 0.46 0.64 0.91 0.75 T+A 75.8 0.50 0.74 0.87 0.80
T+I+F 75.8 0.51 0.71 0.90 0.79 T+A+B 79.4 0.55 0.82 0.86 0.84

Table 3: Results with C4.5 decision trees using combinations of positional and prosodic / temporal features
(T: TYPE, I: INITIAL, F: FINAL, B: PAUSE-BEFORE, A: PAUSE-AFTER).

part of the table) shows that on average, classifica-
tion is improved as more features become available
among the following: TYPE (T), INITIAL (I), and FI-
NAL (F). These results are paralleled by a second se-
ries (right column), obtained with prosodic/temporal
features, PAUSE-BEFORE (B) and PAUSE-AFTER

(A), in which scores also increase when more fea-
tures are available. As the second series uses fea-
tures that implicitly encode more information than in
the first one, superior results are obtained. The best
decision trees using PAUSE-BEFORE contain the fol-
lowing rule: “like is a DM only when the pause be-
fore it is longer than 0.06 s”, indicating that a pause
approximately longer than 60 milliseconds is a good
indicator of a DM. A similar value (though with a
lower score) is found for the pause after DM like,
while no effect was observed for well. In addition,
other experiments have shown that DURATION is not
a relevant feature. Prosodic features appear thus to
be superior to positional ones, but remain inferior to
lexical features.

The sociolinguistic features alone do not permit
the construction of a classifier with a non-zero score
if the two lexical items like and well are not dis-
tinguished. When they are, the best decision tree
generated by C4.5 remains the majority classifier for
well (“all occurrences are DMs”) and a more refined
classifier for like: a number of heavy DM-like users
are identified, for which all occurrences of like that
they produce are considered as DMs. The scores of
this classifier are: CCI = 77.3%, κ = 0.47, r =
0.88, p = 0.80, f = 0.84. These values are clearly
above the scores obtained using TYPE only.

A number of sociolinguistic features appear to be
relevant in the case of like only (the baseline score

being here κ = 0). Using EDUCATION, the best
tree found by C4.5 reaches κ = 0.39 with the fol-
lowing rule: “if the speaker is an undergraduate or
a graduate, consider all tokens of like as DMs; if
the speaker is a post-doc or a professor, consider all
tokens of like as non-DMs”. A similar correlation
(κ = 0.40) holds for the region of ORIGIN (‘US
West’ implies heavy DM like user) and a stronger
correlation (κ = 0.44) holds for AGE (‘under 30’ im-
plies heavy DM user). These experiments thus bring
statistical evidence that younger speakers from the
US West tend to overuse like as a DM, which cor-
roborates a view commonly held by sociolinguists,
who often consider the DM like as a feature of ado-
lescent speech (Andersen, 2001). Since in our data
there were a majority of speakers under 30 from
the US West, below PhD level, it is not possible to
identify the precise feature that correlates with DM-
like overuse among AGE, ORIGIN or EDUCATION)—
more subjects are needed to “decorrelate” these fea-
tures, though the present number (52) is sufficient to
explore each feature in part.

8.3 Automatic Attribute Selection

Two methods were used to compare the merits
of features, and appear to lead to similar results.
WEKA’s correlation-based feature subset selection
algorithm (CFS) aims at finding the best subset
of features by examining the individual predictive
power of each feature and at the same time minimiz-
ing redundancy within the subset. Alternatively, in-
dependent relevance scores for each feature can be
computed using two criteria: the information gain
and χ2 (Witten and Frank, 2000). Their rankings be-
ing very similar, only information gain is used here.
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Like Well
Feature IG Feature IG
WORD(−1) .44 WORD(−1) .39
WORD(+1) .21 PAUSE-BEFORE .23
SPEAKER .15 INITIAL .19
PAUSE-BEFORE .06 WORD(+1) .15
AGE .06 PAUSE-AFTER .10
PAUSE-AFTER .05 FINAL .10
EDUCATION .04 SPEAKER .04
INITIAL .03 DURATION .03
COUNTRY .02 AGE .01
FINAL .01 COUNTRY .005
GENDER .01 EDUCATION .004
DURATION .01 NATIVE .001
NATIVE .001 GENDER .001

Table 4: Separate ranking of features for like and
well according to their information gain (IG). Sig-
nificant IG decreases are indicated by a line.

The CFS algorithm finds the following optimal
subset of attributes: {TYPE, PAUSE-BEFORE, INI-
TIAL, WORD(−1)}, thus confirming previous obser-
vations. The word before the candidate is a key fea-
ture, along with the specific processing of each DM
(TYPE), and the pause before the candidate (or its
utterance-initial character).

The ranking of each feature shows that the most
distinctive feature is the word before the candidate,
WORD(−1), followed at some distance by PAUSE-
BEFORE, INITIAL, WORD(+1) (the word after the
candidate) and TYPE. The ranking can also be done
separately with respect to like and well, as shown
in Table 4. The lists are similar to the one just de-
scribed for the joint identification task.

Attribute selection can also be used to determine
the most discriminative collocations, i.e. the words
that best indicate whether their neighbouring candi-
date is likely to be a DM or not DM (words must
be used individually as features in this case). The
best feature set found by CFS for like contains some-
thing, things, seems (if they precede like, then the oc-
currence is not a DM), or that (if it follows like, then
the occurrence is not a DM). Similar trials focused
only on well help to determine collocations such as
very well, as well, how well, which are relevant to
identify non-DM occurrences of well.

9 Discussion

To summarize, the best scores for like and well are:
CCI = 90%, κ = 0.78, r = 0.96, p = 0.90, f =
0.93, obtained for a Bayesian Network; the best
scores of a C4.5 decision tree or an SVM are not
much lower. These scores are well above the base-
line ones, although this depends on how the base-
line is defined, as some very simple classifiers have
scores that are well above zero. These scores also
compare favourably to the ones obtained in previous
studies, although the DMs and evaluation measures
sometimes differ considerably.

The best scores obtained are comparable to inter-
annotator agreement values observed for non-expert
subjects (κ = 0.74). This indicates that automatic
classifiers may have reached the highest possible
performance in the present experiments, and that
the set of features was sufficient to reach an accu-
racy comparable to human annotators. Improving
the scores seems thus to require also a more reliable
annotation, obtained for instance by allowing expe-
rienced annotators to discuss and to adjudicate their
individual annotations.

The most important features appear to be the lex-
ical collocations that can be learned from the train-
ing data. Among these, the word before a candidate
DM is the most useful one, especially as it implicitly
encodes also the utterance-initial character. Scores
obtained using only lexical features are within 5%
distance from the best overall scores. Decision trees
based only on lexical features, or even on TYPE and
WORD(−1) only, are not far from optimal ones. It
is therefore surprising that these features were not
used in Litman’s (1996) study, maybe from lack of
enough training data for each item.

Positional and prosodic features are significantly
less efficient than lexical ones, when used alone, al-
though they appear in the best decision trees just be-
low lexical features. The sociolinguistic features are
only slightly correlated to DM use, almost exclu-
sively for like: the most reliable indicators are the
identity and the age/education of the speakers.

The TYPE feature is crucial: like and well are
much better processed separately than as a unique
class. This conclusion confirms, on a large data
set, the theoretical insights arguing that DMs are not
a homogeneous class. Although some of the pre-
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vious features do generalize to both lexical items
(such as PAUSE-BEFORE), many of the features are
item-specific, as found also by Litman (1996), and
in particular the lexical features, which appeared
to be the most relevant ones. Overall, this study
has shown that DM identification can reach accu-
racies that are comparable to inter-annotator agree-
ment scores, if item-specific classifiers using lexical
features are trained on large corpora.

Future work should focus first on the application
of the method to other ambiguous DM candidates,
such as you know. This requires, for each item, the
manual annotation of a sizeable amount of instances
for training and test, and possibly some adaptation
of the features. More elaborate prosodic features
should also be studied. Finally, DM classifiers could
be applied prior to POS tagging and parsing, or
could be integrated into POS taggers or parsers.
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Abstract

This paper addresses the problem of identi-
fying action items discussed in open-domain
conversational speech, and does so in two
stages: firstly, detecting the subdialogues in
which action items are proposed, discussed
and committed to; and secondly, extracting
the phrases that accurately capture or sum-
marize the tasks they involve. While the de-
tection problem is hard, we show that we can
improve accuracy by taking account of dia-
logue structure. We then describe a semantic
parser that identifies potential summarizing
phrases, and show that for some task proper-
ties these can be more informative than plain
utterance transcriptions.

1 Introduction

Multi-party conversation, usually in the form of
meetings, is the primary way to share informa-
tion and make decisions in organized work environ-
ments. There is growing interest in the development
of automatic methods to extract and analyze the in-
formation content of meetings in various ways, in-
cluding automatic transcription, targeted browsing,
and topic detection and segmentation – see (Stolcke
et al., 2005; Tucker and Whittaker, 2005; Galley et
al., 2003), amongst others.

In this paper we are interested in identifying
action items – public commitments to perform a

∗This work was supported by the CALO project (DARPA
grant NBCH-D-03-0010). We also thank Gokhan Tür, Andreas
Stolcke and Liz Shriberg for provision of ASR output and dia-
logue act tags for the ICSI corpus.

given task – both in terms of detecting the subdi-
alogues in which those action items are discussed
(along with the roles certain utterances perform in
that discussion), and of producing useful descriptive
summaries of the tasks they involve. While these
summaries are the obvious end product in the first
instance (perhaps presented as an automatically-
prepared to-do list), subdialogue detection is also a
useful output per se, as it allows users to browse the
meeting recording or transcript in a targeted way.

Section 3 discusses the detection of subdialogues
– short passages of conversation in which the action
items are typically discussed, summarized, agreed
and committed to – using a hierarchical classifier
which exploits local dialogue structure. Multiple
independent sub-classifiers are used to detect utter-
ances which play particular roles in the dialogue
(e.g. agreement or commitment), and an over-
all super-classifier then detects the critical passages
based on patterns of these roles. We show that this
method performs better than a flat, utterance-based
approach; as far as we are aware, these are the first
results for this task on realistic data.

Section 4 then investigates the production of sum-
maries. For this, we use an open-domain seman-
tic parser to extract phrases from within the utter-
ances which describe one of two important proper-
ties: the task itself and the timeframe over which
it is to be performed. We describe how such a
parser can be built from generally available lexical
resources and tailored to the particular problem of
parsing speech recognition output, and show how a
regression model can be used to rank the candidate
parser outputs. For the timeframes, this produces
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more informative results than the alternative of pre-
senting the entire 1-best utterance transcriptions.

2 Background

Subdialogue Detection User studies show that
participants regard action items as one of a meet-
ing’s most important outputs (Lisowska et al., 2004;
Banerjee et al., 2005). However, spoken action item
detection seems to be a relatively new task. There
is related work with email text: (Corston-Oliver et
al., 2004; Bennett and Carbonell, 2005) both showed
success classifying sentences or entire messages as
action item- or task-related. Performance was rea-
sonable, with f-scores around 0.6 for sentences and
0.8 for whole messages; the features used included
lexical, syntactic and semantic features (n-grams,
PoS-tags, named entities) as well as more email-
specific features (e.g. header information).

However, applying the same methods to dialogue
data is problematic. Morgan et al. (2006) applied
a similar method to a portion of the ICSI Meet-
ing Corpus (Janin et al., 2003) annotated for ac-
tion items by Gruenstein et al. (2005). While they
found that similar lexical, syntactic and contextual
features were useful (together with other dialogue-
specific features, including dialogue act type and
prosodic information), performance was poor, with
f-scores limited to approximately 0.3, even given
manual transcripts and dialogue act tags. One ma-
jor reason for this is the fragmented nature of con-
versational decision-making: in contrast to email
text, the descriptions of tasks and their properties
tend not to come in single sentences, but may be
distributed over many utterances. These utterances
may take many different forms and play very distinct
roles in the dialogue (suggestions, commitments,
(dis)agreements, etc.) and thus form a rather hetero-
geneous set on which it is hard to achieve good over-
all classification performance. For the same reasons,
human annotators also have trouble deciding which
utterances are relevant: Gruenstein et al. (2005)’s
inter-annotator agreement was as low as κ = 0.36.

In (Purver et al., 2006), we proposed an approach
to this problem using individual classifiers to de-
tect a set of distinct action item-related utterance
classes: task description, timeframe, ownership and
agreement. The more homogeneous nature of these

classes seemed to produce better classification ac-
curacy, and action item discussions could be hy-
pothesized using a simple heuristic to detect clusters
of multiple classes. However, this was only eval-
uated on a small corpus of simulated meetings (5
c.10-minute meetings, simulated by actors given a
detailed scenario), and only on gold-standard man-
ual transcriptions. The first half of this paper ap-
plies that proposal to a larger, less domain-specific,
naturally-occurring dataset, and also extends it to in-
clude the learning of a super-classifier from data.

Note that while previous work in the detection
and modelling of decisions (Verbree et al., 2006;
Hsueh and Moore, 2007) is related, the tasks are
not the same. Firstly, our job is to identify pub-
lic commitments to tasks, rather than general de-
cisions about strategy, or decisions not to do any-
thing (see e.g. Hsueh and Moore (2007)’s exam-
ple Fig. 1). Secondly, our data is essentially open-
domain, making e.g. simple lexical cues less useful
than they are in a domain with repeated fixed topics.
Note also that our results are not directly comparable
with those of Hsueh and Moore (2007), who detect
decision-making acts from a human-extracted sum-
mary rather than a raw meeting transcript, making
positive examples much less sparse.

Summarization & Phrase Extraction Detecting
subdialogues and utterances, though, is only part of
the task – we need a succinct summary if we are
to present a list of action items to a user. Ideally,
this summary should contain at least the identity of
the owner, a description of the task, and a specifi-
cation of the timeframe. Ownership may occasion-
ally be expressed by explicit use of a name, but is
more often specified through the interaction itself –
proposals of ownership usually either volunteer the
speaker “I guess I’ll . . . ” or request commitment
from the addressee “Could you maybe . . . ”. Es-
tablishing identity therefore becomes a problem of
speaker and addressee identification, which we leave
aside for now, but see e.g. (Katzenmaier et al., 2004;
Jovanovic et al., 2006; Gupta et al., 2007).

Timeframe and task, however, are expressed ex-
plicitly; but detecting the relevant utterances only
gets us part of the way. Example (1) shows an ut-
terance containing a task description:

(1) What I have down for action items is we’re sup-
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posed to find out about our human subject

Arguably the best phrase within this utterance to
describe the task is find out about our human sub-
ject, as opposed to other larger or smaller phrases.
Notably, although the utterance contains the phrase
action item — likely a strong clue to the detection of
this utterance as action item-related — this phrase it-
self is not particularly useful in a summary.

3 Subdialogue Detection

3.1 Approach
Following the proposal of (Purver et al., 2006), the
insight we intend to exploit is that while the relevant
utterances may be hard to identify on their own, the
subdialogues which contain them do have charac-
teristic structural patterns. Example (2) illustrates
the idea: no single utterance contains a complete de-
scription of the task, and while some features (the
phrases by uh Tuesday and send it, perhaps) might
suggest action items, they may be equally likely to
appear in unrelated utterances. However, the struc-
ture gives us more to go on: A proposes something
involving B’s agency, B considers it, and finally B
agrees and commits to something.

(2) A: Well maybe by uh Tuesday you could
B: Uh-huh
A: revise the uh
C: proposal
B: Mmm Tuesday let’s see
A: and send it around
B: OK sure sounds good

There are two ways in which this might help us
with the detection task. Firstly, if these action-item-
specific dialogue acts (AIDAs) form more homoge-
neous sets than the general class of “action-item-
related utterance”, we should be able to detect them
more reliably. Secondly, if they are more-or-less in-
dependent, we can use the co-occurrence of multiple
act types to increase our overall subdialogue detec-
tion accuracy.1

3.2 Data
Following (Purver et al., 2006), we take the relevant
AIDA classes to be:

1In fact, there is a third: the different information associated
with each act type helps in summarization – but see below.

D description discussion of the task to be
performed

T timeframe discussion of the required
timeframe

O owner assignment of responsibility
(to self or other)

A agreement explicit agreement or com-
mitment

Table 1: Action item dialogue act (AIDA) classes.

We annotated 18 meetings from the ICSI Meeting
Corpus (Janin et al., 2003), recordings of naturally-
occurring research group meetings. The meetings
are divided up by subject area; our set contains 12
from one area and 6 from 4 further areas. Three
authors annotated between 9 and 13 meetings each,
with all three overlapping on 3 meetings and two
overlapping on a further 4. Inter-annotator agree-
ment improved significantly on (Gruenstein et al.,
2005), with pairwise κ values for each individual
AIDA class from 0.64 to 0.78. Positive examples are
sparser, though, with only 1.4% of utterances being
marked with any AIDA class. Note that while utter-
ances can perform multiple AIDAs (see (2) above),
there is a large degree of independence between the
class distributions. Cosine distances between the
distributions show high independence between A
and all other classes, and reasonable independence
for all other pairings except perhaps D-O (here, 0
represents total independence, 1 exact correlation):

A-T A-D A-O T-D T-O D-O
0.06 0.03 0.07 0.23 0.29 0.55

Table 2: Between-class cosine distances.

3.3 Experiments
We trained 4 independent classifiers for the detec-
tion of each individual AIDA class; features were
derived from various properties of the utterances
in context (see below). We then trained a super-
classifier, whose features were the hypothesized
class labels and confidence scores from the sub-
classifiers, over a 10-utterance window. In all cases,
we performed 18-fold cross-validation, with each
fold training on 17 meetings and testing on the re-
maining 1. All classifiers were linear-kernel support
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vector machines, using SVMlight (Joachims, 1999).
We can evaluate performance at two levels: firstly,

the accuracy of the individual AIDA sub-classifiers,
and secondly, the resulting accuracy of the super-
classifier in detecting subdialogue regions. The sub-
classifiers can be evaluated on a per-utterance basis;
it is less obvious how to evaluate the super-classifier
as it detects windows rather than utterances, and we
would like to give credit for windows which overlap
with gold-standard subdialogues even if not match-
ing them exactly. We therefore use two metrics; one
divides the discourse into 30-second windows and
evaluates on a per-window basis; one evaluates on
a per-subdialogue basis, judging hypothesized re-
gions which overlap by more than 50% with a gold-
standard subdialogue as being correct.

As a baseline, we compare to a standard flat
classification approach, as taken by (Morgan et al.,
2006; Hsueh and Moore, 2007); we trained a single
classifier on the same annotations, but for the simple
binary decision of whether an utterance is action-
item-related (a member of any AIDA class) or not.

3.4 Features
We extracted utterance features similar to those of
(Morgan et al., 2006; Hsueh and Moore, 2007): n-
grams, durational and locational features from the
transcriptions; general dialogue act tags from the
ICSI-MRDA annotations (Shriberg et al., 2004);
TIMEX temporal expression tags using MITRE’s
rule-based TempEx tool; and prosodic features from
the audio files using Praat. We also allowed “con-
text” features, consisting of the same utterance fea-
tures (suitably indexed) from the immediately pre-
ceding 5 utterances. Table 3 shows the complete set.

Lexical ngrams length 1-3
Utterance length in words & duration in seconds

percentage through meeting
Prosodic pitch & intensity min/max/mean/deviation

pitch slope
number of voiced frames

TIMEX Number of time expression tags
MRDA MRDA dialogue act class
Context features as above for utts i− 1 . . . i− 5

Table 3: Features for subdialogue detection.

However, use of lexical and dialogue act features
brings up the question of robustness: ASR word er-
ror rates are high in this domain, and general dia-

logue act tagging accuracy low (Ang et al., 2005).
We therefore investigated the use of ASR output (ob-
tained using SRI’s Decipher (Stolcke et al., 2005))
for lexical features, both via 1-best transcriptions
and word confusion networks (WCNs), which en-
code multiple scored hypotheses for each word (Tür
et al., 2002).2 We also examined performance both
with and without MRDA dialogue act tag features.

3.5 Results

Overall Performance with unigram, utterance and
context features is shown in Table 4. While per-
utterance results are still low (f-scores all below 0.3),
commensurate with Morgan et al. (2006)’s results
with flat classification, we see that the use of the
super-classifier to detect subdialogue regions does
give us results which might be of practical use, with
overlap f-scores near 0.5. Words were the most
useful feature, with no improvement gained by in-
creasing n-gram length above 1; prosodic features
give no improvement. While MRDA and TIMEX
features do give small improvements at the sub-
classifier level, we see no overall subdialogue ac-
curacy gain – we are currently investigating whether
super-classifier improvements can help with this.3

Sub-classifiers Super-classifier
D T O A 30sec Overlap

Recall .19 .15 .21 .18 .51 .59
Precn. .18 .46 .27 .16 .31 .37
F1 .19 .22 .24 .17 .39 .45

Table 4: Structured classifier; lexical + utterance
features, 5-utterance context.

Baseline comparison Comparison with the flat
baseline classifier (Table 5) shows that the struc-
tured approach gives a significant advantage; we hy-
pothesize that this is because commitments in di-
alogue arise via the interaction itself as much as
from individual utterances. Interestingly, although
our approach consistently outperforms the baseline,

2While we do not know the exact ASR word error rate on our
meeting set, Stolcke et al. (2005) report 24% WER on meetings
from the same corpus.

3Note that although accuracies are much lower than those
reported by Hsueh and Moore (2007), the tasks are not the same:
in particular, they detect relevant dialogue acts from a manually
extracted summary, rather than a whole meeting. See Section 2.

21



the delta decreases as more contextual information
becomes available – Figure 1 shows how f-scores
vary as a unigram feature set is expanded to in-
clude unigrams from preceding utterances. It may
be that contextual features implicitly provide some
of the structural information explicitly modelled in
the structured approach. We plan to investigate this
effect on larger datasets when available.

30sec Overlap
Re Pr F1 Re Pr F1

Structured .51 .31 .39 .59 .37 .45
Flat .65 .23 .34 .64 .24 .35

Table 5: Classifier comparison; lexical + utterance
features, 5-utterance context.

Figure 1: F-scores for structured vs. flat classifiers
with 95% confidence bars; unigram features from
increasing numbers of utterances in context.

Robustness Investigation of the effect of ASR
output shows a drop in overlap f-score of 8-9% (ab-
solute) or 17-20% (relative) – see Table 6. Use of
WCNs improves over 1-best hypotheses by 1-2%.
While this is a large drop, we are encouraged by the
fact that this overall loss in accuracy is smaller than
the loss at the sub-classifier level, where f-scores
drop by around 35% on average, and up to 50% (rel-
ative). This suggests that the presence of multiple
independent sub-classifiers is able (to some extent,
at least) to make up for the drop in their individual
performance. As more data becomes available and
sub-classifier performance becomes more robust, we
anticipate better overall results.

Structured Flat
Sub-classifiers Super
D T O A O’lap Utt O’lap

Manual .19 .22 .24 .17 .45 .24 .35
1-best .16 .19 .15 .11 .36 .19 .32
WCNs .15 .14 .18 .07 .37 .19 .33

Table 6: F1-scores against ASR type; lexical + ut-
terance features, 5-utterance context.

Comparison to the baseline flat classifier shows
that the structured approach is less robust (unsur-
prisingly, perhaps, given its more complex nature);
the relative drop in the baseline overlap f-scores
is lower. However, the resulting absolute perfor-
mances are still higher for the structured approach,
although the difference is no longer statistically sig-
nificant over the number of meetings we have.

Summary We see that using our discourse-
structural approach gives significantly improved
performance over a comparable flat approach when
using manual transcripts. While there is a drop in
performance when using (highly errorful) ASR out-
put, performance is still above the baseline.

4 Parsing and Summarization

We now turn to the second task: extracting useful
phrases for summarization.

4.1 Approach

To extract timeframe and task descriptions, we ex-
ploit the fact that the critical phrases which contain
them display certain characteristic syntactic and se-
mantic features. Since the meeting topics and tasks
are not known in advance, we expect that any ap-
proach which learns these features purely from a
training set is unlikely to generalize well to unseen
data. We therefore use a general rule-based parser
with an open-domain, broad-coverage lexicon. The
grammar, however, is small: as our data is highly
ungrammatical, disfluent and errorful, we have de-
veloped a semantic parser that attempts to find basic
predicate-argument structures of the major phrase
types S, VP, NP, and PP, not necessarily trying to
find larger structures (such as coordination and rela-
tive clauses) where reliability would be low.
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Lexical Resources Our lexicon is built from pub-
licly available lexical resources for English, includ-
ing COMLEX, VerbNet, WordNet, and NOMLEX.
Others have shared this basic approach (Shi and Mi-
halcea, 2005; Crouch and King, 2005; Swift, 2005).

COMLEX (Grishman et al., 1994) provides de-
tailed morphological and syntactic information for
the 40,000 most common words of English, as well
as basic lexical information (e.g. adjective grad-
ability, verb subcategorization, noun mass/count na-
ture). VerbNet (Kipper et al., 2000) provides seman-
tic information for 5,000 verbs, including frames
and thematic roles, along with syntactic mappings
and selectional restrictions for role fillers. Word-
Net (Miller, 1995) then provides us with another
15,539 nouns, and the semantic class information for
all nouns. These semantic classes are hand-aligned
to the selectional classes used in VerbNet, based on
the upper ontology of EuroWordNet (Vossen, 1997).
NOMLEX (Macleod et al., 1998) provides syntac-
tic information for event nominalizations and a map-
ping from noun arguments to VerbNet syntactic po-
sitions; this allows us to give nominalizations a se-
mantics compatible with verb events, and assert se-
lectional restrictions. To add proper names, we used
US Census data for people, KnowItAll (Downey et
al., 2007) for companies, and WSJ data for person
and organization names. Proper names account for
about 1/3 of the entries in the lexicon.

These resources are combined and converted to
the Prolog-based format used in the Gemini frame-
work (Dowding et al., 1993), which includes a fast
bottom-up robust parser in which syntactic and se-
mantic information is applied interleaved. To fa-
cilitate extracting semantic features, we use Mini-
mal Recursion Semantics (Copestake et al., 2005), a
flat semantic representation; we have also modified
Gemini to parse WCNs as well as flat transcriptions.
Gemini computes parse probabilities on the context-
free background of the grammar; in these experi-
ments, probabilities were trained on WSJ data.

4.2 Experiments

Our parsing approach intentionally produces mul-
tiple short fragments rather than one full utterance
parse. Combining this with the high number of paths
through a WCN means that our primary problem is
to extract a few useful phrases from amongst a very

high number of alternatives. We approached this
as a regression problem, and attempted to learn a
model to rank phrases according to their likelihood
of appearing in an action item description (again us-
ing SVMlight). We cross-validated over the same
18-meeting dataset, considering only those utter-
ances manually annotated as containing timeframe
and task descriptions (the T and D AIDA classes).
To provide target phrases for evaluation, annotators
marked those portions of the manual utterance tran-
scriptions which should be extracted (note that these
often do not match any WCN path exactly).

For each segment returned by the parser we ex-
tracted features of three general types: properties
of the raw WCN paths, properties of the parsed
phrases, and lexical features reflecting the identity
of the words themselves – a list is given in Table 7.
As lexical features are likely to be more domain-
specific, and increase the size of the feature space
dramatically, we prefer to avoid them if possible.
Initial feature selection experiments indicate that the
most useful features are acoustic probability, phrase
type and verb semantic class, suggesting that syntac-
tic and semantic information are indeed valuable.

WCN phrase length (words & WCN arcs)
start/end point (absolute & percentage)
acoustic probability
acoustic probability shortfall (delta below
highest probability for this segment)

Parse parse probability
phrase type (S/VP/NP/PP)
main verb VerbNet class
head noun WordNet synset
nominalization (yes, no)
number of thematic roles filled
noun class of agent thematic role (if any)

Lexical main verb
head noun
all unigrams in the phrase

TIMEX Number of time expression tags

Table 7: Features for parse fragment ranking.

4.3 Results
Choosing an evaluation metric is not straightfor-
ward: standard parse evaluation methods (e.g.
checking crossing brackets against a treebank) are
not applicable to our task of choosing useful frag-
ments. Instead, we evaluate success based on how
much of the human-annotated task descriptions are
covered by the top-ranked fragment chosen by the
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regression model. For recall we take the total pro-
portion of the desired description covered; for preci-
sion, the total proportion of the chosen phrase which
overlaps with the desired description; we then pro-
duce a corresponding f-score. We compare to a base-
line of using the entire 1-best utterance transcription,
and the ideal ceiling of choosing the fragment with
the best f-score (still less than 1, due to ASR er-
rors and parse segmentation). For timeframe utter-
ances, we also compare to a second baseline of using
those fragments of the 1-best transcription tagged as
TIMEX expressions.

Results are shown in Table 8 for timeframe
phrases, and Table 9 for task description phrases.
For timeframes, the best feature set gives an f-score
of .51 and precision of .62, outperforming both base-
lines but still some way below the ideal ceiling. Se-
mantic classes and phrase-head lexical features help
performance, although including other unigrams did
not; TIMEX tags help, although a TIMEX-only
baseline does badly.

Recall Precision F1
Baseline 1: TIMEX .26 .36 .31
Baseline 2: 1-best .76 .27 .39

No sem/lex features .33 .47 .38
+ semantic classes .36 .53 .43
+ head verb/noun .39 .59 .47

+ TIMEX .43 .62 .51
Ceiling: best F1 .64 .80 .71

Table 8: Fragment ranking results: timeframe.

However, results for description phrases are poor,
with no feature set outperforming the baseline. This
is partly as the baseline recall is already quite high;
note that using the parser does increase precision.
Lexical features actually harm performance, perhaps
unsurprisingly given the wider range of vocabulary
compared to timeframes. The problem is also more
difficult, hence the ideal figures are lower too; but in-
spection of errors suggests that inaccurate sentence
segmentation (based only on pause length in these
data) causes many of the problems, with many ut-
terances annotated as providing only single words
to the ideal phrase. We expect that improved sen-
tence segmentation will improve performance, and
are currently investigating this.

Recall Precision F1
Baseline: 1-best .66 .32 .43

No sem/lex features .22 .41 .29
+ semantic classes .35 .41 .38
+ head verb/noun .31 .41 .35
Ceiling: best F1 .50 .78 .61

Table 9: Fragment ranking results: description.

5 Conclusions & Future Work

Both problems are hard, and overall performance
is correspondingly lower than that achieved on less
difficult tasks or less sparse data. However, they
do appear tractable, even on errorful ASR out-
put, with some encouraging initial performances ob-
tained. Importantly, we have shown the benefits of
using discourse structure in classification, and se-
mantic features in summarization.

To improve detection performance, we are inves-
tigating more effective super-classifiers, incorporat-
ing existing task lists to provide reliable information
about possible tasks to be discussed, and leveraging
user interaction for learning – allowing users to con-
firm, delete or edit hypothesized action items, and
using this as feedback to allow incremental learning
(Purver et al., 2007).

For summarization, one of the major limitations
of our approach is that we only consider phrases
from within a single acoustically-segmented utter-
ance, while many ideal descriptions combine infor-
mation from more than one. We plan to investi-
gate improved segmentation, and generation of sum-
maries from multiple utterances.
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Abstract

This paper analyzes opinion categories like
Sentiment and Arguing in meetings. We
first annotate the categories manually. We
then develop genre-specific lexicons using
interesting function word combinations for
detecting the opinions. We analyze rela-
tions between dialog structure information
and opinion expression in context of multi-
party discourse. Finally we show that classi-
fiers using lexical and discourse knowledge
have significant improvement over baseline.

1 Introduction

In this work, we bring together two areas of research
which have seen great interest in recent times.
Multi-party meetings have been analyzed with re-
gard to dialog acts, hotspots, argumentation and de-
cision points. Similarly, there is increasing activity
in the automatic extraction of opinions, emotions,
and sentiments in text (subjectivity) to provide tools
and support for various NLP applications.

We believe that opinion information can en-
hance an interactive agent’s ability to moderate a
meeting; enable a summarizer to specifically report
those opinions that influenced the decisions; and
enhance the capabilities of Question Answering
(QA) systems. As an example, consider a meeting
from the AMI corpus (Carletta et al., 2005) where
the participants have to design a new TV remote
control. The following opinions are expressed
regarding the TV remote:

U1. “It [the remote] is not as fast as a usual remote control”

U2. “That [remote feature] will be harder to learn”

U3. “We’ll definitely won’t go with that one [speech recog-

nition]”

U4. “We can skip speech recognition directly, because it’s

not reachable for twenty five Euros”.

Somebody who missed the meeting and had to find
out details about the decisions made, may want to
ask questions like:

Q1. “Why was the remote not rated highly?”

Q2. “Who argued against the speech recognition?”

Q3. “What were the points of persuasion against the speech

recognition feature?”

Question Q1 is answered by Utterances U1 and U2,
which express sentiments toward the remote. Q2
is best answered by retrieving the names of all par-
ticipants who had utterances similar to U3 and U4.
Similarly, U4, where the speaker is arguing for skip-
ping the speech recognition would be a relevant an-
swer for Q3. In order to be able to answer such
questions, we explore two particular sub-types of
subjectivity: Sentiment and Arguing. In the ex-
ample utterances above, U1 and U2 express Sen-
timents, while U3 and U4 show speakers Arguing
for their views. These subjectivity subtypes have
proven useful for Question Answering on online
multi-party debates (Somasundaran et al., 2007).

There has been a fair amount of work on the Sen-
timent category. By contrast, little work has been
done on the Arguing category. We first define and
annotate these opinion types in AMI meetings. We
then perform inter-annotator agreement studies to
verify if the two categories can be reliably detected.

We develop an Arguing lexicon as a new knowl-
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edge source for automatically recognizing the Ar-
guing category. We use previously developed lex-
icons for Sentiment detection (Wilson et al., 2005;
Stone et al., 1966) to evaluate their portability to
multi-party meetings. Previous efforts in recogniz-
ing opinions (or subjectivity) in monologic texts
have focussed on knowledge from lexico-syntactic
sources. While these have proven useful, we believe
that in the conversational genre, reliably recogniz-
ing opinion expressions in utterances is a complex
discourse task. Thus, we explore the novel use of
dialog features for opinion recognition in combina-
tion with a lexicon. We find that this combination
of knowledge sources shows promising results.

The rest of the paper is organized as follows: We
introduce the data in Section 2 and our opinion def-
initions in Section 3. Then in Section 4 we present
our annotation categories. In section 5 we explain
the knowledge sources used for classification and
present our experimental results in Section 6. Re-
lated work is discussed in Section 7 and finally we
conclude in Section 8.

2 Data

For this work, we annotated 7 scenario-based team
meetings from the AMI corpus resulting in a corpus
of 4302 segments (6504 sentences) for our super-
vised learning experiments. In these meetings, four
participants collaborate to design a new TV remote
control in a series of four meetings, which repre-
sent different project phases, namely project kick-
off, functional design, conceptual design, and de-
tailed design.

In order to make the best use of the annotators’
time in this work, we decided not to annotate the
kick-off meetings as we believe them to be less rich
in our opinion categories.

Each meeting in the AMI corpus comes with rich
transcription and is annotated with dialog acts, ar-
gumentation, topics, etc. The corpus provides seg-
ment (turn) information for each speaker. Based on
the rich transcriptions, we split the segments further
into sentences. Sentence level classification tasks
have a finer granularity and are of interest for appli-
cations like QA. On the other hand, in the absence
of sentence boundary information, real time ASR
systems work at the segment level. As there is inter-

est at both levels of granularity, we present results at
both the segment and sentence levels in this paper.

Some of the AMI annotations that are of in-
terest in this work are Dialog Acts and their Ad-
jacency Pairs. The AMI meeting is annotated
with 15 Dialog Act (DA) categories: Backchan-
nel, Stall, Fragment, Inform, Elicit-Inform, Sug-
gest, Offer, Elicit-Offer-Or-Suggestion, Assess,
Elicit-Assessment, Comment-About-Understanding,
Elicit-Comment-Understanding, Be-Positive, Be-
Negative, Other. Two DAs may be linked via an
Adjacency Pair (AP) relation. One of the DAs is the
source and the other is the target in the AP. There are
5 AP types, namely: Support/Positive Assessment,
Objection/Negative Assessment, Uncertain, Partial
agreement/support, Elaboration.

3 Opinion Definition

Our two opinion types are adapted from the work on
attitude categories in monologic texts by Wilson et
al (2005). They are defined as follows:
Sentiment: Sentiments include emotions, evalua-
tions, judgments, feelings and stances. For exam-
ple in the sentence “This idea is good”, “good” ex-
presses the sentiment.
Arguing: Arguing includes arguing for something,
arguing that something is true, or should be done.
Arguing brings out the participant’s strong convic-
tion and/or his attempt to convince others.

In multi-party discourse, speakers argue for
something in a variety of ways. As arguing opinions
are less well studied, we will examine some exam-
ples. Consider the following utterances, where the
lexical anchors that indicate Arguing are shown in
bold.

A1. “I think this idea will work”

A2. “This is the lightest remote in the world”

A3. “We ought to get this button”

A4. “Clearly, we cannot afford to use speech recognition”

A5. “It would be nice if we could have the curved shape”

A6. “I brought this up because this will affect the cost”

A7. “We want a fancy look and feel”

In A1, the speaker argues by explicitly stating his
conviction. In A2, the speaker simply asserts his ar-
gument, while in A3 the speaker argues for getting
the button by framing it as a necessity. In A4, the
speaker states his proposition categorically to argue
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for it. Interestingly, in face to face conversations,
participants also use persuasive constructs, justifi-
cation or communal desire to argue for something
as in A5, A6 and A7 respectively.

In examples A1 to A7 above, there are overt lex-
ical anchors that indicate an arguing intent in the
speaker’s utterance. However, context, in addition
to lexical clues is needed to infer that arguing is tak-
ing place. As part of a casual conversation, the ut-
terance “I think John was at home” would not be Ar-
guing, despite the presence of “I think”. However,
in a debate about John’s whereabouts at the time of
a murder, the sentence could function as Arguing.
Here the context and the knowledge that there is a
disparity between the speakers helps us infer that
the sentence is intended to argue. Finally, some-
times arguing is done even in the absence of any
overt lexical anchor. Consider:

A8. “The speech recognition is nice. Yes, speech recogni-

tion. It falls within our price range too”

In A8, we do not find any explicit markers. How-
ever, the speaker attempts to win approval for the
speech recognition by his affirmation and his posi-
tive evaluations (sentiment) of the speech recogni-
tion and its price. These various elements together
build up the argument.

4 Annotation Categories

Our annotation categories are Sentiment and Argu-
ing. We discuss the varied ways of arguing in our
annotation guide to help the annotators. As ex-
plained in Example A8 of Section 3 sometimes Ar-
guing is done without overt lexical anchors, which
makes such cases difficult to annotate reliably. We
assign these cases to a special category called Utter-
ance Arguing.

We adapt the basic annotation frame for our opin-
ion type from (Wilson and Wiebe, 2005). The rele-
vant components of the frame are:

• Text span: The span of text that captures the opinion
type. In the case of Utterance Arguing, this text span
may cover the whole utterance.

• Inferred: (true/ false) This feature indicates that the an-
notator used inference for this annotation. For example,
“very dark” is labeled as Sentiment in the sentence “This
(TV) remote is very dark”. This annotation is based on
the knowledge that participants consider a dark color un-
desirable for the remote.

• Annotator Confidence: (certain/ uncertain) The anno-
tators set this feature to uncertain when they are unsure

Sentiment Arguing UtteranceArguing
segments 0.826 0.716 0.372
sentences 0.789 0.677 0.326

Ignoring Annotator-uncertain cases
segments 0.838 0.716 0.382
sentences 0.805 0.677 0.332

Ignoring Annotator-uncertain and Inferred cases
segments 0.85 0.716 0.382
sentences 0.814 0.677 0.332

Table 1: Kappa values for Inter-annotator agree-
ment

of the annotation.

4.1 Inter-annotator Agreement
Two annotators (two of the authors) underwent
3 rounds of training. Then we calculated inter-
annotator agreement using Cohen’s kappa over a
previously unseen meeting (607 segments, 1002
sentences). Although the annotators tag expres-
sions, agreement is calculated over the segment or
the sentence. For this purpose, we assign a segment
(or sentence) the labels of all the expressions anno-
tated within it.

Table 1 shows the results of the agreement study.
Our inter-annotator kappa values are in the Substan-
tial Agreement Range according to Landis and Koch
(1977) for Sentiment and Arguing, and in the Fair
Agreement Range for Utterance Arguing. For Sen-
timent, when we exclude the labels from those in-
stances that were tagged as inferential or uncertain,
the agreement numbers go up to 0.85 for the seg-
ment and 0.814 for the sentence level respectively.

Compared to Sentiment, Arguing has lower
kappa values at at 0.716 at the segment and 0.677
at the sentence level. We do not see any changes
in the values when uncertain cases are removed.
In this meeting the segments or sentence unit typ-
ically contain multiple expressions tagged for Ar-
guing. Thus if an arguing label marked as uncertain
was excluded from a given unit, but the unit had an-
other label marked as certain elsewhere, then that
unit overall still got an arguing label which counted
toward the kappa calculation.

As expected, the Utterance Arguing category
proved to be difficult. This is because it requires
the annotators to infer whether the speaker is argu-
ing when the utterance does not have any definite
markers.
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5 Knowledge Used in Classification

In this section, we discuss the development of our
lexicon and the rationale for using dialog structures
as knowledge sources for our automatic classifiers.

Much work in sentiment and subjectivity detec-
tion in monologic texts has focussed on lexical and
syntactic features. In order to capture the lexical in-
formation we use lexicons. In the context of multi-
party meetings, we hypothesize that the discourse
flow and participant interaction act as useful indi-
cators of opinion expression. We use Dialog Acts
(DA) and Adjacency Pair (AP) features to capture
the flow of discourse. We also believe that the lex-
ical and discourse knowledge are complementary,
and we build a system using all the features to test
this hypothesis.

5.1 Sentiment Lexicon

We availed ourselves of previous work on Senti-
ment lexicon development, namely the General In-
quirer (GI) (Stone et al., 1966), and Wilson et al’s
(2005) Subjectivity Clue list. The former provides
a list of positive and negative words, while the
latter contains a list of word and expressions that
are strong/weak indicators of subjectivity, valence
shifters, or intensifiers. In all, this gives us 6 lexi-
con categories to which a sentiment word may be-
long: GI Positive, GI Negative, Strong Subjective
Clue, Weak Subjective Clue, Intensifier, and Va-
lence Shifter.

5.2 Arguing Lexicon

We assembled an Arguing lexicon for meetings as
follows. We inspected one AMI meeting (not used
for training or testing) for words, phrases or word
patterns that are indicative of Arguing. Then we
explored the ICSI Meeting Recorder Dialog Act
(MRDA) corpus (75 meetings, 72 hours) for sim-
ilar expressions in order to develop more general
patterns and increase the coverage of the lexicon.
This was done in two steps. In the first, all instances
of certain Dialog Act types (dispreferred answer,
negative answer, command, defending/explanation,
suggestion) were extracted and frequent n-grams
(1 ≤ n ≤ 4) identified. In the second phase,
we manually inspected, for the highest ranking n-
grams, a sample of 10-15 actual instances in the

Type Example
emphasis that’s why

the thing is
necessity ought to

had better
inconsistency except that

it’s just that

Table 2: Examples from Arguing lexicon

ICSI corpus and retained those n-grams that seemed
promising. Finally, we looked over three ICSI tran-
scripts in full to assess the coverage of the annota-
tion concepts to be applied to the AMI data. This
process produced a lexicon of 226 entries, sorted
into 18 categories such as necessity, conditional,
emphasis, generalization, contrast, causation, etc. to
account for the various ways in which speakers ar-
gue.

As the entries given in Table 2 suggest, closed-
class items such as modal verbs, adverbs, or con-
junctions play a more important role in identify-
ing instances of our Arguing class than open-class
items. For instance, words like “oppose”, “support”,
and “conclude” which directly denote aspects of ar-
guing and reasoning are rare, whereas causal con-
nectives such as “so”, “because”, and “if” are fre-
quent.

We can understand the importance of closed-class
items in terms of the distinction that Wiebe (2002)
makes between direct subjective elements and ex-
pressive subjective elements. Direct subjective ele-
ments are exemplified, in the sentiment domain, by
words like “love” or “criticize” which directly de-
note a particular kind of private state of a source,
possibly in relation to a target, and which can real-
ize their source and, if present, their target as a syn-
tactic dependent. Expressive subjective elements,
exemplified by words like “jerk” and “annoyingly”,
presuppose but do not denote a private state and can-
not occur in syntactic construction with the source
of the private state. Instead, the source is to be iden-
tified by the hearer from the candidate set made up
by the interlocutors and the human referents in the
discourse.

Applying this distinction to the Arguing category,
we find that in the spoken conversation of meetings,
where arguments are constructed in real-time, ex-
pressive subjective elements are prominent, with the
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Speaker-C:: <Suggest> we just come to an agreement. </Suggest>  <Elicit-Assessment> Okay? <Elicit-Assessment>

<Inform> So the first one uh , stylish look and feel.</Inform>

Speaker-B:: <Assess> Okay. </Assess>

Speaker-A:: <Assess> I rate that pretty highly. </Assess>

Speaker-B:: <Assess> Well yeah, </Assess> <Assess> I mean compared to most remote controls you see that's pretty good.

</Assess> <Assess> I dunno like a six or something. What does anybody else think?  <Assess>

Speaker-C:: <Assess> Yeah </Assess> <Inform> um me uh my only reservation with it was that we basically went with yellow

because it's the company's colour, </Inform> <Assess> and I don't know if yellow's gonna really be a hit. <Assess>

Speaker-B:: <Assess> Okay. </Assess>

Speaker-D:: <Assess> I'm seeing five then. <Assess>

 

 

 

 
 

 

 
 

  

Positive Assessment

Positive Assessment

Positive Assessment

Positive Assessment

Positive Assessment

Positive Assessment

Figure 1: Sentiment expression and discourse flow.

sources typically being the speakers. This makes
sense in particular for modal verbs such as “must”,
“need”, etc. as arguing directly concerns modal-
ity: speakers discuss what is, what could be, what
should be. By contrast, we find fewer direct subjec-
tive elements such as “require” or “argue”. These
elements, however, seem very suitable for reporting
on arguments.

5.3 Dialog acts and Adjacency pairs
We observe that there is an interplay between our
opinion categories and the dialog level annotations
in the AMI corpus. Consider the following AMI
meeting snippet where the participants rate their TV
remote control design on a number of metrics such
as learnability, look and feel, etc. using a scale from
one (worst) to seven (best).

Speaker-C:: we just come to an agreement. Okay?
So the first one uh , stylish look and feel .
Speaker-B:: Okay.
Speaker-A:: I rate that pretty highly.
Speaker-B:: Well yeah, I mean compared to most
remote controls you see that’s pretty good. I dunno
like a six or something. What does anybody else
think?
Speaker-C:: Yeah um me uh my only reservation
with it was that we basically went with yellow be-
cause it’s the company’s colour , and I don’t know
if yellow’s gonna really be a hit.
Speaker-B:: Okay.
Speaker-D:: I’m seeing five then.

Figure 1 illustrates the opinion annotations (in bold
underlined text spans), DA annotations (as enclos-
ing XML tags) and AP annotations (as directed

links between segments ) of the above meeting snip-
pet. C introduces the first metric for evaluation, the
stylish look and feel. A has a positive Sentiment
about the remote in this regard and hence says he
rates it “pretty highly”. B shares A’s positive Sen-
timent. He too evaluates the remote favorably and
judges it as deserving a rating of six. Note that
here “six” is considered an inferred sentiment, as
it reflects the participant’s evaluation of the remote.
C, however, shows his negative Sentiment towards
the remote by pointing out his reservation about the
choice of the color yellow. C’s Sentiments convince
D, who then evaluates the look and feel at the lower
grade of 5.

The Dialog Acts and Adjacency Pairs that capture
the exchanges between the participants are indica-
tive of the Sentiments expressed. For example, it is
likely that a participant who has a positive evalua-
tion of an object might positively assess his preced-
ing speaker’s positive assessment of the same ob-
ject. We see this in Figure 1 when A and B both
show positive Sentiment towards the remote’s look
and feel. B shows a Positive Assessment of A’s As-
sessment. D, who evaluates the look and feel of the
remote at a lower grade (negative Sentiment) has a
Positive Assessment toward C’s Assessment (nega-
tive Sentiment) of the remote. Thus the participants’
sentiments towards objects are also reflected in their
interpersonal dialog acts and vice versa. We also
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found interesting relations bettween arguing and di-
alog structure. Due to space considerations, this is
discussed in Appendix A

We believe Dialog structure (DA and AP) and our
opinion categories are complementary rather than
interchangeable. Dialog acts are focused on inter-
personal exchanges and discourse functions, while
opinion categories are focused on participants’ pri-
vate states usually towards objects (which may be
other participants). In our corpus we found that it is
not always necessary for a Sentiment instance to be
associated with an Assess Dialog Act. Consider the
utterance: “Okay, so when you have a lot of room
inside. So you can make it very easy to use. ’Cause
you can write a lot of comments besides it.” This
sentence was labeled as an Inform DA as it func-
tions to inform the participants of the roomy interior
of the remote control. Orthogonally, it was tagged
as a positive Sentiment (“very easy to use”) and pos-
itive Arguing (“’Cause”).

6 Experiments and Results

In this section, we perform machine learning ex-
periments to test our hypothesis that our knowledge
sources from Section 5 are useful. We perform su-
pervised machine learning on our annotated corpus
of 4302 segments (6504 sentences) using a standard
SVM package (Joachims, 1999). The recognition
of each opinion category is formulated as a binary
classification problem. We do not attempt automatic
classification for Utterance Arguing as we consider
our inter-annotator agreement for this category to be
too low to form a reliable gold standard.

We use two baselines: a majority-class dumb
baseline that guesses false every time, and a smart
SVM classifier trained on a bag of words (BOW).
Then we add our opinion features individually or in
combination to the baseline classifier. The lexicon
features for the BOW+lex classifier are counts of
words from each lexicon type in the given segment
or sentence.

The AMI DA types introduced in Section 2 form
the additional features for the BOW+DA classifier.
The AP links described in Section 2 along with their
source DA and target DA form a DA-AP-DA chain.
These DA-AP-DA chains form the features for the
BOW+AP classifier. Since we do not make a po-

Acc Prec Rec F-measure
Segment Level classification

BOW 88.42 69.52 51.95 57.99
BOW+lex 88.84 70.1 53.07 59.16
BOW+DA 89.28 73.81 54.62 61.26
BOW+AP 88.73 70.1 53.07 59.16
BOW+DA+AP 89.24 73.14 54.38 60.9
BOW+All 89.28 73.17 54.98 61.37

Sentence Level classification
BOW 89.43 69.22 46.69 54.62
BOW+lex 89.51 69.12 48.04 55.53
BOW+DA 89.80 71.11 49.07 56.7
BOW+AP 89.40 69.42 46.21 54.11
BOW+DA+AP 89.79 71.29 48.87 56.54
BOW+All 90.3 73.22 51.32 59.20

Table 3: Arguing Classification Results.

larity distinction, we conflate Positive and Nega-
tive Assessment into a single category Assessment.
As there are 15 DAs and 4 APs (after conflation)
there are 15 ∗ 4 ∗ 15 = 900 possible combinations;
however of these, only 99 types actually occur in
our annotated corpus. The BOW+DA+AP classi-
fier has all the DA features and the AP features; the
BOW+All classifier uses DA, AP and lex features.

The accuracy of the majority-class Arguing clas-
sifier is 82.84% at the segment and 85.5% at the sen-
tence level. All the classifiers, including the smart
baseline (BOW), improve over this by about 7 per-
centage points at the segment and by about 4 per-
centage points at the sentence level. Table 3 shows
the performance of our Arguing classifiers. All re-
sults are reported over 20-fold cross-validation. The
results that are significantly better (p < 0.05) than
the smart BOW baseline are shown in bold. The re-
sults in Table 3 indicate that the DA features are use-
ful for detection of Arguing. The only classifier that
performs significantly better than the smart baseline
at both the segment and sentence level is the one
that uses all the features (BOW+all). This corrob-
orates our hypothesis that lexical and discourse in-
formation are complementary. The Arguing lexicon
significantly improves recall and f-measure for seg-
ments, but the results are not significant at the sen-
tence level. We think this is because our preliminary
lexicon with its lesser coverage can still succeed in
finding matches in the larger segmental units, but
fails in the smaller sentential units. We believe in-
creasing the breadth of coverage will remedy this.
Table 4 shows the performance of the Sentiment
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Acc Prec Rec F-measure
Segment Level classification

BOW 86.87 80.84 48.53 58.77
BOW+lex 88.29 81.43 56.14 65.18
BOW+DA 87.45 81.93 51.48 62.0
BOW+AP 87.27 81.02 50.69 61.11
BOW+DA+AP 87.36 82.73 49.55 60.93
BOW+All 88.66 82.01 57.89 66.88

Sentence Level classification
BOW 88.23 82.41 44.08 56.61
BOW+lex 89.77 81.99 54.70 64.89
BOW+DA 88.59 82.11 47.08 59.14
BOW+AP 88.67 82.68 46.73 58.97
BOW+DA+AP 88.64 82.47 47.1 59.22
BOW+All 89.95 82.49 55.42 65.62

Table 4: Sentiment Classification Results

classifiers. Here too, using all features gives the
best performance at both the segment and sentence
level. Additionally, we also see that each of our
features, lexical or dialog-based, individually im-
prove the recall and f-measure. The accuracy of the
majority-class Sentiment classifier is 79.12% at the
segment and 82.16% at the sentence level. The best
classifier (BOW+All) improves over this by about
9 percentage points at the segment and 8 percent-
age points at the sentence level. We also see that
the lexicons from the monologue text genres help in
improving the recall significantly. It is encouraging
that resources developed for extracting sentiments
from monologic texts will be useful for processing
conversational data as well.

7 Related Work

Sentiment detection is being carried out across a va-
riety of genres and at various levels (e.g. document
level by Thomas et al. (2006), phrase level by Wil-
son et al. (2005)).

Like much other work on subjectivity (e.g. Na-
sukawa and Yi (2003)), we use lexicons as knowl-
edge sources in classification. Somasundaran et
al. (2007) use a lexicon for detecting Arguing in
text. In contrast, our work is on multi-speaker con-
versations. Biber (1988) in work on textual vari-
ation identifies a dimension of “Overt persuasion”
whose categories (e.g. modal verbs and condition-
als) are similar to the expressions we gathered in
our lexicon. Ducrot (1973) studies arguing related
items, but his work is on French and is not corpus-
based. A vast body of work exists within linguistics,

rhetoric and philosophy that is relevant to arguing
(e.g.(Dancygier, 2006; van Eeemeren and Grooten-
dorst, 2004)).

With regard to meetings, the most closely re-
lated work includes the dialog-related annotation
schemes for various available corpora of conversa-
tion (Dhillon et al. (2003) for ICSI MRDA; Carletta
et al. (2005) for AMI; Burger et al. (2002) for ISL).
We think our annotation scheme complements the
annotations provided in these corpora in that it adds
finer granularity for statement-speech acts by distin-
guishing expressions of sentiment and arguing from
objective statements.

Our work also connects to research on hot spots
(Wrede and Shriberg, 2003), and efforts to anno-
tate the mental states of participants in meetings or
interviews on the basis of multi-modal data (Dev-
illers et al., 2005; Reidsma et al., 2006). The focus
of these kinds of research is different from ours in
that they target the actual mental states of the speak-
ers in the unfolding situation, while we focus on
subjective states communicated through language.
While often the same, they are not necessarily iden-
tical as language allows for displacement: partici-
pants may calmly report about other people’s anger,
report their past or expected future mental states,
etc. Our approach is similar to the one used by Gal-
ley et al. (2004) where adjacency pair information
is used to detect agreement/disagreement amongst
participants. Similarly, in the prediction of congres-
sional vote, Tomas et al. (2006) use adjacency pair
information to detect agreement amongst speakers.
Another closely related area is argument diagram-
ming of meetings (Rienks et al., 2005), where lines
of deliberation are analyzed without making a sub-
jective/objective distinction. Our work can also be
combined with ongoing work on decision detec-
tion (Hsueh and Moore, 2007; Purver et al., 2006).
While our annotations track opinions in the decision
making process, the decision detection research is
mostly concerned with its outcome.

8 Conclusion and Future Work

We presented the annotation of the Opinion types
Sentiment and Arguing on meetings. We developed
a new lexical resource for the Arguing category. We
showed that previously developed Sentiment lexi-
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cons have good coverage in the new genre. We hy-
pothesized that dialog structure interacts with the
expression of opinions and confirmed this through
machine learning experiments. Finally, using all the
features gave the best performance, confirming our
hypothesis that both lexical and discourse informa-
tion is needed to detect opinions in multi-party con-
versations.

Our future work will involve increasing the
breadth and reliability of our arguing lexicon both
manually and via automatic means. We also plan
to use richer discourse and meeting level informa-
tion as well as study interactions between opinion
types.
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A Appendix A. Arguing Opinions and
Discourse Flow

Speaker-A:: <Suggest> Yeah, maybe we have to skip that one. </Suggest> 

Speaker-B:: <Assess> No no, I want that in. </Assess> 

Speaker-D:: <Assess> No, we need that. That's usable . That's really usable. </Assess>

 
 

 

Negative Assessment
Negative Assessment

Figure 2: Arguing expression and discourse flow

As with the Sentiment opinions, for the Arguing cat-
egory, too, we found an interrelation with Dialog
Act exchanges. Consider the AMI meeting snip-
pet below where the participants are discussing a
beeping functionality. Speaker A has just suggested
skipping it.

Speaker-A:: Yeah, maybe we have to skip that one.
Speaker-B:: No no, I want that in.
Speaker-D:: No, we need that. That’s usable .
That’s really usable.

Figure 2 illustrates the annotations on this snippet.
A Suggests that they might skip the beeping func-
tionality. B Argues against this Suggestion with a
vehement “No no”. The “I want” in B’s utterance
acts as both Sentiment (positive towards the thing
wanted) as well as Arguing. Thus, there is a Neg-
ative Assessment link between the two. D, too, Ar-
gues against A’s Suggestion by stating that the beep-
ing functionality is a necessity. He justifies this
stance by evaluating the remote as usable and then
reinforces his argument though repetition and inten-
sification.
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Abstract

We present a model of compliance, for do-
mains in which a dialogue agent may be-
come adversarial. This model includes a set
of emotions and a set of levels of compli-
ance, and strategies for changing these.

1 Overview

We present an information-state based model of
compliance for an agent who is questioned. The
agent tracks several emotional and interpersonal
variables, which can be updated depending on the
dialogue act, content, and other features of utter-
ances. A compliance level is computed based on
the values of these variables. This work is in the
tradition of research in building affective dialogue
systems (André et al., 2004a) embodied as virtual
humans (Rickel et al., 2002), with emotional com-
ponents for training or tutoringpurposes (Gratch and
Marsella, 2005).

A model of emotion in an affective dialogue
system may, among other things, influence that
system’s cognitive behavior (Becker et al., 2004),
model the effects of social language (Cassell and
Bickmore, 2003), or control behavior such as its
level of politeness (André et al., 2004b). Our study
is closer in spirit to (Traum et al., 2005), in which
a virtual human decides on a negotiation strategy
based on its emotional appraisal of the topic, of its
negotiation options, and of the human speaker. Our
study also overlaps somewhat in topic with (de Rosis
et al., 2003), in which a computer decides whether
or not to deceive.

In this work we build a model of compliance
- how helpful the agent will be - in a domain in
which the agent may become reticent or adversar-
ial, along with the emotional components that direct
that agent’s decision.

2 Testbed Domain

Our testbed application is in the domain ofTactical
Questioning, in which small-unit military personnel
hold conversations with individuals to produce in-
formation of military value (Army, 2006). We are
specifically interested in this domain when applied
to civilians, when the process becomes more conver-
sational and additional goals involve building rap-
port with the population and gathering general in-
formation about the area of operations.

We have developed an application for training in-
dividuals in conducting Tactical Questioning ses-
sions with civilians. The scenario takes place in con-
temporary Iraq, where the trainee must talk to Has-
san, a local government functionary. If the trainee
convinces Hassan to help him, the trainee will con-
firm suspicions about an illegal tax being levied
on a new marketplace; if exceptionally successful,
the trainee may even discover that the tax has been
placed by Hassan’s employer. But if Hassan be-
comes adversarial, he may lie or become insulting.

Figure 1 shows the beginning of a typical dialogue
with Hassan. Rather than working to determine what
the human user wants and then providing it, in turns
6 and 8 Hassan provides replies that are off-topic or
of low information value. The trainee’s goal is to in-
crease the value of Hassan’s responses by appealing
to Hassan’s emotions and making him more compli-
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ant. Section 4 describes how this can happen.

1 Trainee Hello Hassan
2 Hassan Hello
3 Trainee How are you doing?
4 Hassan Well, under the circumstances we are fine
5 Trainee I’d like to talk about the marketplace
6 Hassan I hope you do not expect me to tell you any-

thing
7 Trainee I just want to know why people aren’t using

the marketplace
8 Hassan I don’t feel like answering that question

Figure 1: Scenario Dialogue

3 System Implementation

As a training application, Hassan incorporates
“human-in-the-loop” interactivity, and logs utter-
ances, language features, and emotional states at ev-
ery turn, with the aim of producing a summary for
after-action review, at which time a human trainer
and trainee may discuss the session. For this reason,
Hassan may react realistically to a trainee’s bribes or
threats of force, even though such actions are against
policy for Tactical Questioning of noncombatants
(Army, 2006): these behaviors would be reviewed
by a human trainer during or after the training ses-
sion.

The natural language components of our dialogue
agent include a set of statistical classifiers work-
ing together with a rule-based dialogue manager.
The Automated Speech Recognition output is sent
to the classifiers, three of which detect language fea-
tures, and three of which suggest possible replies.
The Dialogue Manager uses its model of emotions
and compliance to determine which of the suggested
replies, if any, are to be made back to the user, as
described in the next section. Further system imple-
mentation details are given in (Traum et al., 2007).

4 Model of Dialogue, Emotions, and
Compliance

In our training scenario, trainees have a specific set
of information that they want to learn from Has-
san. In the general Tactical Questioning domain, a
questioner seekscompliance: that the interviewee
at least answers any questions truthfully, and ideally
that the interviewee takes the initiative in offering
information. Note that this is different fromcoop-
erationas in (Allwood, 2001), as it does not make

any assumptions about cognitive consideration, joint
purpose, ethical consideration, or trust; compliant
behavior might or might not be cooperative. The
components of our model were developed based on
a study of Tactical Questioning domain documents
such as (Army, 2006) and (Paul, 2006).

More details about our model of compliance are
given in section 4.3. The following sections describe
how the human speaker’s utterances indirectly up-
date the agent’s level of compliance by means of a
model of emotion.

4.1 Dialogue Features

A human trainee’s utterance is analyzed by statisti-
cal classifiers to detect its principal dialogue move,
topic, and degree of politeness.

We define several dialogue moves relevant to the
domain of tactical questioning.Openingmoves are
general greetings and introductions.Complimentary
moves are those in which the trainee compliments or
flatters the person being questioned.General Con-
versationincludes talk meant to build a sense of so-
cial bonding between the agent and the trainee, as
well as expressions of goodwill and off-topic state-
ments.Task Conversationis talk related to informa-
tion the trainee is interested in: in the case of this
scenario, questions about the marketplace and tax-
ation, about the agent and his business, and so on.
Threateningmoves are those that include a threat
against the agent, andOfferingmoves offer to pro-
vide something. Finally,Closingdialogue moves are
those that end the conversation.

The topic of the utterance will be a topic from one
of three sets, or ’other’. The Information Request
topics allow the agent to identify what the trainee is
referring to in Task Conversation dialogue moves:
the marketplace, taxation, and so on. The set of
Threat-related and the set of Offer-related topics re-
fer to the kinds of threats and offers that a trainee
may make in the course of a conversation.

Finally, the third language feature to analyzed is
the utterance’s level of politeness. This will be iden-
tified as either polite, impolite, or neutral.

4.2 Emotional and Social variables

We identify four emotional and social variables
(emotions, for short) applicable to the domain. They
have been named to be intuitive to a trainer over-
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seeing a session.Respects Traineerepresents the
degree of trust and respect the agent feels for the
trainee. Feels Respectedrepresents the extent to
which the agent feels honored and respected.Social
Bondingrepresents how much of a social relation-
ship the agent feels for the trainee, andFear repre-
sents how afraid the agent feels.

These emotions are represented as integer value
components in an Information State dialogue man-
ager (Traum and Larsson, 2003). They are updated
by rules based on the state of the information state
components and the language features identified in
the trainee’s utterance. For example, a Complimen-
tary dialogue move would increase the agent’s Feels
Respected and Social Bonding values and decrease
its Fear. A Threatening dialogue move would in-
crease the agent’s level of Fear but decrease its Feels
Respected and Social Bonding values. A General
Conversation dialogue move that was Polite would
increase the Social Bonding value.

4.3 Compliance

For this study, we focused on the effect of compli-
ance on the agent’s verbal responses in terms of how
much information the agent provides in response to
the trainee’s questions, whether the information is
useful, to what extent the information is true, and
whether the reply includes polite, neutral, or rude
words.

Our model of compliance consists of three levels,
which have the following effects.

At the Compliant level, the agent will answer
the trainee’s direct questions truthfully, and will try
to provide useful information. The agent will be
friendly and polite.

At the Reticentlevel, the agent will not provide
any useful information. The agent may express that
they do not wish to comply, may reply with off-
topic remarks, or may make other low-information
responses. The agent will generally be neither rude
nor polite, but may be dismissive.

At the Adversariallevel, the agent again will not
provide any useful information, and may reply with
off-topic or low-information responses. However,
the agent may also be rude or insulting. Further-
more, the agent may reply deceptively: offering, in
a neutral or polite way, high-information statements
that are not true.

The agent’s level of compliance may not be im-
mediately apparent to the human speaker: for exam-
ple, an agent replying in a neutral way with no infor-
mation may be at the Reticent or Adversarial level,
or it may be at the Compliant level and simply not
have any useful information to provide. Similarly,
answers with expected responses, such as greetings
or farewells, may be answered the same at many
compliance levels. Finally, if an agent is providing
high-information responses, the human participant
may not know if those are useful truths or plausible
lies.

4.4 Compliance and Emotions

In the course of a dialogue, the agent’s level of
compliance may vary. After every utterance, the
agent’s emotions are checked to see if they change
the agent’s level of compliance. The goal of the
trainee is to make the agent compliant by produc-
ing utterances that will update the agent’s emotions
in ways that will make the agent compliant. There
are three basic strategies that the trainee can pursue,
which are defined by the ways in which emotions
affect compliance.

In the Empathicstrategy, the trainee attempts to
make the agent sympathetic to the trainee, and there-
fore to the trainee’s goals. This is modeled by hav-
ing the agent’s compliance level become Compliant
when the agent’s Respects Trainee, Feels Respected,
and Social Bonding scores all rise above a certain
threshold. However, if those three emotions are be-
low a given threshold, the agent’s compliance level
becomes Adversarial.

In theOfferingstrategy, the agent becomes com-
pliant after the trainee makes an Offering dialogue
move whose Topic is from the set of Offers that the
agent is defined as being receptive to.

In the Threateningstrategy, the trainee uses a
Threat dialogue move to raise the agent’s Fear above
a certain threshold. If the trainee then makes a
Threat that the agent is vulnerable to, the agent will
become Compliant.

5 Future Directions

An evaluation of the entire system is described in
(Traum et al., 2007). We hope to perform an eval-
uation of the compliance and emotion components
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separately. One possibility is to do a semi-Wizard
of Oz evaluation in which the ASR and language
analysis tasks are performed by a human, to factor
out errors in those components. Another possibility
is to compare the system’s performance in updating
its information state with the performance of human
coders in updating the information state, as was done
in (Roque et al., 2006). Alternately, we could focus
on how plausible the model of emotions and compli-
ance is in terms of human processes by comparing it
to data from human surveys, as was done in (Mao
and Gratch, 2006).

The model of emotion and compliance that we
have presented is motivated by the domain of Tac-
tical Questioning, and the features and policies that
we have implemented have been guided by that do-
main. As we continue to develop Hassan and other
Tactical Questioning agents, we plan to add capa-
bilities that will allow us to build more general and
sophisticated models of emotion and compliance.
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Abstract

In this paper, we present an approach for
automatically acquiring a dialog corpus by
means of the interaction of a dialog manager
and a user simulator. A random selection
of the answers has been used for the oper-
ation of both modules, defining stop condi-
tions for automatically deciding if the dia-
log is successful or not. Therefore, an ini-
tial corpus is not necessary to develop these
two modules. In this work, we use a statisti-
cal dialog manager to evaluate the behavior
of the corpus acquired using this approach.
This dialog manager has been learned from
the simulated corpus and has been evaluated
using a previous corpus acquired for the task
with real users.

1 Introduction

Learning statistical approaches to model the dif-
ferent modules that compose a dialog system has
reached a growing interest during the last decade
(Young, 2002). Although, in the literature, there
are models for dialog managers that are manually
designed, over the last few years, approaches using
statistical models to represent the behavior of the di-
alog manager have also been developed (Williams
and Young, 2007), (Lemon et al., 2006), (Torres et
al., 2003).

In this field, we have recently developed an ap-
proach to manage the dialog using a statistical model
that is learned from a data corpus. This work has
been applied within the domain of a Spanish project

call DIHANA (Bened́ı et al., 2006). The task that
we considered is the telephone access to information
about train timetables and prices in Spanish. A set
of 900 dialogs was acquired in the DIHANA project
using the Wizard of Oz technique. A set of 300
different scenarios was used to carry out the acqui-
sition. Two main types of scenarios were defined.
Type S1 defined only one objective for the dialog.
Type S2 defined two objectives for the dialog. This
corpus was labeled in terms of dialog acts to train
the dialog model. The results of this work can be
found in (Hurtado et al., 2006).

The success of statistical approaches depends on
the quality of the data used to develop the dialog
model. A great effort is necessary to acquire and la-
bel a corpus with the data necessary to train a good
model. One solution for this problem consists of the
development of a module that simulates the user an-
swers. A summary of user simulation techniques for
reinforcement learning of the dialog strategy can be
found in (Schatzmann et al., 2006).

In this paper, we present an approach to acquire a
labeled dialog corpus from the interaction of a user
simulator and a dialog manager. In this approach, a
random selection of the system and user answers is
used. The only parameters that are needed for the
acquisition are the definition of the semantics of the
task (that is, the set of possible user and system an-
swers), and a set of conditions to automatically dis-
card unsuccessful dialogs. We have acquired a cor-
pus for the DIHANA task using this approach. This
corpus has been used for training our statistical dia-
log manager. Then, the Wizard of Oz corpus of the
DIHANA project has been used to evaluate the be-
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havior of this dialog manager with real users.

2 Our approach for automatically
acquiring a dialog corpus

As stated in the introduction, our approach for ac-
quiring a dialog corpus is based on the interaction of
a user simulator and a dialog manager. Both mod-
ules use a random selection of one of the possible
answers defined for the semantic of the task (user
and system dialog acts).

The user simulation simulates the user intention
level, that is, the simulator provides concepts and at-
tributes that represent the intention of the user ut-
terance. Therefore, the user simulator carries out
the functions of the ASR and NLU modules. The
semantics selected for the dialog manager is repre-
sented through the 51 possible system answers de-
fined for the task. The selection of the possible user
answers is carried out using the semantics defined
for the user in the NLU module.

An error simulator module has been designed to
perform error generation and the addition of confi-
dence measures in accordance with an analysis of
the DIHANA corpus. This information modifies
the frames generated by the user simulator and also
incorporates confidence measures for the different
concepts and attributes. Experimentally, we have
detected 2.7 errors per dialog. This value can be
modified to adapt the error simulator module to the
operation of any ASR and NLU modules.

2.1 The corpus acquisition

A maximum number of system turns per dialog was
defined for acquiring a corpus. The dialog manager
considers that the dialog is unsuccessful and decides
to abort it when the following conditions take place:

• The dialog exceeds the maximum number of
system turns.

• The answer selected by the dialog manager cor-
responds with a query not required by the user
simulator.

• The database query module provides an er-
ror warning because the user simulator has not
provided the mandatory information needed to
carry out the query.

• The answer generator provides a error warning
when the selected answer involves the use of a
data not contained in the DR, that is, not pro-
vided by the user simulator.

A user request for closing the dialog is selected
once the system has provided the information de-
fined in the objective(s) of the dialog. The dialogs
that fulfill this condition before the maximum num-
ber of turns are considered successful.

A total of two million simulated dialogs were nec-
essary in order to acquire a dialog corpus following
the same characteristics of the DIHANA corpus and
using the same set of scenarios developed for its ac-
quisition. The computer used for the acquisition was
able to simulate 1,000 dialogs every 40 minutes.

Table 1 summarizes the statistics of the acquisi-
tion for the two types of scenarios that were defined.

Type S1 Type S2

Simulated dialogs 106 106

Successful dialogs 15,383 1,010

Different dialogs 14,921 998

Number of user turns per dialog 4.9 6.2

Table 1: Statistics of the new corpus acquisition

Table 2 shows an example of a dialog correspond-
ing to a Type S1 scenario (to know timetables from
Valencia to Barcelona for May the 30th).

S1: (Opening:Nil:Nil)
Welcome to the railway information system. How can I help
you?
U1: Departure-Hour [0.9]

Destination: Barcelona [0.9]
Departure-Date: 05-31-2007 [0.1]
Arrival-Hour: 08.00-23.00 [0.9]

S2: (Confirmation:Date:Date)
Do you want to leave on May the 31th?
U2: Negation[0.9]

Departure-Date: 05-30-2007 [0.9]
S3: (Answer:Departure-Hour:Departure-Hour)

(New-Query:Nil:Nil)
{Timetables information} Anything else?
U3: Negation
S4: (Closing:Nil:Nil)
Thank you for using the system.

Table 2: An example of a Type S1 dialog extracted
from the acquired corpus

The dialog begins with a greeting turn generated
by the system (S1). In the first turn, the simulated
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user provides theDestinationand theDeparture-
Date. In addition, it facilitates theArrival-Hour (set
as optional data for the scenario). The error simula-
tor introduces in this first turn an error value in the
Departure-Dateslot (it changes day 30 by 31) and
assigns confidence scores to the different slots. In
this case, a low confidence is assigned to this erro-
neous value.

In the second system turn, a confirmation for the
Departure-Dateis selected. Considering the infor-
mation defined in the objective of the scenario, the
user simulator selects aNegationdialog act and pro-
vides the correct value for theDeparture-Dateac-
cording to the objective (U2). In this turn, the error
simulator assigns a high confidence value to the in-
formation provided by the user. In the following sys-
tem turn (S3), the dialog manager selects to make a
query about timetables to the database. As the nec-
essary information is available, the database query
module carries out the query and the dialog manager
provides the information defined as objective for the
dialog. Having this information, the user simulator
selects a request for closing the dialog in the follow-
ing turn (U3).

3 Dialog management in the DIHANA
project

We have developed a Dialog Manager (DM) based
on the statistical modelization of the sequences of
dialog acts (user and system dialog acts). A de-
tailed explanation of the dialog model can be found
in (Hurtado et al., 2006). We represent a dialog as a
sequence of pairs (system-turn, user-turn):

(A1, U1), · · · , (Ai, Ui), · · · , (An, Un)

whereA1 is the greeting turn of the system, andUn

is the last user turn. We refer to a pair(Ai, Ui) asSi,
the state of the dialog sequence at timei.

The objective of the dialog manager at timei is to
generate the best system answer. This selection, that
is a local process, takes into account the previous
history of the dialog, that is to say, the sequence of
states of the dialog preceding timei:

Âi = argmax
Ai∈A

P (Ai|S1, · · · , Si−1)

where setA contains all the possible system an-
swers.

As the number of all possible sequences of states
is very large, we defined a data structure in order
to establish a partition in the space of sequences of
states. This data structure, that we call Dialog Reg-
ister (DR), contains the concepts and attributes pro-
vided by the user throughout the previous history of
the dialog. Using theDR, the selection of the best
system answer is made using this maximization:

Âi = argmax
Ai∈A

P (Ai|DRi−1, Si−1)

The last state (Si−1) is considered for the selec-
tion of the system answer due to the fact that a user
turn can provide kinds of information that are not
contained in the DR, but are important to decide the
next system answer. This is the case of the task-
independent information.

The selection of the system answer is carried out
by means of a classification process, in which a mul-
tilayer perceptron (MLP) is used. The input layer
holds the codification of the pair(DRi−1, Si−1) and
the output of the MLP can be seen as the proba-
bility of selecting each one of the 51 different sys-
tem answers defined for the DIHANA task. For the
DIHANA task, theDR is a sequence of 15 fields,
where each concept or attribute has a field associ-
ated to it.

4 Evaluation

A statistical dialog manager was learned using the
corpus acquired with the dialog simulator technique
(M1 manager). The DIHANA corpus was used as
test set to evaluate the behavior of this dialog man-
ager with a real users corpus.

We also learned another dialog manager using the
DIHANA corpus as training set (M2 manager). A 5-
fold cross-validation process was used to carry out
the evaluation of this manager. Therefore, all the
DIHANA corpus is used for testing both M1 and M2
dialog managers.

We defined three measures to evaluate the perfor-
mance of both dialog managers:

1. The percentage of answers that follows the
strategy defined for the acquisition of the DI-
HANA corpus (%strategy).
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2. The percentage of answers that are coherent
with the current state of the dialog, but that not
necessary follow this strategy (%correct).

3. The percentage of answers that are considered
erroneous according to the current state of the
dialog (%error).

Table 3 shows the results obtained for the different
measures after the evaluation.

M1 manager M2 manager

%strategy 54.57% 97.34%

%correct 88.83% 99.33%

%error 11.17% 0.67%

Table 3: DM evaluation results

It can be observed that the M1 manager provides
a 88.83% of answers that are coherent with the cur-
rent state of the dialog. Using the DIHANA corpus
in order to learn the dialog model (M2 manager),
the 97.34% of the answers provided by this dialog
manager follows the strategy defined for the WOz.
With regard to the M1 manager, only the 54.57% fol-
lows this strategy. Therefore, we can see that the M1
dialog manager separates from the strategy defined
for the WOz as expected. Regarding to the%error
measure, the M1 dialog manager provides a 11.17%
percentage of answers that are not compatible with
the state of the dialog.

5 Conclusions

In this paper, we have presented an approach to au-
tomatically acquire a dialog corpus by means of the
interaction of a user simulator and a dialog manager.
For the development of both modules, we defined
the semantics of the possible answers for the system
and the user in a specific task. A random selection
of these answers and a set of stop conditions were
used in order to acquire a dialog corpus, deciding
automatically if the dialog has to be considered suc-
cessful.

The corpus that has been obtained by means of
this approach has been used to learn a dialog man-
ager, using a statistical dialog model. We have used
a previous corpus acquired with real users to evalu-
ate this dialog manager. The results of the evaluation
show that the learned dialog model could be used as

an initial dialog manager, generated without many
effort and with very high performance. This initial
dialog manager could be improved with a posteriori
interaction with real users.

As future work, we want to use this approach to
acquire a dialog corpus within the framework of a
new project called EDECAN. The main objective of
the ongoing EDECAN project is to develop a dialog
system for booking sports facilities in our university.
Using this approach, we want to acquire a corpus
that makes possible the learning of a dialog manager
for the domain of the EDECAN project. This dialog
manager will be used in a supervised acquisition of
a dialog corpus with real users.
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Abstract

In a realistic Interactive Question Answer-
ing (IQA) situation, one third of the users
pose follow-up questions, i.e., go beyond
a single question per dialogue. We iden-
tify two different perspectives according to
which these follow-ups can be described: in-
formational transitions and context depen-
dency. By understanding exactly how infor-
mational transitions occur in IQA dialogues,
we propose a method to guarantee that focus
tree based IQA systems provide wide cov-
erage of follow-up questions that trigger the
respective set of informational transitions.

1 Introduction

This is an empirical study of follow-up questions
in Interactive Question Answering (IQA) dialogues
that we collected through a previous Wizard-of-Oz
study. In this paper, we show that user follow-up
questions are an interesting phenomenon because
they occur relatively frequently in IQA dialogues,
and are potentially difficult for an IQA system to un-
derstand. We will look at them from two different
perspectives: (i) which informational transition can
be identified between the follow-up and the dialogue
context, and (ii), how some of the follow-up ques-
tions are context-dependent in that they can only be
properly understood in combination with informa-
tion from the dialogue context. In understanding (i),
we try to find patterns and regularities in our data
that enable us to predict the topics that users of an
IQA system will ask about next. This knowledge

will help in improving an IQA system, since we can
ensure that the system will be prepared to answer
the specific follow-up questions that we predicted
for a specific situation in an IQA dialogue. As for
(ii), on the other hand, we need to understand also
how users typically pose follow-up questions: as we
show in this paper, many follow-up questions are
context-dependent, and need to be combined with
information from the previous dialogue in order to
be understandable for the IQA system. After ana-
lyzing follow-up questions from these two perspec-
tives, we propose a new way of processing a certain
class of follow-ups in an actual IQA system on the
library domain.

2 Statistics of Follow-ups in IQA Dialogues

We conducted a Wizard-of-Oz experiment where the
participants were free to choose their question topic,
and the way in which to interact with the system. In
this experiment, we collected 63 user-librarian dia-
logues by letting spontaneous visitors of the library
web-site interact with what was announced as a new
IQA system, but was in reality a web-based instant-
messaging-like interface (Kirschner, 2006).

From the total of 192 user utterances in our cor-
pus (spread across 63 dialogues and 166 user turns),
we identified 35 that are both follow-up initiatives
(i.e., from the set of 90 questions or assertions that
are not from the very first user turn in each dialogue)
and that are also about a topic from the library infor-
mation domain, or some task related to this domain.

While from the set of 90 follow-up initiatives
the proportion of user utterances we marked as off-
topic is high (56, versus the 35 domain/task-related
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ones), we can assume that they will not pose a major
problem to the IQA system. We conjecture that in
most cases these utterances can be easily ignored by
the natural-language understanding module, which
should robustly spot only questions and assertions
about task-related topics. Moreover, the analysis
shows that many users do take the opportunity that
IQA dialogue offers and do ask follow-up questions.
Even more, the latter actually contains some of the
most important parts of the dialogues (besides the
first user question in each single dialogue), and the
most interesting and difficult user utterances for an
IQA system to process.

3 Informational Transitions

In some of the literature, the term thematic related-
ness is used to describe transitions between utter-
ances. We assume this is just a matter of different
terminology; for the sake of clarity, we define that
those follow-up questions that trigger some infor-
mational transition at the same time define the set
of thematically related follow-ups. Also, note that
throughout this paper, we use the term follow-up
(question) to denote any user question that is not the
very first question in a given IQA dialogue; thus, it
does not imply that the follow-up be in some specific
way related to the previous dialogue.

The general goal of all the approaches to be pre-
sented in this section is to explore specific relations
holding between two discourse segments or dialogue
turns. This is of primary interest in the context of
building an IQA application, since by understanding
how the conversation topic evolves via user follow-
up questions, we can improve the way the system
will understand and answer these follow-ups. In our
empirical approach, we want to analyze how infor-
mational transitions are used in real IQA dialogues.
Thus, a preliminary goal is to find a method of re-
liably identifying these phenomena in our dialogue
data. In what follows, we describe three previous
approaches to this problem, focusing on their gen-
eralizability and practical applicability for identify-
ing informational transitions in data. At the end of
this section, we will then propose a somewhat re-
stricted (but on the other hand more practical and
concise) method of identifying (a subset of) infor-
mational transitions.

In the context of planning coherent discourse in
a natural language generation system, (McCoy and
Cheng, 1991) gives a comprehensive account of in-
formational transitions (there called focus shifts).
For each node type, they list certain focus shift can-
didates, i.e., the items that are likely to come into fo-
cus in a coherent discourse (cf. Table 1). While their
list of focus shift targets for the different node types
is comprehensive, this is at the same time a major
problem when it comes to a practical implementa-
tion: it is not at all clear how to (algorithmically)
determine the correct node types, and thus the viable
candidate targets for informational transitions.

In a related approach that targets IQA dialogues
rather than single-speaker discourse, (Chai and Jin,
2004) define informational transitions between sub-
sequent user questions in IQA dialogues in terms
of the question “topic”. The topic is either of type
entity or activity and closely resembles the
object and activity node types given in Table 1.
While the informational state is now described in
terms of only two types of elements (entity/object
and activity/action) instead of the five postulated
by (McCoy and Cheng, 1991), the rich set of dis-
course roles that these elements can introduce would
still render an automatic construction of a represen-
tation of the informational state extremely difficult.

A further description of informational transitions
in IQA dialogues is given in (Bertomeu et al., 2006).
Unlike the two previously mentioned approaches,
this work considers also system responses as pos-
sible sources for informational transitions. In fact,
the authors identify specific thematic relations that
may hold between a user follow-up question and the
immediately previous user question, some previous
user question, the immediately previous system an-
swer or some previous system answer. Interestingly,
this approach is based entirely on questions and an-
swers corresponding to (sets of) entities that can
be retrieved from a database. Thus, informational
transitions are defined here in terms of the exten-
sions of entities that are being referred to in themat-
ically related turns of the dialogue, and in terms of
which properties of these entities are being referred
to. However, the transitions also lack the generality
of the previously introduced approaches, since they
are only useful for analyzing similar kinds of (natu-
ral language database query) dialogues that contain
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Node type Focus shift targets
object Attributes of the object, actions the object plays a prominent role in (e.g., is actor of)
action Actor, object, etc., of the action – any participant (Fillmore) role; purpose (goal) of

action, next action in some sequence, subactions, specializations of the action
attribute objects which have the attribute, more specific attribute
setting objects involved in the setting; actions which typically occur in this setting
event actions which can be grouped together into the event

Table 1: Informational transition targets for different focus nodes (from (McCoy and Cheng, 1991, p. 112))

only rather constrained types of questions and an-
swers.

We will base our work on the observations on
these three works.

3.1 Coverage vs. Conciseness: Searching for a
Definition of Thematic Relatedness

From (McCoy and Cheng, 1991), we adopt the gen-
eral idea of introducing candidate focus shift tar-
gets that represent coherent continuations of the dis-
course (or in our case, dialogue). To avoid the diffi-
culty of choosing between up to five different node
types that could represent the current focus of at-
tention, we restrict ourselves to just action-type
nodes. This is advantageous in two ways. On
the one hand, actions correspond to verbs, which
are inherently connected to some argument struc-
ture defining the verb’s semantic roles. By querying
available lexical resources like PropBank (Palmer et
al., 2005), we can retrieve the verb’s arguments. The
corresponding semantic roles of the verb yield pos-
sible topics of follow-up questions. Thus, we can
take advantage of existing lexical resources to au-
tomatically find focus nodes that represent follow-
up questions involving any of the semantic roles of
the verb. On the other hand, we conjecture that ac-
tions/verbs form a suitable and robust basis for de-
scribing the (informational) meaning of utterances
in IQA, since most user utterances include a pred-
icate (or an implicit reference to some predicate in
the dialogue history), and syntactic parsers can be
used to extract the main verbs of sentences. Taking
the main verb plus any arguments to represent the
core meaning of user questions seems to be an inter-
esting possibility for automatically detecting certain
informational transitions.

Once we adopt the action-based paradigm for fo-
cus nodes, we can instantiate two of the informa-

tional transition relations proposed by (Chai and Jin,
2004). In the following, we define our own set of in-
formational transitions, starting from the definitions
in (Chai and Jin, 2004), but addressing their short-
comings mentioned previously.

First of all, we use verbs and their semantic roles,
plus a focus marker, as the only elements needed for
representing the informational perspective, and for
defining our transition types. This allows us to re-
place the somewhat unclear terms from the original
definitions in (Chai and Jin, 2004) with clearly de-
fined ones: verbs and arguments, as defined in Prop-
Bank. Secondly, we parametrize the transitions with
respect to their origin: last user question (U−1), or
last system response (S−1).

We restrict ourselves to transitions where the main
verb either stays the same, or the follow-up question
contains a synonymous verb, or no verb at all (to
account for fragmentary questions). We now define
the resulting three types of informational transitions.

1. TOPIC EXTENSION (U−1):
Example: U1: “Can every student use inter-library
loan?” – U2: “Even high-school students?”

1. Either no verb exists in the follow-up question,
or the main verb of the follow-up question is
synonymous to the main verb in the last user
question.

2. Either the roles of the verb are filled differ-
ently by the follow-up (CONSTRAINT REFINE-
MENT), or different roles of the verb are filled
by the follow-up (PARTICIPANT SHIFT).

3. The question focus (the expected answer type)
stays the same.

2. TOPIC EXPLORATION (U−1):
Example: U1: “Can every student use inter-library
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loan?” – U2: “How?”

1. Either no verb exists in the follow-up question,
or the main verb of the follow-up question is
synonymous to the main verb in the last user
question.

2. The question’s focus (the expected answer
type) changes.

3. TOPIC EXPLORATION (S−1):
Example: U1: “Can high-school students use the
library?” – S1: “Yes, if they got a library card.” –
U2: “So how do I get it?”

1. The main verb of the follow-up question is syn-
onymous to SOME main verb in the system re-
sponse.

2. Either the roles of the verb are filled differ-
ently by the follow-up (CONSTRAINT REFINE-
MENT), or different roles of the verb are filled
by the follow-up (PARTICIPANT SHIFT).

4 Context-dependent User Follow-up
Initiatives

Besides studying the thematic relatedness of follow-
up questions with respect to previous dialogues,
context-dependency yields a new perspective under
which to analyze follow-ups. We call a follow-
up question context-dependent if it requires any in-
formation from the dialogue context in order to be
fully understandable. Although this might not gen-
erally hold for more complex types of dialogue, we
found that in our corpus of IQA dialogues, every
user follow-up initiative that we consider context-
dependent according to the above definition actually
exhibits some discourse phenomena .

In a nutshell, our study shows that (1) discourse
phenomena can be resolved without global context
(or dialogue history), and (2) the last system re-
sponse S−1 was often the location of the antecedents
of discourse phenomena.

5 Conclusions

We showed that in a realistic IQA situation, one third
of the users pose follow-up questions, i.e., go be-
yond a single question per dialogue. We have then
introduced two different perspectives according to
which the follow-ups can be described and further

categorized: informational transitions and context
dependency. For the latter, we have looked at dis-
course phenomena, and studied how these appear
in IQA dialogue data. As for informational tran-
sitions, we showed that a rather concise definition
is possible if we considerably reduce the scope of
the problem, thus limiting the types of informational
transitions we deal with. A concise definition is re-
quired for letting an IQA system predict informa-
tional transitions automatically, given some local di-
alogue history. The empirical evaluation of this def-
inition shows that it fails in predicting any larger
set of specific follow-up initiatives. The problem
of concisely identifying informational transitions in
IQA seems to be a more complex one, as the variety
of different thematic relations found in our corpus
alone suggests. While in future work we will try to
fine-tune our definitions to further extend the mod-
elling of follow-up initiatives in IQA, on the practi-
cal side we have started to extend our baseline IQA
system for the library information domain by im-
plementing the three proposed definitions of infor-
mational transitions, since they provide a principled
way of extending the system.
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Abstract

We present an approach to decreasing the
cost of collecting speech data by a) dis-
tributing experimental setups as a download-
able computer program that records data and
sends it back to an experiment server and
b) by ‘re-using’ subjects for instant quality
evaluation of the collected data. As an exam-
ple of the kind of settings in which this ap-
proach can be used, we also shortly describe
an experiment we have conducted; evalua-
tion of the collected data showed no nega-
tive effect of the ‘unsupervised’ collection
method.

1 Introduction

While running experiments in a distributed fash-
ion over the Internet has become accepted practice
in Psychology, this methodology has so far rarely
been adopted where collection of speech data is in-
volved.1 In the work reported here, we wanted
to make available the advantages of online experi-
mentation that are often cited (the following list is
adapted from (Birnbaum, 2001)) to speech data col-
lection:

• Freedom from the constraints of testing people at a par-
ticular time and place;

• Automatic coding and construction of data files (no data
entry by assistants);

• Opportunity to obtain large and heterogeneous samples;
• Possibility to conduct cross-cultural research without the

expense of travelling;

1See e.g. (Birnbaum, 2001) for an introduction to conduct-
ing psychology experiments over the Internet, and the discus-
sion below in Section 5 for speech-related work.

• Reduced costs of experimental assistants.

Collecting speech data poses additional technical
challenges; the usual problems with data collected in
this way (reliability; self-selection of subjects; data
quality) also have to be addressed. The methodol-
ogy we have devised (and implemented) to tackle
these questions will be described in the next section.
As a concrete example of an experimental setting
which profits from this approach we briefly describe
in Section 3 a data collection we conducted. We
close with a discussion of related work (Section 4)
and planned future work (Section 5).

2 Distributed Data Collection

In this section we describe the data collection
methodology and the implementation we have built.
We describe both in rather abstract terms here to un-
derline the generality of the approach; a more con-
crete example is to follow in the next section.

2.1 Methodology

The approach is probably best explained by running
through one data collection cycle. Figure 1 illus-
trates the data flow through the different steps. First
(Step 0), the subject signs up for the experiment, us-
ing a form presented by the (web-)server. At this
point, eligibility tests can be executed to filter out
subjects that do not fit criteria that experimenters
might want to set (e.g., first language, handed-ness,
etc.).2 Successful applicants then get access to the

2A technical factor that limits the pool of potential subjects
is that broadband Internet access (for down- and uploading ma-
terials) and a headset (for recording) is required on the side of
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experiment software. The software at this point does
not contain the actual experiment script, which is
only downloaded when the subject starts the actual
experimental run (Step 1). The script, which con-
trols the stimulus items, the order in which they are
presented, and also the data that is to be evaluated
in Part II (see below), is created on-the-fly by the
server (Step 2), according to what is needed in the
current state of running the experiment.

Figure 1: The Data Collection Cycle

Figure 2: Schematic View of One Run

Figure 2 shows schematically one run of the ex-
periment software for one subject. The software
presents a number of “slides” to the subject and
records her reactions. These “slides” can contain
static information (e.g., text to read out, instructions
to follow, etc.) but can also offer interactive con-
tent (e.g., puzzles to solve by manipulating items,
or questionnaires); the reactions to record can range
from GUI events (e.g. mouse clicks) to audio, and
the responses can be timed at sub-second accuracy
level. (In psychology terminology, a slide would be
a single stimulus, and the recorded reaction would
be the response.)

In Part II of the experiment, and this to our knowl-
edge is an entirely novel strategy, material recorded

the user. However, in 2007 these are not unrealistic require-
ments.

from other subjects can be presented to the current
subject, together with an evaluation questionnaire.
E.g., in a simple recording experiment where the
slides just contain sentences to read out, this phase
II would consist of presenting to the current subject
the pairs of slide and recording from a previous sub-
ject. The task then would be to evaluate the quality
of the recording (or even whether the audio indeed
contains a reading of the sentence!).3

Finishing the run brings us back to Figure 1, and
Step 3, where the collected data is sent back to the
experiment server. In this step audio data can op-
tionally be compressed (lossy into MP3 format or
lossless usingbz2) to reduce the amount of data
to be transferred. Step 4 then implements a consis-
tency check. If there are criteria to do so, the data
from Phase I might be pre-checked (e.g., recordings
whose length deviates significantly from some pre-
set threshold or from the mean of the data collected
so far), and also the evaluation data from Phase II
can be checked. The goal here is to flag all (and
only) “suspicious” data, which can then be checked
by the experimenter, while trying to keep as much of
the data collection as possible running without fur-
ther intervention.

In Step 5 finally the cycle starts again for a dif-
ferent subject, this time with subject A’s data being
available for evaluation in B’s Phase II.

2.2 Implementation

On a more technical level, the data collection tool
proper can be seen as a GUI shell that organises the
advancement of the “slides”, makes available facili-
ties for recording data (audio, timings, GUI events,
etc.), and presents data for quality assessment / eval-
uation. The presentation of the actual content of the
slides is left to code that interfaces with this shell.
(We are currently working out the best way of mak-
ing this interface as general as possible; the release
version will at least include an option for simple dis-
play of static content and as an example the code
used in our data collection described below.)

In Phase II, the tool offers comprehensive audio
controls to the user (a position slider and the usual
tape-deck controls), it also allows to record all use

3In a way we’re taking our cue here from community web-
sites that allow users to evaluate other users’ contributions and
hence collectively rank them.
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the subject makes of these controls (see discussion
of our example task below in Section 3.3).

The tool is implemented in C++ using the QT
toolkit (for platform independence). It runs on Win-
dows and Linux computers (there currently are prob-
lems with the audio library on Apple Macintosh)
which must be equipped with a soundcard and head-
set. It weighs in at less than 5MB—a tolerable
download.

3 An Example: Collecting Puzzle Moves

In this section we describe the setting for which we
initially built the tool; it is at the more complex end
of the spectrum of possible uses and hence nicely
illustrates the potential of this strategy.

3.1 Collecting Data

The project in which this approach was developed
is interested in modelling a puzzle task at both the
content level, where one of the questions is how ref-
erence is made to pieces of the puzzle, and at the co-
ordination level, where one of the questions is how
different levels of interactivity shape the conversa-
tion.

Figure 3: Example Pentomino Scene

More concretely, the task given in the data col-
lection described here consists in describing ver-
bally moves in a Pentomino puzzle game. Figure 3
presents one example scene; the move that is to
be described here involves naming the highlighted
piece on the right, describing the necessary rotation
operation, and finally describing the target location
in the outline on the left. This is Phase I in the termi-
nology described above. In Phase II then scenes are
presented without highlights and the recorded com-
mands of other subjects are played, the task being to
execute these commands (i.e., identify piece, rotate

it, and identify target location) and then to indicate
the confidence in the action performed. The audio
is presented through the player tool described above
and all actions (pause, repeat, skip) are recorded, as
well as the judgement and the actual correctness of
the execution.

Using our tool, we presented 30 scenes for ex-
ecution and as many scenes for evaluation to 10
subjects (native German speakers; mostly university
students). This resulted in 210 minutes of audio ma-
terial, 9 sets of evaluation judgements, and a large
amount of additional behavioural data (actions dur-
ing evaluation).4 The mean length of one scene de-
scription was 41 sec, with successfully followed de-
scriptions being significantly shorter than those that
couldn’t be followed. Of the latter there were only
36 (12%), however, which indicates that the sub-
jects took the recordings task seriously and produced
valuable data.

As this is only a very indirect evaluation of the
methodology, we also compared the audio quality of
the collected recordings with that of recordings from
the corpus described in (Schlangen and Fernández,
2007), which were collected with similar equipment
(consumer-level headsets) but in controlled studio
conditions. We used as our metric for comparison
the “speech to noise ratio” as computed by thestnr
tool from theNIST Speech Quality Assurance Pack-
age,5 and, quite interestingly, found no significant
differences between the corpora.

In the following we describe briefly two questions
we addressed with these data.

3.2 Learning visual semantics

One of the goals of our project is to bridge natu-
ral language semantics, in particular for referring
expressions, to perceptual features (along the lines
of e.g. (Roy, 2002)). To this end, we need a large
number of descriptions in our domain. The inter-
active material we have recorded in a different ex-
periment (Fernández et al., 2007) provided some,
but proved time-consuming to collect, annotate and
segment, which is why we set out to collect more

4There’s an obvious catch in the methodology we haven’t
mentioned yet: when the first subject does her run, there isn’t
any data available to evaluate yet. In our case, we separatedfor
the first subject phase I (collection) and phase II (assessment).

5Available fromhttp://www.nist.gov/speech/tools/
index.htm.
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in a non-interactive setting. The quality assessment
data reported above convinced us that the descrip-
tions collected in this way were not worse than those
collected in the interactive setting.

Using a simple set of visual features and a simple
vector-based learning and recognition model imple-
mented as a baseline (aligning nouns with vectors
of visual features; class / reference of test items de-
termined by minimal distance) already achieved an
accuracy of 62%.6

3.3 ‘Interactivity’ in a non-interactive setting

In (Fernández et al., 2007) we ran the puzzle ex-
periment in a fully interactive setting and in one
with restricted interactivity (push-to-talk). The com-
pletely non-interactive material collected here gives
us a good further comparison. We were especially
interested in the use subjects made of the player
tool to recreate some semblance of ‘interactivity’
through stopping, skipping and repeating audio ma-
terial. The analysis of this is still going on.

4 Related Work

As mentioned in the introduction, conducting exper-
iments over the Internet is common practice in Psy-
chology these days (Birnbaum, 2001; Reips, 2002),7

However, these experiments rarely involve audio.
(Font Llitjos and Black, 2002; Black and Tokuda,
2005) present experiments on collectingevalua-
tions of speech over the Internet; SpeechRecorder
(Draxler, 2006) offers recording over the Internet
much like our system, but with no provisions for
recording other behavioural measures like reaction
times. The combination of experiment / collection
with instant user-based quality assessment that our
approach offers is, to our knowledge, novel.

5 Conclusions and Future Work

We have presented an implemented methodology for
distributed collection of speech data. The imple-
mented tool is flexible in the kind of stimuli that can
be presented (static and dynamic) and can record au-
dio and other behavioural data (with sub-second ac-

6More detailed results will hopefully soon be reported.
7See also http://psych.hanover.edu/ ...

research/exponnet.html for an up-to-date list of open
experiments.

curacy). As a novel strategy for overcoming reliabil-
ity problems connected to “unsupervised” data col-
lections it allows for immediate, equally “unsuper-
vised” quality assessment. We believe that there is
a wide range of use cases in which the tool can sup-
port collection of spoken data, e.g. recording “think
aloud” protocols for cognitive tasks, collecting do-
main utterances with simulated dialogue systems,
and many more.

We are currently exploring ways of letting the
software run in the user’s web-browser (using Flash,
or AJAX-style programming) rather than as an in-
dependent executable, but first experiments indicate
that this cannot yet provide the timing accuracy and
reliability that our current tool has reached.8
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Abstract

We report on an experiment on the effects of
inducing acoustic understanding problems
in task-oriented dialogue. We found that de-
spite causing real problems w.r.t. task per-
formance, many instances of induced prob-
lems were not explicitly repaired by the di-
alogue participants. Almost all repairs re-
ferred to the immediately preceding utter-
ance, with problems in prior utterances left
unacknowledged. Clarification requests of
certain forms were in this corpus more likely
to trigger reformulations than repetitions,
unlike in different settings.

1 Introduction

Clarification requests (CRs), i.e., utterances that re-
quest repair of understanding problems, are typically
studied on corpora of transcribed conversations (see,
inter alia, (Purver, 2004; Rodrı́guez and Schlangen,
2004)). While much knowledge about the use of this
utterance type has been gathered this way, there are
principled limitations to this approach:
• If there is a CR, the problem that caused it must
be inferred from its form and the original speaker’s
reply, as it cannot be directly observed.
• As it is not obvious for the annotator whether there
has been a problem or not, strategies foravoiding
to ask for clarification cannot be studied straightfor-
wardly.
• The effectiveness of the repair system can only in-
directly be studied.

In this paper, we present the results of an experi-
ment where we addressed these limitations through

the controlled induction of understanding problems.
The remainder of the paper is structured as fol-

lows. In Section 2 we describe the method used in
our experiment, the results of which are then pre-
sented in Section 3. A general discussion and con-
clusions close the paper.1

2 The Noisy Channel Experiment: Method

2.1 Overview

The experiment consisted in a voice-only coopera-
tive task with two participants: an instruction giver
(IG) had to describe in order of the numbering the
placement of pieces on a puzzle (see Figure 1) to an
instruction follower (IF), who only had access to the
unsolved puzzle with unnumbered pieces.

Figure 1: Solution and Outline

In half of the runs we manipulated one audio-
channel by replacing (in real-time, at random points)
all signal with noise, effectively blocking out the
speech for the hearer. Around 10% of one speaker’s

1The work described here is the second part of an exper-
iment whose first part has been described in (Schlangen and
Fernández, 2007). The part described here shares the general
set up with that other work (i.e., introduction of noise in one
channel), but uses different materials (a different task) and cod-
ing, and has a different focus for the analysis.
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signal was removed in this way. The random, au-
tomatic placement of noise meant that we had no
control over which part of the utterance exactly was
masked, but we judged this preferable over more
controlled manual placement of noise, which nec-
essarily would have disabled real-time interactivity.
The design is related to (Skantze, 2005), where dis-
tortion was introduced through a simulated ASR, al-
though not in real-time.

We expected the manipulation to have an effect
on the effort needed to complete the task and each of
its steps (placing individual puzzle pieces). Further,
and more specifically, given previously observed
correlations between CR forms and problem types,
we expected an increase in use of CR forms previ-
ously connected to clarifying acoustic problems. As
our design tells us exactly which part of the stimulus
was problematic, we also wanted to explore relations
between this and whether, and if so, how clarifica-
tion was requested.

2.2 Procedure

26 subjects (13 pairs) participated in the experiment.
All were native English speakers (from a variety of
native countries) that responded to a public call for
participation. Half of them where college students
while the other half had a range of different occupa-
tions. The age range was from 20 to over 40. None
of the subjects reported any hearing difficulties.

The pairs of subjects were split into IG and IF and
placed in different sound-proof rooms, connected by
an audio-line via headsets. They were then sepa-
rately briefed on the task. IG’s solution was dis-
played on a computer screen, IF’s puzzle board was
implemented in a computer program. All audio was
recorded; in the runs with the manipulation, both the
audio before adding noise and after adding noise was
recorded. IF’s computer screen was video-taped.

2.2.1 Data Analysis

For analysis, the recordings were transcribed us-
ing Praat (Boersma, 2001) and annotated using
MMAX (Müller and Strube, 2001); the annotators
had access to both the textual transcripts and the au-
dio material.

We segmented the recordings intoutterances(fol-
lowing the guidelines in (Meteer and Taylor, 1995))
and moves, which we defined as all utterances be-

longing to the placement of one piece. We then
annotated thetransition statusat move boundaries,
split into grounding state, where a) the partici-
pants can be explicitlyconfidentabout their place-
ment (“OK, I’ve got it. Next one!”); b) ratherun-
confident(“Well, I’ll put it there. Let’s see what
happens.”); c) they can put the current sub-taskon
hold and go back to a previous piece; d) which
in turn then can be moved and placed with any of
these previous grounding outcomes, or can bere-
confirmed; andsuccess, which we checked on the
video recordings. Values for this feature are:suc-
cess, failure, not moved(for moves that revisited
previously placed pieces, but did not move them),
andon hold for moves that are on hold while a pre-
vious piece is repaired.

Within the moves, we marked regions belonging
together thematically, and annotated them with the
following categories: a) identification of thepiece
that is to be placed; b) specifying itsorientationand
c) location on the grid; other common dialogue ac-
tions were d) talking about thetask setup(“I am sup-
posed to do these in order”); e) thegrounding status
(“well, let’s see what happens”); f) notingproblems
(“This doesn’t work. Something must be wrong.”);
g) giving adescription of the stateof the board (“To
the left I have the Swiss cross, and next to it...”). Ev-
erything else was coded as h)other.

Finally, we identified utterances that were CRs
and coded them with (Rodrı́guez and Schlangen,
2004)’s scheme; for reasons of space, we refer to
that paper or to (Schlangen and Fernández, 2007)
for a description of the values.

3 Results

3.1 Recordings

The 13 experimental runs resulted in 9 usable
recordings, as two runs had to be excluded be-
cause of equipment failure and two because subjects
aborted the task or didn’t follow instructions.

3.2 Dialogue-based Analysis

The pairs in the noise condition finished the task in
an average 1130 seconds, producing in average 653
utterances; the pairs in the control group needed 618
seconds and 422 utterances. These differences are
statistically significant (Welch’s t-test; t=2.7, df=4.7,
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success failure notmoved onhold
noise 57.14% 17.86% 10.71% 14.29%

no-noise 89.19% 5.40% 2.70% 2.70%

confid unconf onhold reconf
noise 61.90% 9.52% 21.43% 7.14%

no-noise 94.60% 0% 5.40% 0%

Table 1: Success of Moves, in Percent of all Moves
(top) and Grounding Status at Move-Transitions

p<0.05 for length in seconds; t=2.8, df=7.0, p<0.05
for utterances). There are however no significant dif-
ferences between the groups (χ2) w.r.t. how much
time was spent on different sub-tasks like identify-
ing pieces or placements: the pairs in the noise con-
dition don’t do different things, they just do the same
things for longer / more often.

3.3 Move-based Analysis

Table 1 shows the distributions of move outcomes.
The majority of moves in the no-noise condition end
with confident and successful placement. In con-
trast, in the noise condition only just over half of
the moves are actually successful, and consequently
there are more moves that are repairs of previous
mistakes. The differences between the groups are
significant (χ2, for both p<0.01).

The mean length of moves in terms of utterances
is very similar for both groups (28.5 for noise group,
30.81 for control group), and indeed the difference
is not significant: there seems to be a constant up-
per limit on how much time is spent on each move
before the players move on, confidently or not.

Table 2 shows the ratio of contributions by IG
and IF within each move, averaged over all moves
and separated according togrounding statusandde-
scription of state; e.g., the “54/46” in the second
line means that 54% of contributions in moves in
the noise group that ended in a wrong placement
came from IG and 46% from IF. Problems in a move
that lead to an unsuccessful conclusion and/or not-
confident grounding only in the control group had
an effect on the contribution ratio, leading to more
contributions by IG. (The differences are significant,
χ2 tested, * p< 0.05, *** p<0.001.)

noise no noise signf.
all 55 / 45 57 / 43

wrong 54 / 46 68 / 32 *
corr. 56 / 44 56 / 44

!conf 54 / 46 74 / 26 ***
conf 57 / 43 57 / 43

Table 2: Ratio IG/IF contributions, by move success

3.4 Utterance-based Analysis

The recordings of the noise group have been seg-
mented into 3249 utterances, those of the control
group into 1607. In the noise group, there were 561
utterances that contained noise, i.e., 30.1% of all IG
utterances (only those can contain noise). Only 28 of
those (= 5.0%) triggered a clarification request (that
is, were coded as being the antecedent of one). In
the noise group, there was only one CR that was not
triggered by a noise utterance; in the control group
there were 8 CRs altogether.

The majority of turns (both of IG and IF; turn
defined as sequence of utterances before speaker
change), was one utterance long, this tendency being
stronger in the control group (61.8% compared to
55.6% in the noise group; difference in length distri-
bution is significant,χ2, p<0.001). However, there
were turns of length up to 13 utterances.

In all utterances within IG turns in the noise group
(i.e., at all distances from the speaker transition),
noise events were equally likely to occur. However,
a noise event in an utteranceat the transition point—
that is, in either the last utterance of a longer turn or
in a single utterance turn—had a chance of 8.33% of
triggering a CR. A noise event one utterance away
from the transition point only has a 0.87% likelihood
of triggering a CR. There are no CRs in the corpus
whose antecedent is further away.

Lastly, we turn to a more fine-grained analysis of
the clarification requests that occurred. We com-
pared the distributions of CR-features in this corpus
with that resulting from the the other task done in
the same setting, where items like strings of num-
bers and sentences were read from a screen by IG
for the IF to write them down (see (Schlangen and
Fernández, 2007)).

What is interesting here is that despite the manip-
ulation being the same, there were significant differ-
ences in the CRs that occurred: in the puzzle task
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of the present paper, there were significantly more
CRs that did not point at the exact problem location
(extent), more CRs that did not present a hypothe-
sis (severity), fewer CRs constructed through rep-
etition of material (rel-antec), and fewer replies
to CRs that were repetitions, and more reformula-
tions or elaborations (answer). (All differences were
tested with aχ2 test, p<0.01.)

4 Discussion and Conclusions

We now briefly summarise these observations: Pairs
in the noise condition needed significantly longer to
finish the task, and this was not due to higher effort
for repairing understanding problems, but rather to
higher effort needed for repairing task-level prob-
lems, i.e. wrong placements. In fact, while there
were more repairs in the noise condition than in the
control condition, most induced problems went un-
acknowledged – and as the performance differences
show, it seems to be valuable information that they
miss.

That CRs typically clarify the immediately pre-
ceding utterance has been observed before (Purver,
2004; Rodrı́guez and Schlangen, 2004). Our setting
allows us to see the strength of this constraint: even
if there are problems with earlier utterances within
a turn—and we know that they are there, as we pro-
duced them—, they are a lot less likely to be repaired
than those in the last utterance of a turn. We specu-
late that IF judged the information gain they would
achieve by clarifying too low to take the step to in-
terrupt IG’s turns. They rather settled on a more
independent strategy with more reliance on tenta-
tive placements (as shown by the grounding status),
which for this task turned out to be less successful
than understanding IG’s commands. It seems that
there needs to be a baseline of understanding before
utterance-level clarification is even attempted.

Another interesting observation is that while the
forms of the CRs that are present are not signifi-
cantly different from those in comparable conditions
but with different task (see previous section), the
CRs are interpreted differently: significantly often,
forms that trigger verbatim responses in that other
corpus trigger reformulations or elaborations here.
There are two possible explanations (not mutually
exclusive): the CR addressees are more primed to
expect clarification requests that target the meaning

level (Clark, 1996) and hence treat the CRs as being
such. Or, given the spontaneous, rather unplanned
nature of these also often rather long description
utterances, there are memory limitations that make
verbatim responses harder.

To summarise, our results show that a) clarifica-
tion is not automatic, but underlies complex con-
siderations about the value of the missing informa-
tion; b) CR forms are interpreted in a (task-)context-
dependent way.

In future work, we will look in more detail at the
dialogue acts of the utterances at turn-boundaries.
We also plan to test task-performance in the same
setting, but with the IF instructed to follow a clarifi-
cation policy of ‘always interrupt and clarify if there
is noise’.2

References
Paul Boersma. 2001. Praat, a system for doing phonetics by

computer.Glot International, 5(9–10):341–345.

Herbert H. Clark. 1996.Using Language. Cambridge Univer-
sity Press, Cambridge.

Marie Meteer and Ann Taylor. 1995. Dysfluency
annotation stylebook for the switchboard corpus.
http://www.cis.upenn.edu/∼bies/manuals/DFL-book.pdf.

Christoph Müller and Michael Strube. 2001. MMAX: A Tool
for the Annotation of Multi-modal Corpora. InProceedings
of the 2nd IJCAI Workshop on Knowledge and Reasoning
in Practical Dialogue Systems, pages 45–50, Seattle, USA,
August.

Matthew Purver. 2004.The Theory and Use of Clarification
Requests in Dialogue. Ph.D. thesis, King’s College, Unver-
sity of London, London, UK.

Kepa Joseba Rodrı́guez and David Schlangen. 2004. Form,
intonation and function of clarification requests in german
task-oriented spoken dialogues. InProceedings of Catalog
(SemDial04), pages 101–108, Barcelona, Spain, July.

David Schlangen and Raquel Fernández. 2007. Speaking
through a noisy channel - experiments on inducing clarifi-
cation behaviour in human-human dialogue. InProceedings
of Interspeech 2007, Antwerp, Belgium, August.

Gabriel Skantze. 2005. Exploring human error recovery strate-
gies: Implications for spoken dialogue systems.Speech
Communication, 45(3):325–341.

2Acknowledgements:Thanks to: S. Bachmann, A. Stein-
hilber, H. Bohle (transcription and annotation); M. Waelter-
mann (noise program); J. Dreyer (ZAS Berlin), B. Pompino-
Marshall (HU Berlin), P. Healey and G. Mills (QMU London)
(lab use); M. Stede and A. Corradini (discussions of set-up).
This work was supported by EU (Marie Curie Programme) and
DFG (Emmy Noether Programme).

54



Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 55–58,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

Dialogue Policy Learning for combinations of Noise and User Simulation:
transfer results

Oliver Lemon
Edinburgh University

olemon@inf.ed.ac.uk

Xingkun Liu
Edinburgh University

xliu4@inf.ed.ac.uk

Abstract

Once a dialogue strategy has been learned
for a particular set of conditions, we need
to know how well it will perform when de-
ployed in different conditions to those it was
specifically trained for, i.e. how robust it is
in transfer to different conditions. We first
present novel learning results for different
ASR noise models combined with different
user simulations. We then show that policies
trained in high-noise conditions perform sig-
nificantly better than those trained for low-
noise conditions, even when deployed in
low-noise environments.

1 Introduction

For any dialogue system, a major develop-
ment effort is in designing thedialogue policy
of the system, that is, which dialogue ac-
tions (e.g. ask(destination city) or
explict confirm) the system should perform.
Machine-learning approaches to dialogue policies
have been proposed by several authors, for example
(Levin et al., 2000; Young, 2000; Henderson et
al., 2005). These approaches are very attractive
because of their potential in efficient development
and automatic optimization of dialogue systems.

We will address the issue of whether policies
trained for one dialogue situation can be used suc-
cessfully in other dialogue situations (Paek, 2006).

For example, perhaps you have trained an opti-
mal policy for an operating environment where the
word-error rate (WER) is 5%, but you want to de-
ploy this policy for a new application where you are

not sure what the average WER is. So, you want to
know how well the policytransfersbetween operat-
ing situations. Likewise, perhaps you have trained
a policy on a data set of cooperative users, but you
want to know how that policy will behave in contact
with less co-operative users. So, you want to know
how useful the policy is with different users.

These transfer issues are important because when
deploying a real dialogue application we will not
know these parameters exactly in advance, so we
cannot train for the exact operating situation, but
we want to be able to learn robust dialogue policies
which are transferable to different noise/user/time-
penalty situations, which we do not know about pre-
cisely before deployment.

1.1 Related work

The issue of policy transfer has been partially ex-
plored before as part of recent work on types of
user simulations (Schatzmann et al., 2005). Here,
the authors explore how well policies trained on dif-
ferent types of user simulation perform when tested
with others. They train and test on three approaches
to user simulation: a bigram model (Eckert et al.,
1997), the Pietquin model (Pietquin, 2004), and the
Levin model (Levin et al., 2000). They show that
strategies learned with a “poor” user model can ap-
pear to perform well when tested with the same user
model, but perform badly when tested on a “better”
user model. However, the focus of (Schatzmann et
al., 2005) is on the quality of the user simulation
techniques themselves, rather than robustness of the
learned dialogue policies. We will focus on one type
of stochastic user simulation but different types of
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users and on different environmental conditions.
(Frampton and Lemon, 2006) train a policy for

4-gram stochastic user simulation and test it on a 5-
gram simulation, and vice-versa, showing that the
learned policy works well for the 2 different simula-
tions. However, these simulations are trained on the
same dataset (Walker et al., 2001) and thus do not
simulate differenttypesof user or noise conditions.
Similarly (Henderson et al., 2005) test and train on
different segments of the COMMUNICATOR data,
so the results presented there do not deal with the
issue of policy transfer. (Lemon et al., 2006) show
that a single policy trained on a human-machine di-
alogue corpus also performs well with real users of
a dialogue system.

2 The experimental set-up

We experiment with a 3-slot information-seeking
system, resulting in 8 binary state variables (1 for
whether each slot is filled, 1 for whether each slot
is confirmed, 2 for whether the last user move was
“yes” or “no”), resulting in 256 distinct dialogue
states. There are 5 possible system actions (e.g.
implicit-confirm, greet, present-info).

We use the SHARSHA Hierarchical Reinforce-
ment Learning algorithm of REALL (Shapiro and
Langley, 2002) to learn over the policy space for ob-
taining 3 information slots. For all combinations
of Turn Penalty, noise, and user models we train
each policy on 32,000 iterations (approx. 8000 di-
alogues). We then test each policy (including the
hand-coded policies) over 1000 dialogues in the
conditions for which they were trained. Statistical
significance is measured by independent samples t-
tests, over 1000 test dialogues.

We use the hierarchical structure of REALL
(Shapiro and Langley, 2002) programs to encode
commonsense constraints on the dialogue problem,
while still leaving many options for learning. The
hierarchical plans encode obvious decisions such as:
“ never confirm already confirmed slots”.

2.1 Reward function
We use a reward function which incorporates noise
modelling, as in (Rieser and Lemon, 2007). For each
dialogue we have, as is now commonly used:

reward = completionValue
- dialogueLength*TurnPenalty

However, for our noise modelling, the
completionValue of a dialogue is defined
as the percentage probability that the user goal is
in the actual result set that they are presented with.
See (Rieser and Lemon, 2007) for full details. In
our experiments Low Noise (LN) means that there
is a 100% chance of confirmed slots being correct
and an 80% chance of filled (but not confirmed)
slots being correct. In a real application domain we
will not know these probabilities exactly, but we
want to be able to learn dialogue policies which are
transferrable to different noise situations, which we
do not know about precisely before deployment.

2.2 Simulated users

We use 2 probabilistic user simulations: “Coopera-
tive” (C) and “Uncooperative” (U). Each simulated
user produces a response to the previous system di-
alogue move, with a particular probablility distribu-
tion conditioned on the previous system move. For
example, if the system asks for slot1 (e.g. “what
type of food do you want?”) the cooperative user
responds to this according to the a probability distri-
bution over dialogue acts estimated from the COM-
MUNICATOR corpus (Walker et al., 2001).

In contrast, the “Uncooperative” user simply has
a flat probability distribution over the all the possi-
ble dialogue acts: it is just as likely to be silent as
it is to supply information. This is not intended to
be a particularly realistic user simulation, but it pro-
vides us with behaviour that is useful as one end of
a spectrum of possible behaviours.

2.3 Baseline hand-coded policies

The hand-coded dialogue policies obey the same
commonsense constraints as mentioned above but
they also try to confirm all slots implicitly or ex-
plicitly (based on standard rules) and then close the
dialogue, except for cases where particular dialogue
length thresholds are surpassed. For example, if the
current dialogue length is greater than 10 the hand-
coded policy will immediately provide information.

3 Results versus hand-coded policies

In general, learning takes about 500 dialogues be-
fore a policy of confirming as many slots as possi-
ble in the shortest time is discovered. Early in the
training runs the learner experiments with very short
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dialogues (smaller length penalties), but usually re-
ceives less completion reward for them and so learns
how to conduct the dialogue so as to trade-off be-
tween turn penalties (TP) and completion value. For
example, in the High Noise, Cooperative user, turn
penalty 5 case, after a policy is discovered, testing
the learned policy in the same situation (but with
learning and exploration turned off), the average dia-
logue reward is 49.94 (see figure 1, plotting average
reward every 50 test dialogues, and table 1).

Figure 1: Testing: High noise, cooperative user, TP
5: Learned versus Hand-coded policy

Contrast this now with the performance of the
hand-coded policy in the same situation (high noise,
cooperative user, TP=5), over 1000 test dialogues,
also shown in figure 1. The average reward for
the hand-coded policy is 36.43 in these conditions,
which means that the learned policy provides a rela-
tive increase in average reward of 37% in this case.
This result is significant atp < .01.

Table 1 shows all results for the High Noise, Co-
operative user case, for turn penalties (TP) ranging
from 0 to 20. Here we can see that the learner is
able to develop policies which are significantly bet-
ter than the hand-coded policy. The exception is the
TP=10 case, where the learned policy is notsignifi-
cantlybetter than the handcoded one (p = .25). For
the significant results, the average relative increase
in reward for learned policies is28.4%

Considering the average dialogue lengths in each
case, note that the hand-coded policy is able to com-
plete the dialogues in, on average, fewer than 7

moves, which is less than the hand-coded length
threshold (10). The learned policies, on the
other hand, are able to discover their own local
length/completion value trade-offs, and we see that,
as expected, average dialogue length decreases as
Turn Penalty increases.

Learned Policy Hand-coded Policy
TP Av. Reward Length Av. Reward Length
0 85.70∗∗ 8.71 72.43 6.86
1 76.31∗∗ 9.36 64.62 6.80
5 49.94 ∗∗ 7.18 36.43 6.95
10 4.16 4.05 1.77 6.89
20 -37.68∗∗ 2.99 -63.76 6.80

Table 1: Results: Cooperative user, High Noise (**=
significant atp < .01)

Similar results hold for the other combinations of
Noise, User type, and Turn Penalty.

4 Transfer results

In the following experiments we chose to inves-
tigate the representative TP=5 case. We thus
have 2 degrees of variation: user type (Coop-
erative/Uncooperative, C/U), and noise conditions
(High/Low, H/L). Testing all combinations of these
learned policies, for 1000 dialogues each, we ob-
tained the results shown in table 5.

Training
Testing C,L C,H U,L U,H
C,L 73.66 74.72 54.86 54.48
C,H 49.64 50.08 21.07 25.36
U,L 23.67 27.84 37.62 39.37
U,H 09.99 14.40 08.93 10.22
Average: 39.24 41.76 30.62 32.36

Table 2: Transfer results for learned policies

Looking at table 2, we can see, for example, that
training with a Cooperative user in Low noise (1st
column) and testing with the same conditions (1st
row) results in an average dialogue reward of 73.66.
However, taking the same trained policy (C,L 1st
column) and testing it with a Uncooperative user in
High Noise conditions (row 4) results only in an av-
erage reward of 9.99. We would expect that the lead-
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ing diagonal of this table should contain the highest
values (i.e. that the best policy for certain conditions
is the one trained on those conditions), but surpris-
ingly, this is not the case. For example, training a
C,H policy and testing it for C,L gives better results
than training for C,L (and testing for C,L). This is
significant atp < .05. This shows that a C,H policy
in fact transferswell to C, L conditions.

Looking at the 4 policies C,L, C,H, U,L, and U,H
we can see that C,H has the best transfer properties.
Interestingly, C,H is the best policy for all of the test-
ing conditions C,L, C,H, and U,H. But should we
then train only in High noise conditions? Consider
the following set of results (highlighted in bold font
in table 5):
train C,H and test C,L> train C,L and test C,L

train C,H and test C,H> train C,L and test C,H

train U,H and test U,L> train U,L and test U,L

train U,H and test U,H> train U,L and test U,H

This indeed shows that it is better to train in High
noise conditions than low noise, no matter what con-
ditions you deploy in. These results are all signifi-
cant atp < .05 except for the case “train C,H and
test C,H> train C,L and test C,H” (p = .37). This
means that for cooperative users, training in High
noise isas good astraining in Low noise. These re-
sults show that, when training a policy for an operat-
ing environment for which you don’t have much data
(i.e. the developer does not yet know the noise and
user characteristics) it is better to train and deploy
a High noise policy, than to deploy a policy trained
for Low noise conditions. Similar results show that
policies trained on uncooperative users perform well
when tested on cooperative users but not vice versa.

5 Conclusion

We addressed the robust of learned strategies in
transfer to different conditions. We provided trans-
fer results for dialogue policy learning and are the
first to present results for different ASR noise mod-
els combined with different user models. We first
showed that our learned policies for a range of envi-
ronmental conditions (Noise, Users, Turn Penalties)
significantly outperform hand-coded dialogue poli-
cies (e.g average 28% relative reward increase for
cooperative users in high noise). We then compared
different learned policies in terms of their transfer

properties. We showed that policies trained in high-
noise conditions perform significantly better than
those trained for low-noise conditions, even when
deployed in low-noise environments.
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Abstract 

We propose dynamically selecting n for n-
best outputs returned from a dialog system 
module. We define a selection criterion 
based on maximum drop among probabili-
ties, and demonstrate its theoretical proper-
ties. Applying this method to a dialog-act 
detection module, we show consistent 
higher performance of this method relative 
to all other n-best methods with fixed n. 
The performance metric we use is based on 
ROC area.   

1 Introduction 

Recent years have seen increasing application of 
machine learning in dialog systems. From speech 
recognizer, to natural language understanding and 
dialog manager, statistical classifiers are applied 
based on more data available from users. Typi-
cally, the results from each of these modules were 
sent to the next module as n-best list, where n is a 
fixed number.  
 
In this paper, we investigate how we can dynami-
cally select the number n for n-best outputs re-
turned from a classifier. We proposed a selection 
method based on the maximum drop between two 
adjacent probabilities of the outputs, where all 
probabilities are sorted from the highest to lowest. 
We call this method n*-best selection, where n* 
refers to a variable n.   
 
We investigated the theoretical property of n*-best, 
particularly its optimality relative to the fixed n-
best where n is any fixed number. The optimality 
metric we use is ROC (Receiver Operating Charac-

teristic) area, which measures the tradeoff of false 
positive and false negative in a selection criterion. 
We test the empirical performance of n*-best vs. n-
best of fixed n for the task of identifying the confi-
dence of dialog act classification. In two very dif-
ferent datasets we use, we found consistent higher 
performance of n*-best than n-best for any fixed n.  
 
This paper is the first attempt in providing theo-
retical foundation for dynamically selecting n-best 
outputs from statistical classifiers.  The ROC area 
measure has recently been adopted by machine 
learning community, and starts to see its adoption 
by researchers on dialog systems.  
 
Even though n*-best method is demonstrated here 
only for dialog act detection domain, it can be po-
tentially applied to speech recognition, POS (part-
of-speech) tagging,  statistical parser and any other 
modules that return n-best results in a dialog sys-
tem.  

2 Dynamically selecting n for n-best out-
puts 

The n-best method has been used extensively in 
speech recognition and NLU. It is also widely used 
in machine translation (Toutanova and Suzuki, 
2007). Given that the system has little information 
on what is a good translation, all potential candi-
dates are sent to a later stage, where a ranker 
makes a decision on the candidates. In most of 
these applications, the number of candidates n is a 
fixed number. The n-best method works well when 
the system uses multi-pass strategy to defer deci-
sion to later stage.  

2.1 n*-best Selection 

We call n*-best a variant of n-best where n is a  
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variable, specifically the n*-best method selects 
the number of classes returned from a model, such 
that the number n* satisfies the following property: 

)(maxarg* 1+−= nn
n

ppn              (1) 

where and  are the probabilities of class n 
and class n+1 respectively. In other words, n* is 
the cut-off point that maximizes the drop

np 1+np

1+− nn pp . 

2.2 Theoretical Property of n*-best 

We have the following observation: When the out-
put probabilities are ranked from the highest to the 
lowest, the accumulated probability distribution 
curve is a concave function.   
 
We further show that our derivation of n* is 
equivalent to maximizing the second derivative of 
the accumulative probability curve, when the num-
ber of classes approaches infinity. In other words,  

))1(''(maxarg* +−= nPn
n

, 

Due to the page limit, we omit the proof here.  
 

3 Evaluation Metric 

To compare the performance of the n*-best method 
to n-best selection of fixed n, we need to define an 
evaluation metric. The evaluation is based on how 
the n-best results are used.  

3.1 The Task: Dialog Act Detection 

The task we study here is described in Figure 1. 
The dialog-act classifier uses features computed 
from the parse tree of the user utterance to make 
predictions on the user’s dialog acts. 
 
The n-best results from the dialog-act classifier are 
sent to the decision component that determines 
whether the system is confident about the result of 
the classifier. If it is confident, it will pass the re-
sult to later stages of the dialog system. If it is not 
confident, the system will respond “I don’t under-
stand” and save the utterance for later training.  
 
The decision on how confident we are about inter 
preting a sentence translates into a decision on 
whether to select that sentence for re-training. In 
this sense, this decision problem is the same as 
active leaning.  

 

   
Figure 1. Detection Dialog Act with Confidence 
 

3.2 Error Detection as Active Learning 

Let S be the collection of data points that are 
marked as low confidence and will be labeled by a 
human. Let N2 be the set of all new data. Let h be 
the confidence threshold and n the number we re-
turn from n-best results. We can see that (Figure 2) 
S is a function of both n and h. For a fixed h, the 
larger n is, the smaller S will be.  

 
Figure 2 The Decreasing set of S as n increases 
 
Our goal is to choose the selection criterion that 
produces a good S. The optimal S is one that is 
small and contains only true negative instances.  
 
In active learning research, the most commonly 
used evaluation metric is the error rate  (Tur et al, 
2005; Osugi et al, 2005). The error rate can also be 

written as 
FPTP

TP
+

−1 , where TP is the number 

of true positives and FP is the number of false 
positives. This measure does not capture the trade 
off between giving the user wrong answers (false 
positive) and rejecting too many properly classified 
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user utterances (false negatives). We find a better 
measure that is based on ROC curve.    

3.3 ROC curve and ROC Area 

ROC (Receiver Operating Characteristic) curve is 
a graphical plot of the fraction of true positives vs. 
the fraction of false positive.  ROC curve is an al-
ternative to classical machine learning metrics such 
as misclassification rate.  
 
An ROC space is defined by FPR (False Positive 
Rate) and TPR (True Positive Rate) as x and y axes 
respectively, where 

    
TNFP

TNFPR
+

−= 1 ,   
FNTP

TPTPR
+

=  

The best possible prediction method would yield a 
point in the upper left corner or coordinate (0,1) of 
the ROC space, representing the case in which all 
only true positives are returned by a particular 
model. The 45 degree diagonal line is called the 
no-discrimination line and represents the classifier 
that returns the same percentage of true positive 
and false positive.  
 

 
     Figure 3. ROC curve and ROC area  

4 Experimental Results 

We tested the performance of our n*-best method 
on two datasets. The first dataset contains 1178 
user utterances and the second one contains 471 
utterances. We use these two sets to simulate two 
situations: Case 1, a large training data and a small 
testing set; Case 2, a small training data and a 
large testing set. 

4.1 Experimental data 

All utterances in both datasets were hand labeled 
with dialog acts. There can be more than one dia-

log act associated with each utterance. An example 
of training instance is: “(a cheap restaurant), 
(Query:restaurant, Answer, Revision)” the first 
part is the user utterance, the second part (referred 
as ) is the set of human-labeled dialog acts. In 
total, in the domain used for these tests, there are 
30 possible user dialog acts. 

dL

  
We compared n*-best with fixed n-best methods 
with n from 1 to 6. For each of these methods, we 
calculate TP, FP, TN and FN for values of the 
threshold h ranging from 0.1 to 1 in steps of 0.05. 
Then we derived TPR and FPR and plotted the 
ROC curve.  
 
Figure 4 shows the ROC curves obtained by the 
different methods in Case 1. We can see that the 
ROC curve for n*-best method is better in most 
cases than the other methods with fixed n. 
 
Figure 5 shows the ROC curves in Case 2, where 
the model is trained on a small dataset and tested 
on a large dataset. We can see that the ROC curves 
for all methods are nearer to the non-
discrimination line than in the previous case. This 
suggests that the classifier has a lower discrimina 
tion quality given the small set used for training. 
However, the n*-best method still out-performs the 
other n-best methods in the majority of scenarios. 
 

ROC curves for Case 1
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Figure 4. ROC curves from n*-best and n-best  
 
To get a summary statistics, we calculated the size 
of the ROC area. Figures 6 and 7 plot the size of 
the ROC area of the various methods in the two 
test cases. We can see that n*-best out-performs all 
other n-best methods.  
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ROC curves  for Case 2
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Figure 5. ROC curves obtained by n* and n-best .  
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Figure 6. ROC Area for n*-best and n-best  
                  (n* is represented as n=0) 
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     Figure 7. ROC Area for n*-best and other n-best  
                  methods  (n* is represented as n=0) 

5 Conclusions 

We propose dynamic selecting n for n-best outputs 
returned from a classifier. We define a selection 
criterion based on maximum drop among prob-
abilities, and call this method n*-best selection. 
We demonstrate its theoretical properties in this 
paper.  

 
We measured the performance of our n*-best 
method using the ROC area that has been designed 
to provide a more complete performance measure 
for classification models. We showed that our n*-
best achieved better ROC curves in most cases. It 
also achieves better ROC area than all other n-best 
methods in two experiments (with opposite proper-
ties).  
 
Our method is not limited to detection of dialog 
acts but can be used also in other components of 
dialog systems.   
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Abstract

This paper presents and evaluates a
behavior-based approach to dialogue
management, where a system’s complete
dialogue strategy is viewed as the result
of running several dialogue behaviors in
parallel leading to an emergent coherent and
flexible dialogue behavior. The conducted
overhearer evaluation of the behavior-
based conversational recommender system
CORESONG indicates that the approach
can give rise to informative and coherent
dialogue; and that a complete dialogue
strategy can be modeled as an emergent
phenomenon in terms of lower-level au-
tonomous behaviors for the studied class of
recommendation dialogue interaction.

1 Introduction

The purpose of a recommender system is to produce
personalized recommendations of potentially useful
items from a large space of possible options that is
hard to manually browse or search. Conversational
Recommender Systems (CRSs) approach user pref-
erence acquisition from a dialogue point of view,
where preferences are captured and put to use in
the course of on-going natural language dialogue.
The approach is motivated by its aim to make in-
teraction efficient and natural (Burke et al., 1997;
Thompson et al., 2004), to acquire preferences from
the user in a context when she is motivated to give

∗This work is supported by the Swedish National Graduate
School for Language Technology (GSLT), and Santa Anna IT
Research.

them (Carenini et al., 2003), as well as to facilitate
exploration of the domain and the development of
the user’s preferences (Wärnestål, 2005). A CRS’s
dialogue strategy to achieve these aspects of the in-
teraction is thus crucial for its performance and us-
ability. In particular, we are interested in explor-
ing robust and emergent factual and preferential di-
alogue with recommendation capabilities.

This paper presents our behavior-based approach
to dialogue management and reports on an evalua-
tion of the CRS CORESONG’s dialogue behaviors.

2 Dialogue Behaviors in Recommendation
Dialogues

By a dialogue behavior of a dialogue agent, we un-
derstand a conceptual and computational function-
ality in the agent’s dialogue strategy. Computation-
ally, a dialogue behavior is coded into a Dialogue
Behavior Diagram (DBD), that describes a state au-
tomaton where each state contains (one or more)
commands and transitions with optional conditions.
The DBD automaton is similar to the UML activity
diagram.

DBDs invoke, and use, results from other software
modules, denoted jointly as external resources (e.g.
databases and recommender engines).

Four DBDs constitute the complete recommenda-
tion dialogue model: Conventional, Direct Deliv-
ery, Indirect Delivery, and Interview. A more de-
tailed account of each of these behaviors are found
in (Wärnestål et al., 2007).

Delivery Behaviors On a fundamental level, the
goal for CORESONG (or any recommender system)
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is to provide the user with a delivery, such as an
explicitly requested piece of information from a
database resource, or a recommendation from a rec-
ommender engine. The direct delivery typically
uses a database that the user can query. In cases
where a successful database call has been made (that
is, a non-empty result set not larger than a prede-
fined size limit is returned as response to a user’s
request), a delivery is written to the out stream. In
order to support domain exploration and to drive the
dialogue forward (Wärnestål, 2005), positive pref-
erence statements trigger the system to fetch infor-
mation related to the preference from an external
database resource (e.g. utterances S3a, S4a and S5a
in Figure 1).

While the direct delivery behavior is functional
for information-providing dialogue, and can cater
for basic recommendations, it has been found that
human-like recommendations occur in a slightly
different fashion (Wärnestål et al., 2007). There-
fore, the indirect delivery behavior has been de-
signed (Wärnestål et al., 2007). It provides a moti-
vation before presenting the actual recommendation
(as exemplified by utterances S5b/S5c in Figure 1).
Since the system cannot know whether the sugges-
tion is previously familiar to the user, it delivers the
recommendations in the form of questions (S5c).

Interview Behavior The purpose of the interview
behavior is to collect relevant information about do-
main entity types (e.g. genres, artists or albums in
the music domain) or items. This is a useful dia-
logue behavior in cases where deliveries cannot be
completed due to e.g. ambiguous or incomplete user
requests. It is also useful in preferential interviews
used for recommendations, where the system ac-
quires user preferences to be used by a recommender
engine resource. A particular system may thus em-
ploy several interview DBD instances, connected to
different external resources.

2.1 Emergent Dialogue

We view the dialogue system’s complete behavior
as emerging from the different DBDs. By emergent
functionality in a system, we understand compo-
nents that operate simultaneously in order to achieve
a desired behavior. This is contrasted to hierarchi-
cal systems, where sub-functions are invoked from a

U1 What genres are there?
S2a I found these genres in the database: [...].
S2b I’d like to know more about your preferences.
S2c What else do you like?
U2 I like the genre Rock&Roll
S3a These artists belong to the genre Rock&Roll: [...].
S3b I’d like to know more about your preferences.
S3c What else do you like?
U3 What songs were made by Elvis Presley?
S4a I found these songs by the artist Elvis Presley in the

database: [...].
S4b I’d like to know more about your preferences.
S4c What else do you like?
U4 I like the album Live at Madison Square Garden
S5a These songs belong to the album Live at Madison

Square Garden: [...].
S5b You might like the song Suspicious Minds because

it is a Rock&Roll song by Elvis Presley.
S5c Have you heard it?
U5 Yes
S6a Ok. What do you think about it?
U6 It’s good

Figure 1: Dialogue log from CORESONG interaction (REC-

OMMENDER experiment configuration). [...] denotes lists of

genres, artists, albums or songs. S = system, U = user.

central component or representation.
Our approach to dialogue system design is

inspired by the layered subsumption architec-
ture (Brooks, 1991) where layers correspond to be-
haviors that are organized hierarchically, and where
higher-level behaviors can subsume lower-level lay-
ers by inhibition or modification.

A dialogue agent’s complete strategy is described
by a set of DBD instances that run as a DBD strata
machine. The DBD strata machine streams input
and merges each behavior’s output (see Figure 2).
There is no central representation of the complete
dialogue, and the individual behaviors do not model
each other since each DBD processes the incoming
token stream autonomously. Therefore, the outputs
from the DBDs need to be integrated (and typically
reduced) into a coherent system turn, and is man-
aged by two constructs in the Output Weaver: be-
havior priority and an order heuristic.

Behavior Priority DBDs are indexed with a prior-
ity and order the out statements accordingly (ascend-
ing order). The request with highest priority will be
chosen. This hinders the occurrence of two requests
back to the user which obviously could be confus-
ing. The order of CORESONG’s DBDs are (lowest
to highest priority): Conventional, Direct Delivery,

64



Indirect Delivery, and Interview (Figure 2). DBD in-
stances connected to the recommender engine have
higher priority than those of the music database1.

Order Heuristic Due to the behavior priority,
there is only one request action available each turn.
The order heuristic places this request at the end of
the output, so that informing system action state-
ments are guaranteed to precede the request. This
guarantees that the constrain request (S2c) in the
first system utterance in Figure 1 always occur af-
ter the direct delivery (S2a) even though their state-
ments origin from different DBD instances.

3 Experiment

To validate the behavior based approach to dialogue
management we conducted an “overhearer” exper-
iment (Whittaker and Walker, 2004) by using four
different behavior configurations of the CORESONG

system (see Table 1). The reason for using the over-
hearer model is to avoid natural language interpre-
tation problems (since the coverage of grammar and
lexicon is not our focus), and letting personal mu-
sic preferences that may not be covered by our rec-
ommender engine and database affect the subjects’
experience of dialogue interaction. The experiment
was run with 30 subjects.

3.1 CoreSong

Configuration of dialogue behaviors and attached
external resources is easily done in CORESONG by
switching DBD instances on or off. The two exter-
nal resources used by the DBD instances are (a) a
music information database and (b) a content-based
recommender engine (Burke, 2002).

A DBD instance implementation consists of defin-
ing LookUp calls, and the surface realization of the
action statements in the DBDs.

The Input Streamer (IS) feeds the interpretations
of user input to each of the DBD instances in the DBD

strata machine. Each DBD instance processes the in-
put and writes to an out stream using the command
out. The Output Weaver module (OW) then weaves
together each DBD instance’s output as outlined in
Section 2.1.

1Note that interview and delivery behaviors of the same ex-
ternal resource are naturally designed to be mutually exclusive.

Figure 2: The standard CoreSong behavior configuration,

with database (DB) and recommender engine (REC), interview

and delivery behaviors. Interp = Interpretation Module, Gen =

Generation Module, IS = Input Streamer, OW = Output Weaver.

Table 1: Experiment configurations. DD = Direct Delivery,

IW = Interview, ID = Indirect Delivery, Db = Database,

R = Recommender Engine.

Config. DD(Db) IW(Db) DD(R) ID(R) IW(R)

Q-A x x
BLUNT x x x x
PRYING x x
REC x x x x

Four different DBD instance configurations were
used to generate the test dialogues, as shown in Ta-
ble 1. The different configurations effectively mod-
ify CORESONG’s complete dialogue strategy. Q-A,
for example, with only the database resource, re-
sults in a question-answer system without recom-
mendation capabilities, whereas the PRYING config-
uration supports a preference interview but with no
power to deliver answers to factual requests. The
BLUNT configuration has the power to deliver both
database results and recommendations; but the rec-
ommendations are not delivered with motivations
and follow-up questions as the indirect delivery
(RECOMMENDER configuration) is designed to do.
Figures 1 (RECOMMENDER) and 3 (BLUNT) exem-
plify the differences.

3.2 Procedure

Each subject was presented with the four test dia-
logues, one at a time, displayed in a web browser.
For each of the dialogues they were asked to fill
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U1 What genres are there?
S2a I found these genres in the database: [...].
S2b What else do you want to know?
U2 I like the genre Rock&Roll
S3a These artists belong to the genre Rock&Roll: [...].
S3b What else do you want to know?
U3 What songs were made by Elvis Presley?
S4a These songs belong to the artist Elvis Presley: [...].
S4b What else do you want to know?
U4 I like the album Live at Madison Square Garden
S5a These songs belong to the album Live at Madison

Square Garden: [...].
S5b You might like the song Suspicious Minds.
S5c What else do you like?

Figure 3: Dialogue sample for the BLUNT configuration.

out a questionnaire on a 5-point Likert-scale regard-
ing their agreement with four statements, intended
to determine informativeness, preference modeling,
coherence, and naturalness of the dialogue excerpts.
For example, the statement: “The system’s utter-
ances are easy to understand and provide relevant in-
formation” reflects informativeness (Whittaker and
Walker, 2004).

4 Results and Discussion

In general, the participants considered the Q-A and
RECOMMENDER configurations to have the high-
est informativeness (86.2% and 85.5% respectively).
This is expected, since they both are equipped with
the database direct delivery behavior. The PRYING

configuration, lacking in database delivery function-
ality, received a lesser rating on informativeness.
For our current work, the notion of coherence is of
high importance, since this quality of the dialogue
was thought to be at risk when abandoning a mono-
lithic dialogue strategy model. It is interesting that
the coherence measure is high for all configurations:
PRYING (70.3%), BLUNT (79.3%), RECOMMENDER

(84.1%) and Q-A (86.2%). Furthermore, the REC-
OMMENDER configuration was high-ranking in all
four aspects: Informativeness (85.5%), preference
management (80.0%), naturalness (79.3%), and co-
herence (84.1%).

The data for the configurations over the param-
eters were compared using a one-way analysis of
variance (ANOVA)2. Preference management was
perceived as significantly lower in the Q-A con-

2p < 0.001 n.s. for all differences reported below.

figuration compared to the other three configura-
tions, where preferences indeed were modeled and
de facto influenced the dialogue. PRYING received
significantly lower ratings on coherence compared
to the other three configurations. This is most likely
due to that factual user queries were only used as in-
dicators of preferences, and were not responded to in
the way that configurations with delivery behaviors
did. The RECOMMENDER configuration received a
significantly higher rating on naturalness compared
to the other three configurations.

The results show that BCORN’s non-centralized
approach that views dialogue strategy modeling as
an emergent phenomenon is feasible, and encour-
ages future development of the approach. They also
imply that natural and coherent recommendation di-
alogue can be explained in terms of the suggested
dialogue behaviors.
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Abstract 

We present a computational model for the 

interpretation of linguistic spatial proposi-

tions in the restricted realm of a puzzle 

game. Based on an experiment aimed at 

analyzing human judgment of spatial ex-

pressions, we establish a set of criteria that 

explain human preference for certain inter-

pretations over others. Each criterion is as-

sociated to a metric that combines the se-

mantic and pragmatic contextual informa-

tion regarding the game as well as the ut-

terance being resolved. By resorting to ma-

chine learning techniques we determine a 

model of spatial relationships from the data 

collected during the experiment. Sentence 

interpretation occurs by matching the po-

tential field of each of its possible interpre-

tations to the model at hand. The system’s 

explanation capabilities lead to the correct 

assessment of ambiguous situated utter-

ances for a large percentage of expressions. 

1 Introduction  

The interpretation of spatial expressions is an im-

portant aspect of human cognition. Several ex-

perimental and theoretical studies have analyzed 

how language is linked to the non-linguistic spatial 

world with the goal to shed some light on the hu-

man mental processes that underlie the understand-

ing of linguistic utterances involving space. Find-

ings from these research endeavors have paved the 

way for the development of computational systems 

able to analyze, interpret and generate natural lan-

guage descriptions of space and the physical world. 

In this work, we focus on the interpretation of 

three types of linguistic relationships that form the 

basis for spatial expressions: topological relations 

like “near”, projective relations such as “left of”, 

and the relation “between”. Projective relations 

need the specification of a frame of reference. 

Within the scenario of a speech-operated 2D 

puzzle game, we have been developing a comput-

ing system able to understand the meaning of and 

consequently act upon linguistic instructions like 

e.g. ”land the green piece over the T-shaped one” 

that can be ambiguous to a human who is not em-

bedded in the same situation and sharing the same 

conversational context of the speaker/writer. 

The paper is structured as follows. First, we dis-

cuss relevant related works. We then present the 

motivation for this research and the computational 

model that we developed based on the experiments 

we carry out. Eventually, we propose a system 

evaluation and a discussion on future extensions. 

2 Related Work 

Researchers in the field of language-oriented artifi-

cial intelligence have proposed several methods to 

deal with the inherent ambiguity of language and 

to handle traditional linguistic phenomena like pre-

supposition, quantification, anaphora, under speci-

fication, and elliptic expressions. In parallel to re-

search on these well-known sources of ambiguity, 

the understanding of propositions that depend on 

situational context has emerged as an active area of 

study and the treatment of spatial information in 

utterances has evolved into an ever growing field. 

A relevant number of conceptual models that re-

late language to visual spatial information have 

been proposed (Eschenbach 1999; Tapus et al., 

2005). Backed by theoretical works and/or empiri-

cal experiments (Costello & Kelleher, 2006; Logan 

& Sadler, 1996), more and more computational 

models that exploit the potential of verbal commu-

nication to interact with visual or spatial data have 

been implemented particularly for natural language 

interfaces to graphical systems and human-robot 

interaction. 
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The SHRDLU system (Winograd, 1971) is 

probably the first relevant work that shows how 

syntax, semantics, and reasoning about the world 

can be successfully combined to produce a system 

that understands natural language to control the 

actions of a simulated robot arm.  Following this 

pioneering work, other prototypes and models have 

been put forward for topological and projective 

relations. Several works based on language model-

ing and visual context (Gorniak & Roy, 2004; Roy 

et al., 2002; Roy & Mukherjee, 2005) involve as-

pects of grounded situation model. These ap-

proaches lead to the development of visual context 

sensitive grounded systems that understand, learn 

and generate natural language. A research method-

ology that addresses common problems in spatial 

communication arising during human-robot con-

versation is outlined in (Moratz et al., 2001). In 

(Kelleher et al., 2005) visual information, context 

and salience are integrated to leverage the under-

standing and generation of spatial expressions in 

the context of virtual reality applications. A variety 

of metrics and potential field measures are intro-

duced in (Kelleher et al., 2006; Regier & Carlson, 

2001) as a powerful tool to model and characterize 

spatial relations among 2D objects as perceived by 

human subjects. An integration of potential field 

models with visual information to control a robot 

that follows natural language commands to per-

form manipulative actions is presented in (Brenner 

et al., 2007) for the task of action planning in situ-

ated communication. In (Gorniak & Roy, 2005; 

Gorniak et al., 2006) the use of situated communi-

cation in computer games is investigated. 

Excluding (Roy et al., 2002), the works outlined 

above have not resorted to machine learning tech-

niques. Our work shares with (Kelleher et al., 

2005; Kelleher et al., 2006; Regier & Carlson, 

2001) the idea of encoding spatial information us-

ing a set of local metrics. It differentiates from 

them in the way we perform the assessment of the 

values of the metrics. 

3 Resolving Spatial Expressions 

3.1 Situated Communication in Pentomino 

Pentomino is a popular recreational math puzzle 

game. The game consists of twelve different pieces 

that are built as arrangement of five square units 

joint along their edges. The objective is to fill up a 

given game board using all pieces. To accomplish 

this task, players can select, rotate, translate, flip, 

remove, mirror, and land pieces onto the board. In 

early studies on human-human communication to 

play Pentomino, we noticed that subjects resort 

extensively to localization expressions when they 

intend to collaboratively resolve a puzzle thus 

making this game an excellent prototyping arena 

for situated natural language understanding. 

Our model is integrated into a digital version of 

Pentomino where speech can be used as a com-

plementary input mode (Corradini et al., 2007). We 

exploit the game semantics and pragmatic along 

with context information available from both the 

visual display on the user interface and the game 

history to interpret spatial expressions used to play 

the game. At anytime, the player is allowed to cus-

tomize a few application settings that affect the 

visual feedback and thus in turn visual-grounding 

(Roy et al., 2002; Roy & Mukherjee, 2005) of con-

text information that bridges the symbolic realm of 

linguistic concepts with entities in the game world. 

3.2 An Experimental Study 

To investigate human interpretation of spatial 

situations, we run a psycholinguistic experiment 

that parallels the task of an automated system for 

playing Pentomino. We collected data from 38 par-

ticipants (22 males and 16 females) both native and 

non-native English speakers with age ranging from 

13 to 72 years (µ = 31.3, σ = 13.5). Subjects were 

given a set of 40 image-text pairs and instructed 

about the game objective and rules. We showed the 

subjects a snapshot of a puzzle game and the next 

instruction to carry out in text format as a single 

separate instruction. Subjects were then asked to 

update the board according to their interpretation 

of the instructions with the goal to maximize the 

possibility to finish the game after carrying out the 

move. We chose such a setting both to elicit con-

trolled spatial interpretations in different situations 

and to collect data that can give insights on factors, 

motivations, and mechanisms that play a role in 

turning the mental picture of a linguistic sentence 

into an actual spatial configuration. 

A post-study analysis of the corpus of 1520 task 

solutions showed that while all subjects implicitly 

used themselves as frame of reference (see Figure 

1) a few different configurations were proposed for 

each single task. One annotator searched for prag-

matic and semantic errors in the solved tasks. We 

considered as a pragmatic error any spatial ma-
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nipulations that, once performed, would at once 

appear to lead to no game solution i.e. result in the 

creation of one or more islands of cells with less 

units than the number of squares making up a sin-

gle Pentomino piece. We refer to these small holes 

onboard to as smHoles (see Figure 1). We classi-

fied as semantic errors all cases of spatial actions 

and instructions that violate the game rules or were 

impossible to carry out. A second annotator scored 

24 randomly selected user forms i.e., a 63.2% ran-

dom sample. Compared to the first annotator there 

was a 98% match on what the error events were. In 

total, we found an average 8.3% of pragmatic er-

rors (µ = 4.8, σ = 4.6) and a negligible 0.02% (µ = 

0.6, σ = 1.5) of semantic errors. After removing 

these error cases from our corpus, we analyzed the 

remaining 1394 picture-instruction couples (91.7% 

of the data) to infer a best estimate of the space 

considered by the subjects given a spatial relation 

among reference objects. 

 
Figure 1. (left) A correct semantically and pragmati-

cally interpretation of the instruction used in Section 

1; (right) a pragmatically incorrect one. Text around 

the borders indicates the implicit frame of reference. 

 

The computational model we developed bases on 

both the analysis of the data collected and the fact 

that in the context of a restricted language and lim-

ited number of visual entities, subjects tend to refer 

to objects by listing their properties and attributes 

such as color, shape and size (Roy, 2002).  

3.3 Criteria & Metrics 

From data of our experiment, we realized that for 

relations of the kind “near”, “under”, “left to” etc., 

over 97% of the subjects considered locations on 

the board grid that are within a certain small dis-

tance to the referent. In the case of “between” rela-

tions, 87% of the subjects considered points at lo-

cations mid-way to the referents. According to the 

relation at hand, we refer to the area including the 

points that satisfy the proximity requirement as 

region of interest or RoI in short. It restricts the set 

of possible locations referred to in the utterance. 

We define a series of metrics over the RoI based 

on the notion of field potential (Kelleher et al., 

2006). They describe degrees of likelihood of act-

ing upon an object at a given location according to 

a set of criteria that capture and incorporate the 

most commonly used interpretation strategies 

adopted by subjects of our experiment. Given a 

sentence that refers to object Obj via a spatial rela-

tion Rel to another reference object Ref, they are 

motivated by the observation that people tend to: 
 

C1) operate on Obj that is as closer as possible 

to Ref (Proximity criterion) 

C2) operate on Obj at positions that maximize 

the number of physical contacts with other 

game entities such board edges or other pieces  

(Adherence criterion) 

C3) operate on Obj at positions that maximize 

the intersection area between Obj and the RoI 

(Communality criterion) 

C4) operate on Obj at positions that either 

minimize distance between Obj’s and Ref’s 

centers of mass or, in case of a “between” rela-

tion, are equidistant from those of all other ref-

erents (Center of Mass criterion) 

C5) Play uniformly i.e. they concentrate on a 

region on the board which try they fill in incre-

mentally before moving to other distant areas of 

the board (Location Saliency criterion) 

C6) Avoid the creation of smHoles since they 

make the game unsolvable (Fillability criterion) 

The criterion C6 captures aspects relative to game 

pragmatics and semantic knowledge. Criteria C1 to 

C4 reflect game’s geometrical considerations at a 

given time. The criterion C5 accounts for the dia-

logue context in terms of game history. For each 

criterion we defined a corresponding metric to 

quantify its salience value at a specific location. 

3.4 Spatial Expression Resolution & Results 

Anytime a spatial utterance is processed, we try to 

carry out the underlying instruction at each point in 

the RoI. If this is possible, we then calculate the 

normalized metric values on those points. We thus 

have a kind of field potential whose intensity is 

modulated by the degrees of likelihood of each 

criterion after the particular instruction is executed 

at a given location. To select the correct placement, 
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we use multiple linear regression to model the rela-

tionship between these likelihoods and an expected 

response variable depending on the location by 

fitting a linear equations to the observed data. The 

model is defined by the k parameters β1..βk of the 

system of linear equations: 
 

Yi(P) = β0 + β1 fi,1(P) + … + βk fi,k(P)  (1) 
 

Here k is the number of criteria, fi,k(P) the values 

(the independent variables) of the metrics applied 

at location P in the RoI, Yi(P) the expected good-

ness value (the dependent variable) at P, i an index 

running over the number of possible placements of 

the piece being manipulated and for each of the 5 

units making up that piece. In our model, Yi(P) is 

set to 1 for all units P of the piece 1 if its manipu-

lation can be found in our corpus of human inter-

pretations, to 0 otherwise. Ultimately, the values βj 

act as weighing coefficients for the metrics’ values. 

We use equation (1) as a combined likelihood to 

gauge how close a spatial configuration is to the 

model of human interpretations. Specifically, we 

rank any location in the RoI according to the value 

obtained by summing up equation (1) over each 

point of the piece after this is operated upon. 

We used half of the data for the determination of 

the model parameters and half for the evaluation. 

By taking the maximum value of the ranked list, 

the model interpreted spatial descriptions as hu-

mans did in our experiment in 61.4% of the ex-

pressions. Correct interpretations were ranked ei-

ther second or third in 16.2% of the cases. 

4 Discussion and Conclusion 

We implemented a computational model that at-

tempts to approximate human interpretation and 

judgment of situated language in the micro-world 

of a 2D puzzle game. We believe that the probabil-

istic nature of our method can be very useful in a 

dialogue system for spawning clarification requests 

or suggesting the location for a certain instruction. 

Our system confirms that adopting an approach 

that considers several sources of information such 

as context, semantic and pragmatic evidence can 

be beneficial to the understanding of situated utter-

ances (Gorniak & Roy, 2005). The metrics, now 

tailored for our restricted game domain, are ex-

tendible to other grid-like scenarios and spatially 

aware systems, even in 3D. The resolution of spa-

tial relations is also portable to the case of one-to-

many relations by applying our strategy between 

the one object and each one of those in the group. 

We are expanding the system to include a few 

more metrics and dialogue capabilities between 

player and system, for error resolution and in con-

texts that need clarification to resolve ambiguities. 
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Abstract

We present Hassan, a virtual human who en-
gages in Tactical Questioning dialogues. We
describe the tactical questioning domain, the
motivation for this character, the specific ar-
chitecture and present brief examples and an
evaluation.

1 Introduction

Virtual Humans can be useful for tutoring or training
in a variety of interactive situations in which experi-
ential learning can be beneficial, such as in (Traum
et al., 2005a) and (Rickel et al., 2002). Virtual hu-
mans contain a number of components, including a
virtual body, usually embedded in a virtual world,
actions that the agent can perform, including move-
ments and sound, cognitive capabilities to decide
on which actions to do and updating internal state,
and perceptual abilities for recognizing the actions
of users and other things in the world.

In this paper we present Hassan, a virtual human
for training in Tactical Questioning dialogues. We
focus on the spoken dialogue components. A com-
panion paper (Roque and Traum, 2007) describes
the dialogue manager and emotion model more fully.

Currently there is no single “best practice” model
for building virtual humans or especially their spo-
ken dialogue components. While generally there
are separate modules for speech recognition, natu-
ral language understanding, dialogue management,
and output (e.g., Generation and Synthesis, or text
selection and audio clip playing), there is no consen-
sus on the best ways of engineering these modules.

Part of the reason for this is that we are still fairly
early in the search space, considering all of the pos-
sible techniques applied to the various domains that
require spoken dialogue capability. Another issue
is that there are several different goals for dialogue
systems, and optimizing on one may lead to sub-
optimality for other goals. Some of these goals in-
clude: task success & efficiency, correct understand-
ing & output, user satisfaction, believability/realism,
authorability, reusability, revisability, and short de-
velopment time.

Given the different relative importance of these
goals and the specific features of the domain can
lead to different choices for the spoken language
technology components. For example, the virtual
humans in (Rickel et al., 2002; Traum et al., 2005b)
put a premium on depth of understanding within
complex domains (teamwork, negotiation), but were
somewhat narrow in the scope of what the virtual
humans could talk about, and had a heavy author-
ing burden, requiring experts to create new domains.
On the other hand, question-answering characters
(Leuski et al., 2006) have a lower burden for depth,
but must handle a broader range of questions and
maintain believability and user satisfaction.

For our current endeavor, tactical questioning (see
Section 2), we require capabilities between these
two extremes. We need the authorability and general
robustness of characters like SGT Blackwell (Leuski
et al., 2006) but with more of the emotional and cog-
nitive modeling of the situation from agents like Dr
Perez (Traum et al., 2005b).

In this paper, we present Hassan, a Virtual Human
for Tactical Questioning implemented using this in-
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termediate architecture. In section 2, we describe the
Tactical Questioning Domain and the Hassan sce-
nario. In section 3, we describe the components of
the system. In section 4, we describe the preliminary
evaluation, and we conclude with future directions
in Section 5.

2 Domain: Tactical Questioning

Tactical Questioning dialogues are those in which
small-unit military personnel, usually on patrol, hold
conversations with individuals to produce informa-
tion of military value (Army, 2006). We are specifi-
cally interested in this domain when applied to civil-
ians, when the process becomes more conversational
and additional goals involve building rapport with
the population and gathering general information
about the area of operations. Hassan is a virtual
human designed to act as a roleplayer and allow
trainees to practice tactical questioningand get feed-
back from experienced instructors on their perfor-
mance on several learning goals.

The scenario for Hassan takes place in contempo-
rary Iraq. In a fictional storyline, the US authorities
have built a marketplace as part of the reconstruction
effort, but the local population continues to use the
old, broken-down marketplace instead. It is the goal
of the trainee to discover why. To do this, the trainee
talks to Hassan, a local politician. If the trainee con-
vinces Hassan to help him, the trainee will confirm
that a tax has been levied on the new marketplace,
and that the tax has been placed by Hassan’s em-
ployer; if exceptionally successful, the trainee may
even learn where that employer lives. If Hassan be-
comes adversarial, he may lie and tell the trainee that
an American soldier is collecting the tax. Figure 1
shows the beginning of a typical dialogue with Has-
san.

3 Virtual Human Implementation

Figure 2 shows several components of Hassan dur-
ing a session. The virtual environment includes the
embodied character, which is the only component
the trainee usually sees. Above that is a speech
capture component showing the Automated Speech
Recognition (ASR) results of an utterance. Also vis-
ible is a GUI showing the state of various of Has-
san’s emotional components. Although the system

Trainee Hello Hassan
Hassan Hello
Trainee How are you doing?
Hassan Well, under the circumstances we are fine
Trainee I’d like to talk about the marketplace
Hassan I hope you do not expect me to tell you any-

thing
Trainee I just want to know why people aren’t using

the marketplace
Hassan I don’t feel like answering that question
Trainee I think you know something about a tax
Hassan I am simply doing business. It is rude of you

to imply otherwise

Figure 1: Scenario Dialogue

Figure 2: Hassan, a Virtual Human for Tactical
Questioning, with some other components

can run autonomously, its emotional state can also
be modified at run-time by an instructor. The vir-
tual environment is set in the Unreal Tournament
game engine, similar to the agent in (Traum et al.,
2005b). It also uses theSmartbody character con-
troller (Thiebaux et al., 2007) to control the move-
ments of the character, including lipsynch and non-
verbal communicative behaviors, and the Nonverbal
Behavior generator (Lee and Marsella, 2006) to se-
lect and synchronize non-verbal behaviors with the
output text.

The language components include a speech rec-
ognizer, a set of statistical classifiers to recognize
dialogue features and suggest responses, and a di-
alogue manager, to maintain a current cognitive
and emotional model and chose the appropriate re-
sponse. Our initial version of Hassan used the same
architecture as SGT Blackwell, with a single clas-

72



sifier to pick the answer, and rudimentary dialogue
manager to avoid repetition where possible and be
able to answer further on the same topic. Our initial
tests showed that this was inadequate for the tactical
questioning domain, where one needs not just local
coherence between questions and answers, but also
an emotional progression of the character in which
the kinds of questions and behavior early on in the
conversation will effect the kinds of answers given
later on. E.g., a trainee can increase or reduce fear.

In order to address this issue, we added a more
sophisticated information-state based dialogue man-
ager which can track several states that are impor-
tant to deciding how compliant an agent should be.
We also introduced a number of statistical classifiers
(built using our NPCEditor software) to pick out
important dialogue features as well as the best an-
swer given a particular compliance level. Figure 3,
shows the natural language components of our dia-
logue agent, including a set of NPCEditors working
together with a rule-based Dialogue Manager. We
discuss each of these components briefly below.

Figure 3: Architecture of Language Components

3.1 Automated Speech Recognition

The trainee talks to Hassan using a headset micro-
phone and a push-to-talk button. The ASR compo-
nent uses the Sonic statistical speech recognition en-
gine (Pellom, 2001), with custom acoustic and lan-
guage models (Sethy et al., 2005).

3.2 NPCEditor: Statistical Classification

Our NPCEditor tool allows one to build statistical
classifiers for “non-player characters”. It allows sev-
eral output modes including email, chat, and several

interprocess communication protocols. The classi-
fication can be between input and output text (e.g.,
the answer to a question), or between input text and
output features (NLU) or input features and output
text (NLG). It has been used in a variety of ways
in our Virtual Human agents. The NPCEditor al-
lows inputting and annotation of training data, train-
ing a classifier, and run-time performance all within
the same software platform. The classification tech-
niques and their use to select answers is described in
(Leuski et al., 2006).

3.3 Dialogue Features

The NPCEditor statistical classifiers identify three
utterance features of the user utterance: a dialogue
move, a main topic and a level of politeness. The
set of dialogue moves for the Tactical Questioning
Domain are shown in Figure 4. The main topic is
an aspect of significance for the domain and charac-
ter. There are different topics for requests (e.g. mar-
ketplace, taxation), threats (e.g. loss of status) and
offers (e.g. security, recognition, or secrecy). Po-
liteness is one ofpolite, neutral or impolite. These
three features work together to inform the decisions
made by the dialogue manager.

Opening greetings, introductions, ...
Complimentary compliments, flattery, ...
General Conversation non-task-related talk
Task Conversation task-related talk
Threatening threats
Offering offers to provide something
Closing moving to end the conversation

Figure 4: Dialogue Moves

3.4 Dialogue Manager

The dialogue manager of the system is based on
the information-state approach (Traum and Larsson,
2003). It tracks a set of four information state vari-
ables relating to respect, bonding and fear, and cal-
culates from these a currentcompliance level for the
character. The utterance features from the classifiers
are used to update these variables, which may result
in a change in compliance level. A response is se-
lected by choosing the response given by the classi-
fier for that compliance level (or an exception reply
for special circumstances). More about the dialogue
manager and compliance computation can be found
in (Roque and Traum, 2007).
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4 Evaluation

A preliminary evaluation of the first version of this
agent was held to produce data for analysis and
to measure user satisfaction. Eight sessions were
held with an equal combination of college-level mil-
itary trainees, and information professionals in our
research facility. Post-questionnaires allowed the
trainees the opportunity to rate their experience.

Preliminary results indicate the users felt the sys-
tem was off-topic too often to adequately judge the
effects of the emotional components. In reply to
ranking from 1 to 7 how satisfied they were with
their questioning of the agent, the mean value given
was 3.4. In reply to ranking from 1 to 7 how they
rated Hassan as an interviewee, the mean value was
also 3.4. A partial review of the logs indicates that
these low scores may have been due to discrepancies
in the reply authoring, which did not properly handle
the generation of off-topic replies when confidence
in an on-topic reply was low.

5 Future Work

While the current version of Hassan, with several
information state variables, dialogue features, and
3 compliance levels is definitely an improvement
in consistency over the previous version with one
NPCEditor and no emotion-based information state,
there is still much room for improvement. We are
currently investigating techniques to track longer
segments than the question-answer pair, as well as
more sophisticated discourse processing on both the
NLU and NLG side, while keeping the authoring rel-
atively simple.
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Abstract

We describe our system for breaking a film
review (as an instance of asemi-structured
document) into its formal and functional
constituents. Based on a corpus study, we
devised a set of 25 zone labels indicating
the role that a unit can play within the re-
view. We identify formal zones with a set
of symbolic rules, while the distinction be-
tweendescriptiveandevaluativeparagraphs
is drawn with a statistical classifier. The ap-
proach achieves between 70 and 79% preci-
sion in recognizing the zones in our corpus.

1 Introduction 1

Many text genres can be characterized assemi-
structured: They do not display a completely con-
ventionalized structure (as, e.g., manyweather re-
ports or cooking recipesdo), but there neverthe-
less are some rules and tendencies that allow the
reader to quickly recognize a document as an in-
stance of the genre, and to isolate important por-
tions. As a case in point, we are working with
film reviews coming from various newspapers and
web sites. While their overall structure is definitely
not identical, there are similarities on what portions
(henceforthzones) to expect, and in what order to
expect them. Furthermore, in our corpus studies
with English and German film reviews, we found
a very clear correspondence between logical doc-
ument structure (breakup in headers, lines, para-

1The research reported in this paper was funded by Bun-
desministerium für Bildung und Forschung, grant 03WKH22.

graphs) and content structure: Units playing a dis-
tinct functional role for the review are very likely to
be separated in the logical structure as well. This
lead us to the goal of automatically identifying the
content structure of such documents. Our underly-
ing application is automatic summarization: Identi-
fying the zones of the film review is a prerequisite
for ensuring that the summary contains information
from all relevant zones (e.g., movie title, director,
description of story, author’s evaluation).

Following Stegert (1993), we distinguish between
formal andfunctionalelements of reviews, with the
former being ‘constituents’ whose presence is char-
acteristic for the genre, and the latter making con-
tributions to the communicative goal of the author.
The formal zones follow conventionalized patterns
of shape and of linear order. They include the title,
the name of the reviewer, list of cast, copyright no-
tice, etc. As for the communicative goal of a film
review, it is typically twofold: inform the reader
about the contents of the film, and provide a sub-
jective evaluation. The running-text paragraphs of a
review belong to these twofunctionalzones, and our
initial corpus study had revealed that they are almost
always confined to paragraphs: Authors very rarely
mix description and opinion within a paragraph in
their reviews. In the following, we discuss related
work, then explain our approach to identifying for-
mal zones, and finally turn to opinion classification.

CorpusThe basis of our current implementation
is a corpus consisting of 213 German film reviews
from 7 different web sites. The reviews contain a
total of 4,252 paragraphs, i.e., zones that we aim to
identify.
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2 Related Work

The genre of film reviews has become relatively
popular in computational linguistics, but the prob-
lem addressed is typically that of classifying an en-
tire review as either positive or negative (e.g. Chao-
valit and Zhou (2005)). Our work in effect takes
a significant further step: We first break down the
review into its various content zones, and then see
opinion classification only as one subproblem, per-
taining to a subset of the paragraphs.

The subtask of opinion identification has received
much attention in recent years. Subjectivity in nat-
ural language encompasses a range of different phe-
nomena, including the means to express opinions,
emotions, or evaluations. Example applications are
automatic classification of opinion texts (e.g. edito-
rials) vs. factual texts (e.g. business texts or news)
(Wiebe et al., 2004) or positive vs. negative ratings
in reviews (Turney, 2002; Pang et al., 2002; Zhuang
et al., 2006). The classification is applied to docu-
ments (e.g., Wiebe et al. (2004)) or sentences (Yu
and Hatzivassiloglou, 2003).

In contrast to the above approaches, which are ex-
clusively developed for English, we aim at learning
subjectivity clues for German data. Moreover, in
our classification task, paragraphs rather than doc-
uments or sentences are being classified.

3 Formal zones

The inventory of formal zones we determined in
the corpus study is shown in Table 1. Recall
that we are tagging zones paragraph-wise, which
is warranted by the aforementioned relatively clean
layout–function correspondence in the genre; at the
same time, this decision leads to the occasional need
for zones that combine different information. We
thus found thatauthor is often given together with
theplace of publication, and often with his or her
overall rating for the film. The other frequent
case of “mixing” information are enumerations of
cast and contributors (credits); for these, we use the
tagDATA, which also has a variant for DVD-related
information (see bottom of the table).

Our corpus for evaluation (see below) contains a
total of 1,156 zones. Zones that occur most often are
DATA (which make up 18% of all zones),title
(16%) andstructure (15%). The zones that

Tag Description
<audience-restriction> Age restrictions for viewing (in the

U.S.: MPAA rating)
<author> Author of review
<authorplace> Author of review and source of

publication
<authorrating> Author of review and overall rating
<cast> List of actors, possibly with their

roles
<credits> Credits (Producer, Camera, etc.)
<country year> Country and year of production
<date> Date of review
<director> Director of film
<format> Technical format of film (16:9, 4:3,

PAL, black/white, etc.)
<genre> Genre of film (Comedy, Thriller,

Documentary, etc.)
<language> Language of film
<language-subtitles> Language of subtitles
<legal-notice> Copyright statement for review
<note> Various meta-notes (e.g., review

has been published earlier at differ-
ent source)

<quote> Quotation taken from film or other
source

<rating> Overall rating (5 stars, etc.)
<runtime> Length of film
<show-locdate> Screening locations and dates
<structure> Explicitly-structuring element,

usually a single-word headline
<tagline> Very short “grabbing” headline
<title> Title of film
<DATA> Mixed information, enumerated

(credits, cast, etc.)
<dvd-DATA> DVD release information

Table 1: Tag set for formal zones

are highly relevant for text summarization certainly
include thetitle zone, but also zones that are
considerably less frequent, likedirector (3%),
rating (0.4%) orauthor rating (1%).

3.1 Identifying formal zones

After hand-annotating portions of our corpus, we in-
spected the various instances of the formal zones and
found that they display striking formal characteris-
tics that can quite well be captured in regular ex-
pressions. A very simple case islegal-notice,
which invariably contains the copyright symbol or
the word itself. Less simple yet tractable is a zone
like author, since person names can be recognized
by the number of words, capital letters, optional
middle initials. Also, information about the posi-
tion of the text span plays an important role here:
the author is always given toward the beginning or
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the end of the text. The same holds fortitle,
which in addition regularly occurs in neighbourhood
to author (but the order can vary). What we are
not exploiting for the time being is layout informa-
tion such as HTML tags of the original documents.
Instead, we convert all input to plain text, and thus
our approach operates in the same way for both in-
ternet and newspaper material.

Given the observations on regularities in the for-
mal zones, we decided to follow a symbolic ap-
proach for them, i.e., we wrote recognition rules en-
coding features like the ones just mentioned. As
a convenient tool for this purpose, we used LAPIS
(Miller, 2002), a toolbox for “lightweight text pro-
cessing”. The data set for developing these rules
(i.e., for first taking inspiration and then fine-tuning
the rules), consisted of 101 film reviews. The eval-
uation was then performed on a set of 112 unseen
reviews.

3.2 Evaluation

The symbolic rules perform excellently
on the zones rating, author rating,
audience-restriction and format (all
with 100% precision and 100% recall). Results for
other zones relevant for summarization are:title
(P: 61%, R: 65%),director (P: 42%, R: 78%).
Average performance of the rules is 70% precision
and 63% recall.

An error analysis of the automatictitle zone
classifications reveals that zones that erroneously get
classified astitle are DATA (33% of the mis-
classifications),tagline (25%), andstructure
(17%). On the other hand,title is often mis-
classified astagline (53%) ordirector (15%
— this happens with 2-words film titles likeBroke-
back Mountain). Very often, indeed, none of the
rules matched atitle zone, and the rules did not
come up with a classification at all (28%). To over-
come such problems, we are currently adding a post-
processing step that reconsiders all the tag assign-
ments in the light of the overall situation — in this
step we can use non-local information like the cor-
pus observations thatauthor or title (as a sin-
gle text span) appears at least once in the document
but no more than twice (see Section 5).

4 Functional zones

Functional zones are paragraphs with free text. We
distinguish two main types of functional zones: de-
scriptive zones (describe) and comment zones
(comment). Descriptions are paragraphs that de-
scribe the story, different aspects or peculiarities of
the film, without commenting about it. They there-
fore can be considered as ‘objective’ information. In
contrast, comment zones are paragraphs that contain
expressions of opinions by the author, i.e., ‘subjec-
tive’ information. In our application (text summa-
rization), it is very important to be able to reliably
distinguish between the two types.In our data, there
are slightly morecomment paragraphs (54%) than
describe paragraphs (46%).

4.1 Identifying functional zones

Feature set For classifying the functional zones,
we used as training features a bag-of-”words” ap-
proach. In a detailed evaluation of tf*idf measures
used as relevance weights, we found that 5-grams
perform best for German data, so our bag of “words”
consists of weighted character 5-grams. All 5-grams
occurring in the paragraph that is to be classified are
weighted according to thetf ∗ idf measure, where
tf is the frequency of the 5-gram in the paragraph,
andidf is the inverse document (i.e., paragraph) fre-
quency according to a reference corpus: a large col-
lection of internet film reviews.

Training procedure Pang et al. (2002) compare
different machine learning methods and achieved
accuracies between 72.8% and 82.9%, depending on
the training features and the method. In their evalua-
tion, Support Vector Machines (SVM) perform best
for many of the feature combinations.

In our approach, we also use SVM. Our feature
sets, however, do not consist of words or POS tags
but 5-grams. We used the tool SVMLight (Joachims,
1999) and performed a threefold-crossvalidation on
the 213 reviews, which contain 1,159 functional
zones..

4.2 Evaluation

The table below presents the results from the func-
tional zone classification. Overall accuracy is quite
satisfactory, at 79.34%.Comment zones are classi-
fied more successfully thandescribe zones.
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Zone type Precision Recall Accuracy
comment 81.60% 79.69%
describe 76.83% 78.94%

79.34%

5 Conclusion and outlook

For many applications, including summarization,
but also question–answering and others, the range
of portions and their relative relevance for the ap-
plication heavily depends on thegenre. For the ex-
ample discussed here, film reviews, it is evident that
information about thecontent structureof a docu-
ment can be of immense help for creating a balanced
summary, for choosing zones in which the answer to
a question is sought, etc.

Based on a corpus study, we have developed an
inventory of zone labels for the genrefilm review
and implemented a system for automatically iden-
tifying these zones, i.e., for breaking up a document
into its content structure. The precision currently
ranges from 70% for formal zones to 79% for the
two functional zones. Our approach is hybrid: it
utilizes both symbolic rules and a statistical classi-
fier. The overall algorithm first decides heuristically
whether to invoke the symbolic rules or the classifier
(the functional zones are longer-text paragraphs that
occur in the middle of the document and are not in-
terrupted by formal zones), and then each paragraph
of the document receives its label by either module.
Recognition is based on merely local information so
far.

Our current work aims at improving the results by
taking two different routes. For one thing, we are
integrating layout information, in particular HTML
tags, into the identification of formal zones. To that
end, the input to the system will no longer be plain
text but a canonical, XML-based representation of
the logical document structure, which is produced
from HTML. The other line is to make more exten-
sive use of knowledge about zone neighbourhood.
To this end, we are revising the rules for formal
zones so that they output probabilistic judgements,
and these will be combined with a trigram model
capturing the zone sequences in our corpus. Thus,
all information about zone locations will be removed
from the rules and incorporated into a single, sep-
arate knowledge source. Finally, we are currently
adapting our implemented text summarizer (Stede et

al., 2006) to utilize the zone information so that the
quality of summaries for the particular genre of film
reviews will be improved considerably.
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Abstract 

In the past few years, we have been devel-
oping a robust, wide-coverage, and cogni-
tive load-sensitive spoken dialog interface, 
CHAT (Conversational Helper for Auto-
motive Tasks). New progress has been 
made to address issues related to dynamic 
and attention-demanding environments, 
such as driving. Specifically, we try to ad-
dress imperfect input and imperfect mem-
ory issues through robust understanding, 
knowledge-based interpretation, flexible 
dialog management, sensible information 
communication, and user-adaptive re-
sponses. In addition to the MP3 player and 
restaurant finder applications reported in 
previous publications, a third domain, navi-
gation, has been developed, where one has 
to deal with dynamic information, domain 
switch, and error recovery. Evaluation in 
the new domain has shown a good degree 
of success: including high task completion 
rate, dialog efficiency, and improved user 
experience.  

1 Introduction 

In the past few years, we have been developing 
a robust, wide-coverage, and cognitive load-
sensitive spoken dialog interface CHAT under a 

joint NIST ATP project with Bosch RTC, CSLI of 
Stanford University, ERL of VW of America, and 
STAR lab of SRI International. The CHAT system 
is specifically designed to address imperfect 
speech and imperfect memory of human users, 
when they use the system to interact with devices 
and receive services while performing other 
tasks—typically, these tasks are their primary, and 
sometimes even critical tasks, such as driving. 

Examples of imperfect speech are speech disflu-
encies, incomplete references to proper names, and 
phrase fragments, while examples of imperfect 
memory include very limited number of names 
memorized or non-exact names memorized. Imper-
fect speech and memory happen quite often. In one 
reported Wizard-Of-Oz experiment for the restau-
rant finder domain [Weng et al 2006], 29% of the 
proper names used by people were partial names. 
The imperfect speech and memory issues accom-
panied with multi-tasking pose a big challenge to 
the development of a robust dialog system. Over 
the course of the project, we have developed a 
number of technologies in various modules of the 
dialog system to deal with these two issues [Weng 
et al 2004; Zhang and Weng 2005; Mirkovic and 
Cavedon 2005; Pon-Barry et al 2006; Varges 2005; 
Purver et al 2006]. Specifically, in this paper, we 
describe progress made over the past year when a 
navigation domain and related use cases are intro-
duced. Evaluation conducted for the navigation 
domain shows high task completion rates and user 
satisfaction.  
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The paper is organized as follows: Section 2 de-
scribes the updated CHAT system architecture and 
its functionality; Section 3 is devoted to ap-
proaches used to address the imperfect speech and 
memory issues; Section 4 gives a description of 
data collection setup, evaluation scenarios, as well 
as evaluation results; finally, we conclude with a 
comparison with other work. 

2 The CHAT System and Its Functionality 

The CHAT system has adopted many state-of-art 
technologies and has grown beyond its heritages 
over the years. This progress is reflected in several 
core aspects, including the spoken language under-
standing (SLU) module, the dialog manager (DM), 
the content optimizer (CO), the knowledge man-
agement (KM), the response generation (RG), as 
well as the overall system architecture.  

The SLU module integrates multiple under-
standing strategies with components such as edit 
region detection algorithm [Zhang and Weng, 
2005; Zhang et al 2006]1, partial name identifier, 
shallow semantic parser, and deep structural 
parser. This approach enables understanding at 
finer levels when faced with imperfect input from 
the distracted multi-tasking user, and/or from 
speech recognition errors.  

The DM, originated from the CSLI dialog man-
ager [Lemon et al 2002], follows the information-
state-update approach [Larsson and Traum 2000]. 
It uses a dialog move tree to keep track of multiple 
dialog threads and multiple applications [Mirkovic 
and Cavedon 2005; Purver et al 2006]. The latest 
version also supports mixed initiative dialogs for 
all the three domains.  

The KM controls access to knowledge base 
sources and their updates. Domain knowledge is 
structured according to domain-dependent ontolo-
gies. The current KM makes use of OWL, a W3C 
standard, to represent the ontological relationships 
between domain entities.  

The CO module acts as an intermediary between 
the dialog management module and the knowledge 
management module, controls the amount of con-
tent, and provides recommendation to users. It re-

                                                 
1 Edit region detection algorithms identify disfluent ar-
eas in an input utterance, such as hesitation, repeat, or 
correction. For example, “Get a, hmm, take me to 
Dave’s house”.  

ceives queries from the DM, resolves possible am-
biguities, and queries the KM. It performs an ap-
propriate optimization strategy based on the re-
turned results [Pon-Barry et al 2006].  

The RG module uses a hybrid rule-based and 
statistical approach. It takes query results from the 
KM via CO and generates natural language sen-
tences as system responses to user utterances. The 
query results are converted into natural language 
sentences using a rule-based bottom-up production 
system.  Finally, a scoring and ranking algorithm is 
used to select the best generated sentence [Varges 
2005]. 

The architecture of the CHAT system is similar 
to its previous versions [Weng et al 2004; Weng et 
al 2006]. However, a couple of enhancements have 
been made to deal with multiple applications and 
random events from external devices or services. 
One enhancement is the introduction of an Appli-
cation Manager (AP). The AP module isolates the 
application dependent information and operations 
from the core dialog system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The CHAT System architecture. 
 
Another major improvement is the modularity 

and configurability. The current version of the 
CHAT system is highly modularized and configur-
able. All the modules in Figure 1 are shared across 
the different domains. Domain specific models or 
parameters are supplied to the system in a config-
urable manner. Explicit on-the-fly domain switch 
becomes very simple – people can just say “switch 
to X” or other commonly used phrases to switch to 
the domain X. Implicit domain switch is also pos-
sible, where the users do not have to use explicit 

Application 
Manager

Application 
Manager

Prosody
Detection
Prosody

Detection

Knowledge 
Manager

Knowledge 
Manager

Knowledge
Base

Knowledge
Base

Speech
Recognition

Speech
Recognition

Speech
Synthesis
Speech

Synthesis

MP3MP3

RestaurantRestaurant

NavigationNavigation

Natural
Language

Understanding

Natural
Language

Understanding
Dialog 

Manager
Dialog 

Manager
Language
Generator
Language
Generator

Content 
Optimizer
Content 
Optimizer

Application 
Manager

Application 
Manager

Prosody
Detection
Prosody

Detection

Knowledge 
Manager

Knowledge 
Manager

Knowledge
Base

Knowledge
Base

Speech
Recognition

Speech
Recognition

Speech
Synthesis
Speech

Synthesis

MP3MP3

RestaurantRestaurant

NavigationNavigation

MP3MP3

RestaurantRestaurant

NavigationNavigation

Natural
Language

Understanding

Natural
Language

Understanding
Dialog 

Manager
Dialog 

Manager
Language
Generator
Language
Generator

Content 
Optimizer
Content 
Optimizer

80



statements for switching to another domain. For 
example, having selected a desired restaurant in the 
restaurant domain, the user may then say “find me 
a fast route to restaurant XYZ”, without preceding 
this request with an explicit statement such as 
“switch to navigation”. However, due to extra bur-
den on the system when all the applications are 
included, this feature is not set as a default. Addi-
tionally, because of the high modularity and con-
figurability, it is much easier to add any new appli-
cation.  

In the added navigation domain, a few new 
functionalities are provided in the CHAT system:  

1. Destination entry. One may either tell the 
system his or her address or use a selected 
Point Of Interest (POI) as the destination. 
In address input mode, different expres-
sions for addresses, even ones with partial 
street or city names, are allowed.  

2. Route selection. One may negotiate with 
the system with different criteria during 
the conversation for route selection. The 
criteria include distance, speed, mid-point, 
avoidance, or highway preference. For ex-
ample, the driver can tell the system to 
find the shortest route to a destination that 
avoids a specific street. Or, he or she can 
also ask the system to find the fastest route 
that goes by a specific location and avoids 
highway. 

3. Dynamic information or random events. 
While driving in a driving simulator, one 
can access dynamic information, such as 
the speed limit and the distance to destina-
tion. In addition, the dialog system can 
process random events, such as instruc-
tions from the navigation unit, and com-
municate the events to the user. In the 
meantime, the user can ask for a repeat of 
information if he or she did not hear the 
message clearly.  

 
The three selected applications for the CHAT 

system, i.e., MP3 music player, restaurant finder, 
and navigation, represent three important applica-
tion categories: entertainment, service, and naviga-
tion. When combining the three application do-
mains together, the CHAT system can demonstrate 
a very useful scenario, which allows people to ne-
gotiate a POI (restaurant) or explicitly enter a des-
tination; find the best route; and, on the way to the 

destination, access dynamic location-based infor-
mation (“what is my next turn”) or entertain self 
(“play a song in playlist X”).  

To give a concrete impression of what the 
CHAT system can do, an example dialog is given 
here:  

User: Switch to restaurant. 
System: Ok. Switched to the restaurant finder. 
User: Can you find me a Chinese restaurant in 

Palo Alto with good service? 
System: There are 11 Chinese restaurants in 

Palo Alto that have good service. Here are the first 
few: Little Garden Restaurant China Delight Man-
darin Gourmet Restaurant Should I continue?   

User: Hmm...tell me more about, Garden Res-
taurant?  

System: Little Garden Restaurant is an expen-
sive Chinese restaurant. Dress code is casual, ser-
vice is good and rating is three stars. It’s on El 
Camino Real in Palo Alto. 

User: Switch to navigation.  
System: Ok, switched to Navigation system. 
User: Take me to Little Garden Restaurant, but 

stop by Bosch Page Mill Office. 
System: Ok, I will plan a route to Little Garden 

Restaurant that goes by Bosch Page Mill Office. 
Would you like anything else?  

User: Get me the fastest route.  
System: Ok, I will plan a fast route to Little 

Garden Restaurant that goes by Bosch Page Mill 
Office. Would you like anything else?  

User: Um...nope.  
System: Ok, I will plan a route now. Please wait 

… I calculated a route to Little Garden Restaurant 
that goes by Bosch Page Mill Office. It is 4.3 miles 
long and should take around 12 minutes. Now I am 
starting guidance...  

User: Switch to music player.  
System: Ok. Switched to mp3 music player.  
User: What songs do you have by Alicia Keys?  
System: There are 16 songs by Alicia Keys. 

Here are the first few: GoodBye, Jane Doe, and 
Caged Bird 

User: Play “Caged Bird.”  
System: Playing the song “Caged Bird.”  
User: Add it to a playlist.  
System: Which playlist do you mean, car or 

work?  
User:  What’s on the car playlist?  
System: Interlude, A Womans Worth, and 

Whatever.  

81



User: Add it to the car playlist then.  
System: I added the song “Caged Bird” to car. 
User: Switch to navigation. 
System: Ok. Switched to navigation system.  
User: Where am I right now?  
System: You are on Page Mill Road in Palo 

Alto.  
User: How far away am I from my destination?  
System: You need to travel 2.5 miles to get to 

destination Little Garden. 
During the conversation, click-to-talk is used to 

start the recognition. To reduce the effect of early 
speaking or early cutoff, we use a circular buffer to 
locate the start of an utterance, and use prosody 
information to identify precisely the ending of an 
utterance [Shriberg et al 2000]. This mechanism is 
integrated with the Nuance V8.5 recognizer.  

In the next section, we will discuss the addi-
tional improvements made to address the issues of 
imperfect speech and memory.  

3 Dealing with Imperfect Input and Mem-
ory 

Two threads of research have been explored to deal 
with imperfect input: improve the robustness in the 
concerned modules; and provide error recovery 
strategies.  

Improving robustness. To accommodate partial 
names in human utterances, separate ngram name 
models are trained on name databases of different 
classes for the SR module. A disfluency model is 
separately trained and integrated in the Statistical 
Language Model (SLM) for the recognizer. The 
partial or full proper names and disfluent regions 
are then identified by a proper name identifier and 
edit region detector, respectively. To understand 
the output from the recognizer, its SLU module 
adopts multi-component understanding strategies. 
A deep understanding component provides detailed 
information for each component in an utterance, 
which may be used for sophisticated dialogs. This 
module may also provide the boundary information 
for unknown proper names. On the other hand, a 
shallow semantic parser extracts domain-specific 
information, including flat or structured semantic 
classes. This provides a backoff strategy in the 
case the deep understanding module does not pro-
duce valid parses. These two components comple-
ment each other for better understanding and con-
versation.  

Error recovery strategies.  Individual under-
standing strategies do not always produce the cor-
rect interpretation in their 1st candidate. To correct 
errors, similarly, we experiment and integrate two 
different approaches: delay the final decision to a 
late stage; and design dialog strategies to clarify or 
confirm user’s intention. In the first approach, the 
SLU passes the top n-best alternatives as well as 
their likelihood scores to DM. The DM makes the 
final decision based on the n-best output from the 
SLU module, the possible dialog moves, and the 
dialog context (active dialog threads) [Purver et al 
2006]. To deal with possible misunderstanding, we 
also developed dialog strategies such as clarifica-
tion, confirmation, or even rejection when the sys-
tem is not confident about its understanding. An-
other way to improve the communication is to 
convey back implicitly or explicitly the interpreted 
results and allow user to revise his or her constraint 
specification when any mismatch is noticed. Revi-
sion and addition of constraints onto previously 
stated ones are realized across all the three do-
mains.  

To handle imperfect memory issue, we continue 
our research in two directions: regulate the amount 
of information through presentation strategies; and 
allow the users to ask for the repeat of information 
already presented.  

Regulated information presentation. During 
the conversation, user utterances are interpreted, 
and internal queries are constructed based on the 
constraints extracted from the utterances. These 
queries are sent to the Content Optimizer and 
Knowledge Manager for obtaining results that sat-
isfy the constraints. Quite often, the results and 
their quantity would either overwhelm the user or 
leave them in a position where he or she does not 
know how to proceed. This can be a serious dis-
traction or cognitive load problem in our investiga-
tion, as the user is occupied by other critical tasks, 
such as driving. One consequence is that people 
may not remember all the items enumerated, when 
the returned result list is long. In such case, the 
system proposes additional criteria so as to narrow 
down the results. In the event there is no result 
from the databases, the system proposes a relaxa-
tion of the constraints from the user. This has led 
to better user satisfaction [Pon-Barry et al 2006].  

Information repetition. When the user focuses 
on other critical tasks, it is not always easy for him 
or her to remember the statements from the system. 
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One additional functionality allows the user to ask 
for the repeat of information just presented. This 
new functionality is very useful especially in the 
navigation domain where the navigation instruc-
tions occur at random and people may not always 
pay attention to the instructions at the time of 
speaking.  

In addition, as mentioned earlier, the CHAT sys-
tem allows the user to use partial names, anaphora, 
or ordinal references2, which alleviates the imper-
fect memory issue and reduces the cognitive load 
of the user. 

After the CHAT system is equipped with the 
above approaches and strategies, it shows a great 
improvement in terms of dealing with various phe-
nomena caused by imperfect input and imperfect 
memory. Since most of these approaches and 
strategies are very collaborative in nature, they 
lead to a positive effect on user experience. This is 
partially reflected in the evaluation results reported 
in Section 4.  

4 Experiments and Evaluation Results 

For the navigation domain, the experimental setup 
is to drive and talk in a driving simulator. Three 
virtual cities are designed in the simulated envi-
ronment with different streets, buildings, and busi-
nesses. Approximately 50 streets are setup in the 
tri city virtual environment – a limited number due 
to the cost of street design in the virtual world. 
Five different routes are designated to control the 
experiments and about 2500 restaurant names are 
included in the database for POI queries. Each res-
taurant is associated with a street name, a street 
number, and a city name. There is some duplica-
tion between city names and street names in the 
environment. Conducting experiments in a simu-
lated environment addresses bias concern that 
arises when real cities are used for the task—some 
subjects may be more familiar than others in terms 
of streets and navigation. Using simulated envi-
ronments also enables us to control the variation of 
different factors in the experiments, such as traffic.   

As in the other two domains, WOZ data collec-
tion was used to bootstrap the development of the 
CHAT system for the navigation domain [Cheng et 
al 2004]. For the WOZ data collection, 20 subjects 

                                                 
2 Examples of the ordinal references include “the second 
one”, or “that last one”.  

were recruited for performing navigation related 
tasks while driving in the three cities in the driving 
simulator. In addition, 14 subjects were recruited 
for dry runs, and 20 subjects were used for evalua-
tion. The scenarios used in dryruns and evaluation 
are a subset of the scenarios used in the WOZ data 
collection.  

The WOZ data collection gives us insight into 
how human subjects interact with an ideal dialog 
system, helps us in selecting research topics we 
need to address, and provides us data for improv-
ing the language coverage in both NLU and NLG 
modules.  

Since the CHAT dialog system is designed as a 
task-oriented system and is not intended for any 
general conversation, careful attention was given 
to the development of the dialog tasks for the sub-
jects to perform in the WOZ data collection, dry 
runs, and evaluation. Specifically, we developed 
the following two guidelines:   

1. Task-constrained. We try to make goals 
of each task transparent and explicit (to 
form the intended mental context), so that 
the collected speech would not become ir-
relevant, unusable, or very sparse (see an 
example below). 

2. Language-neutral. The language used in 
the instructions for communicating these 
task goals to the participant and in the sce-
nario descriptions was created in such a 
way to avoid “copying behavior”. One in-
struction explicitly asks the participants to 
“try to phrase your requests in your own 
words, rather than simply repeating the de-
scription of the scenarios”.  

We call this task design approach as task-
constrained and language-neutral. This approach 
is used for both the restaurant finder and naviga-
tion domains. An example of a task description 
from the navigation is given here. 

Task description: You have just picked up your 
business clients from the airport and would like to 
take them out to a reasonably priced lunch.  You 
think that they would prefer Chinese food.  Use the 
Navigation System to (1) find a Chinese restaurant, 
and (2) plan a route to the restaurant. 

Eight task categories are used in the evaluation 
with examples such as “plan routes to destinations 
(e.g., restaurant POIs or address input)” and “query 
about road conditions”. Each subject is given a 
practice trial and three test trials. The purpose of 
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the practice trial is to familiarize the subjects with 
the procedure and tasks, and to reinforce the lan-
guage-neutral guideline. A total of 16 tasks from 
the eight task categories are designed, and they are 
designated to the three test trials. The evaluation 
procedure is very similar to the one used for the 
restaurant finder domain [Weng et al 2006].  

Initial comparison of expressions used in the 
navigation scenario/task descriptions and expres-
sions used by the subjects shows that the copying 
behavior is largely avoided. We found that only 
18.13% of the subject expressions mimic the sce-
nario/task expressions. In quantifying the copy be-
havior, it is counted as a copy if an expression is 
used in a task description and a subject repeats this 
same expression. For example, in the task “get 
clarification of the most recent route instruction”, 
if the subject says “clarify the most recent instruc-
tion”, this is counted as a complete copy; if the 
subject says “clarify the last instruction”, this is 
counted as half of a copy; and if the subject says 
“repeat the last instruction”, this is counted as a 
non-copy. Certain expressions do not have a clear 
alternative, such as “the current location”. In these 
cases, we do not count them as a copy, and there 
are only two of such expressions.  

This initial result indicates that our guidelines 
are effective in the experiments.   

Among other metrics, three major measurements 
are used in the evaluation of CHAT‘s performance 
for the navigation tasks: task completion rate, dia-
log efficiency, and user satisfaction. The task com-
pletion rate is defined as the percentage of tasks 
completed during the evaluation. The CHAT sys-
tem reaches an overall 98% task completion rate 
for the navigation tasks. To measure the dialog 
efficiency, we use the number of turns required to 
complete a task.  Here, one turn was defined as one 
user utterance to the system during a dialog ex-
change between the user and the system while at-
tempting to perform a task. The CHAT system is 
able to complete the tasks with 2.3 turns on aver-
age. Although it is not directly comparable be-
tween the two different domains, this number is 
much smaller than the average number of turns 
needed for the restaurant finder tasks (4.1 turns) 
reported one year earlier. Using the user satisfac-
tion rating system by CU-Communicator [Pellom 
et al 2000], we reached a score of 1.98 with 1 indi-
cating “strong agreement” and 5 indicating “strong 
disagreement” to each of the following statements:  

4. It was easy to get the information I 
wanted. 

5. I found it easy to understand what the sys-
tem said. 

6. I knew what I could say or do at each point 
in the dialog. 

7. The system worked the way I expected it 
to. 

8. I would use this system regularly. 
We computed a one-sample 2-tailed t-test to see 

if mean ratings for the navigation system was sig-
nificantly different from the mean rating of 1.76 
for the best of the CU Communicator Systems (i.e., 
goal user satisfaction rating).  Results showed that 
this difference was not significant (t (19) = 1.17, p 
> .05).  This suggests that participants were no less 
satisfied with our navigation system than those 
participants who evaluated the CU Communicator 
System. 

To get a better understanding of the improve-
ment, we examine the word recognition accuracy 
for the two domains: for the navigation tasks, the 
accuracies with and without Out-Of-Vocabularies 
(OOVs) included are 85.5% and 86.5%, respec-
tively; for the restaurant finder tasks, the accura-
cies are 85% and 86%, accordingly. Thus, the im-
provements are more likely a result of the new or 
refined implemented approaches. 

5 Conclusions 

Previous dialog applications include travel plan-
ning, flight information, conference information, 
bus information, navigation, hotel reservation, and 
restaurant finder [Pellom et al 2000; Polifroni et al 
2003; Bohus et al 2007]. However, these applica-
tions are independently developed using single or 
completely different frameworks. In our case, we 
have integrated three representative applications 
and allow explicit or implicit domain switch with 
shared dialog contexts. The most related work is 
the GALAXY-II [Seneff et al 1999]. However, in 
their work, different applications are managed by 
different turn managers.  

In terms of content presentation, [Polifroni et al 
2003] discussed ways of organizing the content 
based on fully automated bottom-up clustering, 
while our approach focuses on semi-automated but 
configurable strategies that make use of the system 
ontology, and on external domain configurations 
for content organization and presentation. 
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More sophisticated dialog management research 
has recently focused on collaborative aspects of 
human machine dialogs [Allen et al 2001; Lemon 
et al 2002; Rudnicky et al 1999]. However, such 
research on conversational dialog systems has 
typically focused on dealing with dialogs that users 
need to pay full attention to. In addition, most of 
this research only deals with simple expressions 
where the meanings are mainly embedded in the 
semantic slots. For research in which elaborated 
expressions are considered, the coverage is typi-
cally small.  Another thread of research is targeted 
at broad coverage but simple dialogs, which is ex-
emplified by the work at AT&T [Gorin et al 1997].  

While extending the research on the collabora-
tive aspects, our effort specifically focuses on deal-
ing with the conversational phenomena in multi-
tasking and distracting environments, specifically 
imperfect input and imperfect memory. While 
dealing with imperfect input can be traced back far 
in time [Carbonell and Hayes, 1983; Weng 1993; 
Lavie & Tomita 1993; He and Young 2003], the 
CHAT system integrates models ranging from dis-
fluency, partial and full proper names, shallow se-
mantic parsing, and deep structural parsing. The 
interpretation only occurs when all the contextual 
information and alternatives are gathered. For the 
imperfect memory issue, we explore information 
presentation and other strategies to enable the user 
to access the information comfortably. All these 
approaches and strategies lead to high task comple-
tion rate and dialog efficiency as well as user satis-
faction across the three domains, especially for the 
navigation. Collectively, the CHAT system shows 
very interesting use scenarios and promising per-
formance. 
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Abstract 

In this paper, we describe a telephone dia-
log system for location-based services. In 
such systems, the effectiveness with which 
both the user can input location informa-
tion to the system and the system delivers 
location information to the user is critical. 
We describe strategies for both of these is-
sues in the context of a dialog system for 
real-time information about traffic, gas 
prices, and weather. The strategies em-
ployed by our system were evaluated 
through user studies and a system employ-
ing the best strategies was deployed. The 
system is evaluated through an analysis of 
700 calls over a two month period.  

1 Introduction 

The availability of online maps and mapping soft-
ware has led to a dramatic increase in location-
based services, such as route planning, navigation, 
and locating nearby businesses, e.g. (Gruenstein, et 
al., 2006). While much of the effort has been fo-
cused on bringing these applications and services 
to desktop computer users, there is a demand for 
these services to be available to mobile users. 

A significant portion of the mobile users will 
utilize these services from a vehicle while driving. 
The automotive environment is a particularly chal-
lenging, because operating a vehicle is a hands-
busy and eyes-busy task, making the use of touch 
screens or pointing devices potentially unsafe. In 
contrast, using of speech as both an input and out-
put modality is a natural and safe means of inter-
acting with information  (Tsimhoni, et al., 2004).  

In this paper, we present a telephone dialog sys-
tem called Commute UX (Commute User Experi-
ence) that provides location-based information to 
in-car commuters. The system provides informa-
tion about traffic, gas prices, and weather, based on 

real-time data obtained via web services. It was 
built as a telephone dialog system to enable any 
user with an ordinary cell phone to access these 
services without the need for a data plan or addi-
tional hardware or software installed in the car. An 
example dialog is shown in Figure 1.   

The most critical part of a dialog system for lo-
cation-based services is of course, how well the 
system understands locations spoken by the user.  
In the proposed system, the definition of location is 
varied by a context manager, based on the granu-
larity required for a particular task. For example, 
some tasks may require only knowing the user’s 
current city or neighborhood while others require 
the system to know the user’s precise location.  
The system engages with the user to obtain the re-
quired location information in the most efficient 
way. In addition, the system can be personalized to 
a particular user, so common locations or “personal 
points of interest” are known by the system. 

We have found that reliably conveying spoken 
locations to a user is equally important in dialog 
systems that provide location-sensitive information. 
We present a method for automatically converting 

S: Welcome to Commute UX. Would you like   
traffic, gas prices, or weather? 

U: I need the closest gas station in Redmond. 
S: In that case, I need you to tell me the 

intersection where you are. 
U: I’m on the corner of 148th and 35th. 
S: You are at the corner of 148th Avenue NE 

and NE 35th Street, right? 
U: Yes.  
S: The nearest gas station is at the corner 

of NE 24th Street and 148th Avenue NE.  
S: What else can I help you with? 
U: How’s the traffic to Seattle? 
S: I’ll get the traffic between Redmond and 

Seattle, right?  
U: Yes. 
S: The traffic between Redmond and Seattle, 

via SR-520, is … 
S: What else can I help you with? 
U: Nothing, thanks. 
S: Good-bye. 

Figure 1. An example dialog from Commute UX 
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addresses into more descriptive locations using 
intersections and landmarks, in a manner that more 
closely resembles the way in which humans con-
vey location to each other.  

The Commute UX system was deployed to a li-
mited group of real users and we evaluated the per-
formance of the system based on an analysis of 
approximately 700 calls made to the system over 
an eight-week period. In addition, users of the sys-
tem were surveyed in order to obtain a subjective 
evaluation. 

2 System architecture 

The architecture of Commute UX is depicted in 
Figure 2. In each turn, the system receives a voice 
input from the user, processes the input, and reacts 
to the user accordingly. Six functional modules are 
involved in this process: the speech recognizer, the 
semantic parser, the dialog manager, the context 
manager, the information retriever, and the re-
sponse manager.  

2.1 Speech recognizer 

The task of the speech recognizer is to convert the 
voice input into text, from which semantic infor-
mation will be extracted and processed. Its per-
formance directly affects the task completion rate 
and the user satisfaction. Note that the acoustic 
model used by the speech recognizer is usually 
independent of the task. However the language 
model (LM) is highly task-dependent and its qual-
ity usually determines the recognition accuracy of 
the speech recognizer. 

The design of the LM is both a science and an 
art, where a balance needs to be made between the 
accuracy of the keyword recognition and the flexi-
bility of the speaking style it can support. In our 
system, we have used a strategy that trains a statis-
tical LM from the slots (e.g., city name, road name, 
gas type) and information bearing phrases learned 
from sample queries (e.g.  “… the closest gas sta-
tion in <City> …”) and augments it with a filler 
word N-gram (Yu, et al., 2006) to model the insig-
nificant words. The filler part of the LM absorbs 
hesitations, by-talk, and other non-information 
bearing words unseen in the training sentences.  
The filler word N-gram is pruned from a generic 
dictation LM.  

 

2.2 Semantic parser 

Semantic parser extracts the semantic information 
from the recognized text output from the speech 
recognizer. Converting information into its seman-
tic representation has two benefits. First, semantic 
representation is more concise and consistent than 
the phrases. Using semantic representation greatly 
simplifies the subsequent processing in the later 
stages. Second, semantic representation is modality 
independent. By converting information into the 
same semantic representation, we make the rest of 
the system isolated from different input modalities. 
Adding new modalities thus becomes simple and 
cheap. 

Extracting semantic information, however, is not 
trivial, especially since the output from the speech 
recognizer contains errors and users may convey 
multiple semantics in one utterance. The semantic 
information extracted includes the task classifica-
tion, which is a generic call-routing problem, e.g. 
(Kuo, et al., 2002; Carpenter, et al., 1998), and 
task-specific semantic slots (e.g. origin city, desti-
nation city, time of day for weather forecast).  Slot 
labeling is performed using a Maximum Entropy 
classifier (Berger et al., 1996) trained from the 
same LM training sentences. 

2.3 Dialog manager 

The task of the dialog manager is to determine the 
appropriate actions to take, given the current dialog 
context and the newly extracted semantic informa-
tion. Note that both the speech recognizer and the 
semantic parser are not certain about their results. 
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Figure 2. System architecture of Commute UX 
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The confidence from them needs to be taken into 
consideration when decision is to be made. 

The dialog management is based on a two-level 
state machine in our system: the turn level and the 
dialog level. The turn level state machines are pre-
built configurable and reusable dialog components 
such as system-led dialog component and mixed 
initiative dialog component. These state machines 
define the basic behaviors of a turn. For example, 
what to do when the confidence is low, medium, 
and high, and what to do when silence or mumble 
is detected. The dialog level (inter-turn) state ma-
chine defines the flow and strategy of the top level 
dialog. For example, what to do if the system can-
not get what the user has said after trying twice. In 
our system, the top level state machine is designed 
so that it supports both free-form mixed initiative 
and strict system-led dialog. If the system cannot 
decipher some of the semantic slots in users’ free-
form utterances, the system will fall-back to the 
system-led dialog and guide the user step by step 
to achieve the user’s goal. The user can also yield 
to the system-led dialog from the very beginning. 

The dialog manager gets context information 
from the context manager and the information re-
quested by the user through the information re-
triever. The information and prompts are delivered 
to the user through the response manager. 

2.4 Context manager 

The context manager plays a key role in Commute 
UX. Contexts in our system include the user in-
formation (e.g., user registered places, user’s 
name, and past requests), the dialog history, and 
the semantic information confirmed so far. By 
maintaining current and accurate context informa-
tion, the context manager can resolve semantic 
conflicts and make the system synchronous to the 
user’s perceived state. 

One important task of the context manager is to 
update the LM and the semantic model based on 
the context. By choosing the context dependent 
LM and the semantic model, the system can great-
ly reduce the perplexity and achieve higher recog-
nition accuracy and lower number of turns. 

2.5 Information Retriever 

The information retriever provides an interface 
between the dialog manager and the backend in-
formation sources. In our system, the information 
is from three major sources: the relatively stable 

geographical database, which contains information 
such as cities, streets, intersections, and points of 
interest (POI); the rapidly changing real time in-
formation such as gas prices, traffic conditions, 
and weather conditions; and the user’s registered 
information such as telephone numbers and per-
sonal points of interest (see Section 3.2).  

2.6 Response Manager 

The response manager presents information to the 
user or prompts the user for additional information. 
In our current system, the only presentation modal-
ity is voice and so the task of the response manager 
is to utilize the prompt database, synthesize the 
best audio output, and present the audio to the user. 
The system employs several strategies to decide 
the best manner in which to speak information to 
the user, as will be discussed in Section 4.  

3 Understanding locations from the user 

The crux of any dialog system focused on location-
based services, such as Commute UX, is to reliably 
understand the locations spoken by the user. How-
ever, the notion of location and the required granu-
larity of location can vary significantly based on 
the task. For example, for traffic or weather appli-
cations, a broad definition of location, such as 
neighborhood, city, or zip code, can be adequate, 
e.g. “How’s the traffic between Seattle and Belle-
vue”. However, for other tasks such as finding the 
nearest gas station, or route planning, the user 
needs to convey a precise location to the system. 
Finally, there is another distinction between per-
sonal locations that can vary based on the user, e.g. 
home and work, and geographic entities that have 
standard names and meanings.  

3.1 Recognizing: from regions to points 

In order to perform recognition of locations, a geo-
graphic database is crawled and the relevant in-
formation, such as the entity name, entity type and 
geolocation (latitude/longitude) or bounding box, 
is stored in a relational database. The database 
structure enables us to hierarchically categorize 
locations in a given state: zip codes contain cities, 
cities contain neighborhoods and points of interest, 
etc. All of these entities are valid locations in the 
application and are thus added to the grammar.  

When the user makes a query, the parser proc-
esses the recognized text and isolates any locations 
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in the spoken utterance. These locations are then 
passed to the back-end database to find the location 
data for that entity. The database is searched from 
most specific location (personal point of interest) 
to the most general (city or zip code) in order to 
determine the user’s intended location.  

In some cases, the task itself dictates the scope 
of the location grammar. For example, traffic in-
formation is only available on major highways, and 
not local roads. Because we cannot provide a user 
with traffic information on local roads, a traffic 
query does not require the same precision in origin 
and destination as a task such as route planning. As 
a result, we simplify the task and allow users to 
make traffic queries only on the roads themselves 
(“How’s the traffic on I-5 north?”), or between 
cities, neighborhoods, or personal points of interest 
(“How’s the traffic between Bellevue and Seat-
tle?”). This enables the dialog to be much more 
concise (the user does not have to convey two ex-
act addresses) and because the grammar is more 
constrained, the accuracy is higher.  

There are cases where the user’s query can lead 
to ambiguities. For example, suppose the user asks 
for the traffic between two cities, and there are two 
common routes between the origin and destination. 
Our system will choose the most common route, 
and attempt to resolve the ambiguity by informing 
the user of the route it has chosen: 
U: How’s the traffic between Bellevue and 

Seattle? 
S: The traffic between Bellevue and Seat-

tle, via I-90 is light, with an aver-
age speed of … 

In this case, the system informed the user that traf-
fic information provided was for the route taking  
Interstate 90. The user, who presumably knows 
both routes, can then query for the other route, by 
asking, “How about via 520?” The context man-
ager maintains the origin and destination cities 
from the previous query and adds Highway 520 as 
a road to be included in the route between Bellevue 
and Seattle. The routing engine will then determine 
the route between these two cities that takes this 
highway, and then the corresponding traffic infor-
mation can be retrieved and delivered to the user.  

There are many instances where the user needs 
to convey an exact location to the system, not sim-
ply a city or neighborhood region. For example, if 
the user needs to find the closest gas station, or 
would like directions between two places. The 

most obvious way to convey an exact location is 
using an address. However, users often do not 
know a valid address for their current location, es-
pecially while they are driving. Even if an address 
were known, recognition errors make the use of 
addresses inefficient in conveying location. This 
was confirmed in (Venkataraman et al., 2003), 
where an iterative multi-pass approach using a 
class-based language model was proposed to im-
prove the recognition of spoken addresses. The 
difficulty is even more apparent when one consid-
ers that state-of-the-art recognition accuracy for a 
five digit number in noise conditions that are real-
istic for mobile scenarios is about 90%. This 
means that one out of ten house numbers or zip 
codes will be misrecognized.  

In (Seltzer et al., 2007), we proposed the use of 
intersections as a convenient and reliable means of 
conveying location. While the use of intersections 
alleviates some of problems found in address rec-
ognition, it is still a challenging problem. For ex-
ample, there are over 3500 unique street names, 
and over 20,000 intersections in the city of Seattle. 
In addition, streets and intersections are highly 
acoustically confusable and often spoken infor-
mally, with incomplete specifications.  For exam-
ple a user might say “the corner of Third and Den-
ny” rather than “the corner of Northeast Third 
Avenue and Denny Way”. 

To reliably recognize intersections, we employ 
an information retrieval approach. We construct a 
database of streets and intersections in a particular 
city. The intersections are treated as documents in 
a database, and phonetic-level features are derived 
from the word stings comprising these “docu-
ments”. When the user utters an intersection, the 
recognized text is parsed into two street names and 
the phonetic level features are extracted each street 
name. Intersection classification is then performed 
using a vector space model with TF-IDF features. 
This approach allows the system to reliably recog-
nize intersections in the presence of recognition 
errors and incomplete street names. Details about 
this method and an evaluation of its performance 
can be found in (Seltzer et al., 2007).  

3.2 Personal Points of Interest as Locations 

One key feature of the Commute UX system is 
an optional website registration for users. Users 
can create an account where they provide their 
phone number and specify any number of personal 
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points of interest (PPOI). These PPOI are specified 
by a friendly name (e.g. “Jane’s school”), an op-
tional formal name (e.g. “Washington Middle 
School”), and an address. A back-end web service 
converts this address to a geolocation and this in-
formation is stored in the database. By default, the 
user is prompted to register home and work as per-
sonal locations. Users can then add additional 
PPOI. Each time a user changes some PPOI, the 
database is updated and the recognition grammars 
are regenerated to reflect the current list of unique 
PPOI friendly names and formal names. When a 
user calls the system, caller ID is performed as 
grammar entries corresponding to that user’s PPOI 
are activated. The caller’s phone number and the 
recognized PPOI are then used to retrieve the cor-
responding location form the database.   

After a limited internal deployment, we have 
276 registered users who created a total of 625 
PPOI, but only 97 unique PPOI friendly names in 
the grammar. The three most popular PPOI were 
“home”, “work”, and “gym”.  

The presence of PPOI also enables the system to 
assume some default behaviors. For example, if a 
registered user calls the system during common 
commuting times, the system will automatically 
fill the semantic slots with the home and work lo-
cations of that user and asks if the user would like  
the traffic information from home to work (or vice 
versa).   

4 Rendering spoken locations to the user 

The ability for the user to understand and remem-
ber the locations spoken by the system is as impor-
tant as the system’s ability to understand the loca-
tions input by the user. Conveying locations to us-
ers in spoken dialog systems is problematic for 
several reasons. First, depending on the quality of 
the TTS voice, understanding a spoken location 
can be quite difficult, even in optimal conditions. 
In a vehicle, the environmental noise can make 
intelligibility even harder. The situation is exacer-
bated by the high cognitive load required by driv-
ing, so the user cannot fully focus on the system’s 
output speech. In addition, because the user’s 
hands and eyes are typically busy, s/he cannot 
write down the location as the system speaks it, 
and therefore must try to remember the location as 
closely as possible.  

4.1 Automatically rendering locations using 
intersections and landmarks 

To enable users to more easily understand loca-
tions, spoken by the system, we modeled the sys-
tem’s output on the manner in which humans con-
vey locations to each other. For example, a user 
calling a business to ask its location will often be 
told by the clerk, “We’re on the corner of 40th and 
148th,” rather than “We’re located at 14803 40th 
Street.” Similarly, humans will often use land-
marks, such as “We’re on Main Street near the 
Shell Station” or “We’re on the corner of Fifth and 
Mercer, near the Space Needle. 

To create a similar capability in our system, we 
crawled a geographic database containing all 
streets and intersections along with their lati-
tude/longitude coordinates in a particular city. In 
addition, we also crawled a database of points of 
interest (POI), also labeled with their geographic 
coordinates. These points of interest included a 
variety of entities, such as schools, libraries, parks, 
and government buildings. The information about 
streets, intersections and POI was stored in a data-
base. 

Using this information, locations that we want to 
convey to users, for example the location of a gas 
stations, are processed as follows. The address of 
the entity is converted to geographic coordinates. 
Using these coordinates, the intersections database 
is queried to find all intersections within 0.05 miles 
(approximately half a block). If multiple intersec-
tions are returned, they are ranked according to an 
intersection importance metric, defined as the sum 
of the total number of other intersections of which 
each constituent street in the given intersection is a 
member. The top ranked intersection is selected. 
Following the intersection search, the POI database 
is queried to identify any POI within 0.1 miles (one 
block) from the entity of interest.  

After this process, each location we can return to 
the user is represented by its original address, as 
well as the nearest intersection and/or landmark, if 
either was found. For those locations that do have a 
nearby intersection and landmark, we have various 
ways to present the location to the user summa-
rized in Table 1.  

4.2 User preferences for spoken locations 

We performed a user study to determine which of 
these four methods of rendering an address was 
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preferred by users of a spoken dialog system. Us-
ers of the study ran a program on their desktop 
PCs. Each trial of the study was as follows. The 
system randomly selected an address from our da-
tabase of gas station locations. This location was 
rendered in one of the four styles described in the 
previous section. The user listened to a TTS engine 
speak the location. Once the location was spoken, 
the user was asked to type in as much of location 
as they could remember. The user could not start 
typing until the TTS output was complete. The sys-
tem then randomly chose another address from the 
database, and rendered it in a style randomly se-
lected from other the three remaining methods. The 
user again listened to the TTS engine speak the 
location and had to type in as much of the location 
as they could remember. After the user completed 
these two locations spoken in different ways, s/he 
was asked which, if any, of the two styles was pre-
ferred. This completed a single trial of the study. 
Each user performed a minimum of three trials.  

Preferences for location rendering were evalu-
ated based on 40 users who completed a total of 
133 trials. The users’ data was hand-scored and 
analyzed in terms of accuracy and user preference. 
Users’ ability to accurately remember spoken loca-
tions in these different styles was scored as fol-
lows. Addresses and intersections both contain two 
critical elements (the number and the street name 
in the former, the two street names in the latter). 
For locations spoken as addresses or intersections, 
each element the user correctly identified (within a 
tolerance of 0.1 miles) is given 0.5 points. Correct 
recognition of both elements therefore received 1 
point. Correct recognition of a spoken POI re-
ceived 1 point regardless of whether the other ele-
ments are correct. Thus, each address transcribed 
by the user was scored from zero to one in the fol-
lowing way: 

 1 2max ,
2 2 POI
r rr r⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (1) 

where 1r , 2r  and POIr  are either 0 or 1 and are the 
recognition of the first element, second element, 
and POI.  

The averaged recognition results for each one of 
the four address representations are shown in Ta-
ble 2. While the first three representations have 
approximately the same recognition rate, it is sub-
stantially lower for “Intersection & POI”. This rep-
resentation was typically the longest and is there-
fore the most difficult to remember.  

The user preferences are evaluated as follow.  
For each trial, the preferred representation receives 
one point. If the user had no preference between 
the two styles, both are assigned 0.5 points. The 
final score is weighted with the recognition rate – 
we weight more these preferences which are prop-
erly recognized: 
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 where ( )k
ip  is the preference score of the i-th ses-

sion, where the address is represented in k-th way; 
( )k

ir  is the recognition result for the same session, 
computed by equation (1). Both the non-weighted 
and weighted average preference scores are shown 
in Figure 3. Rendering a spoken location using the 
intersection is clearly preferred, followed closely 
by the combination of intersection and POI. Be-
cause the combination of intersection & POI re-
sulted in the lowest recognition accuracy, we set 
the system to refer to locations using the nearest 
intersection whenever possible. In feedback solic-
ited from the users after this study, several partici-
pants stated that POI helped only when they were 
familiar with the area. Otherwise, it was not help-
ful and added confusion. This indicates that loca-
tion-based services targeting commuters and resi-
dents may want to use POI in describing locations 

Question type Number  Sum Accuracy (%)
 Address only 67 57.5 85.82 
 Address & POI 65 53.5 82.31 
 Intersection only 65 54.0 83.08 
 Intersection & POI 69 47.7 69.13 

Table 2. Recognition rate for various address  
representations. 

Address only 14803 Northeast 51st Street 
Address & POI 251 Rainier Avenue North, near 

Renton Chamber of Commerce 
Intersection only The corner of East Madison Street 

and 17th Avenue 
Intersection & POI The corner of NE Woodinville Road 

and 131st Avenue, near City Hall 
Table 1. Address representations in Commute UX 
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to users, while those targeting tourists or business 
travelers should not.  

5 Initial Deployment and Evaluation 

The initial version of the Commute UX dialog sys-
tem can process requests for information about 
traffic, cheapest and nearest gas stations, and 
weather in Washington State. The system was 
demonstrated to approximately 800 Microsoft em-
ployees in Redmond, WA campus at the beginning 
of March, 2007. It was made available to all Mi-
crosoft employees but no additional effort was 
made to actively recruit users. The results pre-
sented in this paper are based on an eight week 
period between March 12, 2007 and May 6, 2007. 
During this time, a total of 276 users enrolled at 
the Commute UX website, specifying a phone 
number and PPOI.  

5.1 Analysis of calls 

The system received 698 calls during this time 
period, or 12.5 calls per day. Of these calls, 62.2% 
were from registered users, while 37.8% were from 
non-registered users. There were calls from 214 
unique phone numbers, of which 55% were regis-
tered users. This translates to approximately 3.3 
calls per user. However, the distribution of calls 
per user is not uniform, a 40 users accounted for 
50% of the calls during this time period. 

From these calls, there were total of 927 tasks 
that users tried to perform. A task is defined as the 
user’s attempt to obtain a piece of information 
from the system. In our system, the possible tasks 
are obtaining a traffic report, the location of the 
cheapest or nearest gas station, or a weather report. 
The traffic is the most frequently called with 55% 
of all queries, followed by the gas prices with 27%, 
and weather with 17%.  

Table 3 shows the average number of turns for 
each of the three tasks and across all tasks. The 

results are shown for all users as well as for regis-
tered and non-registered users alone. Non-
registered users use 0.7 more turns than registered 
users. The only difference between registered and 
non-registered users from the system’s point of 
view is the presence of PPOI. We believe that the 
use of PPOI enables users to obtain the information 
they want efficiently with fewer dialog turns.  

This theory is further validated when we exam-
ined the task completion rate. Figure 4 shows the 
task completion rates for the various tasks as a 
function of all users, registered and non-registered 
users. Overall, there is a 65.6% task completion 
rate. It is interesting to note, however, that regis-
tered users obtain a consistent task completion rate 
of about 70% across all tasks, while the task com-
pletion rate of non-registered users varies dramati-
cally from 48% for the traffic task to 64% for the 
weather task. The traffic application is the only 
application that requires multiple locations: both an 
origin and destination. Coincidentally, traffic is 
also the application that is most likely to use PPOI 
as many users query the system for traffic informa-
tion during their commutes between home and 
work. For calls made during these times, the regis-
tered users have only to confirm that they would 
like the traffic report between home and work, 
while non-registered users have to convey two lo-
cations to the system for the same request. Thus, 
the use of PPOI results in fewer turns in the dialog, 
and leads to a significantly higher task-completion 
rate for registered users.  

5.2 User evaluation 

To obtain a more subjective evaluation of the 
Commute UX system, we sent out a web-based 
survey to users of Commute UX who had made at 
least one call to the system and those who partici-
pated in the user study discussed in Section 4.2, 
whether they were registered or not. From this so-
licitation, we received 23 responses.  

The survey asked the users to state their level of 
agreement to a series of statements, using a five-
step scale that ranged from Strongly Agree to 

Task Type All Registered Non-registered
Traffic 3.56 3.33 4.08 

Gas Prices 3.73 3.54 4.14 
Weather 3.80 3.61 4.41 

Total 3.65 3.44 4.14 
Table 3. Averaged number of turns per task type. 0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Non-weighted Weighted

Address only

Addres & POI

Intersection only

Intersection & POI

 
Figure 3. User preferences for address conveying. 
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Strongly Disagree. The questions and the re- 
sponses are shown in Figure 5. As the results show, 
a majority of the respondents find the system use-
ful and believe the system understands their speech. 
It is interesting to note that most users believe they 
are speaking in a natural manner, yet a similar 
number claim to only answer the questions the sys-
tem asks. This contradicts our usual notion that 
system initiated dialog is not perceived as natural.  

 The other interesting conclusions from this data 
concern personalization. We note that several peo-
ple use PPOI but most do not use PPOI other than 
the default “home” or “work” locations. Finally, 
we note that there are a significant number of users 
that always ask for the same information from the 
system. This indicates that there is a large opportu-
nity for further improvement in task completion 
with additional personalization and user-specific 
grammar adaptation in this domain.  

6 Discussion 

In this paper, we presented a telephone dialog 
system for location-based services. It utilizes sev-
eral key technologies for both recognizing and 
rendering spoken locations. We performed a user 
study to evaluate the users’ response to various 
ways of describing a spoken location in terms of 
addresses, intersections, or points of interest, and 
designed our system to operate in the manner that 
both provided the best accuracy and was most pre-
ferred by users. The system also enables users to 
improve their experience with personal points of 
interest. The use of these personal locations re-
sulted in dialogs with a higher task completion rate 
and fewer turns per task. A subjective user evalua-
tion of the system revealed that most users had a 
positive experience with the system, but that there 
were opportunities for additional improvement 
through further personalization and user adaptation. 
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Abstract

Especially in noisy environments like in
human-robot interaction, visual information
provides a strong cue facilitating a robust
understanding of speech. In this paper, we
consider the dynamic visual context of ac-
tions perceived by a camera. Based on
an annotated multi-modal corpus of people
who verbally explain tasks while they per-
form them, we present an automatic strategy
for learning action-specific language mod-
els. The approach explicitly deals with the
asynchrony of actions and verbal descrip-
tions and includes an automatic parameter
optimization based on a perplexity measure.
Results show that a significant improvement
of the word accuracy can be achieved using
a dynamic switching of action-specific lan-
guage models.

1 Introduction

While speech recognition is an easy task for hu-
mans even under difficult acoustic conditions, cur-
rent ASR systems still cannot compete with hu-
mans (Potamianos et al., 2003). This is especially
true in human-robot interaction, where one has to
deal with spontaneous speech effects, noisy environ-
ments, communicative gestures, and a frequent ref-
erencing to visual objects and events. In this case,
speech recognition and understanding becomes a
multi-modal issue. This has also been emphasized
by several psychological studies that suggest a very
early interaction between vision and speech pro-
cessing (Spivey et al., 2001). For the practical de-
velopment of speech understanding components for

∗Partially supported by the Federal Ministry of Education
and Research Germany (Joint Project DESIRE)

robotic interfaces, there are three implications. First,
there is a need for multi-modal corpora in order to
train and evaluate more sophisticated speech recog-
nition models. Secondly, visual and acoustic speech
events need to be synchronized and aligned with re-
gard to semantic content for learning as well as inter-
pretation. Thirdly, new strategies for the early inte-
gration of visual information into the speech recog-
nition process need to be developed. In this paper,
we focus on the first and second issues and show
first results for the third.

The integration of speech and visual context can
be treated on different levels of processing that de-
pend on the kind visual information considered.
Motivated by the McGurk effect (1976) audiovi-
sual speech recognition (AVSR) systems have been
developed. These systems integrate acoustic fea-
tures with those extracted from the speakers face.
This is an approximately synchronous process dur-
ing speech production. In AVSR, typically Hidden
Markov Models (HMMs) are used for modelling the
acoustic and visual features. The approaches mostly
differ in the handling of slight asynchrony between
the two feature streams. The methods range from
simple feature concatenation which does not allow
asynchrony at all up to more flexible HMM archi-
tectures (e.g. Product-HMMs) allowing ca. 100 ms
of asynchrony in practice (Potamianos et al., 2003).

Other systems proposed integrate features from a
static visual scene into speech recognition. Knowl-
edge inferred from a visual scene can be used to gen-
erate grammars for object descriptions (Naeve et al.,
1995). These grammars are used as language model
to improve speech recognition. Deb Roy (2005) re-
ports a system, which fuses knowledge of the visual
semantics of language and the specific contents of
a visual scene during speech processing. Based on
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the current scene layout the system generates pos-
sible word sequences for object descriptions from
a probabilistic grammar. These are weighted by a
likelihood associated with each object in the scene.
The result is a bi-gram model, which is dynami-
cally updated using a visual attention mechanism in-
corporating the partially processed utterance. This
model is used to bias speech recognition. Both ap-
proaches have in common that the scene informa-
tion remains static during speech processing. Thus,
the synchronization problem can be neglected and
the integration is done on the level of utterances.
In this case also late integration schemes are pos-
sible that infer a joint multi-modal meaning after
a word sequence has been recognized (Wachsmuth
and Sagerer, 2002).

The timing and synchronization becomes relevant
when dynamic visual events are considered as vi-
sual context. Two different cases can be distin-
guished. On the one hand, communicative gestures
like pointing provide information that is directly re-
lated to the syntactic structure of the sentence. As a
consequence, these are approximately synchronized
with the corresponding noun phrases and partially
marked in the wording. In this area, different re-
search groups have started to collect multimodal cor-
pora (Green et al., 2006; Wolf and Bugmann, 2005;
Maas and Wrede, 2006). However, in these set-
tings, the scene environment is still static and the
kind of visual information provided is of limited use
in speech recognition.

On the other hand, human actions or action se-
quences that are verbally commented are the most
informative but also most flexible case. Usable cor-
pora for speech recognition training as well as eval-
uation are still rare. Integrating this information into
speech recognition broaches two problems. First,
humans do not execute actions synchronously while
describing a task verbally. The degree of asynchrony
lays in a range of several seconds as reported in
(Wolf and Bugmann, 2006). Hence, it is not possible
to integrate this information using HMM architec-
tures as used in AVSR. Second, the actions change
in the course of an utterance. Thus, the contextual
information is not static as in the previous systems
utilizing visual scene contents.

In this paper, we present a corpus-based method
for training and optimising action-specific language

models. The goal is to improve recognition accu-
racy by using these models during speech process-
ing. Training data for the language models is col-
lected using a scenario described in section 2. Sec-
tion 3 describes our method of associating utterance
parts to actions. The resulting action-specific train-
ing data is used in an automated language model
training and optimisation process. The results of this
process are discussed in section 4.

2 Scenario and data collection

Figure 1: A test subject describes a task while per-
forming it.

Our scenario resembles a situation in which a user
teaches a new task to a robotic system. A test sub-
ject sits in front of a table with several objects (e.g.
a cup and a plant) on it that can be utilized for differ-
ent manipulative actions (Figure 1). Only a subset of
the objects is relevant for the following demonstra-
tion. The subject is instructed to explain some sim-
ple tasks to the system while performing the corre-
sponding action sequence. In order to suppress deic-
tic gestures and too complex descriptions they have
to imagine, that their communication partner is intel-
ligent and knows the setup. The tasks are watering
a plant, preparing tea and preparing coffee. In order
to generate more varying utterances the test subjects
have to perform each task twice with three different
object layouts. The second time they are addition-
ally instructed to name colours and object relation-
ships if possible. The utterances are recorded using
a headset microphone and the scene is recorded by
video. A corpus is collected containing the utter-
ance transcriptions and time intervals, which anno-
tate the actions. The actions performed are anno-
tated in the video based on an abstraction hierarchy
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as depicted in Figure 2). The choice of the compo-
sitional granularity was based on two reasons. First,
the corresponding primitives can be detected using a
pre-trained trajectory based action recogniser (Li et
al., 2006). Secondly, the verbalization happened on
that level due to the instructions given.

The resulting corpus consists of 195 utterances
from 11 test subjects (17.7 utterances per person).
The overall length is about 38 minutes. The aver-
age utterance length is about 12.7 s with about 33
words per utterance. The entire corpus includes
6 429 words with a lexicon size of 288 different
words. The videos are annotated with 11 different
actions. The average length of an action interval is
1.75 s. All in all 999 intervals with an overall length
of about 29 minutes have been annotated. Each ut-
terance contains 5.5 actions in average.

action

take putdown pourin

cuptea sugar milk tea cup milk tea sugar milk water

Figure 2: Hierarchic structure of actions used for an-
notation.

The following section describes how action-spe-
cific language models are created using this corpus.

3 Action-Specific Language Models

Speech recognition models are typically formulated
distinguishing acoustic and language models. The
standard technique for language models are n-grams
that have proven their effectiveness over many years
(Rosenfeld, 2000). For acquiring realistic language
models, n-grams need to be trained using a repre-
sentative sample. In the present approach, we as-
sume that the wording will be biased by the ac-
tion, which the speaker performs and describes in
parallel. Thus, we aim at the estimation of action-
specific language models. In order to gain corre-
sponding action-specific samples two problems need
to be solved. First, a method is required, which is
able to associate speech with action intervals in or-
der to extract action-specific parts from an utterance.
Secondly, our approach requires temporal informa-
tion (word intervals) for both the actions and the
speech. The utterance transcriptions from the above-

described corpus are not annotated with temporal in-
formation in contrast to the video annotation. Man-
ual annotation on that level of detail is expensive.
Thus, we use an automated approach, which is de-
scribed in the next section. Afterwards we elaborate
on our approach to the first problem.

3.1 Gaining Time Information
The temporal information of an utterance with a
known transcription can be gained by using a so-
called forced alignment. Our speech recogniser
(Fink, 1999) uses Hidden Markov Models (HMMs)
as acoustic models. Existing models trained on a
speech corpus are used. Words not in the lexi-
con are defined by new compound models based on
phoneme HMMs. In a forced alignment, the model
topology is restricted in accordance with each utter-
ance transcription. This means the order of word
models is fixed for each transcription ensuring a cor-
rect alignment although the acoustic quality varies
depending on the speaker. Since the transcription
does not contain pauses or spontaneous speech ef-
fects, the model topology needs to be adapted ac-
cordingly. An “<other>” model for these effects is
optionally allowed between words. Figure 3 shows
a schematic diagram of the model topology. For

...

ich

...

nehme

...

die

...

Pflanze

...

...

<other>

...

...

<other>

...

Figure 3: Schematic diagram of a HMM topol-
ogy with fixed word model order and optional
“<other>” models.

each utterance, a sequence of MFCC feature vectors
is extracted following standard speech recognition
techniques. The Viterbi algorithm is used to calcu-
late the state sequence s through the model topology
which produces the feature vector sequence o with
the maximum probability given the HMM λ:

s∗ = argmax
s

P (o, s|λ) (1)

After the Viterbi alignment, the resulting state se-
quence can be used to calculate the time interval for
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each word since the frame length used during fea-
ture extraction is known. After this step, the tem-
poral information is available for both the utterance
transcription and the action annotation. The follow-
ing section explains the next step where the temporal
information is used to associate utterance parts with
actions.

3.2 Pairing of Speech and Actions
The main problem when speech has to be associ-
ated with action intervals is that the utterance parts
semantically belonging to actions are asynchronous
on the time-line (Wolf and Bugmann, 2006). Thus,
a distance measure d(wi, aj) is calculated between
each word wi and action aj . A set of tolerance pa-
rameters is used to decide if a word is assigned to an
action. By choosing these parameters appropriately,
the asynchrony between speech and actions can be
respected. Since the time shift is not longer than
several seconds this procedure is suitable. Multiple
cases have to be handled when calculating with tem-
poral intervals, which are systematically structured
by Allen’s calculus (Allen, 1983). Our method uses
a subset of these relationships. Each type of action
uses independent tolerance parameters to the left hl

j

and the right hr
j . They are used depending if wi is

before or after aj respectively. Pauses detected dur-
ing the forced alignment give hints about the change
of an action. Thus, silence is weighted additionally
using a penalty parameter gj so that silence between
an action and a word further increases the temporal
difference. Figure 4 illustrates the distance measure
when silence has to be considered.

wi

t1 t2

t4t3

aj
t5 t6

<silence>

Figure 4: The distance function between two word
intervals under the above constellation is defined as
d(wi, aj) = t3 − t2 + gj · (t3 − t5).

A word is associated with an action if the follow-
ing condition is true:

−hr
j < d(wi, aj) < hl

j (2)

Figure 5 gives a simple example about the assign-
ment strategy. The tolerance parameters are deter-

mined automatically and individually for each lan-
guage model using an optimisation method, which
is described in section 3.4.

3.3 Language Model Training
The objective of the language model training is to
create a n-gram-model for each action type, which
predicts the action-specific utterance parts most ac-
curately. These models could directly be trained
with the results of the above assignment strategy but
it is likely that these models become too specific.
Therefore, the training data is structured using the
hierarchy defined in figure 2. The top level refers to
the complete utterance. The second level addresses
utterance parts on a more general action level e.g.
“take” or “put”. The third level reaches the high-
est level of granularity with action-object specific
utterance parts. During training each level can be
weighted using an individual factor (see figure 6).
The set of weighting factors is specific for each lan-

complete utterance

take putdown pourin

cuptea sugar milk tea cup milk tea sugar milk water

m
o
re

 sp
e
cific

1£

1£

5£

Figure 6: Structure of the training data using the ac-
tion hierarchy. The highlighted path shows by ex-
ample, which parts are used and weighted to train
one language model.

guage model. Thus, each language model has an in-
dividual degree of specialisation depending on these
factors. The training data required in this process is
generated using the speech and action pairing pro-
cess with an individual parameter set. Both the pair-
ing parameters and the weighting factors are opti-
mised specifically for each language model using a
method described in the following section.

During model estimation, absolute discounting
and backing-off are used to handle unseen events.
The counts c(yz) of a word z with history y are
modified with an absolute value β in order to gain
probability mass for unseen events so that the rela-
tive frequencies are defined as:

f∗(z|y) =
c(yz) − β

c(y·)
∀yz c(yz) > β (3)

Where c(y·) denotes all events with history y.
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<other> ich nehme jetzt die Tasse und gieße damit die Pflanze links <other>

action–take–cup action–pourin–water action–putdown–cup

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Figure 5: Augmented utterance transcription and action annotation on one time axis (t[s]). Assuming pourin-
water has a tolerance of 0.5 s to the left and 0 s to the right the part “Tasse und gieße damit die Pflanze links”
is assigned to this action.

3.4 Parameter Optimisation

In the above sections, we have introduced several pa-
rameters. The tolerance parameters and the penalty
factors for silence sum up to 33 in total considering
all 11 action types. In addition, the weighting factors
in the training data structure count 33 in total. This
large number of free parameters cannot efficiently
be determined manually. Thus, we use an optimisa-
tion method, which uses the perplexity to measure
the quality of the action-specific models. We firstly
describe the method in general and go into detail in
the next paragraph.

In order to compute the perplexity a test sample
is required. Since our corpus is relatively small, the
choice of the test sample has large influence on the
perplexity. Therefore the perplexity is computed us-
ing a leave-one-out cross validation (Kohavi, 1995).
The utterances of one person are used as testing data
on each run; the others are used for training. Firstly,
a parameter set with the above parameters is gener-
ated. This parameter set is used to train language
models with the method described in the last two
sections. The testing data is gained using the same
parameter set. Secondly, the perplexity is computed
for each excluded test subject. The average perplex-
ity regarding an action-specific language model is
the final measurement of this model and the under-
lying parameter set. Thus, a parameter optimisation
also finds the tolerance parameters for speech action
assignment. The asynchrony between speech and
actions is respected this way. This method depends
on the assumption that actions frame semantic units,
which are verbalised similarly. Therefore, a correct
assignment of speech to actions results in a better
perplexity rating.

In detail, the optimisation is realised by evaluating
a large number of parameter sets automatically. The

tolerance parameters to the left and the right are var-
ied in a range from 0 to 3 seconds using an increment
0.5. The silence penalty is varied in a range from 0
to 2 analogously. The training data is weighted zero
or once on utterance level. The action-level weight-
ing is varied between 0 and 5. On the action-object
level, weighting factors from 1 to 10 have been ex-
plored. We have chosen 12 sets of these factors in
order to evaluate models with different degrees of
specialisation. All combinations of these parame-
ters result in 2 892 different sets. Each one is used
to generate a complete set of action-specific bi-gram
language models. Unseen events are handled using
absolute discounting with β = 0.8. Due to the large
number of parameter sets and the resulting complex-
ity, this factor has not been made subject to optimi-
sation. Furthermore, the discounting factor has in-
significant influence regarding this method as infor-
mal tests have shown.

After the action-specific language models have
been created the perplexity is computed so that each
combination of language model and the underlying
parameter set is associated with one. This way the
perplexity can be used as optimisation criterion to
find the best language model for each type of action.
In the following section we present first results gath-
ered using these models during speech processing.

4 Results

The language models’ quality is evaluated by assess-
ing the corresponding speech recognition perfor-
mance. Our speech recogniser uses a standard time
synchronous integrated search strategy to weight hy-
potheses generated by the acoustic model addition-
ally with the language model. We have implemented
a strategy, which enables the speech recogniser to
switch language models during speech processing
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WACC % WCORR %
Action-Specific 65.98 ±1.1 68.77
Base Model 69.39 ±1.1 71.96
Difference −3.41 −3.19
Random Usage 48.61 ±1.2 51.36

Table 1: Recognition results (expand strategy) using
optimised action-specific language models, trained
with utterance parts on action-object level only.

Action Base Model Diff
perp. perp.

take-cup 20.84 16.55 4.29
take-tea 34.90 16.97 17.93
take-sugar 24.17 14.04 10.12
take-milk 22.68 19.28 3.40
putdown-tea 28.39 9.83 18.56
putdown-cup 23.01 15.11 7.90
putdown-milk 30.48 12.03 18.45
pourin-tea 41.21 11.95 29.27
pourin-sugar 20.39 12.50 7.89
pourin-milk 36.32 12.54 23.78
pourin-water 34.51 16.10 18.41

Table 2: Comparison of the perplexity regarding the
action-specific models against the perplexity using
a standard bi-gram trained on the whole utterances.
The language models are trained with utterance parts
on action-object level only.

using a set of switch points. In our case these
switch points are generated from the action anno-
tation. Two strategies have been implemented. The
stick strategy uses exactly the interval borders and a
default model when no annotation is available e.g.
between two intervals. The expand strategy expands
each action interval as far as possible so that an
action-specific model is always used. All results
are computed using a leave-one-out cross validation
as described in section 3.4. The audio data belong-
ing to the excluded test subject for each run is used
for evaluating the speech recognizer. Afterwards
the word accuracy WACC and the word correctness
WCORR are calculated.

In order to see how the degree of specialisation af-
fects the recognition results it is possible to apply re-
strictions during optimisation. In the following, we

WACC % WCORR %
Action-Specific 70.56 ±1.1 73.20
Base Model 69.39 ±1.1 71.96
Difference 1.17 1.24
Random Usage 69.22 ±1.1 71.97

Table 3: Recognition results (expand strategy) using
optimised action-specific language models, trained
using the utterance level always once. Weighting
factors have been made subject to optimisation.

Action Base Model Diff
perp. perp.

take-cup 20,43 17,59 2,84
take-tea 26,59 25,15 1,44
take-sugar 23,36 18,98 4,38
take-milk 22,68 21,63 1,05
putdown-tea 26,36 20,57 5,80
putdown-cup 22,51 20,91 1,60
putdown-milk 30,46 21,95 8,51
pourin-tea 27,27 22,51 4,77
pourin-sugar 20,33 15,40 4,93
pourin-milk 31,34 25,46 5,88
pourin-water 29,53 24,62 4,91

Table 4: Comparison of the perplexity regarding the
action-specific models against the perplexity using
a standard bi-gram trained on the whole utterances.
The language models are trained using the utterance
level always once.

Action Tolerance [s] Silence-
left right penalty

take-cup 2.00 1.00 2.00
take-tea 3.00 3.00 0.00
take-sugar 0.00 3.00 1.00
take-milk 3.00 2.50 0.00
putdown-tea 2.50 0.00 0.50
putdown-cup 3.00 0.50 0.50
putdown-milk 0.50 0.00 1.00
pourin-tea 0.50 2.50 1.00
pourin-sugar 0.50 1.00 1.50
pourin-milk 0.00 2.00 0.00
pourin-water 2.50 1.50 0.00

Table 5: Tolerance parameters found by the optimi-
sation process (cp. table 4). The language models
are trained using the utterance level always once.
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Figure 7: Overview of the average perplexity against word accuracy for all evaluation results. Models that
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Action Weighting Factors
Utt. Ac. Ac.-Obj.

take-cup 1 0 3
take-tea 1 0 1
take-sugar 1 0 3
take-milk 1 0 3
putdown-tea 1 0 5
putdown-cup 1 0 1
putdown-milk 1 1 10
pourin-tea 1 1 5
pourin-sugar 1 1 5
pourin-milk 1 0 5
pourin-water 1 0 3

Table 6: Weighting factors determined during pa-
rameter optimisation (cp. table 4).

present detailed results using very specialised mod-
els on the one hand and results where the degree of
specialisation has also been made subject to optimi-
sation on the other hand. The results are compared
against recognition results using a standard bi-gram
model trained on the complete utterance level (base
result). Another comparison is made against results
where an action-specific model is randomly selected
for each action interval during speech recognition in
order to evaluate their level of specialisation.

Table 1 shows results using very specific models
trained with utterance parts on action-object level
only. The models are too specific since the results
are less good than using a standard bi-gram model.

The perplexity difference in table 2 shows that these
models are much more specific to the action context
than the standard bi-gram model. The random usage
result confirms that parts not belonging to the cor-
responding action context are not well described by
the model.

Since very specific models with a low perplexity
do not improve recognition results restrictions are
applied during optimisation. The results in table 3
are generated using language models, which have
been trained using the utterance level always once.
The other weighting factors have been made subject
to optimisation. The results are significantly better
in comparison to the standard model. In contrast to
the very specific models, the perplexity difference to
the base model is smaller (see table 4). The random
usage results emphasise the high level of generalisa-
tion. Table 5 shows the optimised tolerance param-
eters. The according weighting factors are shown in
table 6. As one can see, the action-level seems to be
of less importance to the specialisation and is there-
fore rarely used.

We have evaluated more action-specific models
optimised under different restrictions. These re-
sults are summarized in figure 7. In order to verify
that our method actually finds action-specific mod-
els which have better results than others trained dur-
ing the optimisation process we have additionally
evaluated non-optimal action-specific models with a
lower perplexity. These models are selected by leav-
ing different percentages (from 10 % up to 80 %) of
the top rated models unconsidered during the opti-
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misation process. The figure shows that these mod-
els indeed create worse recognition results than the
fully optimised ones.

5 Outlook

We have demonstrated an approach to include visual
context into speech recognition realised by means
of action-specific language models, which are auto-
matically trained and optimised. The action-specific
utterance parts required for training are gained us-
ing an automatic associating method between ac-
tions and speech. The method only requires manual
annotation on a level of low detail. The perplexity is
used as optimisation criterion for the training param-
eter sets and a detailed analysis shows the adequacy
of this approach. In order to ensure a certain level
of generalisation the complete utterance level has to
be always used. The optimisation under this restric-
tion delivers the best results, which are significantly
improved in comparison to speech processing with a
standard bi-gram model.

Although this approach is able to improve speech
recognition, the pairing of speech and actions hap-
pens on a heuristic level. Further research has to
show in how far this association delivers seman-
tically correct results. In contrast to knowledge-
based methods, our approach can easily be trans-
ferred to other domains due to the automated pairing
and training process.

Further applications of action-specific language
models could make it possible that action hypothe-
ses are extracted during speech recognition. In or-
der to realise that, multiple models could be matched
against each other during speech processing.
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Abstract 

We present our iterative approach to ena-
bling natural dialogic interaction between 
human users and a wheelchair, based on 
the alternation of empirical studies and dia-
logue modelling. Our approach incorpo-
rates empirically identified conceptual 
problem areas and a dialogue model de-
signed to manage the available information 
and to ask clarification questions. In a 
Wizard-of-Oz experiment employing the 
first version of the model, we test how ver-
bal robotic reactions can enable users to 
provide the information needed by the 
wheelchair to carry out the spatial task. Re-
sults show that the output must be extraor-
dinarily coherent, temporally well-placed, 
and aligned with the user's descriptions, as 
even slightly deviating reactions systemati-
cally lead to confusion. The dialogue 
model is improved accordingly.  

1 Introduction 

Most advanced work on dialogue systems focuses 
on human-computer interaction scenarios in which 
either the user requires information from an expert 
system (e.g., Kruijff-Korbayová et al. 2002), or the 
user and the system negotiate a joint task such as 
making reservations (Rieser & Moore 2005), or the 
system engages in tutoring the user within a 
specific area of interest (Clark et al. 2005). In such 
tasks, there are typically no particular complic-
ations with respect to time or space: Although the 
dialogue takes place in real time, there are no 
fundamental context-related effects of temporal 

delay or spatial mismatch. Complementing this 
research, there is a growing interest in dialogue 
systems employed in real time in spatially 
embedded interaction scenarios, such as situated 
human-robot dialogue. Such scenarios typically 
employ robots designed to accomplish service 
tasks for users instructing them by using natural 
language. Work in this area often focuses on a 
number of specific techniques designed to 
overcome the particular complexity of such a 
situation (e.g., Lemon et al. 2003, Spexard et al. 
2006, Kruijff et al. 2007). Our own work fits into 
this latter endeavour by focusing on the 
spatiotemporal matching problems that are typical 
for a dynamic setting. Our users are involved in the 
process of reaching a spatial goal together with the 
robot in a wayfinding setting. The particular 
challenge in our framework lies in reaching mutual 
agreement in relation to the actual surroundings in 
spite of the fact that humans' and robots' 
spatiotemporal concepts differ in crucial respects.  

Related work also focusing on route descriptions 
is addressed, for example, by the Instruction-Based 
Learning group (e.g, Bugmann et al. 2004), and by 
MacMahon et al. (2006). Our current focus is on a 
detailed qualitative analysis of the discourse flow 
between human and robot, using a realistic interac-
tion scenario with uninformed users that is tailored 
to the actual technological requirements. This par-
ticular approach is not to our knowledge adopted 
elsewhere (though see Gieselmann & Waibel 2005 
for a different scenario), but is specifically needed 
to establish and improve the relationship between 
implemented functionalities and humans' intuitive 
reactions at being confronted with an autonomous 
transportation device. In this paper, we first de-
scribe our approach including earlier empirical re-
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sults and a sketch of the first version of our dia-
logue model. Then we present the results of an-
other empirical study testing the model, discuss the 
ensuing improvements, and conclude by outlining 
the next steps in this iterative process.  

2 Previous work 

One of the prominent aims in the SFB/TR 8 Spatial 
Cognition (Bremen/Freiburg)1 is to enable smooth 
and efficient spatiotemporally embedded language-
based interaction between humans and robots. For 
this purpose we explore uninformed users' natural 
preferences in tasks resembling the future func-
tionalities of our robots in basic respects, coupling 
technological development with empirical investi-
gations. In the long run, our system will implement 
ontological knowledge as described in Hois et al. 
(2007), the development of which is also based on 
our targeted empirical findings, in addition to a 
careful examination of the existing literature on 
spatial language semantics and usage (Tenbrink 
2007). Our dialogue system architecture is de-
scribed in Ross et al. (2005). While the system it-
self is not restricted to application in a particular 
robot, we focus here on an application with the 
autonomous wheelchair "Rolland" (Lankenau & 
Röfer 2000). In Shi & Tenbrink (forthc.), we de-
scribe the first steps in adapting the system for an 
indoor route description scenario. The main focus 
in that work is on matching the users' spontaneous 
utterances with the robot's implemented conceptual 
route graph (Krieg-Brückner & Shi 2006). In the 
following we summarize the results.  

2.1 Empirical results 

Our first empirical study was designed to collect 
spontaneous utterances and examine users' general-
ized strategies in a scenario resembling the tar-
geted robotic task. Our users were told to move 
with the robotic wheelchair through an office envi-
ronment and describe a range of places and loca-
tions to the robot. After that, they were asked to 
instruct the robot to move to one of these places.  

From the collected natural language data, we ex-
tracted the following potentially problematic con-
sequences of our users' linguistic choices and 

                                                 
1 Funding by the DFG is acknowledged. Also, special 
thanks to Kerstin Fischer who was crucially involved in 
the preparation of the empirical work reported here. 

strategies. Most typically, the utterances may con-
tain a reference to an object or location in the real 
world that the robot is incapable of resolving. This 
may be due to the vocabulary available to the ro-
bot, to the name tags attached to objects and loca-
tions in the robot's internal map, to the user's em-
ployment of a different expression than that ex-
pected by the robot, or to the robot's inability to 
establish the exact spatial relationship that the user 
refers to. The latter point is enhanced by the fact 
that natural spatial utterances are typically under-
specified (Tversky & Lee 1998); they only point to 
a vague spatial direction that needs to be matched 
to other knowledge sources, and they often lack 
information about a required ingredient (such as 
the relatum). Since the robot's perceptual abilities 
differ from the human's, there is a high potential 
for mismatches especially in the (normal) case of 
underspecification. On top of that, the utterances 
we collected in our scenario reflect a high degree 
of uncertainty on the part of the users.  

A different problem is that users are unsure 
about the level of granularity or detail suitable for 
the instruction. Some instructions directly refer to 
the goal location, while others only give directional 
information such as "straight on – to the left". 
Since the robot has access to higher-level informa-
tion, this method is not efficient as it leads to a 
continuous need for interaction. Also, to match 
instructions with the implemented conceptual route 
graph, the robot needs information about spatial 
boundaries of the route segments, which is often 
not provided, at least not explicitly. The informa-
tion provided by the users is also often too vague 
to be matched to the robot's knowledge. 

2.2 Dialogue system 

The first version of our proposed dialogue model 
was designed to deal with each of the identified 
problem areas. In the case of reference resolution 
problems, underspecification, and missing bounda-
ries, the robot asks for more information. If a con-
flict between the description and the robot's inter-
nal map is detected, the robot makes an assertion to 
inform the user about this disparity. In case of am-
biguities, the robot may provide a suggestion to the 
user. These ideas were integrated within a dialogue 
model based on the COnversational Roles model 
(COR) (Sitter & Stein 1992). Figure 1 shows a de-
piction of a clarification subdialogue ask(robot, 
user), initiated by the robot, a part of the dialogue 
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model. In the diagram request, reject, accept, sug-
gest and assert are dialogue acts, while instruct 
(user,robot) is another subdialogue within the dia-
logue model. Circles represent dialogue states; the 
marked one is the final state. The subdialogue 
instruct(user,robot) may involve iterative 
processes such as those described by Clark & 
Wilkes-Gibbs (1986), in which the agreement on a 
particular kind of reference may take several turns. 

 
Figure 1 Clarification subdialogue 

Our examination of the collected data shows that 
our formal model should theoretically capture the 
majority of the potential communication problems 
identified on the basis of the (monological) first 
study. In order to account for dynamic dialogue 
processes, and to put the dialogue model to the 
test, we conducted a second study in which the 
robot reacted verbally to the users' utterances. This 
is particularly important since our cases of 
clarification relate neither directly to the semantic 
nor the pragmatic level of understanding (cf. 
Schlangen 2004), but rather, to the cognitive 
domain: the robot needs to know precisely how the 
users' cognitive representation should be matched 
to its own internal conceptual map. Therefore, 
standard clarification mechanisms such as various 
forms of reprises or clausal, constituent, or lexical 
clarifications (Purver et al. 2003) do not readily 
apply in this particular situationally embedded 
domain of interaction. Our second study is 
presented next.  

3 Empirical investigation 

17 German and 11 English native speakers partici-
pated in this experiment. The setting in this second 
study exactly matched that of the first, except that 
in this case, in the second (route instruction) phase 
a human "wizard" was seated behind a screen who 
triggered prefabricated robotic utterances follow-
ing a certain schema based on the dialogue model 

developed before. The schema was devised based 
on our knowledge about the range of variability in 
the users' spontaneous utterances, as gained from 
the first study. The wizard's instructions were as 
follows: If the user simply states the goal location 
or reference to a room without providing further 
information, the robot informs the user that this 
location is unknown to it, and requests further in-
formation. If the user provides an underspecified 
spatial direction such as "then left", the robot sug-
gests a precise location to turn according to its in-
ternal knowledge, or requests clarification in a 
number of predefined ways, formulated so as to 
induce the speaker to provide the relevant informa-
tion on a suitable level of granularity. These reac-
tions account for those cases in which boundaries 
cannot be inferred from probable interpretations of 
combined utterances (which should often be 
possible at least to a certain degree). The wizard 
could also assume a representation mismatch and 
react by letting the robot assert: "Sorry, this does 
not match with my internal map". Thus, using a 
range of preformulated utterances, the wizard was 
able to produce a reasonably natural dialogue with 
the user without natural language generation while 
sounding "automatic" as suitable for the robot. The 
design was intended to presume a high amount of 
mismatch and need for clarification (Fischer 2003). 

As before, the linguistic data were recorded, 
transcribed, segmented into TCUs, ("turn construc-
tional units", cf. Selting 2000),2 and analyzed using 
the methodology of a detailed qualitative discourse 
analysis. In particular, since we are interested in 
the cognitive elements and spatial information con-
tent, we categorized the route instruction data with 
respect to whether each TCU contained: 

1. a directional or motion-based term, such as 
"straight on" or "turn left" 

2. a reference to a spatial location: either a 
landmark (or sub-goal) or the goal itself, 
e.g., "go to the office" 

3. a reference to a path entity ("the hallway"). 
These distinctions were further examined with re-
spect to whether the landmarks or (sub-)goals in 2. 
as well as the path entities in 3. were spatially an-
chored as in "the office on the left" or "the first 
                                                 
2 TCUs are defined on the basis of interactionally rele-
vant completion, taking syntactic, semantic, pragmatic 
linguistic evidence as well as activity-related factors 
into account. 

ask(robot,user)

robot.suggest 

robot.request 

robot.assert 

user.reject 

user.accept 

instruct(user,robot)
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hallway on the left", and whether they occurred 
together with a path-describing term such as "past 
the office" or "down the hallway". These aspects 
reflect insights on basic elements of route descrip-
tions (e.g., Denis et al. 1999, Gryl et al. 2002). A 
specific spatial segment could be described in full 
by combining all three categories: "go straight on 
down the hallway in front of you towards the third 
office on your right". However, most TCUs con-
tain only parts of this information. Other parts may 
be expressed in or inferable from adjacent TCUs. 
The component analysis serves here for a first 
evaluation of the data, though they cannot capture 
the intricate diversity of the users' distinctions (cf. 
Klippel et al. in press). More detailed annotations 
are possible and desirable for our subsequent work, 
for instance, integrating qualitative and quantita-
tive distance and orientation information (which 
plays a minor role for the present analysis). In ad-
dition to the component-related analysis (section 
3.1), we pursued a procedural approach by analys-
ing the development of particular stretches of dis-
course in detail. In sections 3.2 through 3.4 we pre-
sent the generalized results of this analysis in rela-
tion to the utterance categories presented in 3.1 
along with a number of examples.  

3.1 Component analysis 

In the 11 English and 17 German dialogues, we 
identified 123 English and 244 German TCUs 
produced by the user and directed to the robot. In 
the following, we do not differentiate further 
between the languages since we do not focus on 
language differences here. 103 (less than one third) 
of the TCUs were non-spatial (such as answering 
"Yes" to a robot's question).  

Of the remaining 264 TCUs, about one third 
(31.44%) were purely direction-based (category 1). 
Almost half of the 264 TCUs (45.08%) contained 
mention of a location (category 2); one-third of 
these were neither spatially anchored nor part of a 
path-description; rather, they presupposed knowl-
edge of the mentioned place, as in "go to the stuga-
room". Almost one-third (29.55%) of the 264 
TCUs contained a path entity (category 3), half of 
these occurring together with a path-describing 
term, and one-third specifying the path entity spa-
tially. Thus, as with landmark entities, the identity 
of path entities is typically presupposed. We now 
turn to a closer look at a number of samples in or-
der to investigate the success of our first dialogue 

model reflected by our wizard's reactions. Here we 
did not establish abstract categories for measuring 
dialogic success, as we felt this would not do jus-
tice to the flexibility of the discourse processes. 

3.2 Smooth dialogue with clarifications  

Some of the dialogues turned out to be entirely 
unproblematic, they appeared to be completely 
covered by the dialogue model and did not exhibit 
any communication problems. Here is an example 
(D1) (numbers in brackets refer to pauses in 
seconds; the examples segment the utterances here 
into idealized turns rather than TCUs).  
 ROBOT I'm ready. 

 USER please go to the stugaraum 
ROBOT Oh, I'm sorry, I must have missed that location. 

Can you please explain to me how to get there? 
USER leave this room (1) then (2)  turn left (2) follow the 

hallway (2) and then take (1) another left 
ROBOT Is this the first possibility to turn? 
USER yes (2) then continue left continue down that 

hallway 
ROBOT Up to which point do I go straight? 
USER you go straight until the last room on the left side 
ROBOT Okay, I think I got it. I am taking you to the 

Stugaroom now. 
USER okay go 
ROBOT I am sorry, my batteries are too low. Please 

recharge them first.  

This example shows how the speaker first assumes 
full knowledge on the part of the robot, by simply 
referring to the goal location (category 2). The 
clarification question induces the speaker to pro-
vide more specific information structured in seg-
ments according to relevant decision points, em-
ploying categories 1 and 3. Then the robot suggests 
that the left turn is the first possibility to turn, 
which is confirmed. Utterances of category 2 (here: 
"continue down that hallway") are underspecified 
with respect to the end boundary, motivating an-
other clarification question by the robot. The user 
gives the information, and the robot is satisfied.  

3.3 Shift of granularity level 

Some utterances do not reflect a level of 
granularity that is suitable for the robot. Our 
preformulated utterances in some cases success-
fully motivated a shift in this respect as intended 
by the form of the robot's requests, as shown in the 
following example D2. 

USER to go to the stugaroom (1) turn (4) 180 degrees (2) 
exit (1) room three four four zero. turn (1) left (3) 
go straight (1) ahead 
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ROBOT Up to which point do I go straight? 
USER to the - I don't know (5) go straight (1) turn left to 

the (3) to the copy room (3)  
ROBOT When I'm left of the room with the photocopying 

machine, what do I do? 
USER you go straight until (1) you get to the stugaroom 

The user starts out with category 1 descriptions 
accompanied by hesitations and pauses, omitting 
information about the boundaries of actions. After 
the robot's first question the user starts to mention 
places (category 2) but seems to be uncertain about 
the correct spatial relations. The robot's second 
question then seems to encourage the user so that 
the last part of the route instruction is provided 
fluently and on a level of granularity more directly 
matching the robot's internal spatial knowledge 
(combing categories 1 and 2). – In the following 
example D3, the robot asserts confusion with re-
spect to its internal map: 

ROBOT tut mir leid, aber das passt jetzt gar nicht zu meiner 
internen Karte. (I'm sorry, but this does not match 
with my internal map).  

USER hm    
ROBOT bis wohin fahre ich geradeaus? (Up to which point 

do I go straight?)   
USER bis zur  zweiten Linkskurve (until the second left 

turn) 

Here, the robot's request for a spatial goal serves to 
remedy the confusion and is readily taken up by 
the user. 

3.4 Spatiotemporal congruity 

As exemplified by the previous examples, our pre-
formulated answers turned out to be successful 
whenever they fit sufficiently to the user's descrip-
tions by precisely filling in gaps or underspecifica-
tions. However, these clarifications need to be pre-
cisely temporally adjusted; as Rieser & Moore 
(2005:245) point out, "clarification should not be 
postponed, and immediate, local management of 
uncertainty is critical." Our example D4 illustrates 
how a very slight delay may cause confusion and 
non-clarification of the underspecified item.  

USER you turn left, go straight, turn…    
ROBOT Up to which point do I go straight?    
USER after the copyroom continue straight 

The question about when exactly to cease going 
straight remains unanswered; the user essentially 
blends the next route segment (which involves 
going straight) with the robot's question. This 
confusion is due to the users' choice of rapidly 
sequencing category 1 utterances that leave 
boundaries underspecified, which according to the 

dialogue model triggers the robotic reaction of 
explicitly asking for boundaries.  

Getting back on track is extremely difficult once 
the discourse flow has been interrupted in an 
unsuitable way. This may lead to confusions in the 
represented spatiotemporal sequence, as in the 
following example D5. 

USER wenn wir aus dem Raum A 3440 heraus fahren 
biegen wir links ab fahren dann geradeaus (coming 
out of the room A 3440 we turn left and then go 
straight) 

ROBOT wo soll ich abbiegen?  (where should I turn?) 
USER links. dann an der nächsten Abbiegemöglichkeit 

nach links biegen wir dort ab (left. then at the next 
possibility to turn left we turn).  

Here, the robot's question is probably intended to 
refer to the user's description of going straight. But 
the user mentally goes back to the previous 
expression turn left, and then returns immediately 
to the point where he was interrupted. Matching 
this kind of non-sequential information to the 
robot's internal map is certain to cause severe 
problems. In this case, the user's interpretation of 
the robot's clarification question could probably 
have been avoided if the robot had acknowledged 
the user's description so far (by saying "Okay" 
prior to asking the question), so that the user 
knows the question refers to the current route 
segment rather than a previous one.  

3.5 Discussion 

Our analysis of utterance components shows that a 
substantial amount (one third) of speakers' spon-
taneous route descriptions towards the robot were 
based purely on spatial directions, rather than pro-
viding information about the boundaries of a route 
segment or the location of a spatial goal or sub-
goal (landmark). Taken by itself, this result is simi-
lar to our monologic study reported in Shi & Ten-
brink (forthc.) where the proportion of purely di-
rectional TCUs is nearly 40%. Such instructions 
are informative when given together with addi-
tional information in adjacent turns (Tversky & 
Lee 1998). However, the robot may not always be 
able to integrate this information suitably, given 
the implemented features of the conceptual Route 
Graph. Also, some of our participants relied en-
tirely on underspecified directional information, 
leading to the need to infer implicit actions 
(MacMahon et al. 2006). In both cases, a sophisti-
cated dialogue model can support the inference 
processes by filling in missing information with 
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respect to both the implemented spatial model, and 
the real world in which the interaction takes place.   

The present Wizard-of-Oz study was 
purposively designed to assume more mismatches 
than would normally be the case using any 
sophisticated spatial language understanding 
system. Nevertheless, the need for conceptual 
clarification questions will remain, particularly 
with increasing spatiotemporal complexity. Such 
procedures are well known also from human-
human interaction (which may be assumed as a 
"gold standard" for our research), e.g., Filipi & 
Wales (2004). In the present study, the clarification 
attempts by the robot worked best for the discourse 
flow when they could be integrated into the user's 
current mental representation of the spatial as well 
as the discourse situation. In other cases, 
clarification questions could induce spatiotemporal 
distortions not encountered in our previous mono-
logical experiments (Shi & Tenbrink forthc.), thus 
complicating the dialogue rather than enhancing it.  

Robotic requests that include a new starting 
point, such as "When I am left of the room with the 
photocopying machine, what do I do?" were taken 
up easily by the users especially in cases of earlier 
confusion. To generalize this idea, it is important 
that the robot informs the user about its current 
state of knowledge in as much detail as possible, 
and suggests a solution concerning how to proceed 
further. This will be specifically helpful in the case 
of spatiotemporal sequencing confusions. Also, it 
is important that the robot acknowledges what it 
has understood so far, to let the user know where 
exactly there is an information gap that needs to be 
filled in, and to align the spatiotemporal concepts 
that the interactants are currently referring to. 
These results are related to Rieser & Moore's 
(2005) finding that it is better for systems to ask 
for confirmation of a hypothesis than to merely 
signal non-understanding. 

In general, our brief investigation of a situated 
dialogic interaction in which a robot's reactions 
were simulated shows that requesting clarification 
about spatial representations is a non-trivial 
endeavour in which even slight deviations in 
timing or in confirming common ground may lead 
to severe distortions (see also Stoia et al. 2006). 
With a real robotic system, speech recognition 
problems will complicate the situation consider-
ably (Moratz & Tenbrink 2003), although more 
standard clarification procedures (Purver et al. 

2003, Schlangen 2004) are then applicable to cover 
some of the problems. 

4 Improvement of the dialogue model  

Regarding the results of our analysis, the dialogue 
model used as motivation for the empirical studies 
(cf. section 2.2) needs to be extended. This con-
cerns, in particular, an improvement of the clarifi-
cation procedures, the amount of feedback pro-
vided by the robot, and a more precise matching 
process between system knowledge and the lin-
guistic input by the user. Specifically, the precise 
discourse history is important since specific re-
quests providing information about successfully 
integrated knowledge are more useful than generic 
clarification questions, as motivated above. More-
over, the robot's internal map represented as a 
Conceptual Route Graph and the robot's current 
position on the map should be used for informing 
the user in detail about current disparities, in order 
to classify various requests, and to make precise 
suggestions (see below). In the former version, this 
information was only used to detect mismatches, 
not to inform the user within the clarification sub-
dialogues. To achieve an effective and natural dia-
logue with users, the dialogue model needs to take 
account of information from both dialogic and in-
ternal sources. Consequently, the first extension of 
the dialogue model augments it by integrating the 
dialogue history as well as the internal map with 
the robot's current position (denoted as [H, M]). 
The COnversational Roles model is a generic 
situation-independent dialogue model. Dialogue 
models based on the COR model cover discourse 
patterns that are independent of the dialogue 
context. By integrating the dialogue history as a 
parameter in the extended dialogue model we add a 
crucial element from the well-known information 
state approach (Traum & Larsson 2003) into the 
dialogue modelling process. As a result the model 
benefits from both approaches: the flexibility of 
the information state approach and the well defined 
structure of the COR based modeling approach. 

With respect to the mapping of user utterances to 
the robot's internal map, the general utterance "this 
does not match with my internal map" did not 
seem to be helpful for the users but rather caused 
confusion (cf. D3). Precise suggestions such as "Is 
this the first possibility to turn?" seemed more 
promising (cf. D1). In our improved model, we 

108



substitute the three simple dialogue acts, request, 
assert and suggest (see Fig. 1 above) by subdia-
logues. Each subdialogue uses the discourse his-
tory and the internal map representation to support 
detailed classifications. Figure 2 represents the 
sample subdialogue request(robot,user). First, the 
robot acknowledges the part of the instruction that 
it has understood, based on [H, M]. The user can 
react by rejecting this account and providing a fur-
ther instruction, in which case the robot does not 
formulate the request in the intended way. How-
ever, if the user does not react or reacts by accept-
ing the robot's description, the robot continues by 
requesting information about entities, boundaries, 
or orientations, depending on the current require-
ments, in a way that is aligned to the users' descrip-
tions as much as possible (using the dialogue his-
tory). The dialogue will then continue with the user 
providing the missing information. 

 
Figure 2  'Request' subdialogue 

5 Conclusion and Outlook 

We presented a detailed qualitative analysis of a 
Wizard-of-Oz study specifically tailored to the in-
tended functionalities of the robotic wheelchair 
Rolland, employing the first version of our dia-
logue model. Results show that the model is suc-
cessful in encouraging the user to provide missing 
information and to use a suitable level of granular-
ity. However, clarification questions from the robot 
need to be formulated and placed with specific 
care, as even slight confusions and temporal mis-
placements of the robot's utterances can lead to 
severe communication problems and distortions of 
the user's spatiotemporal representation. Our pro-
posed solution is to let the robot inform the user 
about its internal state of knowledge in as much 
detail as possible, and to formulate requests and 
suggestions in a way that is aligned to the user's 

descriptions. The next step in our iterative ap-
proach is to test this revised model empirically. 

The construction of dialogue models is the first 
step towards the development of dialogue systems 
based on empirical findings. We are now develop-
ing a general approach to specify straightforwardly 
Recursive Transition Networks in a formal specifi-
cation language, using the model-checker tech-
nique to analyse features, complexity and coverage 
of dialogue models. Then, dialogue models will be 
constructed from empirical data by extracting the 
discourse patterns from annotated dialogues, and 
analysing the relations between discourse patterns 
and dialogue models. This procedure will enable us 
to assert how many dialogues fall into a given dia-
logue model, which may serve as a basis for evalu-
ating a dialogue's success and efficiency and com-
paring various instances of dialogue systemati-
cally. This approach also supports the mechanical 
comparison of dialogue models and can thus be 
used in the dialogue model evaluation process in 
future iterations.  
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Abstract

We present City Browser, a web-based plat-
form which provides multimodal access to
urban information. We concentrate on as-
pects of the system that make it com-
pelling for sustained interaction, yet acces-
sible to new users. First, we discuss the ar-
chitecture’s portability, demonstrating how
new databases containing Points of Interest
(POIs) may easily be added. We then de-
scribe two interface techniques which miti-
gate the complexity of interacting with these
potentially large databases: (1) context-
sensitive utterance suggestions and (2) mul-
timodal correction of speech recognition hy-
potheses. Finally, we evaluate the platform
with data collected from users via the web.

1 Introduction

Multimodal dialogue interfaces, which provide a
graphical input and output modality in addition to
speech, do not currently tend to be available to
the wide audience of users that can be found for
more traditional, telephone-based speech-only dia-
logue systems. At the moment, most development
and testing of such systems occurs in the laboratory,
under controlled experimental conditions. In this pa-
per, we focus on efforts to convert our restaurant-
guide multimodal dialogue system previously de-
scribed in (Gruenstein et al., 2006; Gruenstein and
Seneff, 2006) into City Browser, a full-fledged plat-
form for providing urban information multimodally
via the world wide web. Because City Browser

is available via the web, it has millions of poten-
tial users on all sorts of Internet-connected devices,
which may or may not have keyboards. However,
it is a major challenge to actually reach out to these
users with an interface that is compelling and capa-
ble enough to afford a sustained interaction, yet ac-
cessible and intuitive enough to be usable by people
who likely have no past experience with multimodal
dialogue systems.

In this paper, we identify a core set of capa-
bilities which make City Browser compelling as a
generic platform for presenting geographic infor-
mation. The platform provides capabilities to sup-
port multimodal exploration of databases containing
Points of Interest. Exploration is enhanced by allow-
ing users to access information about public trans-
portation, obtain driving directions, and locate ad-
dresses on the map. However, over the course of
developing the system, it has become apparent that,
even as the platform becomes more useful, it also
tends to become more difficult to use – a trend often
noted by dialogue system designers.

We present two novel user-interface components
which are intended to make multimodal dialogue
systems more usable in the face of growing com-
plexity. The first is a suggestions module which
takes advantage of the visual modality to provide
high-quality, context-sensitive suggestions to the
user about what she can say or do next. The second
is a multimodal error correction framework, which
provides the user with an interactively correctable
N -best list of recognizer hypotheses.

Finally, because our interest is in understanding
how real users interact with multimodal dialogue
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systems outside of the laboratory environment, we
describe our nascent, web-based data collection ef-
forts in which users interact with City Browser from
their own computers. In particular, we focus our
analysis on the response of naive users to the pres-
ence of the suggestions module and correctable N -
best list.

2 A Platform for Accessing Urban
Information

The City Browser platform grew out of our work
with a multimodal dialogue system which was ini-
tially restricted to information about restaurants.
The system’s overall client-server architecture for
speech recognition, linguistic processing, and ges-
ture interpretation has previously been described in
detail (Gruenstein et al., 2006). The interface is web
based and users need only a web browser equipped
with the Java plug-in to access the system. The in-
teraction is centered around a map, as pictured in the
screenshot in Figure 5 (in the appendix). In addition
to speech input, users can draw on the map, as well
as click on displayed Points of Interest (POIs). An
example of a dialogue with the system is given in
Figure 1. City Browser currently has knowledge of
10 major U.S. metropolitan areas, typically encom-
passing 20-50 miles around a major city. Harvesting
new data from the web for additional metropolitan
areas is a semi-automatic process [see (Gruenstein
and Seneff, 2006)].

As we observed users interact with our prototype
containing only restaurant information, we realized
that, while perhaps of some interest, the system was
not useful enough for a genuinely compelling inter-
action. Several frequently requested features were
unavailable. In particular, users wanted to find an
address on the map and then search near it, obtain
driving directions between points of interest, and
find out about available public transportation op-
tions.

City Browser expands on our previous prototypes
by providing these new features. Users can now plan
an outing by finding a restaurant of interest and then
figuring out how to drive or take public transporta-
tion to get there; or they can look for an address, find
out how to get there, and look for restaurants nearby.
Moreover, when using an address to anchor a search,

S0: Welcome to City Browser
U1: Show me 32 Vassar Street in Cambridge.
S2: Here is 32 Vassar Street in Cambridge. [shown on map]
U3: Are there any Indian restaurants near here?
S4: There are 10 Indian restaurants near 32 Vassar Street in

Cambridge. [results displayed]
U5: What is the nearest subway stop to India Pavilion?
S6: Central square station is located at Massachusetts Av-

enue and Western Avenue, Prospect Street, and Maga-
zine Street. It is on the Red Line.

U7: Are there any museums in this area? [circles an area of
the map]

S8: The Museum of Fine Arts is located at 465 Huntington
Avenue in Boston.

U9: How do I get to there from 77 Massachusetts Avenue in
Cambridge?

S10:Here are driving directions from 77 Massachusetts Av-
enue in Cambridge to the Museum of Fine Arts. [gives
link to directions]

Figure 1: An example interaction. Ui: User; Si:
System. Gestures and system actions are bracketed.
Some system remarks were shortened for brevity.

it need not be fully specified, as in 32 Vassar Street,
Cambridge, Massachusetts. Instead, it might only
be a street name (Vassar Street in Cambridge), or
just a city (Cambridge).

In addition to these core map-based functionali-
ties, it was also apparent that users wanted to be
able to access POIs besides restaurants: they were
especially interested in POIs such as tourist attrac-
tions, banks, parking garages, and gas stations. In
order to support this, we have moved from providing
access to a restaurant database, to creating a more
generic platform for accessing multiple types of POI
databases at once. Given a small amount of meta-
data and a new database of POIs, the language pro-
cessing components of City Browser can easily be
updated to support the new database. In particular,
support is provided for databases with some or all
of the following attributes: (1) Name The name of
the POI (e.g. Museum of Fine Arts), to be used for
natural language generation. (2) Aliases Alternative
names for the POI, for the language model. (3) Ad-
dress or Position The address of the POI, or a loca-
tion expressed as a latitude and longitude. (4) Phone
Number The POI’s phone number. (5) URL Link to
a webpage with more information about the object.
(6) Description A brief description of the POI.

Our currently deployed version of City Browser
uses these generic database capabilities to provide
access to a database of museums. The architecture
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also accommodates the subway station databases for
providing public transportation information, the ge-
ographical database of cities, streets, and neighbor-
hoods, as well as the existing restaurant database.

2.1 Comparison to Similar Systems

The most similar system we are aware of is
MATCH (Johnston et al., 2002), which provided ex-
tensive multimodal capabilities for accessing urban
information. There is significant overlap between
City Browser and MATCH. For instance, both pro-
vide multimodal access to restaurant and public tran-
sit information. A major feature of the MATCH
system which is lacking in City Browser is hand-
writing recognition; we have not concentrated on
this modality, as we do not currently assume our
users will have access to a pen-based interface. An-
other similar interface is AdApt (Gustafson et al.,
2000), which provides apartment rental information
in downtown Stockholm.

To the best of our knowledge, City Browser stands
out in that it provides support for POI databases
containing thousands of entries, extending through-
out a metropolitan area; in particular, the restaurant
databases are comparable in size to those of com-
mercially available, web-based restaurant databases.
Moreover, City Browser supports a multitude of
metropolitan areas, rather than just one or two cities.
As we have just described, it also supports the ar-
bitrary addition of new databases of POIs. City
Browser provides links to driving directions and
supports the recognition of arbitrary addresses with
any street name in the metropolitan area. Finally, as
noted, City Browser is fully web-based; and beyond
a web browser, requires only the standard Java plug-
in to operate. It is the combination of these factors
which make City Browser uniquely accessible to a
potentially large audience, even as a prototype.

3 Suggestions Module: What Can I Say?

City Browser is designed to be a highly user-driven
interface. The task is generally exploratory in na-
ture, rather than transactional, as tends to be more
typical for dialogue systems. In testing earlier it-
erations of the system, we observed that users of-
ten had trouble formulating queries “out of thin air,”
given their lack of experience using such a system.

However, given the large bounds of the system’s ca-
pabilities, it is difficult to imagine a system-directed
dialogue, as there are many paths of exploration.

Natural interaction with increasingly complex and
intelligent systems is a fundamental challenge in di-
alogue system research. As capabilities increase,
systems often become much more difficult to use.
Users can’t easily distinguish an error in which an
in-domain phrase is misrecognized, from one in
which an out-of-domain phrase is spoken. We uti-
lize City Browser’s multiple modalities to gain lever-
age in attacking this problem, by designing a sug-
gestions module which visually provides users with
contextually-specific suggestions as to what they
might say next at the current point in the dialogue.

On the right-hand side of the GUI, as shown in
Figure 5 of the appendix, we show a list of sug-
gested utterances labeled What Can I Say?. In fact,
these suggestions extend beyond simply what a user
can say, by indicating gestures that can be made to
accompany certain utterances. As in any dialogue
system, particular utterances and actions may only
be relevant at a given point in the dialogue; to ad-
dress this, we have created a module which dynami-
cally produces a relevant set of suggested utterances
at each new turn in the dialogue. This serves two
purposes. First, it allows us to offer relevant sug-
gestions given the current state of the dialogue, tai-
lored specifically to the current context. Second,
even as the same templates are used, their content
words (such as city names, street names, and cui-
sine types) are continually changed, giving the user
a general impression of the range of the system’s
knowledge. For instance, a user might be surprised
to see a city 20 miles away from the center of the
metropolitan area mentioned, indicating that the sys-
tem has knowledge of many surrounding suburbs.

Dynamic suggestions, which are dependent on the
current dialogue state, are instantiated from hand-
crafted templates and filled in using the current
metropolitan region’s POI databases. Suggestions
are also tailored to any POIs of interest currently
visible on the map. Finally, appropriate follow-up
queries are inferred from the user’s previous utter-
ance. Figure 2 gives an overview showing how the
list of suggestions is generated. The different cate-
gories of suggestions generated include the follow-
ing:
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Previous Utterance: Show me cheap Indian restaurants in Cambridge
Key-Value Semantics: clause=request, topic=restaurant, cuisine=indian, price range=cheap,city=cambridge

Matching DB entry
(subset of attributes
shown):

{q restaurant
:name "india castle" :phone "(617) 864-8100"
:streetnum "928" :street "massachusetts avenue" :city "cambridge"
:state "ma" :cuisine ( "indian" ) :recommendation "recommended"
:price_range "low" :neighborhood "harvard square" }

Random DB entry:

{q restaurant
:name "dakshin" :phone "(508) 424-1030"
:streetnum "672" :street "waverly street" :city "framingham"
:state "ma" :cuisine ( "indian" ) :recommendation "*none*"
:price_range "low" }

TEMPLATE REALIZATION
Global

I’m looking for $PRICE RANGE $CUISINE restaurants on
$STREET in $CITY.

I’m looking for cheap Indian restaurants on Waverly street in
Framingham.

What is the nearest $SUBWAYNAME station to $ADDRESS? What is the nearest T station to 672 Waverly Street in Framing-
ham?

Are there any $CUISINE restaurants here? [outline a region
with the mouse]

Are there any Indian restaurants here? [ouline a region with the
mouse]

Subsetting
Show me the $ATTRIBUTE ones. Show me the recommended ones
Tell me about these. [Circle a few $ENTITY TYPEs with the
mouse]

Tell me about these. [Circle a few restaurants with the mouse]

Anaphoric
What’s the phone number of $NAME? What’s the phone number of India Castle?
Give me driving directions to $NAME from $ADDRESS Give me driving directions to India Castle from 672 Waverly

Street in Framingham
Are there any subway stops near $NAME Are there any subway stops near India Castle?

Contrastive
What about in $CONTRAST CITY? What about in Framingham?

Figure 2: This figure shows inputs to the suggestions module, examples of each type of template used
to create suggestions, and the actual suggestions which are realized by combining each template and the
input shown at the top. The inputs to the module are (1) the previous utterance and its key-value semantic
representation, (2) the database entries which matched that query, and (3) other randomly selected database
entries. This information is used to fill in values in each type of template on the left, yielding the realizations
of those templates on the right.

Globally relevant suggestions These are utter-
ances which always apply, such as map commands
(pan right and zoom in), queries about addresses,
driving directions, public transportation, and points
of interest. The POI databases in the current
metropolitan region are used to fill in the templates,
as shown in Figure 2. The database entries are used
in such a way as to guarantee that each suggested
utterance, if uttered (and correctly recognized), will
actually yield one or more results. This is very im-
portant, since, as some users get to know the system,
they read the suggestions verbatim. This helps them
to verify that the system is working, and to become
more comfortable using it. Figure 2 shows exam-
ples of different types of suggestions which might
be rendered from a single database entry.

Subsetting suggestions There are two forms for
specifying subsetting suggestions. First, multimodal
ones, such as Tell me about these [Circle a few
restaurants with the mouse], allow the user to zero in
on a smaller set. Second, suggestions which subset
by attribute show how POI properties can be used
to narrow down the set, as in, Show me the highly
rated ones. A rank-ordered list of properties for each
POI type is used for this type of narrowing down;
for restaurants we use the price range and recom-
mendation properties. Any of these properties which
were not mentioned in the user’s previous utterance
are used to create novel suggestions.

Anaphoric suggestions A user will often want to
get more information about a particular attribute of
either a single POI in focus or a focus set. We pro-
duce two types of suggestions for these cases. If a
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single entity is currently salient, we offer anaphoric
suggestions relating to an attribute of that entity,
such as Tell me its phone number. For a set of en-
tities, we offer suggestions about the properties of
individual members, such as Can you tell me the ad-
dress of the Museum of Fine Arts? In addition to
querying about a particular property, users may also
use one of the in-focus entities as a reference point
for searching for something else, as in Are there any
subway stops close to the Royal East?

Contrastive suggestions A nice aspect of using
natural language to access this type of information is
that it is quite easy and natural to build on a dialogue
by retaining some attributes of a search query and re-
placing others. For example, if a user has just said
Can you show me the subway stations in Cambridge,
it is quite natural to follow up with a query such as
What about in Brookline?. We again use the key-
value representation of the user’s previous utterance,
but this time we look for keys which were explic-
itly mentioned by the user. We then produce sugges-
tions in which one or more of these keys is changed
to a different value (which, as usual, is drawn from
actual database items). In addition, we offer multi-
modal contrastive suggestions, such as What about
near here? [Click on a point on the map].

Our suggestions system resembles some-
what the multimodal help system developed for
MATCH (Hastie et al., 2002). MATCH relied
on the user explicitly asking for help, while we
offer newly updated suggestions at every turn
unobtrusively along the side of the screen. While
both the MATCH system and our suggestions
system are sensitive to the dialogue context, we
are more aggressive about actively incorporating
information from the various databases used in the
system. We are also more sensitive to the semantic
content of previous queries, allowing our module
to offer more targeted subsetting suggestions. On
the other hand, the MATCH system’s capability to
actually demonstrate how to draw or write during a
multimodal command is quite useful, and we hope
to incorporate a similar capability in the future.

The system can also be seen as providing simi-
lar functionality to targeted help systems like those
described in (Hockey et al., 2003) and (Gorrell,
2003). However, while these algorithms provide

help prompts based on an out-of-domain utterance
which was not correctly recognized, the sugges-
tions module described here makes use of the visual
modality to try to avoid out-of-domain utterances in
the first place. The two approaches could likely be
beneficially paired.

4 Multimodal Error Correction

One of the most potentially frustrating aspects of in-
teracting with a dialogue system like City Browser
is inaccurate speech recognition. Our previous re-
search in this area has focused on dynamic language
modeling mechanisms which aim to minimize er-
rors involving proper nouns. Nonetheless, errors
arising from the misrecognition of proper nouns are
still quite common in City Browser, as well as er-
rors having to do with numbers (e.g. “thirty” v.s.
“fifty”). Other dialogue system designers working
in domains with large sets of proper names have also
noted this difficulty (Weng et al., 2006).

While extensive research has been performed on
multimodal error correction techniques for dictation
systems [e.g. (Suhm et al., 2001)]– especially with
regard to techniques which display alternative hy-
potheses – we are not aware of dialogue systems
which make use of alternatives-based multimodal
error correction techniques. Extensive arguments
have been made, however, for the potential of mul-
timodal interaction to decrease understanding error
rates (Oviatt, 1999).

For City Browser we have currently deployed
a straightforward mechanism for alternatives-based
multimodal error correction, which utilizes the fact
that a class n-gram is used as the recognizer’s lan-
guage model – a common mechanism for dialogue
system language modeling. Our corrections mecha-
nism presupposes that a large number of errors arise
from the misrecognition of content words, rather
than the structure of the utterance itself. We dis-
play a correctable N -best list which uses semantic
knowledge derived from the class n-gram to create
alternatives lists. City Browser displays the recog-
nizer’s top hypothesis, which it has taken to be cor-
rect and already responded to, and allows users to
correct it in two ways. First, a drop-down menu is
available which allows the user to replace the top hy-
pothesis with any of up to 15 of the top hypotheses
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show me thirty<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me twenty<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me fifty<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me thirty<TENS> two<DIGITS> madison<STREET> street<STREET_T> in cambridge<CITY>
show me the t<SUBWAYNAME> to vassar<STREET> street<STREET_T> in cambridge<CITY>
show me forty<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me seventy<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me thirty<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me twenty<TENS> two<DIGITS> vassal<STREET> street<STREET_T> in cambridge<CITY>
show me ninety<TENS> two<DIGITS> vassar<STREET> street<STREET_T> in cambridge<CITY>
show me thirty<TENS> to vassar<STREET> street<STREET_T> in cambridge<CITY>
...

Figure 3: Correctable N -best list. We show a portion of the N -best list generated from the utterance Show
me 32 Vassar Street in Cambridge along with the drop-down menus available on the user’s output. The
image on the top-left corner shows what the user sees momentarily during active processing.

which appear on the N -best list. Second, the classes
of the language model are leveraged to create poten-
tial confusion sets for the members of each class. In
particular, whenever a recognition hypothesis is gen-
erated by the recognizer, any word or word sequence
in the hypothesis which was chosen from one of the
language model classes is tagged as such. A sepa-
rate list is constructed from all words that appear in
each class in the top 50 hypotheses on the N -best
list. If a class member appears in the top hypothe-
sis, a drop-down menu allows the user to change the
value of this class member to that of any other, and
then resubmit the altered hypothesis to City Browser
for processing. Figure 3 shows an N -best list gener-
ated by the recognizer, and the resulting drop-down
menus which are then available to correct this recog-
nition result.

Typically we expect that this capability would be
used primarily to make a single token replacement
in which one misrecognized class member is re-
placed with another. We expect that, with less fre-
quency, users will examine the N -best list itself to
choose a new candidate hypothesis, as this is a more

cognitively demanding task. By combining these
methods, more complex corrections are possible: a
user may first choose a candidate hypothesis with
the correct syntactic form, but incorrect class mem-
bers. They can then perform token replacements to
change these class members. This is potentially eas-
ier than examining a deep N -best list, as the top-left
screenshot in Figure 3 shows. Currently, users can
only modify the recognition hypothesis using the
provided drop-down menus; though in future work
we hope to develop mechanisms which allow the
user to type and/or speak to correct parts of the ini-
tial hypothesis. However, users are currently free to
ignore the correction mechanism by speaking a new
utterance.

In our in-lab pilot testing, we realized that users
often did not realize that this corrections capability
existed, despite help tooltips which point it out. To
better advertise the capability, City Browser briefly
displays each of the available token replacements for
1.2 seconds as soon as the recognition hypotheses
are available. The benefit here is two-fold. First, it
allows the user to easily see if the correct alternative
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exists, without having to activate the drop-down list
with their mouse. Second, it provides feedback that
the system is working even as the input is still being
processed and the GUI updated. This both increases
the perceived responsiveness of the system, and puts
the user in a position to detect the error and make the
correction more quickly.

5 Preliminary Data Collection Results

We have previously evaluated earlier iterations of
the system on several small sets of users using a
tablet computer in the laboratory (Gruenstein et al.,
2006; Gruenstein and Seneff, 2006). After devel-
oping new capabilities, we are now collecting data
from users via the web, using their own hardware.
We hope that this methodology will enable us to col-
lect a large corpus of data from a wide variety of
users, and will allow us to identify issues involved
in deploying live dialogue systems.

Subjects are currently being recruited via email
lists with an incentive of a $20 Amazon.com gift
certificate. Subjects are led through one warm-up
task to ensure that their audio set-up is functional,
then through 10 scenario-based tasks of generally in-
creasing complexity. The tasks are worded in such
a way as to make it difficult to simply “read back”
the task description to the system. Several of the
tasks are designed to be potentially frustrating if
users simply read them back, mentioning concepts
that the system does not understand (e.g. “highway
93”). This allows us to gather data about how users
react when the system encounters out-of-vocabulary
words, or concepts the system can’t parse or under-
stand. In some cases, it also allows us to collect
data about how users might want to interact with the
system, if capabilities involving these concepts were
available. Figure 6 (in the appendix) shows one of
the scenarios used to collect data.

We have transcribed and begun to annotate the
data collected from the first 25 users who interacted
with the system, and attempted all, or almost all,
scenarios. A total of 1,277 recorded utterances led
to recognition hypotheses from these users. The
word error rate across all users was 26.0%, similar
both to our previous results, and those obtained for
small sets of users interacting with MATCH (Ban-
galore and Johnston, 2004; Johnston et al., 2002)
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Figure 4: Per-user interaction analysis. Top: cor-
rectly, partially correctly, and incorrectly interpreted
utterances. Middle: turns with token or candidate
corrections. Bottom: turns where suggestions win-
dow was scrolled.

and AdApt (Hjalmarsson, 2002) systems. In or-
der to coarsely gauge the system’s performance, we
have manually labeled each utterance according to
whether the system’s response was entirely correct,
partially correct (e.g. contained a subset of the in-
formation requested), or incorrect.

Figure 4 shows the number of utterances per user,
broken down by the appropriateness of the system’s
response. Quality of interaction varied quite a bit
among users, with some having much more success-
ful interactions than others. We observe that system
performance is far from perfect, and are currently
further analyzing the causes of the errors. A pre-
liminary analysis shows that audio problems such
as inappropriate microphone input level and end-
pointing errors are responsible for a significant por-
tion of the errors. These types of errors are to be
expected when reaching out to a wide range of users
using their own hardware, as many users have lim-
ited experience using their computer microphone.

We also used log data to glean some knowledge
of users’ awareness of the N -best corrections capa-
bilities and the suggestions interface. Figure 4 also
shows how many times each user used the correc-
tions framework. This is broken down into token
replacements, in which an individual token (such as
a city or street name) was replaced and candidate re-
placements, in which an entirely different candidate
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hypothesis was chosen. We found that about half
the users (12 of 25) used the corrections capability
at least once. In fact, all of these 12 used it more
than once.

Finally, to get a very rough idea of whether or
not users were at least noticing the suggestions of-
fered by the system, we counted turns in which a
user scrolled the suggestions window. The sugges-
tions window can usually fit more than 10 sugges-
tions – depending on screen resolution – when the
system first starts. As results are returned, it shrinks
to accommodate showing the list of these results,
and only the top 5 or so suggestions are usually
shown. Users can scroll the window to see all of
the currently available suggestions, and this action
is logged by the system. Almost all (23 of 25) users
scrolled this window at least once; most of them
scrolled it during at least several turns. Figure 4
graphs this data. We are encouraged that users are
interested enough to scroll the suggestions window,
and note that they are likely looking at these sug-
gestions more often than indicated by scrolling, as
the top few suggestions (which can be seen without
scrolling) are usually intended to be the most rele-
vant to the current context.

6 Summary and Future Work

We have presented City Browser, a web-based plat-
form for developing multimodal interfaces which
give users access to POI databases. We have shown
how City Browser can easily accommodate new POI
databases. In addition, we have described two as-
pects of the system which make it easier for users
to interact with the unfamiliar technology: a sug-
gestions module and a multimodal error correction
interface technique. Finally, we present a prelimi-
nary evaluation of these features using data collected
from users via the web, using their own computer
hardware. We show that users generally do discover
and make use of the suggestions feature, while about
half use the correctable N -best list.

In the future, we plan to expand the capabilities
of City Browser based on observations of user in-
teractions and their feedback. We are particularly
interested in improving both the suggestions gener-
ating and multimodal error correction modules. For
example, we believe that a full-blown semantic rep-

resentation of utterances could be incorporated to
allow users to correct structured representations of
City Browser interpretations rather than text strings.
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Figure 5: Screenshot of the City Browser interface running inside a web browser. At the top, there is a
large button that the user presses to start speaking, with a bar underneath which moves as users speak.
Immediately below the bar is the top recognition hypothesis for the user’s previous utterance, shown as a
correctable N -best list. In the upper right corner are the current suggestions of what to say next; below that
is a list of restaurants recently returned in an earlier query. These restaurants are shown as the numbered
markers on the map at the center. There is also a portion of the overlayed subway map, shown as the line
passing through the shaded circle, which has been displayed in response to the user’s current query. The
shaded circle on that line marks the nearest subway station to the restaurant under discussion, and can be
clicked for more information. In the top left corner of the map is a control which allows the user to change
the current metropolitan area. To the right of it, are buttons which allow the user to go back (undo the
previous utterance) and start over. The standard Google Maps controls are also overlayed on the map for
zooming, panning, and switching to satellite or hybrid view.

You have a friend visiting who wants to go to a couple of different museums in Boston while she’s here. She’s a sports nut, so

you plan to take her to the Sports Museum near the Fleet Center in the morning. Then, you’d like to take her to the Museum of

Fine Arts in the afternoon. You are planning on taking the subway to get around starting in Kendall Square. Figure out a plan

for doing this. Also, you’d like to find a nice place to eat lunch within walking distance of the Sports Museum, and an Italian

place for dinner that is not too far from the Museum of Fine Arts.

Figure 6: Example data-collection scenario
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Abstract

This paper presents the results of an anal-
ysis of user reactions towards system fail-
ures in turn-taking in human-computer dia-
logues. When a system utterance and a user
utterance start with a small time difference,
the user may stop his/her utterance. In addi-
tion, when the user utterance ends soon after
the overlap starts, the possibility of the ut-
terance being discontinued is high. Based on
this analysis, it is suggested that the degrada-
tion in speech recognition performance can
be predicted using utterance overlapping in-
formation.

1 Introduction

Many kinds of spoken dialogue systems have been
developed in the last two decades. Most previous
systems employed a fixed turn-taking strategy, that
is, they take a turn when the user puts a certain
length of pause after his/her utterances, and they re-
lease the turn immediately when the user barges in
on a system utterance. In order to improve the us-
ability of spoken dialogue systems, the turn-taking
strategy needs to be more flexible.

Thus far, there have been several approaches to
this problem. Some methods try to decide when to
take a turn based on not only the length of pause
but also the content and prosody of the user utter-
ance [e.g., (Sato et al., 2002; Ferrer et al., 2003;
Schlangen, 2006)]. Other methods try to decide how
to appropriately react to the user barge-in utterances,
not just simply stopping whenever a barge-in utter-

ance is detected [e.g., (Ström and Seneff, 2000; Rose
and Kim, 2003)].

Despite these efforts, achieving appropriate turn-
taking is still difficult. The features used by these
methods are not always perfectly obtained. In addi-
tion, even humans cannot sometimes decide whether
the system should take a turn or not (Sato et al.,
2002).

Consequently, in addition to efforts towards im-
proving turn-taking, we need to find a way to make
the system cope with turn-taking errors. As a first
step, we investigated how users behave when the
system made mistakes in turn-taking. We have
found that users tend to stop their utterances in cer-
tain situations. We expect this to be useful in avoid-
ing misunderstanding caused by speech recognition
errors of such discontinued utterances.

2 Analysis of User Reactions to
Turn-Taking Failures

2.1 Dialogue Data

We analyzed two sets of human-system dialogue
data using the following two different dialogue sys-
tems in Japanese. One was a car-rental reservation
dialogue system in which the user could make a
reservation for renting a car by specifying the date,
hour, and locations for rental and return, along with
the car type. The other was a video recording sys-
tem in which the user could set the date, time, chan-
nel, and recording mode (long play or short play) for
recording a TV program.

Both systems performed frame-based dialogue
management. They employed the Julian speech rec-

120



ognizer directed by network grammars (Kawahara et
al., 2004) with its attached acoustic models. The vo-
cabulary size for speech recognition was 225 words
for the car-rental reservation system and 198 words
for the video recording system. These systems also
employed NTT-IT Corporation’s FineVoice speech
synthesizer. When collecting the data, a micro-
phone and headphones were used. For each dia-
logue, the microphone input and the system output
were recorded in a stereo file.

The contents of the data sets are as follows:

• Set C: (Car-rental reservation)

Each of the 23 subjects (12 males and 11 fe-
males) engaged in 8 dialogues (total 184 dia-
logues). In each dialogue, users tried to make
one reservation. 134 dialogues were success-
fully finished within 3.5 minutes, 38 failed, and
12 were aborted because of a system trouble.

• Set V: (Video recording reservation)

This consists of 117 dialogues (9 dialogues by
each of the 13 subjects (9 males and 4 fe-
males)). These subjects are different from the
subjects for Set C. In each dialogue, the user
tried to set the timer to record two programs.
In 41 dialogues, the user successfully set up the
recordings for two programs within 3 minutes.
In 36 dialogues, the user set up only one of the
programs. In 34 dialogues, the user could not
set up the recordings, and 6 were aborted.

Both systems had variations in dialogue and turn-
taking strategies so that a variety of dialogues were
recorded. Thresholds for confidence scores for gen-
erating confirmation requests were changed, param-
eters for speech interval detection were changed, and
whether the system stopped its utterances when the
user barged in was changed. For each subject, dif-
ferent strategies were used for different dialogues.
We will not explain these variations in detail since,
as we will explain later, we focused on the phenom-
ena of turn-taking failures rather than the causes of
them.

After collecting data, both user and system utter-
ances were transcribed as pronounced. Utterance
segmentation was done manually based on pauses
longer than 300ms, by using an annotation tool.

set \ case (o1) (o2) (o3) total
C 67 446 7 520
V 46 202 1 249

(o1) The start time of the user utterance is between the start
and end times of a system utterance.

(o2) The start times of one or more system utterances are
between the start and end time of the user utterance.

(o3) Both (o1) and (o2) occur.

Table 1: Frequencies of user utterances overlapping
with system utterances.

yokka no (on 4th)  <discontinued>

shigatsu mikka no (on April 3rd)

84.532 85.336

84.848 85.936

user

system

Figure 1: Example discontinuation with overlap.

The timestamps of each speech segment indicate the
points in time from the start of the stereo file. Below
we simply call these speech segments utterances.
The total numbers of the user utterances and system
utterances in Set C are respectively 3,364 and 5,157
and, in Set V they are 2,521 and 4,522.

2.2 Utterance Overlaps
As Raux et al. (2006) reported, there are several
kinds of system turn-taking failures. The system
sometimes barges in to a user utterance, and some-
times fails to take a turn. These failures are caused
by several reasons, such as errors in speech interval
detection, and misrecognitions of the user’s inten-
tion to release a turn.

In this paper, we focus only on failures that re-
sult in overlaps between user and system utterances.
We have not investigated the reason for the failure;
but instead of that, we analyzed the overlapping phe-
nomena that often occurred when the system made
mistakes in turn-taking, because the goal of the anal-
ysis is not to improve turn-taking, but to find a way
to recover from turn-taking failures. Table 1 shows
the frequencies of user utterances overlapping sys-
tem utterances.

2.3 Discontinuations
In this paper, we call utterances stopped in the mid-
dle for any reason discontinuations. We found that
user utterances overlapping with system utterances
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all utterances discontinuations
set IG OOG ALL IG OOG ALL

C 2,662 702 3,364 9 78 87
22.75 74.05 40.23 12.00 66.97 63.13

V 1,599 922 2,521 2 46 48
13.08 73.89 39.69 0.00 90.43 87.39

IG means in-grammar utterances, and OOG means out-of-
grammar utterances. (upper: # of utterances, lower: word error
rate (%))

Table 2: Speech recognition results for all utterances
and discontinuations.

are more likely to be discontinuations. Discontinua-
tions are expected to be difficult for speech recogni-
tion mainly because they are not grammatical and
include word fragments. So detecting and ignor-
ing them would improve speech understanding. We
therefore focus on analyzing discontinuations. Fig-
ure 1 shows an example of discontinuations in a car-
rental reservation dialogue.

We annotated discontinuations by listening to
only the user-speech channel of the stereo files. In
set C, 87 utterances are discontinuations, and, in set
V, 48 are discontinuations. Of these, 61 and 38 have
overlaps with system utterances.

To investigate the speech recognition perfor-
mance on the discontinuations, we used the same
network grammar as the spoken dialogue system
used in the data collection. Note that, since user
speech segments are made from the timestamps in
the transcriptions, they are different from those rec-
ognized at the time of data collection. As shown
in Table 2, discontinuations include out-of-grammar
utterances, so the word error rates are very high.1

2.4 Relationship between Discontinuations and
Turn-Taking

One way to detect discontinuations that might be
effective is to use prosodic information (Liu et al.,
2003). Since prosody recognition is not yet per-
fect, however, it is worth exploring other methods.

1The word error rates for the out-of-grammar utterances is
very high for the following reason. We transcribed the user ut-
terances without word boundaries because it is not easy to con-
sistently determine word boundaries for Japanese. We used a
morphological analyzer to split these transcriptions into words
to obtain references for computing speech recognition accuracy.
This process tended to produce one-syllable out-of-vocabulary
words. Therefore the references include a greater number of
out-of-vocabulary words.

d (s) −∞ – -0.4 – -0.2 – 0.0 – 0.2 – 0.4 – 0.6 – 1.0 –
-0.4 -0.2 0.0 0.2 0.4 0.6 1.0 ∞

C 2/45 0/7 4/22 15/43 11/56 3/29 4/34 22/284
V 0/17 0/9 10/21 16/57 6/48 3/27 1/12 2/58

(# of discontinuations)/(# of overlapped user utterances)

Table 3: Frequency of discontinuations depending
on the start time difference d.

c (s) 0.0 – 0.1 – 0.2 – 0.3 – 0.4 – 0.5 – 0.6 – 0.8 – 1.0 –
0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 ∞

C 1/50 7/44 10/67 12/66 15/52 4/36 4/75 4/45 4/85
V 1/19 4/19 9/30 13/28 2/17 3/16 2/22 0/17 4/81

(# of discontinuations)/(# of overlapped user utterances)

Table 4: Frequency of discontinuations depending
on c (the length of user utterance after the overlap-
ping starts)

We therefore investigated in which turn-taking situ-
ations discontinuations are likely to exist.

Discontinuations are likely to occur when the start
time of the user and system utterances are close. Ta-
ble 3 shows the relationships of the frequencies of
discontinuations in the overlapping user utterances
depending on the start time difference d. Here, the
start time difference d is defined as follows:

d = st(u) − st(s),

where st(i) means the start time of utterance i, u is
a user utterance and s is the first system utterance
among the system utterances overlapping u. We
found that people tend to stop their own utterances
when d is between −0.2s to 0.4s. When d is larger
than 0.4s, the user has already spoken for a while so
he/she might try to finish the utterance.

Next, we investigated the end time of the over-
lapped user utterances, because discontinuations can
be expected to occur soon after the overlapping
starts. Table 4 shows the frequencies of discontinu-
ations depending on the length of the user utterance
after the overlapping starts. This is defined as c in
the following formula:

c =

⎧⎪⎨
⎪⎩

et(u) − st(u) (cases (o1) and (o3)
in Table 1)

et(u) − st(s) (case (o2) in Table 1),

where et(i) means the end time of utterance i. As
we expected, when c is between 0.1s and 0.6s, the
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Set C
d (s) \ c (s) 0.0 – 0.1 0.1–0.6 0.6 –∞
−∞ – -0.2 0/0 2/12 0/40
-0.2 – 0.4 1/6 24/62 5/53
0.4 –∞ 0/44 22/191 7/112

Set V
d (s) \ c (s) 0.0 – 0.1 0.1–0.6 0.6 –∞
−∞ – -0.2 0/0 0/11 0/15
-0.2 – 0.4 1/2 26/52 5/72
0.4 –∞ 0/17 5/47 1/33

(# of discontinuations)/(# of overlapped user utterances)

Table 5: Frequency of discontinuations depending
on c and d.

Situation S Other overlapping ut-
terances

set IG OOG ALL IG OOG ALL
C 20 42 62 285 173 458

16.67 107.89 78.57 12.72 66.31 35.36
V 13 39 52 97 100 197

9.52 122.73 86.15 8.44 75.06 43.14

(upper: # of utterances. lower: word error rate (%).)

Table 6: Speech recognition performance for utter-
ances in Situation S and other cases.

user utterances are more likely to be discontinua-
tions than other cases.

From the above analysis, the possibility that a dis-
continuation occurs is high when d is between −0.2s
and 0.4s and c is between 0.1s and 0.6s. We call this
situation, Situation S. Table 5 shows the frequencies
of discontinuations depending on the combinations
of d and c.

2.5 Predicting Speech Recognition
Performance Degradation

Since discontinuations occur more frequently in Sit-
uation S than other cases, speech recognition per-
formance would be degraded in Situation S. Table 6
shows these results. This suggests that the overlap-
ping information can be used for predicting speech
recognition performance degradation.

3 Concluding Remarks

This paper presented our preliminary analysis on
user reactions to system failures in turn-taking in
human-computer dialogues. We found that discon-
tinuations are likely to occur more frequently at the
overlapping utterances caused by turn-taking failure.
We specified situations where user discontinuations

frequently occur. It is suggested that the degradation
in speech recognition performance can be predicted
using utterance overlapping information. This is ex-
pected to be useful for avoiding misunderstanding.

We are planning to conduct more detailed anal-
yses on discontinuations, such as their relationship
with the subjects and the dialogue and turn-taking
strategy of the system. We also plan to investigate
changes in speech recognition performance when
statistical language models are employed.
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Abstract

Empirical spoken dialog research often in-
volves the collection and analysis of a dialog
corpus. However, it is not well understood
whether and how a corpus of dialogs col-
lected using recruited subjects differs from
a corpus of dialogs obtained from real users.
In this paper we use Let’s Go Lab, a plat-
form for experimenting with a deployed spo-
ken dialog bus information system, to ad-
dress this question. Our first corpus is col-
lected by recruiting subjects to call Let’s Go
in a standard laboratory setting, while our
second corpus consists of calls from real
users calling Let’s Go during its operating
hours. We quantitatively characterize the
two collected corpora using previously pro-
posed measures from the spoken dialog lit-
erature, then discuss the statistically signifi-
cant similarities and differences between the
two corpora with respect to these measures.
For example, we find that recruited subjects
talk more and speak faster, while real users
ask for more help and more frequently in-
terrupt the system. In contrast, we find no
difference with respect to dialog structure.

1 Introduction

Empirical approaches have been widely used in the
area of spoken dialog systems, and typically involve
the collection and use of dialog corpora. For exam-
ple, data obtained from human users during Wizard-
of-Oz experiments (Okamoto et al., 2001), or from

∗Currently at Microsoft Research, Redmond, WA, USA

interactions with early system prototypes, are often
used to better design system functionalities. Once
obtained, such corpora are often then used in ma-
chine learning approaches to tasks such as dialog
strategy optimization (e.g. (Lemon et al., 2006)),
or user simulation (e.g. (Schatzmann et al., 2005)).
During system evaluation, user satisfaction surveys
are often carried out with humans after interacting
with a system (Hone and Graham, 2000); given a di-
alog corpus obtained from such interactions, evalua-
tion frameworks such as PARADISE (Walker et al.,
2000) can then be used to predict user satisfaction
from measures that can be directly computed from
the corpus.

Experiments withrecruited subjects(hereafter re-
ferred to assubjects) have often provided dialog
corpora for such system design and evaluation pur-
poses. However, it is not well understood whether
and how a corpus of dialogs collected using sub-
jects differs from a corpus of dialogs obtained from
real users(hereafter referred to asusers). Select-
ing a small group of subjects to represent a target
population of users can be viewed as statistical sam-
pling from an entire population of users. Thus, (1)
a certain amount of data is needed to draw statisti-
cally reliable conclusions, and (2) subjects should be
randomly chosen from the total population of target
users in order to obtain unbiased results. While we
believe that most spoken dialog subject experiments
have addressed the first point, the second point has
been less well addressed. Most academic and many
industrial studies recruit subjects from nearby re-
sources, such as college students and colleagues,
who are not necessarily representative of the target
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users of the final system; the cost to employ market
survey companies to obtain a better representation of
the target user population is usually beyond the bud-
get of most research projects. In addition, because
subjects have either volunteered or are compensated
to participate in an experiment, their motivation is
often different from that of users. In fact, a recent
study comparing spoken dialog data obtained in us-
ability testing versus in real system usage, found sig-
nificant differences across conditions (e.g., the pro-
portion of dialogs with repeat requests was much
lower during real usage) (Turunen et al., 2006).

Our long term goal is to understand the differ-
ences that occur in corpora collected from subjects
versus users, and to see, if indeed such differences
do exist, their impact on empirical dialog research.
In this paper we take a first step towards this goal, by
collecting and comparing subject and user dialogs
with the Let’s Go bus information system (Raux et
al., 2005). In future work, we plan to investigate
how differences found in this paper impact the util-
ity of using subject corpora for tasks such as build-
ing user simulations to optimize dialog strategies.

Because there are no well-established standards
regarding best practices for spoken dialog experi-
ments with subjects, we first surveyed recent ap-
proaches to collecting corpora in laboratory settings.
We then used these findings to collect our sub-
ject corpus using a “standard” laboratory setting, by
adopting the practices we observed in a majority of
the surveyed studies. To obtain our user corpus, we
collected all dialogs to Let’s Go during its deployed
hours, over a four day period. Once collected, we
quantitatively characterized the two collected cor-
pora using previously proposed measures from the
spoken dialog literature. Our results reveal both sim-
ilarities and differences between the two corpora.
For example, we find that while subjects talk more
and speak faster, users more frequently ask for help
and interrupt the system. In contrast, the dialogs of
subjects and users exhibit similar dialog structures.

In Section 2, we describe the papers we surveyed,
and summarize the common practices we observed
for collecting dialog corpora using subjects. In Sec-
tion 3, we introduce the Let’s Go spoken dialog sys-
tem, which we use to collect both our subject and
user corpora. In Section 4, we describe the specific
in-lab experiment we conducted with recruited sub-

jects. We then introduce the evaluation measures
used for our corpora comparisons in Section 5, fol-
lowed by a presentation of our results in Section 6.
Finally, we further discuss and summarize our re-
sults in Section 7.

2 Literature Review

In this section we survey a set of spoken dia-
log papers involving human subject experiments
(namely, (Allen et al., 1996), (Batliner et al., 2003),
(Bohus and Rudnicky, 2006), (Giorgino et al.,
2004), (Gruenstein et al., 2006), (Hof et al., 2006),
(Lemon et al., 2006), (Litman and Pan, 2002),
(Möller et al., 2006), (Rieser et al., 2005), (Roque et
al., 2006), (Singh et al., 2000), (Tomko and Rosen-
feld, 2006), (Walker et al., 2001), (Walker et al.,
2000)), in order to define a “standard” laboratory
setting for use in our own experiments with subjects.
We survey the literature from four perspectives: sub-
ject recruitment, experimental environment, task de-
sign, and experimental policies.

Subject Recruitment. Recruiting subjects in-
volves deciding who to recruit, where to recruit, and
how many subjects to recruit. In the studies we sur-
veyed, the number of subjects recruited for each ex-
periment ranged from 10 to 72. Most of the stud-
ies recruited only native speakers. Half of the stud-
ies clearly stated that the subjects were balanced for
gender. Most of the studies recruited either college
students or colleagues who were not involved in the
project itself. Only one study recruited potential sys-
tem users by consulting a market research company.

Experimental Environment. Setting up an ex-
perimental environment involves deciding where to
carry out the experiment, and how to set up this
experimental environment. The location of the ex-
periment may impact user performance since people
behave differently in different environments. This
factor is especially important for spoken dialog sys-
tems, since system performance is often impacted by
noisy conditions and the quality of the communica-
tion channel. Although users may call a telephone-
based dialog system from a noisy environment using
a poor communication channel (e.g., by using a cell
phone to call the system from the street), most exper-
iments have been conducted in a quiet in-room lab
setting. Subjects typically talk to the system directly
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via a high-quality microphone, or call the system us-
ing a land-line phone. Among the studies we looked
at, only 2 studies had subjects call from outside the
lab; another 2 studies used driving simulators. One
study changed the furniture arrangement in the lab
to simulate home versus office scenarios.

Task Design. Task design involves specifying
whether subjects should use the dialog system to
accomplish specific tasks, and if so, defining those
tasks. All except one study asked subjects to finish a
set of fixed tasks in a predefined order. In one study,
subjects were asked to do 2 open tasks after a series
of 7 fixed tasks. In another study, where the sys-
tem provided restaurant information, the researchers
asked the subjects to ask about information for at
least 4 restaurants, but did not specify the restaurant
names. The number of tasks in these studies ranged
from 2 to 10.

Experimental Policies.Experimental policies in-
volves specifying additional procedures for running
subjects during the course of the experiment. None
of the studies mentioned that they controlled their
experiments by setting any time limits for the sub-
jects. Only 2 studies clearly declared that subjects
were told to read some instructions before the exper-
iment started. While two studies motivated subjects
by offering a bonus upon task completion, the ma-
jority of studies paid subjects on the basis of their
participation alone.

In summary, a standard way to carry out hu-
man subject experiments with spoken dialog sys-
tems (where we use standard to mean that the prac-
tice occurred in a majority of the papers surveyed), is
as follows: (1) Recruit at least 10 subjects who are
college students or colleagues who are native Eng-
lish speakers, trying to balance between genders; (2)
Ask the subjects to come to the lab to generate their
dialogs with the system; (3) Set up several tasks for
the subjects, and ask them to complete these tasks
in a certain order; (4) Pay the subjects for their par-
ticipation, without a bonus. As will be seen in Sec-
tion 4, we follow these practices when designing our
own experiment.

3 System Description

The study described in this paper was conducted in
the Let’s Go Lab which uses the Let’s Go bus infor-

S: Welcome to the CMU Let’s Go bus information
system. To get help at any time, just say Help or
press zero. What can I do for you?
U: UH I NEED TO GET FROM FIFTH AND
BIGELOW
S: Leaving from Fifth and Bigelow . Did I get that
right?
U: YES
S: Right. What is your destination?
U: AIRPORT
S: Going to airport . Did I get that right?
U: YES
S: Okay. When are you going to take that bus?
U: NINE P UH... SEVEN P M
S: Leaving at 7 p.m. . Is this correct?
U: YES
S: Right. Just a minute. Let me check that for you.
There is a 28X leaving Fifth Avenue at Bigelow . . .

Figure 1: Example Dialog with Let’s Go.

mation system, a telephone-based dialog system that
provides schedule information for buses in the Pitts-
burgh area (Raux et al., 2005). The Lab is a service
run by the creators of Let’s Go to allow other re-
searchers access to their numerous users to run ex-
periments. When the customer service line of the
Port Authority of Allegheny County (which man-
ages buses in Pittsburgh) is not staffed by operators
(i.e. from 7pm to 6am on weekdays and 6pm to 8am
on weekends), callers are redirected to Let’s Go. In
the Let’s Go Lab, experimenters typically run offline
and/or in-lab experiments first, then evaluate their
approach using the live system.

An example dialog with Let’s Go (obtained from
a subject) is shown in Figure 1. The interaction with
the system itself starts with an open prompt (“What
can I do for you?”) followed by a more directed
phase where the system attempts to obtain the miss-
ing information (origin, destination, travel time, and
optionally route number) from the user. Finally, the
system provides the best matching bus number and
time, at which point the user has the possibility of
asking for the next/previous buses.

Let’s Go is based on the Olympus architecture
developed at CMU (Bohus et al., 2007). It uses
the RavenClaw dialog manager (Bohus and Rud-
nicky, 2003), the PocketSphinx speech recognition
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High-level dialog features
number of turns turn
duration of dialog dialogLen
total words per user
turn

U word

number of dialog acts
per system/user turn

U action, Saction

ratio of system and
user actions

Ratio action

Dialog style/cooperativeness

dialog acts

S requestinfo,
S confirm, Sinform,
S other, Uprovideinfo,
U yesno, Uunknown

Task success/efficiency
average goal/subgoal
achievement rate

success%

Speech recognition quality
non-understanding raterejection%
average ASR
confidence score

confScore

User dialog behavior
requests for help help%
touch-tone dtmf%
barge-in bargein%
speaking rate speechRate

Figure 2: Evaluation Measures (and abbreviations).

engine (Huggins-Daines et al., 2006) and a domain-
specific voice built with the Festival/Festvox toolkit
(Black and Lenzo, 2000) and deployed on the Cep-
stral Swift engine (Cepstral, LLC, 2005). As of
April 2007, the system has received more than
34,000 calls from the general public, all of which
are recorded with logs and available for research.

4 Experimental Setup

Our experiment involves collecting, then comparing,
two types of dialog corpora involving human users
and Let’s Go. Here we describe how we collected
oursubject corpusand ouruser corpus, i.e., our two
experimental conditions. The same version of Let’s
Go was used by the users and the subjects.

To collect our subject corpus we used a “stan-
dard” laboratory experiment, following typical prac-
tices in the field as summarized in Section 2. We

recruited 39 subjects (19 female and 20 male) from
the University of Pittsburgh who were native speak-
ers of American English. We asked the subjects to
come into our lab to call the system from a land-line
phone. We designed 3 task scenarios1 and asked the
subjects to complete them in a given sequence. Each
task included a departure place, a destination, and a
time restriction (e.g., going from the University of
Pittsburgh to Downtown, arriving before 7PM). We
used map representations of the places and graphic
representations of the time restrictions to avoid influ-
encing subjects’ language. Subjects were instructed
to make separate calls for each of the 3 tasks. As
shown in Figure 1, the initial system prompt in-
formed the users that they could say “Help” at any
time. We did not give any additional instructions
to the subjects on how to talk to the system. In-
stead, we let the subjects interact with the system
for 2 minutes before the experiment, to get a sense of
how to use the system. Subjects were compensated
for their time at the end of the experiment, with no
bonus for task completion. Although we set a time
limit of 15 minutes as the maximum time per task,
none of the subjects reached this limit.

For our user corpus, we used 4 days of calls to
Let’s Go (two days randomly chosen from the week-
day hours of deployment, and two from the weekend
hours of deployment) from the general public. Re-
call that during nights and weekends, callers to the
Port Authority’s customer service line are redirected
to Let’s Go.

5 Evaluation Measures

To examine whether differences exist between our
two corpora, we will use the evaluation measures
shown in Figure 2. All of these measures are
adopted from prior work in the dialog literature.

Schatzmann et al. (2005) proposed a comprehen-
sive set of quantitative evaluation measures to com-
pare two dialog corpora, divided into the follow-
ing three types: high-level dialog features, dialog
style/cooperativeness, and task success/efficiency.

1It should be noted that one of these tasks required transfer-
ring to another bus, which was not explicitly handled by the sys-
tem. This task was therefore particularly difficult to complete,
especially for subjects not familiar with the Port Authority net-
work. However, because this task represented a situation that
users might face, we still included this task in the study.
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Figure 3: Comparing High-level Dialog Features.

We adapt these measures for use in our comparisons,
based on the information available in our corpora.
For high-level dialog features (which capture the
amount of information exchanged in the dialog) and
dialog style, we define and count a set of system/user
dialog acts. On the system side,S requestinfo,
S confirm, andS inform indicate actions through
which the system respectively requests, confirms, or
provides information.S other stands for other types
of system prompts. On the user side,U provideinfo
andU yesnorespectively identify actions by which
the user provides information and gives a yes/no an-
swer, whileU unkown represents all other user ac-
tions. Finally,S action (resp.U action) represents
any of the system (resp. user) actions defined above,
andRatio action is the ratio betweenS action and
U action.

We also define a variety of other measures based
on other studies (e.g., (Walker et al., 2000; Tu-
runen et al., 2006)). Two of our measures capture
speech recognition quality: the non-understanding
rate (rejection% ) and the average confidence score
(confScore). In addition, we look into how fre-
quently the users ask for help (help%), how often
they use touchtone (dtmf% ), how often they in-
terrupt the system (bargein%), and how fast they
speak (speechRate, number of words per second).

All of the features used to compute our evaluation
measures are automatically extracted from system
logs. Thus, the user dialog acts and dialog behav-
ior measures are identified based on speech recog-
nition results. Forsuccess%, we consider a task to
be completed if and only if the system is able to get
enough information from the user to start a database

Figure 4: Comparing User Dialog Acts.

query and inform the user of the result (i.e., either
specific bus schedule information, or a message that
the queried bus route is not covered by the system).

6 Results

Our subject corpus consists of 1022 dialogs, while
our user corpus consists of 200 dialogs (90 obtained
during 2 weekdays, and 110 obtained over a week-
end). To compare these two corpora, we compute
the mean value for each corpus with respect to each
of the evaluation measures shown in Figure 2. We
then use two-tailed t-tests to compare the means
across the two corpora. All differences reported as
statistically significant have p-values less than 0.05
after Bonferroni corrections.

As a sanity check we first compared the weekday
and weekend parts of the user corpus with respect
to our set of evaluation measures. None of the mea-
sures showed statistically significant differences be-
tween these two subcorpora.

Figure 3 graphically compares the means of our
high-level dialog features, for both the user and sub-
ject dialog corpora. In the figures, the mean values
of each measure are scaled according to the mean
values of the user corpus, in order to present all of
the results on one graph. For example, to plot the
means ofdialogLen, we treat the meandialogLen
of the user corpus as 1 and divide the meandi-
alogLen of the subject corpus by the mean of the
user corpus. The error bars show the standard er-

2Some subjects mistakenly completed more than one task
per dialog. Such multi-task dialogs were not included in our
analysis, because our evaluation measures are calculated on a
per-dialog basis
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Figure 5: Comparing System Dialog Acts.

rors. Using t-tests on the unnormalized means (de-
scribed above), we confirm that the user dialogs and
the subject dialogs are significantly different on all
of the high-level dialog features. Subjects talk sig-
nificantly more than users in terms of number of
words per utterance; the number of turns per dialog
is also higher for subjects.U action andS action
show that both the system and the user transmit more
information in the subject dialogs.Ratio action
shows that subjects are more passive than users, in
the sense that they produce relatively less actions
than the system.

Figure 4 (resp. Figure 5) shows the distribution
of the user (resp. system) actions in both the user
and subject corpora. Subjects give more yes/no an-
swers and produce fewer unrecognized actions than
users (these differences are statistically significant).
On the other hand, there is no significant differ-
ence inU provideinfo between users and subjects.
The system provides significantly more information
(S inform ) to the subjects than to the users, which
is consistent with the fact that the task completion
rate is higher for subjects. Using automatic indi-
cators to estimate task completion as discussed in
Section 5, we find that the completion rate for sub-
jects is 80.7%, while for users it is only 67%. There
are also significantly moreS other in dialogs with
users than with subjects. We did not find any sig-
nificant difference in the number of system requests
(S requestinfo) or confirmations (S confirm).

Figure 6 shows the results for speech recognition
quality, using scaled mean values as in Figure 3.
There are no statistically significant differences be-
tween the number of rejected user turns or the aver-

Figure 6: Comparing Speech Recognition Quality.

age confidence scores of the speech recognizer. Re-
call, however, that these measures are automatically
calculated using recognition results. Until we can
examine speech recognition quality using manual
transcriptions, we believe that it is premature to con-
clude that our speech recognizer performs equally
well in real and lab environments.

Figure 7 shows the normalized mean values and
standard errors for our user dialog behaviors. Our
results agree with the findings in (Turunen et al.,
2006). All four measures show significant differ-
ences between user and subject dialogs. Users barge
in more frequently, use more DTMF inputs, and ask
for more help than subjects, while subjects speak
faster than users.

Figure 7: Comparing User Dialog Behaviors.

To summarize, subject dialogs are longer and con-
tain more caller actions than user dialogs, suggest-
ing that subjects are more patient and try harder
than users to complete their tasks. In addition, there
are less barge-ins and unknown dialog acts in sub-
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ject dialogs. Subjects also appear to speak faster
than users. This may be because subjects are call-
ing the system in very controlled and quiet condi-
tions, whereas users may experience a higher cogni-
tive load due to their environment (e.g. calling from
the street) or emotional state (e.g. concerned about
missing a bus).

Finally, in addition to comparing our corpora on
the dialog level, we also present a brief examination
of the differences between the first user utterances
from the dialogs in each corpus. (Because we are
only looking at a small percentage of our user ut-
terances, here we are able to use manual transcrip-
tions rather than speech recognition output.) The
impact of open system initial prompts on user ini-
tial utterances is an interesting question in dialog re-
search (Raux et al., 2006). Most users answer the
initial open prompt of Let’s Go (“What can I do for
you?”) with a specific bus route number, while sub-
jects often start with a departure place or destination.
Subject queries may be restricted by the assigned
task scenarios. However, it is interesting to note that
many users call the system to obtain schedule in-
formation for a bus route they already know, rather
than to get information on how to reach a destina-
tion. We also observe that there are only 2% void
utterances (when only background noise is heard) in
subject dialogs, while there are 20% in user dialogs.
This confirms that subjects and users dialog with the
system in very different environments.

7 Conclusions and Discussion

In this paper, we investigated the differences be-
tween dialogs collected with users in real settings
and with subjects in a standard lab setting, and ob-
served statistically significant differences with re-
spect to a set of well-known dialog evaluation mea-
sures. Specifically, our results show that subjects
talk more with the system and speak faster, while
users barge in more frequently, use more touchtone
input and ask for more help. Although there are
some significant differences in the frequency of par-
ticular system/user dialog acts, there is no signifi-
cant difference in the overall ratios of different dia-
log acts (i.e., the structure of the dialogs is similar).

Many of the differences we observed suggest that,
because users and subjects have different behaviors,

a system that is optimal for one population might
not be for the other. For instance, the fact that users
resort more to system help than subjects and at the
same time barge in more often implies different de-
signs for help prompts. Such prompts should be
shorter for users to avoid information overload (and
early barge-in which prevents them from hearing the
message), but might include more information for
subjects.

Our results also offer insights for user simulation
training. Most current research simulates user be-
havior on the dialog act level. In this case, training
the simulation models from a user corpus or from a
subject corpus may not differ much since the dialog
act distributions were shown to be similar in our two
corpora. At the speech/word level, however, we did
see significant differences in user behavior. Thus,
simulations trained on subject corpora may be insuf-
ficient to train systems that explore problems such as
barge-in, switch between modalities, and so on.

Finally, our work can contribute to an understand-
ing of how Let’s Go Lab can satisfy the needs of the
spoken dialog community. By charting the differ-
ences between users and subjects, we can determine
how tests carried out on the Lab can translate back
to the academic systems of the experimenters.
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Abstract 

We present DEAL, a spoken dialogue system for 
conversation training under development at KTH. 
DEAL is a game with a spoken language interface 
designed for second language learners. The system 
is intended as a multidisciplinary research platform 
where challenges and potential benefits of 
combining elements from computer games, 
dialogue systems and language learning can be 
explored. 

1 Introduction 

There is a growing trend among educational 
researchers to look at games and game design in 
order to make education more appealing and 
effective. A new and challenging domain for 
spoken dialogue systems is serious games, i.e., 
applications of interactive technology that have 
purposes other than solely to entertain, including 
training, advertising, simulation, or education 
(Iuppa & Borst, 2007). If successful, serious games 
will engage users motivated by a willingness to be 
entertained and/or educated. Encouraged by such 
motivations users will be prepared to talk to 
dialogue systems because it is fun, repeatedly and 
for long periods without the need for predefined 
tasks. This is a tempting scenario.  

We present DEAL, a spoken dialogue 
system for second language learners of Swedish 
under development at KTH. DEAL is intended as a 
multidisciplinary research platform where 
challenges and potential benefits of combining 
elements from computer games, dialogue systems 
and language learning can be explored. From a 

dialogue research point of view a serious game 
approach contributes with several novel and 
interesting objectives and challenges. These 
include how to design dialogues which are fun and 
natural using a language which suits the 
vocabulary and language complexity of language 
learning students on various levels. Since 
efficiency and task completion are no longer the 
main objectives, dialogue systems in a serious 
game context do not have to be predictable, 
rational or even co-operative. Instead, we need to 
consider how to build systems which are fun, 
educational and addictive to talk to.  

1.1 Acquiring conversational skills 

Language learning can be modelled as a series of 
developmental steps going from declarative to 
procedural knowledge. First, an item is noticed in a 
meaningful contrastive situation, then it occurs 
repeatedly in meaningful input and is practised in 
communication until it is internalised, and finally 
automatised (Ellis, 2006). To automatise these 
processes when learning a second language we 
need a meaningful situation where conversational 
skills can be practised repeatedly. Because of its 
complexity, learning a language requires 
substantial effort and the motivation varies both 
over time and between individuals. To practise 
conversational skills while playing a game may 
increase any existing motivation to learn if there is 
one, and creates a motive to learn if there isn’t. Our 
objective is similar to the Nice project (Gustafson 
et al., 2004), in that we wish to create a game 
where spoken dialogue is not just an add-on, but is 
used as the primary means for game progression. 
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2 Motivation 

The practical motivation of DEAL is to build an 
application where conversational skills can be 
practised in a fun and meaningful context. In short, 
DEAL is a game with a spoken language interface 
designed for second language learners. A similar 
approach is used in the tactical language training 
system (TLTS), a large-scale application that helps 
people acquire basic conversational skills in 
Levantine and Iraqi Arabic (Johnson et al., 2005). 
Our first choice of domain for this work is the 
trade domain. DEAL sets the scene of a flea 
market where a talking animated agent is the 
owner of a shop where used objects are sold. The 
domain was chosen for several reasons:  

• A trading situation is a fairly restricted and 
universally well-known domain. It is 
something everyone is conceptually familiar 
with, regardless of cultural and linguistic 
background. 

• A trading situation is from a language 
learning point of view a very useful domain 
to master in the new language 

• The objects sold at a flea market can be a 
diverse set of items which can be tailored to 
suit the vocabulary mastered by a language 
learning student. 

•  A flea market is a place where it is 
acceptable to negotiate about the price. 
Negotiation is a complex process which 
includes both rational and emotional non-
rational elements. This opens up for 
interesting and complex dialogue. 

These characteristics combined gives us an 
application where users can engage in a dialogue 
situated in a well-known context but which also 
includes elements of surprise and challenge (i.e., 
getting a good price).  

2.1 Ville 

DEAL is developed as a free-standing part of 
Ville, a framework for language learning 
developed at KTH (Engwall et al., 2004). Ville is a 
virtual language tutor helping students to improve 
their listening and pronunciation skills in a new 
language. Ville detects and gives feedback on 
pronunciation errors, and has challenging exercises 
that are used in order to teach new vocabulary, or 

to raise the students’ awareness of particular 
perceptual differences between their first and 
second language. Ville has exercises on phone, 
syllable, word and sentence level. 

DEAL adds the possibility to give conversation 
training. Whereas Ville is a language tutor who 
provides the user with feedback on performance, 
the agent in DEAL does not comment on your 
performance but acts as your conversation partner 
in a role-playing fashion. Using DEAL as an 
integrated part of Ville, the system has knowledge 
about particular students’ acquired vocabulary. 
This information can be used to tailor the language 
in DEAL as well as the items being sold.  

3 Implementation 

DEAL is implemented using components from the 
Higgins project (Skantze, 2005), an off-the-shelf 
ASR system, a dialogue manager developed for 
DEAL purposes and a GUI with an embodied 
conversational agent (ECA).  

3.1 User interface 

Our ECA (embodied conversational agent) is 
developed at KTH (Beskow, 2003), and can use 
either synthetic or natural, pre-recorded speech. 
The head is capable of producing lip-synchronized 
speech as well as extra linguistic signs such as 
frowning, nodding, and eyebrow movements. 
Language is multimodal, and in second language 
learning, visual signals are an important source of 
information. 

 
 

 

 

 

 

 

 

 

 

Figure 1: DEAL user interface 
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Higgins includes modules for semantic 
interpretation and analysis. Pickering, a modified 
chart parser, supports continuous and incremental 
input from a probabilistic speech recognizer. 
Speech is unpredictable and chunking a string of 
words into utterances is difficult since pauses and 
hesitations will likely be incorrectly interpreted as 
end of utterance markers. This will be even more 
evident for second language learners whose 
conversational skills are not yet automatised and 
whose language contains disfluencies such as 
hesitations and false starts. Pickering uses context 
free grammars (CFG) and builds deep semantic 
tree structures. Grammar rules are automatically 
relaxed to handle unexpected, ungrammatical and 
misrecognized input robustly. The discourse 
modeler, Galatea, interprets utterances in context 
and keeps a list of the communicative acts (CA) in 
chronological order. Galatea resolves ellipses, 
anaphora and has a representation of grounding 
status which includes information about who added 
a concept, in which turn a concept was introduced 
and the concept’s ASR confidence score. 

4 The DEAL domain 

Game designers focus on finding ways to keep 
players engaged and motivated throughout a game. 
Nonetheless, dialogues in today's games have a 
strict way of affecting the continuance of the game. 
The interaction is typically based on complex tree 
structures, where one action leads to a set of new 
choices. Choosing one line or topic has an 
immediate result and the dialogue traverses a finite 
branching tree structure. With these types of 
dialogues it is fairly trivial how to get the desired 
result, making it less interesting to engage in the 
interaction. We strive towards an interaction with a 
less predictable result. Façade is an interactive 
drama project that introduces a drama manager to 
make the outcome of a dialogue less predictable 
(Mateas & Stern, 2003). In Façade the story is 
divided into beats, an atomic unit of drama, where 
beats and transitions between beats can unfold in 
various ways depending on what type of input is 
provided by the user. 

4.1 Dealing with DEAL 

DEAL has two actors, one ECA and one human 
language student. The student is given a mission to 
buy items at a flea market getting the best possible 

price from the odd looking shop-keeper. The shop-
keeper can talk about objects and their properties 
and negotiate about the price of the objects. The 
most challenging part in DEAL, both from a 
“buyer” (user) point of view and when designing 
the conversational agent, is negotiating about the 
price of objects. At first, dealing about price can 
seem like a fairly rational and straight forward 
procedure. However, negotiating is a complex 
multidisciplinary area of research which touches 
fields such as psychology, economics and political 
science. Negotiating about a price in a face to face 
situation involves a number of various parameters 
which are often affected by non-rational and 
emotional aspects. Second hand items may have 
rich interesting characteristics which makes them 
interesting to talk about. For example the items can 
be defective, have a personal history or an 
affection value to the shop-keeper, all of which 
may have an impact on the negotiation process. 

The dialogue can unfold in different ways 
depending on what the user says (see Figure 2). 
Negotiation is implemented using a fairly straight 
forward algorithm and a few heuristics. To 
introduce elements of gameplay we have integrated 
a parameter which represents the agent’s 
“willingness” to reduce the price of an item. The 
willingness parameter is the percentage share of 
the seller’s original price that the ECA is willing to 
accept, after negotiating, as price for a particular 
item. The parameter has an initial value which may 
be affected depending on how the dialogue 
proceeds. To affect the outcome of the interaction, 
the player may try to influence the willingness of 
the shop-keeper to reduce the price. 

 
U1: I’m interested in buying a toy. 
S1: Oh, let me see. Here is a doll. 

(a doll is displayed) 
U2: Do you have a teddy-bear? 
S2: Oh, yeah. Here is a teddy-bear. 

(a teddy-bear is displayed, see Figure 1)  
U3: How much is it? 
S3: You can have it for 180 SEK 
U4: I give you 1 SEK (willingness decrease) 
S4: No way! That is less than what I paid for it. 
U5: Ok how about 100? 
S5: Can’t you see how nice it is? 
U6: But one ear is missing. (willingness increase) 
S6: Ok, how about 150? 
U7: 130? 
S7:  Ok, it is a deal! 

Figure 2: Dialogue example from DEAL 
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The outcome of the game is affected by what the 
user says. For example in utterance U4 the seller is 
offended by the user’s low bid and his willingness 
to give the user a good price is reduced. However, 
when the user points out a flaw of the object (the 
GUI displays a teddy-bear with one ear, see Figure 
1) the seller feels obligated to give the user a better 
price, i.e., his willingness increases. 

4.2 Dialogue characteristics in DEAL 

Humans who engage in a dialogue tend to 
coordinate their linguistic behaviour (Pickering & 
Garrod, 2006), sometimes referred to as 
entrainment. Research on linguistic entrainment in 
human-machine interaction has shown that users of 
spoken dialogue systems also adopt the system’s 
way of speaking (see for example Brennan, 1996). 
Moreover, research and literature on second 
language acquisition (SLA) is diverse, with no 
single theory or model seen as the most 
appropriate. However, there seem to be a 
consensus about the value of conversational 
interactions. The more you talk the better it is.  

Consequently, from a second language 
learning perspective, the language used in DEAL 
will be crucial. It is important that the agent 
behaves human-like in a way which motivates the 
users to talk a lot and not only in short command-
like utterances. The goal is not to create a 
conversational agent which behaves human-like in 
every sense but which is human enough to make 
the users suspend their disbeliefs, i.e. make them 
act as if they were talking to another human being 
(Cassell, in press). This does not necessarily mean 
that the agent needs to be cooperative or polite. 
The seller can actually be rude and try to avoid the 
users’ requests as long as this is done in a way that 
does not destroy the users’ willingness to accept 
the ECA in DEAL as a character with human-like 
conversational capabilities.  

5 Concluding remarks 

Whether DEAL is a fun game or not is yet to be 
investigated. So far, the scenario, rules and 
possible actions in DEAL are fairly limited. Much 
can be added to the system in the long run, but this 
far our main motivation has been to introduce 
simple examples of social interaction that affect 
game progression.  
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Abstract

We report results on how the collabora-
tive process of referring in task-oriented
dialogue is affected by the restrictive in-
teractivity of a turn-taking policy com-
monly used in dialogue systems, namely
push-to-talk. Our findings show that the
restriction did not have a negative ef-
fect. Instead, the stricter control im-
posed at the interaction level favoured
longer, more effective referring expres-
sions, and induced a stricter and more
structured performance at the level of the
task.

1 Introduction

The collaborative process by means of which
people coordinate in identifying referents in dia-
logue has motivated a fair amount of psycholin-
guistic studies. While most of them experiment
with natural, fully interactive conditions (Clark
and Wilkes-Gibbs, 1986; Garrod and Anderson,
1987) some, like e.g. (Krauss and Weinheimer,
1966; Clark and Krych, 2004), have investi-
gated how the referring process is affected by
non-interactive settings that lack cotemporality
(speakers do not receive messages in real time)
and simultaneity (speakers cannot communicate
at once). This is done by letting speakers talk
to a tape recorder for future addressees, which
fully precludes any form of interaction.

In the work we report here, we wanted to
investigate a condition with restricted interac-
tivity, in which cotemporality is allowed but si-

multaneity is inhibited. This is a setting com-
monly found in spoken dialogue systems that use
a push-to-talk turn-taking strategy. To investi-
gate the effects of this restriction in isolation, we
conducted an experiment where we let subjects
do a referring task either with free turn-taking
or with turn-taking controlled by a half-duplex
channel managed by push-to-talk.

Such restrictions of interactivity are often seen
as having negative impact on the efficiency of the
dialogue (Whittaker, 2003) as they affect the
ability to give immediate and concurrent feed-
back and hence disturb the grounding process
(Clark and Schaefer, 1989). As we have reported
in recent work (Fernández et al., 2007), however,
we found that subjects in the restricted condi-
tion were able to solve the task in roughly the
same time, with no loss of efficiency. We hy-
pothesised that one of the reasons behind this
was a more cautious strategy whereby subjects
proceed by more firmly grounding each step in
the task, which was favoured by the turn-taking
restriction, In this short paper we extend the
analysis to investigate in more detail the effect
of the push-to-talk restriction on the shape of
the referring process. As we shall see, our find-
ings support our previous conclusion that, for
some tasks, higher interactivity is not necessar-
ily advantageous.

After briefly describing the experimental pro-
cedure in the next section, in Section 3 we sum-
marise the global patterns observed in the dia-
logues and then focus on the referring process in
Section 4. We close with some conclusions and
pointers for further work.
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2 Experimental Setup

2.1 Task & conditions

In the task to be carried out in our experiment
an instruction giver (IG) tells an instruction fol-
lower (IF) how to build up a Pentomino puzzle
(see Figure 1). The IG has the solution of the
puzzle, while the IF has the puzzle outline and
the set of loose pieces.

Figure 1: Puzzle and Outline

The IG is asked to tell the IF how to assemble
the puzzle following the numbers shown in Fig-
ure 1. The pieces that the IF has at her disposal
are however not numbered and are all the same
colour.

We experiment with two different conditions:
a fully interactive free turn-taking (ftt) condi-
tion, and a push-to-talk (ptt) condition where
interactivity is restricted. In both conditions,
subjects are in different sound-proof rooms and
communication is only verbal. In ftt par-
ticipants communicate by means of headsets
with a continuously open audio channel. In
ptt subjects use walkie-talkies that only offer
a half-duplex channel that precludes simultane-
ous communication. Speakers have to press a
button to get the turn, hold it to keep it, and
release it again to yield it.

Twenty German native speakers, 11 females
and 9 males between 20 and 40 years old, par-
ticipated in the experiment. They were grouped
in 10 IG-IF pairs and 5 pairs were assigned to
each of the two conditions.

2.2 Coding

The 10 dialogues collected make up a total of
194.54 minutes of recorded conversation (in Ger-
man). The recordings were transcribed and seg-
mented into a total of 2,262 turns, 4,300 utter-
ances and 28,969 words using the software Praat
(Boersma, 2001).

Using MMAX (Müller and Strube, 2001), we
annotated the dialogues at three different levels:

Dialogue acts (DAs). We distinguish be-
tween task acts (including a tag for description
acts where a piece or a location are described)
and grounding acts (including different types of
feedback acts and clarification requests). More
details on the scheme used can be found in
(Fernández et al., 2007).

Moves. The task can be divided into 12 moves
or cycles, one for each piece. A move covers all
speech that deals with a particular piece, from
the point when the IG starts to describe it (“The
next piece looks like Oklahoma”) to the point
when the subjects move on to the next item.
Moves are sometimes closed with errors, which
may lead to later repairs. All speech that deals
with the repair of a previously closed move is
annotated as a repair sequence.

Referential expressions. We annotated the
referential expressions used by the subjects dis-
tinguishing between those that referred to a
piece (“the Swiss cross”), those that referred to
part of a piece (“a square sticking up”), and
those that referred to a location on the board
(“between the legs of the elephant”). Note that
referential expressions and description acts are
different kinds of units, with the former typically
being part of the latter.

3 Global Patterns

All pairs of subjects were able to finish the task
and in both conditions they did so in roughly the
same time (18.7 min in ptt and 19.8 min in ftt
on average; no significant difference). The ptt
condition thus did not have any significant im-
pact on task efficiency, although it did have an
effect on the shape of the dialogues. ptt pairs
were able to finish the task using significantly
fewer words than ftt pairs. The structural pat-
terns observed were also highly different across
conditions: ftt dialogues contain roughly twice
as many turns and utterance as ptt dialogues,
with turns and utterances in ptt being much
longer than in ftt. Table 1 gives an overview
of these results.
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average # of ftt ptt t-test, df=8
words/dialogue 3540 2254 p < 0.05
turns/dialogue 328 115 p < 0.005
utts/dialogue 596 264 p < 0.005

words/utt 6 8.6 p < 0.01
words/turn 11.3 20.2 p < 0.05

Table 1: Summary of structural patterns

We also found that there were significant dif-
ferences in the distribution of DAs. In particu-
lar, the proportion of positive feedback acts, like
backchannels and acknowledgements, was con-
sistently higher in ftt (33.8% vs 25.7% on aver-
age; χ2 test, p < 0.01), while ptt dialogues con-
tained a higher proportion of task-related acts
(45.4% vs 36.7% on average; χ2 test, p < 0.01).
The reader will find an extensive discussion of
these results in (Fernández et al., 2007).

4 Analysing the Referring Process

In this section, we report some results of our
analysis of the referring process and of how this
is affected by the global patterns brought about
by our two experimental conditions.

4.1 Internal structure of moves

The moves that deal with the different pieces of
the puzzle include several sub-tasks: (i) identify-
ing the piece in question, (ii) optionally describ-
ing its orientation, and (iii) establishing its loca-
tion on the board. The latter is the most chal-
lenging of the three and the one on which sub-
jects spend most of the effort: in both ftt and
ptt, slightly over 60% of the referring expres-
sions used deal with the identification of board
locations. For each move, there is minimally one
change in sub-tasks, typically with a transition
from (i) to (ii). These sub-tasks, however, are
not always addressed in the canonical order and
often subjects go back and forth between them
during a single move.

To measure the orderliness of the referential
process, we counted the number of times sub-
jects changed to a different sub-task within a
move and found significant differences between
conditions. We observed that, on average, sub-
jects in ptt dialogues change to a different ref-
erential sub-task 1.2 times per move, while in
ftt dialogues the average number of changes

per move is 2. These differences are statistically
significant (t=3.18, df=8, p < 0.02). Thus, par-
ticipants in ptt dialogues tend to follow a more
structured strategy where they first deal with
the description of a piece and then with its lo-
cation, making sure that each of these phases is
grounded. This suggests that the stricter con-
trol imposed by the turn-taking restriction on
the interaction level leads to a stricter and bet-
ter structured performance at the task level.

4.2 Referential expressions

In the collaborative model put forward by (Clark
and Wilkes-Gibbs, 1986), the referential process
is divided into three phases: an initiating phase,
a refashioning phase, and a concluding phase. In
a basic exchange, like e.g. (1), only the first and
last phases occur, which correspond to the pre-
sentation and acceptance phases of grounding
any dialogue contribution.

(1) A: Number 2 is a cross
B: OK, I have that one.

Refashioning may take place because the initial
reference is not properly understood or not ac-
cepted, or simply because the speaker considers
it insufficiently adequate.

According to this model, “there is a trade-off
between initiating the noun phrase and refash-
ioning it. The more effort a speaker puts into the
initial noun phrase, in general, the less refash-
ioning it is likely to need.” As the authors point
out, however, due to constraints like time pres-
sure and the possible complexity of the referring
task, speakers do not always put in enough ef-
fort to avoid refashioning, which—in conditions
with full interactivity—leads to a more collabo-
rative and interactive process. Indeed, our ftt
dialogues are full of installments, provisional ref-
erences and descriptions presented by proxy, as
in the following example (translated from Ger-
man), all of which are rare in ptt dialogues.

(2) IG: It looks kind of a bit like...
IF: Like an inverted L with an extra bit.
IG: Yeah, could be. Basically like a duck.

Although the referential expressions used in ptt
tend to be longer, overall their average length
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is not significantly different across conditions
(12.6 vs 9.7 words on average; not significant).
Averaging over all referential expressions, how-
ever, conceals important differences in the way
in which the referential process unfolds. The
differences are to be found in those expressions
used in the initiating phase of the referring pro-
cess. In particular, we observed that the av-
erage length of the initial descriptions used to
refer to locations (which, as mentioned above,
is the most prominent sub-task) is significantly
higher in ptt dialogues (13.6 vs 8.7 words on av-
erage; t=2.30, df=8, p < 0.05). More generally,
the average length of the referential expressions
used in initial moves (as opposed to repair se-
quences; see Section 2.2) is also higher in the
restrictive interactivity condition (12.6 vs 9.26;
t=2.34, df=8, p < 0.05).

This underlines the aforementioned trade-off
between the cost of producing detailed initial
descriptions and the cost of interactively design-
ing the referential expressions. The turn-taking
restriction favours longer initial descriptions,
which turns out to be advantageous since inter-
active refashioning, as in (2) above, is harder in
this condition.

5 Conclusions and Further Work

We have reported some first results of our ongo-
ing investigation of the referring process in re-
stricted task-oriented dialogue. We have seen
that there is a correspondence between the in-
teraction and the task levels, with restricted in-
teractivity leading to more orderly task perfor-
mance. We have also observed that our ptt con-
dition favours a strategy whereby participants
put more effort in the initiating stages of the re-
ferring task, which seems to be advantageous for
the task at hand.

Our findings so far support the idea that tasks
that require complex, spontaneously generated
contributions may not be adversely affected or
even be supported by interactivity restrictions.
Although understanding such complex descrip-
tions as occur in our corpus is of course way
beyond the current state of spoken dialogue sys-
tems, our results should be of more immediate

significance for designing computer-mediated in-
teraction systems.

We are currently developing a classification
scheme for locative referring expressions in the
lines of the taxonomy used in (Clark and Wilkes-
Gibbs, 1986) for noun phrases. This will al-
low us to analyse the referring process fur-
ther and investigate how phenomena like e.g.
lexical entrainment and the increasing sim-
plification of referring expressions (which, as
shown by (Krauss and Weinheimer, 1966; Clark
and Krych, 2004) are severely affected in non-
interactive setting) are altered under the re-
stricted interactivity imposed by a ptt policy.
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Abstract

In this paper we present a multidimensional
approach to utterance segmentation and au-
tomatic dialogue act classif cation. We show
that the use of multiple dimensions in dis-
tinguishing and annotating units not only
supports a more accurate analysis of hu-
man communication, but can also help to
solve some notorious problems concerning
the segmentation of dialogue into functional
units. We introduce the use of per-dimension
segmentation for dialogue act taxonomies
that feature multi-functionality and show
that better classif cation results are obtained
when using a separate segmentation for each
dimension than when using one segmenta-
tion that f ts all dimensions. Three ma-
chine learning techniques are applied and
compared on the task of automatic classif -
cation of multiple communicative functions
of utterances. The results are encouraging
and indicate that communicative functions
in important dimensions are easy machine-
learnable.

1 Introduction

Computer-based interpretation and generation of hu-
man dialogue is of growing relevance for today’s
information society. As natural language based di-
alogue is increasingly becoming an attractive and
technically feasible human-machine interface, so the
analysis of human-human interaction (for example
in interviews or meetings) is becoming important for

archival and retrieval purposes, as well as for knowl-
edge management purposes and for the study of so-
cial interaction dynamics.
Since people involved in communication con-

stantly perceive, understand, evaluate, and react to
each other’s intentions as encoded in statements,
questions, requests, offers, and so on, a natural ap-
proach to the analysis of human dialogue behaviour
is to assign meaning to dialogue units in terms of di-
alogue acts. The identif cation and automatic recog-
nition of the dialogue acts or communicative func-
tions1 of utterances is therefore an important task for
dialogue analysis and the design of applications such
as computer dialogue systems.
The assignment of appropriate meanings to ‘di-

alogue units’ presupposes a way to segment a dia-
logue into meaningful units. This turns out to be a
complex task in itself. Many previous studies in the
area of the automatic dialogue act assignment were
typically carried out at the level of ‘utterances’ or
that of ‘turns’. A turn can be def ned as a stretch of
communicative behaviour produced by one speaker,
bounded by periods of inactivity of that speaker or
by activity of another speaker (Allwood, 2000).
While turn boundaries can be recognised relatively
easily, for some analysis segmentation into turns is
often unsatisfactory because a turn may contain sev-
eral smaller meaningful parts. Utterances, on the
other hand, are linguistically def ned stretches of
communicative behaviour that have one or multiple
communicative functions. Utterances may coincide
with turns but are usually smaller.

1In this paper, we use the terms ‘dialogue act’ and ‘commu-
nicative function’ synonymously.
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The detection of utterance boundaries is a highly
nontrivial task. Syntactic features (e.g. part-of-
speech, verb frame boundaries of f nite verbs) and
prosodic features (e.g. boundary tones, phrase f nal
lengthening, silences, etc.) are often used as indi-
cators of utterance endings (Shriberg et al., 1998;
Stolcke et al., 2000; Nöth et al., 2002).
One of the problems with dialogue segmentation

into utterances is that utterances may be discon-
tinuous. Spontaneous speech in dialogue usually
includes f lled and unf lled pauses, self-corrections
and restarts; for example, the speaker of the utter-
ance in (1) corrects himself two times.

(1) About half ... about a quar- ... th- ...third of the way down
I have some hills

Dialogue utterances may be interrupted by even
more substantial segments than repairs and stallings.
For example, the speaker of the utterance in (2) in-
terrupts his Inform with a WH-Question:

(2) Because twenty f ve Euros for a remote... how much is
that locally in pounds? is too much money to buy an
extra remote or a replacement remote

Examples such as (1) and (2) show that the seg-
mentation of dialogue into utterances that have a
communicative function requires these units to be
potentially discontinuous. In some cases a dialogue
act may be performed by an utterance formed by
parts of more than one turn. This often happens
in polylogues where participants may interrupt each
other or talk simultaneously. For example:

(3) A: Well we can chat away for ... um... for f ve minutes or
so I think at... B: Mm-hmm ... at most

Another case of a dialogue act that is spread over
multiple turns occurs when the speaker is providing
complex information and divides it up into parts in
order not to overload the addressee, as is shown in
(4). The f rst part of the discontinuous segment that
expresses S’s answer also has a feedback function
(making clear to U what S understood).
(4) U : Could you tell me what time there are f ights to Kuala

Lumpur on Monday?
S: There are two early KLM f ights, at 7.30 and at 8:25,..
U : Yes,...
S: ... and a midday f ight by Garoeda at 12.10,...
U : Yes,...
S: And there’s late afternoon f ight by Malaysian Airways
at 17.55.

The material in the three turns contributed by S

together constitute the ‘utterance’ expressing S’s an-
swer to U ’s question. Examples such as these show
that the units in dialogue that carry communicative
functions are often very different from the traditional
linguistically def ned notion of an utterance. We
therefore prefer to give these units a different name,
that of functional segment, and we def ne these units
as ”(possibly discontinuous) stretches of commu-
nicative behaviour that have one or more commu-
nicative functions” (Bunt and Schiffrin, 2007). In
many cases a functional segment corresponds to an
‘utterance’ as def ned by certain linguistic proper-
ties, but in other cases it does not; and so the ques-
tion arises how functional segments can be recog-
nised. This is one of the main issues that this paper
addresses.
When we want to segment a dialogue into func-

tional segments, one complication is that of discon-
tinuous segments, either within a turn or spread over
several turns as we have already discussed. An even
greater challenge is posed by those cases where dif-
ferent functional segments overlap, as in the exam-
ple shown in 5.

(5) U : What time is the f rst train to the airport on Sunday?
S: The f rst train to the airport on Sunday is at ...ehm...
6.17.

The f rst part of S’s turn repeats most of the pre-
ceding question, displaying what the system has
heard, and as such has a feedback function. The turn
as a whole minus the part ...ehm... has the commu-
nicative function of a WH-Answer, and that part has
a stalling function. So the segments corresponding
to the WH-Answer and the feedback function share
the part ”The f rst train to the airport on Sunday”.
This means that in this turn we have two functional
segments starting at the same position but ending at
different ones; in other words, no single segmenta-
tion of this turn exists that gives us all the relevant
functional segments.
To resolve this problem adequately, we propose

not to maintain a single segmentation, but to use
multiple segmentations in order to allow multiple
functional segments that are associated to a specif c
utterance to be identif ed more accurately. This ap-
proach is compatible with dialogue act taxonomies
that address several aspects (‘dimensions’) of the
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interactive process simultaneously (e.g. DAMSL
(Core and Allen, 1997) or DIT (Bunt, 2006)), such
as the task or activity that motivates the dialogue,
the management of taking turns, or timing and atten-
tion. This multidimensional view of dialogue natu-
rally leads to the suggestion of approaching dialogue
segmentation in a similarly multidimensional way,
and to allow the segmentation of a dialogue per di-
mension rather than in one f xed way. In the case of
example (5), this means that S’s turn is segmented
in the three dimensions addressed by the functional
segments in this turn:

• Dimension Task/Activity: segment the turn as
consisting of the discontinuous segment ”The
f rst train to the airport on Sunday is at / 6.17”,
which has a communicative function in this di-
mension, and the contiguous segment ...ehm...,
which does not;

• Dimension Feedback: segment the turn as con-
sisting of the contiguous segment The f rst train
to the airport on Sunday, which has a function
in this dimension, and the contiguous segment
is at ...ehm... 6.17, which does not;

• Dimension Time Management: segment the
turn as consisting of the contiguous segment
...ehm..., which has a communicative function
in this dimension, and the discontinuous seg-
ment: The f rst train to the airport on Sunday is
at 6.17, which does not.

In recent work the benef ts of multidimensional
approaches of dialogue act annotation have been dis-
cussed and it has been argued that such approaches
allow a more accurate modelling of human dialogue
behaviour (Petukhova and Bunt, 2007). In this pa-
per we report the results of two studies: one on seg-
mentation and one on classif cation of dialogue acts
in multiple dimensions using various machine learn-
ing techniques. In Section 2 we will outline the two
series of experiments describing the data, features,
and algorithms that have been used. Section 3 and
4 report on the experimental results on segmentation
and classif cation, respectively. Consequently, con-
clusions are drawn in Section 5.

2 Studies outline

The f rst study is motivated by the question of
whether a different segmentation for each of the DIT

dimensions (per-dimension segmentation) rather
than a single segmentation for all dimensions will
allow more accurate labelling of the communicative
functions. In the second study we present the results
of a series of experiments carried out in order to as-
sess the automatic recognition and classif cation of
communicative functions. For this purpose we ap-
ply machine-learning techniques. Such techniques
have already successfully been used in the area of
automatic dialogue processing2 . Our approach is to
train classif ers to learn communicative functions in
multiple dimensions, taking functional segments as
units.

2.1 Corpus data

In our experiments we used two data sets, namely,
human-human dialogues in Dutch (the DIAMOND
corpus (Geertzen et al., 2004)) for both the segmen-
tation study, and the classif cation study and human-
human multi-party interactions in English (AMI-
meetings)3 for the classif cation study.
The DIAMOND corpus contains human-machine

and human-human Dutch dialogues that have an
assistance-seeking nature. The dialogues were
video-recorded in a setting where the subject could
communicate with a help desk employee using an
acoustic channel and ask for explanations on how
to conf gure and operate a fax machine. The di-
alogues were orthographically transcribed and 952
utterances representing 1,408 functional segments
from the human-human subset of the corpus have
been selected.
The AMI corpus contains manually produced

orthographic transcriptions for each individual
speaker, including word-level timings that have been
derived using a speech recogniser in forced align-
ment mode. The meetings are video-recorded and
each dialogue is also provided with sound f les
(for our analysis we used recordings made with
short range microphones to eliminate noise). Three
scenario-based4 meetings were selected to constitute
a training set of 3,676 functional segment instances.

2See e.g. (Clark, 2003) for an overview.
3A
¯
ugmented M

¯
ulti-party I

¯
nteraction (http://www.

amiproject.org/).
4Meeting participants play different roles in a f ctitious de-

sign team that takes a new project from kick-off to completion
over the course of a day.
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Table 1 gives percentages of occurrence of the ten
most frequently observed tags in both training sets.

AMI data DIAMOND data
Tag Perc. Tag Perc.

Time;STALLING 20.7 Task;INSTRUCT 14.8
Auto-FB;POS.OVERALL 18.7 Task;INFORM 7.7
Turn;Turn Keeping 7.5 Time;stall 6.5
Task;INFORM 6.8 Task;INFORM elaborate 6.3
Task;INFORM Elaborate 3.5 Auto-FB;POS.OVERALL 6.2
Task;INF.Agreement 2.5 Task;WH-Question 4.5
Task;YN-Question 2.3 Auto-FB;POS.INT 3.1
Task;SUGGEST 2.0 Task;YN-Question 2.9
Task;INFORM Justify 2.0 Task;CHECK 2.6
Task;CHECK 1.6 Task:INFORM Clarify 2.1

Table 1: Percentage of instances for most frequent tags in the
AMI and DIAMOND training sets.

For the DIAMOND training set, the order for
the most frequently addressed dimensions is simi-
lar with Task dimension (45.6%), followed by Auto-
Feedback (19.2%), and Turn Management (16.8%).
For the AMI training set, the majority of the dia-
logue units address the Task dimension (33%), fol-
lowed by Auto-Feedback (21.7%), Time Manage-
ment (20.3%) and Turn Management (12.5%).

2.2 Tagset

Both data sets were annotated with the DIT++

tagset5. The DIT taxonomy distinguishes 11 dimen-
sions, addressing information about: the domain or
task (Task), feedback on communicative behaviour
of the speaker (Auto-feedback) or other interlocu-
tors (Allo-feedback), managing diff culties in the
speaker’s contributions (Own-Communication Man-
agement) or those of other interlocutors (Partner
Communication Management), the speaker’s need
for time to continue the dialogue (Time Manage-
ment), establishing and maintaining contact (Con-
tact Management), about who should have the next
turn (Turn Management), the way the speaker is
planning to structure the dialogue (Dialogue Struc-
turing), introducing, changing or closing the topic
(Topic Management), and the information motivated

5For more information about the tagset and the dimensions
that are identif ed, please visit:
http://dit.uvt.nl/

by social conventions (Social Obligations Manage-
ment).
For each dimension, at most one communicative

function can be assigned, which can either occur
in this dimension alone (the function is dimension
specif c) or occur in all dimensions (the function is
general purpose). For example, the utterance in 1
has a dimension-specif c function SELF CORREC-
TION assigned to it that can only be assigned in the
Own Communication Management dimension. Ut-
terance A in example 3 has the communicative func-
tion of INFORM in theDialogue Structuring dimen-
sion. Being a general purpose function, INFORM
could possibly also be assigned to any other dimen-
sion (such as e.g. Task).
The tagset used in the studies contains 38 domain-

specif c functions and 44 general purpose functions.
As a result of difference in function type, a tag con-
sists either of a pair of the addressed dimension
(D) and general purpose function (GP ) or the ad-
dressed dimension and dimension specif c function
(DS). Some functional segments can address sev-
eral dimensions simultaneously. For example, ut-
terances like uhm.., ehm.. have the communicative
function of STALLING in the dimension Time Man-
agement, but also have the TURN KEEPING func-
tion in the Turn Management dimension. These ut-
terances typically have two 〈D, DS〉 tags assigned:
〈T imeM,STALLING〉 and 〈TurnM, KEEPING〉.
For both data sets the annotation is f rst carried out

on a single segmentation and then additionally on
dialogue segmented in each of the dimensions sepa-
rately.

2.3 Features
Every communicative function is required to have
some ref ection in observable features of commu-
nicative behaviour, i.e. for every communicative
function there are devices which a speaker can use
in order to allow its successful recognition by the
addressee such as linguistic cues, intonation proper-
ties, dialogue history, etc. State-of-the-art automatic
dialogue understanding uses all available sources to
interpret a spoken utterance. Features and their se-
lection play a very important role in supporting ac-
curate recognition and classif cation of functional
segments and their computational modelling may be
expected to contribute to improved automatic dia-
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logue processing. The features included in the data
sets are those relating to dialogue history, prosody,
and word occurrence.
For the AMI meetings and the DIAMOND dia-

logues, history consists of the tags of the 10 and 4
previous turns, respectively6 . Additionally, the tags
of utterances to which the utterance in focus was a
direct response to, as well as timing, are included
as features. For the data which is segmented per
dimension, some segments are located inside other
segments. This occurs for instance with backchan-
nels and interruptions that do not cause turn shift-
ing; the occurrence of these events is encoded as a
feature.
Prosodic features that are included are minimum,

maximum, mean, and standard deviation of pitch
(F0 in Hz), energy (RMS), voicing (fraction of lo-
cally unvoiced frames and number of voice breaks),
and duration. Word occurrence is represented by a
bag-of-words vector7 indicating the presence or ab-
sence of words in the segment. In total, 1,668 fea-
tures are used for AMI data and 947 for DIAMOND
data. For AMI data we additionally indicated the
speaker (A, B, C, D) and the addressee (other partic-
ipants individually or the group as a whole).

2.4 Classif ers

A wide variety of machine-learning techniques has
been used for NLP tasks with various instantiations
of feature-sets and target class encodings, and for
dialogue processing, it is still an open issue which
techniques are the most suitable for which task. We
used three different types of classif ers to test their
performance on our dialogue data: a probabilistic
one, a rule inducer and memory-based learner.
For a probabilistic classif er we used Naive Bayes.

This classif er assumes class-conditional indepen-
dence, which does not always respect the character-
istics of the features used. However, Naive Bayes
classif ers often work quite well for complex real-
world situations and are particularly suitable for sit-
uations in which the dimensionality of the input is
high. Moreover, this classif er requires relatively lit-

6We use more preceding tags for the AMI data than for the
DIAMOND data since there is often more distance between re-
lated utterances in multi-party interaction than in dialogue.

7With a size of 1,640 entries for AMI data and 923 for DIA-
MOND data.

tle computation and can be eff ciently trained.
For rule induction algorithm, we chose Ripper

(Cohen, 1995). The advantage of such an algorithm
is that the regularities discovered in the data are rep-
resented as human-readable rules.
The third classif er is IB1, which is a memory-

based learner that is a successor of the k-nearest
neighbour (k-NN) classif er. The algorithm f rst
stores a representation of all training examples
in memory. When classifying new instances, it
searches for the k most similar examples (nearest
neighbours) in memory according to a similarity
metric, and extrapolates the target class from this set
to the new instances. The algorithm may yield more
precise results given suff cient training data, because
it does not abstract away low-frequent phenomena
during the learning (Daelemans et al., 1999).
The results of all experiments were obtained using

10-fold cross-validation8 . When setting a baseline
it is common practice to predict the majority class
tag, but for our data sets such a baseline is not very
useful because of the relative low frequencies of the
tags in most dimensions. Instead, we use a baseline
that is based on a single feature, namely, the tag of
the previous dialogue utterance (see (Lendvai et al.,
2003)).

3 Multidimensional dialogue act
segmentation

Any segmentation of dialogue (or multi-party in-
teraction) into meaningful units, such as functional
segments, is motivated by the meaning that is con-
veyed. As a result, the segmentation strongly de-
pends on the def nition of the dialogue acts in the
taxonomy that is used. The multidimensional tagset
used in this paper allows several aspects of commu-
nicative behaviour for a single functional segment to
be addressed. However, the functions of a segment
do not necessarily address the same span in the com-
municative channels. Hence it could be argued that
separate segmentation for each dimension should al-

8In order to reduce the effect of imbalances in the data, it
is partitioned ten times. Each time a different 10% of the data
is used as test set and the remaining 90% as training set. The
procedure is repeated ten times so that in the end, every instance
has been used exactly once for testing (Witten and Frank, 2000)
and the scores are averaged. The cross-validation was stratif ed,
i.e. the 10 folds contained approximately the same proportions
of instances with relevant tags as in the entire dataset.
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low for a more accurate identif cation of spans asso-
ciated to specif c communicative functions. When
we assume that this is the case, it would follow that
classif cation of communicative functions based on
per-dimension segments should be more successful
than classif cation based on a single segmentation
for all dimensions.
For testing the above-mentioned hypothesis, Rip-

per —the classif er that provides the highest accu-
racy scores in our experiments— was used on the
DIAMOND dialogues annotated with the DIT++

tagset. Two classif cation tasks on exactly the same
dialogues with exactly the same kind of features
and annotated communicative functions were per-
formed. The only difference being that in one task
one segmentation that f ts all dimensions (OSFAD)
was used, whereas in the other task per-dimension
segmentation (PDS) was used. Because DIT allows
the assignment of at most one function in a specif c
dimension, a segment in the PDS task has one tag
whereas a segment in the OSFAD setting might have
a combination of tags9. Running Ripper (with de-
fault parameters) for both tasks resulted in the scores
presented in Table 2:

Dimension OSFAD PDS

Task 66.1 72.8 ∗
Auto Feedback 80.4 86.3 ∗
Allo Feedback 98.4 99.6
Turn M. 88.3 90.0
Time M. 72.6 82.1 ∗
Contact M. 97.3 97.3
Topic M. 55.2 55.2
Own Communication M. 85.9 87.1
Partner Communication M. 64.5 64.5
Dialogue Structuring 74.3 74.3
Social Obligations M. 93.2 93.3

Table 2: Accuracy scores for communicative functions with
one segmentation that f ts all dimensions (OSFAD) and per-
dimension segmentation (PDS).
∗ signif cant at p < .05, one-tailed z-test.

From the results in Table 2 we can observe that
for most important dimensions, PDS results in bet-
ter classif cation performance: the functions related
to the dimensions Task, Auto Feedback, and Time
Management show signif cant improvement. For

9In our data, at most four functions occurred simultaneously.

some dimensions, classif cation does not take advan-
tage of PDS, mainly because of two reasons: in the
dataset some dimensions are rarely addressed (e.g.
Partner Communication Management) and some di-
mensions are addressed without any other dimension
being addressed around the same time (e.g. Contact
Management). These observations are motivated by
the kinds and characteristics of interaction and in
some extend by the limited size of the dataset.
Although not all dimensions benef t signif cantly,

it is clear that multidimensional segmentation helps
to classify communicative functions more accu-
rately. However, it should be noted that the gain
of more accurately identif ed functions comes at the
cost of a slightly more complex segmentation proce-
dure.

4 Dialogue Act Classif cation in Multiple
Dimensions

Since a segment is often multi-functional, it is not
only interesting to identify the dimension, the com-
municative function, and the tag separately, but
also to test whether or not and to what extent it
is possible to learn the combination of tags (e.g.
〈T imeM,STALLING〉, 〈TurnM, KEEP 〉).
We carried out a set of experiments studying the

performance of the three classif ers described in Sec-
tion 2 on the following classif cation tasks:

• each addressed dimension separately or multi-
ple addressed dimensions in combination, e.g.
a single dimension like Task, Auto-Feedback,
Turn Management, or a combination like Turn
Management and Time Management;

• communicative function per dimension in iso-
lation, e.g. INFORM, CORRECTION, WH-
QUESTION, etc. in the Auto-Feedback dimen-
sion;

• tag or combination of tags, e.g. either
〈D, GP 〉 or 〈D, DS〉, or 〈D, GP 〉,〈D, DS〉 or
〈D, DS〉,〈D, DS〉.

4.1 Experimental results
Table 3 gives an overview of classif cation scores
expressed as the percentage of correctly predicted
classes in all training experiments.
For the prediction of a dimension addressed by

a functional segment (upper data row in the table)
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Classif cation task BL NBayes Ripper IB1

Dimension tag 38.0 69.5 72.8 50.4
Task management 66.8 71.2 72.3 53.6
Auto-Feedback 77.9 86.0 89.7 85.9
Turn initial 93.2 92.9 93.2 88.0
Turn closing 58.9 85.1 91.1 69.6
Time management 69.7 99.2 99.4 99.5
OCM 89.6 90.0 94.1 85.6
Functional tag 25.7 48.0 50.2 38.9

Table 3: Overview of accuracy on the baseline (BL) and the
classif ers on all classif cation tasks

all algorithms outperform the baseline by a broad
margin. Ripper clearly outperforms the other two
learners. The middle part of the table gives an
overview of the performance of the tested classif ers
on communicative functions per dimension. Rip-
per again outperforms Naive Bayes and IB1. The
scores are the same (e.g. with turn initial functions)
or higher then those of the baseline. Some of the di-
mensions distinguished in DIT are not included in
Table 3 since the segments which were tagged as
having communicative functions in the dimensions
Allo-feedback, Contact management, Topic manage-
ment, Dialogue Structuring, Partner Communica-
tion management, and Social Obligation Manage-
ment are rare in the AMI training data. The instances
from these dimensions were almost perfectly classi-
f ed by all classif ers, reaching an accuracy higher
than 99%, but not better than those of the baseline.
In Appendix A of this paper we present a selec-

tion of the RIPPER induced rules illustrated with
examples from the corpus. As was to be expected,
for the prediction of the Task dimension, the bag-
of-words feature representing word occurrence in
the segment was important. For example, the pres-
ence of ‘because’ in a segment was a good indica-
tor for identifying INFORM JUSTIFY; the occur-
rence of ‘like’, or ‘for example’, or ‘maybe’ and
‘might’ for SUGGESTION. Also the duration of the
segment was usually longer than for example seg-
ments which addressed the Time or Turn Manage-
ment dimensions. For the prediction of questions,
word occurrence (e.g. occurrence of wh-words in
WH-Questions, and ‘or’ for Alternative Questions)
and prosodic features like standard deviation in pitch
were essential. For the segments which are identi-

f ed as having Information-Providing functions, im-
portant features were detected in the dialogue his-
tory, e.g. CONFIRM about the task was a response
to a previous CHECK question about the task. The
segments addressing the Auto-Feedback dimension
were classif ed successfully on the basis of their
word occurrence and dialogue history. The occur-
rence of words like ‘alright’, ‘right’, ‘okay’, ‘uh-
huh’ are important clues for their recognition.
As for the dimensions Turn and Time Manage-

ment, the duration of the segment was a key feature,
because the duration of these segments tends to be
shorter than that of others. Moreover, these utter-
ances were pronounced more softly (e.g. <49dB)
and are less voiced (e.g. about 47% of unvoiced
frames). They usually occur inside ‘larger’ seg-
ments, mostly in the beginning or in the middle.
If they appear in clause-initial position, they usu-
ally have turn initial functions (TAKE, ACCEPT,
GRAB) and the function STALLING in the Time
Management dimension; if they occur in the mid-
dle of the ‘main’ segment they are used to signal
that the speaker has some diff culties in completing
his/her utterance, needs some time and wants to keep
the turn (see examples 3 and 5). Of course, usage
of words like ‘um’, ‘well’, but also lengthening the
words indicates the speaker’s hesitation and/or diff -
culties in utterance completion.
Segments having communicative functions in the

dimension Dialogue Structuring often have linguis-
tic cues like ‘meeting’, ‘f nish’, ‘wrap up’, etc. Im-
portant cues for RETRACTs (in the dimension Own
Communication Management) are their relation to
what is actually retracted (‘reply to’ feature), and
the energy with which they are spoken (i.e. they are
pronounced louder than the retracted ‘reparandum’,
i.e. >55dB).
Looking further at the results we can observe that

tag labels were diff cult to classify (see bottom data
row of the table). They eventually reach an accuracy
of 50.2% (baseline: 25.7%). These scores should be
evaluated in the light of the relatively high degree
of granularity of these tags (97 unique tags and 132
unique combinations of tags) and relatively lower
frequency of each of those in the training sets. We
have however reason to expect that by increasing
the size of the training set higher accuracy could be
reached.
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5 Conclusions and future work

In this paper a multidimensional approach to utter-
ance segmentation and automatic dialogue act clas-
sif cation has been presented in which some prob-
lematic issues with the segmentation of dialogue
into functional units are addressed.
Whereas it is common practice to assign dialogue

acts to a single segmentation, we conclude that for
dialogue act taxonomies that allow assignment of
multiple functions to dialogue units we can describe
human communication more accurately by using
per-dimension segmentation instead.
We have shown that machine learning techniques

can be prof tably used on a complex task such as
the automatic recognition of multiple communica-
tive functions of dialogue segments. All three classi-
f ers that have been tested performed well on all clas-
sif cation tasks. For the majority of tasks, the scores
we obtained are signif cantly higher than those of the
baseline. However, the datasets that we used were
not very rich with respect to all the communicative
functions distinguished in the various dimensions:
some classes were underrepresented.
For future work, we intend to extended the stud-

ies into two directions. First, we plan to increase the
size of our dataset to obtain a suff cient number of
instances for each class by manually segmenting and
annotating more dialogue data with both segmenta-
tions. This would allow us to get a fair indication
of the classif cation performance of general purpose
functions in dimensions other than Task and Feed-
back. Furthermore, we plan to consider multi-party
interactions (the AMI sessions for instance) and use
other modalities besides speech audio in comparing
both segmentations. We expect that for such data,
dialogue act classif cation may benef t more from
using per-dimension segmentation.
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Appendix A: Selected RIPPER rules illustrated with corpus examples
The structure of a rule is: if (feature = x) and (feature= x, etc.) =⇒ class (n/m), where x is a nominal feature value, an element of a
set feature, or a range of a numeric feature; n indicates the number of instances a rule covers and m the number of false predictions.
We illustrate the induced rules with some interesting examples from the training set.

Task Management:
(it = p) and (wouldnt = p) =⇒ da=task:check (5.0/1.0)
(right = p) and (max.pitch <= 203.87) =⇒ da=task:check (8.0/2.0)
Example:
(1052:88-1057:12) D: We were given sort of an example of a coffee machine or something, right? (dimension: Task, GP:CHECK;
FT: task:check)

(reply to = task;ynq) =⇒ da=task:yna (60.0/22.0)
(reply to = task;ynq;t give) =⇒ da=task:yna (2.0/0.0)
(reply to = task;ynq;t grab) =⇒ da=task:yna (2.0/0.0)
(reply to = task;ynq;t release) =⇒ da=task:yna (3.0/1.0)
Example:
(1407:56-1413:72) B: Do you think maybe we need like further advances in that kind of area until it’s worthwhile incorporating it
though (dimension:Task; GP: YN-QUESTION; FT: task:ynq)
(1412:96-1415:6) C: I , think , it’d , probably , quite , expensive , to , put , in (dimension:Task; GP: YN-ANSWER; FT: task:yna)

(yeah = p) and (dss reply <= -3.920044) and (duration >= 0.56) and (min.pitch >= 95.007) =⇒ da=task:inf.agree (27.0/8.0)
(yeah = p) and (fraction:voiced/unvoiced >= 0.36634) and (dss reply ¡= -0.52002) and (fraction:voiced/unvoiced <= 0.46875)
=⇒ da=task:inf.agree (8.0/1.0)
(yeah = p) and (energy >= 56.862651) and (mean.pitch <= 144.971) =⇒ da=task:inf.agree (9.0/2.0)
(dss reply <= -0.359985) and (sure = p) and (max.pitch <= 187.065) =⇒ da=task:inf.agree (8.0/0.0)
(yeah = p) and (U3 = turn:t keep;time:stal) =⇒ da=task:inf.agree (14.0/6.0)
Example:
(1277:88-1286:28) D: but people who are about forty-ish and above now would not be so dependent and reliant on a computer or
mobile phone (dimension:Task; GP:INFORM; FT:task;inf )
(1284:32-1286:16) D: Yeah, sure (dimension: Task; GP:INFORM AGREEMENT; FT: task:inf.agree)

(problem = p) =⇒ da=task:inf.warn (7.0/3.0)
(because = p) =⇒ da=task:inf.just (33.0/7.0)
(cause = p) =⇒ da=task:inf.just (26.0/9.0)
(dss reply <= -1.52002) and (voice breaks >= 4) and (energy >= 54.435098) and (mean.pitch <= 173.572) =⇒ da=task:inf.ela
(51.0/21.0)
Example:
(1396:84-1403:76) C: One problem with speech recognition is the technology that was in that one wasn’t particularly amazing
(dimension: Task; GP: INFORMWARNING; FT: task:inf.warn)

(maybe = p) and (dss reply >= 0) =⇒ da=task:suggest (38.0/11.0)
(duration >= 2.12) and (reply to = ) and (might = p) =⇒ da=task:suggest (12.0/4.0)
Example:
(1694:6-1703:48) B: It might be a good idea just to restrict our creative inf uence on this and not worry so much about how we
transmit it (dimension:Task; GP: SUGGESTION; FT:task;suggest)
(1704:4-1708:44) B: because I mean it tried and tested intra-red (dimension:Task; GP: INFORM JUSTIFY; FT:task:inf.just)

Auto-Feedback:
(dss reply <= -0.039978) and (break <= 1) =⇒ da=au f:au f p ex (168.0/24.0)
(dss reply <= -0.039917) and (duration <= 1.08) and (okay = p) =⇒ da=au f:au f p ex (84.0/8.0)
(dss reply <= -0.039978) and (break <= 1) and (mmhmm = p) =⇒ da=au f:au f p ex (34.0/1.0)
(dss reply <= -0.039978) and (break <= 3) and (voclaugh = p) =⇒ da=au f:au f p ex (25.0/2.0)
(okay = p) and (energy <= 56.617891) and (duration >= 1.16) =⇒ da=au f:au f p ex (21.0/4.0)
Example:
(1728:36-1729:88) A: Then you need to send the signal out (dimension: Task; GP:INFORM; FT:task:inf )
(1729:8-1730:2) B: Mmhmm (dimension: Auto-Feedback; DS: POS.EXECUTION; FT: au f:au f p ex)

(within = turn:t keep;time:stal) and (duration <= 0.44) =⇒ da=au f:au f p ex;turn:t give (83.0/11.0)
(within = turn:t keep;time:stal) and (energy <= 50.235299) =⇒ da=au f:au f p ex;turn:t give (9.0/2.0)
Example:
(1285:32-1292:36) B: you’re gonna have audio which is gonna be like you know
B: um and (dimension:Time/Turn; DS: STALLING/T KEEPING; FT: turn:t keep;time:stal)
(1289:44-1290:08)A: mmhm (dimension: Auto-Feedback/Turn; DS: POS.EXECUTION/T GIVING; FT:
au f:au f p ex;turn:t give)
B: your bass settings and actual volume hi
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Turn Management:
(um = p) and (dss reply <= -1.199997) =⇒ da=turn:t acc;t keep;time:stal (13.0/6.0)
(well = p) and (dss within <= -0.159912) and (duration <= 0.72) =⇒ da=turn:t grab;t keep (9.0/3.0)
(um = p) and (dse within >= 0.040039) and (dse within <= 1.040039) and (min.pitch >= 107.875) =⇒
da=turn:t grab;t keep;time:stal (18.0/4.0)
(well = p) and (dss within <= -1.119995) =⇒ da=turn:t grab;t keep;time:stal (6.0/2.0)
(um = p) and (dse within <= 0) and (energy <= 49.86226) and (mean.pitch >= 114.669) =⇒ da=turn:t take;t keep;time:stal
(21.0/10.0)
Examples:
(819:08-821:88) D: Well like um (dimension: Turn/Time; DS:T GRABBING/STALLING; FT: turn:t grab;t keep;time:stal)
D: maybe what we could use is a sort of like a example of a successful other piece technology is palm pilots

Topic Management:
(back = p) and (go = p) =⇒ da=topic:suggest (5.0/2.0)
Example:
(1587:16-1591:72) A: I guess we should maybe go back to what the functions are (dimension: Topic Management; GP:
SUGGESTION; FT:topic:suggest)

Dialogue Structuring:
(end = p) and (min.pitch >= 175.915) =⇒ da=ds:inf (2.0/0.0) (wrap = p) and (U3 = au f:au f p ex) =⇒ da=ds:inf (2.0/0.0)
Examples:

(978:6- 981:68) D: so just to wrap up the next meeting’s gonna be in thirty minutes (dimension: Dialogue Structuring;
GP:INFORM; FT: ds:inf )
(1036:44-1037:68) B: And that’s the end of the meeting (dimension: Dialogue Structuring; GP:INFORM; FT: ds:inf )

Contact Management:
ready = p) =⇒ da=contact:check (2.0/0.0)
Example:
(34:06-35:56) B: All ready to go? (dimension: Contact Management; GP: Check; FT: contact:check)

Own Communication Management:
(oh = p) =⇒ da=ocm:error (7.0/3.0)
(reply to = time;t keep;stal) and (duration >= 0.36) and (U5 = turn:t keep;time:stal) =⇒ da=turn:t keep;ocm:retract (12.0/5.0)
(reply to = time;t keep;stal) and (energy >= 55.581619)=⇒ da=turn:t keep;ocm:retract (185.0/17.0)
(dse within >= 0.679993) and (duration <= 0.24) and (min.pitch >= 107.013) and (max.pitch <= 155.745) and (mean.pitch >=
122.459) =⇒ da=turn:t keep;ocm:retract (17.0/4.0)
Example:
(96:32-96:68) B: Oh (dimension: Own Communication Management; DS: Error; FT: ocm:error
B: I have to record who’s here actually

Social Obligation Management:
(thanks = p) =⇒ da=som:thanking (2.0/0.0)
(reply to = som;ini self ntro) =⇒ da=som:react self ntro (4.0/1.0)
Examples:
(72:8-74:44) B: I’m Laura and I’m the project manager (dimension: Social Obligation Management; DS: INITIATE SELF-
INTRODUCTION; FT:som;ini self ntro)
(77:44-77:76) A: I’m David and I’m supposed to be an industrial designer(dimension: Social Obligation Management; DS:
REACT SELF-INTRODUCTION; FT:som;react self ntro)
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Abstract

Accent on a pronoun has often been as-
sumed to signal an “unusual” antecedent,
i.e. something other than the most salient
compatible antecedent. However, this as-
sumption has not received adequate empir-
ical investigation to date, and in particular,
spontaneous conversational dialogues have
never been studied to verify the salience-
based proposals. I analyze a richly annotated
corpus of naturalistic speech, manually la-
beled for coreference relations, accents, and
contrast, in order to understand what factors
govern the presence of accent on a pronoun
and thereby gain insight into what pronom-
inal accent may be communicating. The re-
sults suggest that not only are differences
among speakers and pronouns key compo-
nents in explaining the variation in pronom-
inal accentuation, but also that pronominal
accent may often be signaling contrast rather
than something about the attentional status
or salience of the pronoun’s referent.

1 Introduction

One phenomenon in which prosody is often assumed
to play a disambiguating role is anaphora resolu-
tion. In particular, many have proposed that the
presence of accent on a pronoun is a signal that the
pronoun has an “unusual” antecedent, not the max-
imally salient compatible discourse referent, which
is what an unaccented pronoun would normally re-
fer to (Ariel, 1990; Cahn, 1995; Gundel et al., 1993;

Kameyama, 1999; Nakatani, 1997). The following
pair illustrates this reference-switching effect:1

(1) a. John hit Bill. Then he hit Mary. (John hit Mary.)
b. John hit Bill. Then HE hit Mary. (Bill hit Mary.)

In (1a), John is the topic or maximally salient en-
tity from the first sentence by virtue of being sub-
ject, and serves as the continuing topic and referent
of he in the second sentence. In (1b), however, the
accent signals a topic shift, indicating that the pro-
noun’s referent is lower in a saliency-ranked list of
entities, which in this case forces it to be Bill. Thus,
under such theories, the choice of an accented pro-
noun as a referring expression is linked directly to
the attentional or cognitive status of the referent.

However, aside from analysis of short constructed
discourses such as these, the attentional theories
have seen very little empirical evaluation using
longer, naturally-produced discourses. For appli-
cations that produce or comprehend naturalistic
speech, it is crucial to understand what is being com-
municated by accent on a coreferential pronoun and
what factors govern its presence, thereby also test-
ing whether accent truly is a robust cue to “unusual”
resolution. For instance, accent may instead be con-
veying contrast between the actual referent and the
expected referent, a potential confound that has not
been investigated in any study.

In this paper, I address these questions using a
richly annotated corpus of spontaneous conversa-
tional speech, manually labeled for coreference re-
lations, pitch accent, and contrast. Using logistic re-
gression, I explore the usefulness of various factors

1Capitals indicate a pitch accent, in all examples here.
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reflecting properties of the antecedent or of the pro-
noun itself in predicting the presence of accent on
coreferential pronouns. Previous studies addressing
these same questions have not had access to as large
and ideal a corpus as the one I make use of here, and
relatedly, have ignored various factors or could not
arrive at statistically significant conclusions.

The rest of the paper is structured as follows: In
Section 2, I summarize the relevant theoretical and
experimental work to date on how prosodic promi-
nence may affect anaphoric relationships. Section 3
describes the corpus and the features extracted from
it. Section 4 presents the statistical models using
these features and their analysis. The fifth section
discusses the results more generally, and the final
section lists the conclusions of this study.

2 Background

Accents tend to accompany information that is new
in the discourse (Brown, 1983), so their presence on
pronouns, words that stand for given and highly ac-
cessible information, is surprising. This has led to
the hypothesis that pronominal accent is somehow
special, and (based on examples like the one above)
that it has an attentional function. For instance, in
Gundel et al.’s (1993) Givenness Hierarchy, stressed
pronouns are said to align with a referent that is ‘ac-
tivated’ but not ‘in focus’. Centering Theory (Grosz
et al., 1995), however, has been the primary frame-
work in which accented pronouns have been exam-
ined. Within this approach, Kameyama (1999) pro-
poses that at least two linguistic hierarchies are rel-
evant in ranking entities for salience: more salient
entities are realized by a higher-ranked grammati-
cal function (Subject> Object> Object2> Others)
or a higher-ranked expression type (Zero Pronom-
inal > Pronoun > Definite NP > Indefinite NP).
If so, subjecthood and pronominality should be two
important properties in determining whether an an-
tecedent is “unusual”.

Watson et al. (2006) tested the first of these hi-
erarchies in a controlled experiment, and found that
speakers do produce NPs like the bed with acous-
tic prominence in mini-discourses like the following
where the first mention has a lower-ranked grammat-
ical function: Put the house above the bed. Put the
BED above the pineapple. They concluded that a

shift in attentional salience plays a role. However,
in a production experiment, Wolters and Beaver
(2001) found that although speakers generally ac-
cented subject pronouns having object antecedents,
the effect was very weak. The main problem ap-
peared to be that the speaking styles varied consid-
erably, from monotonous intonation contours to very
natural ones. They also analyzed news stories read
by 3 speakers who contributed 122, 22, and 8 pro-
nouns respectively. They found a significant rela-
tionship between antecedent pronominality and ac-
centuation of a pronoun, but most of the accented
pronouns could also be analyzed as cuing some sort
of contrast. Further work is necessary to understand
the role of contrast, especially as the meaning effects
of accent on pronouns might be no different than to
evoke contrast within a contextually salient set of al-
ternatives (De Hoop, 2003). Moreover, sparse and
unequally distributed data meant that speaker effects
could not be investigated rigorously in either study.

Wolters and Byron (2000) studied a larger corpus
of task-oriented spontaneous dialogues from a total
of 16 speakers (although the data are highly unbal-
anced as two of the speakers contribute 48% of the
data). They found no correlations in their logistic
regression experiments between acoustic prosodic
properties of the pronoun and various properties of
the antecedent, but SPEAKER was a significant fac-
tor in most of their models. They too concluded that
inter-speaker variation gets in the way of safe gen-
eralizations and that different speaker types need to
be understood. However, they included SPEAKER
as a fixed-effect rather than a random-effect in their
models which means they assumed that their speak-
ers represent 16 repeatable and fixed levels of a fac-
tor. That is, they incorrectly assume that the speak-
ers are mutually exclusive and exhaustive in repre-
senting speaker-types in the population.

3 The Corpus and Features

I use 19 dialogues of the Switchboard corpus of
spontaneous phone conversations (Godfrey et al.,
1992) that have manual annotations for the pres-
ence or absence of pitch accent on each word (Os-
tendorf et al., 2001; Calhoun, 2006), “kontrast”
relations (Calhoun et al., 2005), and coreference
links (Nissim et al., 2004). All non-demonstrative
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he her him his it
56 19 17 13 303
its she their them they
2 56 37 101 230

Table 1: Number of instances of each pronoun-type
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Figure 1: Variation between speakers

third-person coreferential pronouns were isolated
for analysis, a total of 834 pronouns of which 15.6%
bear a pitch accent.2 The pronoun-types and their
frequencies are given in Table 1; all pronouns were
made case-insensitive and stripped of bound reduced
verbs. A total of 35 speakers of American En-
glish contributed the pronouns, 22 females and 13
males, with a fairly balanced division of the pro-
nouns amongst them.

One striking aspect of these data is that both
speakers and pronouns exhibit great variation in ac-
centuation. Figures 1 and 2 illustrate this, motivating
some of the factors included in the models below.

A number of attributes of each pronoun and its
antecedent were calculated or extracted from the an-
notations. These features are described in Table 2,

2English reflexives may bear an emphatic function and are
disyllabic, differentiating them from other pronouns, so they
were excluded. There were only 14 tokens in all.
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Figure 2: Variation between pronouns

and assigned to three groups.
The first set of features reflect antecedent prop-

erties that could be useful in detecting a relation-
ship between “unusual” antecedents and accent
(the presence or absence of accent on a pronoun).
The two referential distance features are discourse
measurements of topic continuity inspired by Givón
(1983).3 All features in this group bear a non-
significant relationship to accent on the basis
of chi-square and correlational tests, except for
antecDistCat (p < .05).

The second group has features that capture prop-
erties of the pronoun itself. The first two are pri-
marily intended as control factors, in case disflu-
encies or reductions (as in he’s) behave in a non-
standard manner. Chi-square tests revealed that
these factors do not have a significant relationship
with accent (both p > 0.1). On the other hand,
the last three features are all significantly related
to accent (all p < .001). Subject pronouns are

3A log-transformed distance metric was also explored but
abandoned. Log-distance had a bimodal distribution while “reg-
ular” distance was skewed but unimodal. What the exploration
did highlight is that most antecedents are in the same or adjacent
clause, thus motivating the categorical distance metric I use.
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said to continue topics, i.e. to refer to attentionally
salient discourse referents, so pronoun-subjecthood
could interact with other factors in an important way.
The two kontrast features need much elabora-
tion. A “kontrast” introduces a presupposition of
alternatives to the kontrasted word in the discourse
context, thereby making it informationally salient.
The feature kontrast reflects the reason or trig-
ger for this salience (Calhoun et al., 2005). Sev-
eral types of triggers were marked, but the two val-
ues which are of most concern here are: contrastive,
for when the word is directly contrasted with a pre-
vious topical, semantically-related word, and back-
ground when the word is not intended to be salient.
The second kontrast feature is a binned version that
lumps together all values of kontrast except for
background and contrastive; I created this
to test particular kontrast-related conclusions below.

Finally, in the third group is spkrAccentRate,
a rough approximation of speaker styles based on the
percentage of pronouns a speaker accented. It is a
continuous measure that represents “styles” ranging
from “monotonous” speakers with low rates of ac-
centuation to animated or expressive speakers who
accent plenty of their pronouns. Naturally, this fea-
ture is significantly related to accent (p ≈ 0).

4 Analysis and Results

The general strategy adopted here is to test the use-
fulness of the features above by testing them si-
multaneously in logistic regression models predict-
ing accent. In addition to these fixed-effects fac-
tors, I depart from previous studies in also includ-
ing two random-effects factors, namely Speaker
and Pronoun. Given the enormous inter-speaker
and inter-pronoun variation demonstrated in Figures
1 and 2, it is essential to check for these depen-
dencies; treating them as random-effects in mixed-
effects logistic regression models is the most appro-
priate modeling technique here as then we do not
tailor our models to the specific speakers and pro-
nouns in the study but instead assume they are ran-
domly sampled levels from a much larger popula-
tion of interest. Within this setup I carry out two
sets of studies, the first on all the pronouns isolated
for analysis, and the second on only those pronouns
with antecedents in adjacent clauses since these con-

stitute the type of 2-utterance discourses discussed
most in the literature. I use the lme4 and Design
packages in R (Ihaka and Gentleman, 1996).

4.1 All Coreferential Pronouns
Variable Selection: In order to inspect the variables
and select which ones to include in the final mod-
els, I use a regular logistic regression model to pre-
dict accent using all the fixed-effects factors in Ta-
ble 2 (except for kontrastBinned). Fast back-
ward elimination, a routine that deletes irrelevant
factors by comparing the AIC model fit value of the
full model against that of a reduced model lacking
the factor being tested, retains only pronIsSubj,
kontrast, and spkrAccentRate. So all
the other fixed-effects factors, including antecedent
properties and control factors disfluency and
cliticized do not improve the quality of a
model predicting accent. In the models that fol-
low I do not include the control factors, though I re-
tain the factors having to do with antecedents since
these are of primary interest in this study.

I construct three kinds of models – (i) a fixed-
effects-only model with only the selected fixed-
effects, (ii) one using only the two random-effects
factors, and (iii) a generalized linear mixed model
that uses the two random-effects and the significant
fixed-effects predictors from the first model (except
kontrastBinned is substituted for kontrast).

Fixed-effects-only Model: I use a regular logis-
tic regression model to predict accent using only
kontrast, spkrAccentRate, and the factors
related to antecedents. The VIF values of these fac-
tors range between 1 and 2.19 (all much lower than
10), so there is no danger of collinearities among the
predictors. The coefficients, standard errors, and p-
values for the different levels of these factors are re-
ported in Table 3.4 The quality of the model is mod-
est (concordance C, a measure of model discrim-
inability, is 0.741), but this is not surprising given
that there are probably many other factors needed to
predict accent placement, including speaker and pro-
noun variation. What is more interesting is that none
of the factors related to unusual antecedents are sig-
nificant, while pronIsSubj, spkrAccentRate
and contrastive kontrast are significant (all p <

4p-value sig. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

153



Feature Description Possible Values
antecIsSubj Antecedent is in subject position of its clause yes, no
antecIsPro Antecedent is pronominal yes, no
antecDistCont Distance n to antecedent in number of clauses 0 ≤ n ≤ 84
antecDistCat Location of antecedent clause relative to pronoun same, adjacent, remote
disfluency Disfluency characteristic of pronoun none, repair, reparandum
cliticized Pronoun followed by reduced verb yes, no
pronIsSubj Pronoun is in subject position of its clause yes, no
kontrast Reason for informational salience adverbial, answer,

background, contrastive,
nonapplic, other, subset

kontrastBinned Binned version of kontrast background, contrastive,
other

spkrAccentRate Speaker’s propensity to accent pronouns 0% - 38%

Table 2: Feature descriptions and values

Coef. S.E. P-value
Intercept -3.7401 0.3668 0.0000
antecIsSubj=yes -0.1781 0.2207 0.4197
antecIsPro=yes 0.3105 0.2375 0.1912
antecDistCont -0.0552 0.0469 0.2390
antecDistCat=adjacent 0.4608 0.2629 0.0797
antecDistCat=remote 0.0544 0.3277 0.8682
pronIsSubj=yes 0.6958 0.2353 0.0031 *
kontrast=adverbial 10.7832 79.0508 0.8915
kontrast=contrastive 2.0066 0.4683 0.0000 ***
kontrast=nonapplic 1.1516 0.7894 0.1446
kontrast=other 10.3226 45.3334 0.8199
kontrast=subset -0.0635 1.0864 0.9534
spkrAccentRate 6.9339 1.1478 0.0000 ***

Table 3: Fixed-effects-only; all pronouns

.01). Their coefficients indicate that, as expected,
the higher a speaker’s propensity to accent pronouns
the higher the log-odds of the pronoun being ac-
cented, and likewise if the pronoun is contrastive
rather than backgrounded and if it is in subject-
position rather than not. To check for overfitting I
run bootstrap validation, and almost all runs remove
all predictors other than pronIsSubj, kontrast
and spkrAccentRate. The number of runs
in which all seven predictors are retained is ex-
tremely small (4), so the model cannot be over-
fitting the data. Using penalized maximum likeli-
hood estimation to discourage large values for the
coefficients due to potentially extreme data points,
I find that although all coefficients are slightly
shrunk towards zero, the same factors remain sig-
nificant. Finally, since only contrastive kontrast is
a significant predictor within kontrast, it would

make sense to bin kontrast into background,
contrastive and other, as I do below.

Random-effects-only Model: Next, I build a
model with only the random-effects factors and find
that this has a concordance of 0.723, slightly lower
than the previous model but still decent, suggesting
that inter-speaker and inter-pronoun variation could
be critical components in determining accent place-
ment on coreferential pronouns.

Mixed-effects Model: Finally, I build a mixed-
effects model that has the two random-effects as
well as pronIsSubj, kontrastBinned and
spkrAccentRate as fixed-effects. This model
has the highest concordance so far (0.761), so this
combination of fixed- and random-effects factors
leads to a model of better quality. Comparisons
of fuller models to smaller sub-models using the
difference of their log likelihoods reveals that only
kontrastBinned, spkrAccentRate, and the
Pronoun random-effect were significant, justified
factors. Table 4 lists for each factor, the differ-
ence in log likelihood between the full model and
a reduced model lacking that factor, as well as the
p-value for the factor. From these results, it ap-
pears that kontrast and speaker style are beneficial
in predicting accent and inter-pronoun variation
is an important dependency as well. It appears that
it could be useful to understand different speaker
strategies or styles, beyond the crude metric used
here; inter-speaker differences at an individual level
are not as useful to study as seen by the insignif-
icant Speaker random-effect. Since none of the
antecedent properties were significant, these models
could not verify that accent on a coreferential pro-
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Factor ∆logLik P-value
pronIsSubj 0.92 0.1747
kontrastBinned 9.37 8.528e-05 ***
spkrAccentRate 16.89 6.184e-09 ***
Speaker 0 0.9936
Pronoun 8.53 3.616e-05 ***

Table 4: Mixed-effects; all pronouns

Coef. S.E. P-value
Intercept -4.3109 0.6491 0.0000
antecIsSubj=yes -0.5193 0.3858 0.1784
antecIsPro=yes 0.6126 0.4203 0.1449
pronIsSubj=yes 0.9163 0.4392 0.0369 .
kontrast=contrastive 3.3118 1.2220 0.0067 *
kontrast=nonapplic 3.2669 1.3964 0.0193 .
kontrast=other 9.5187 45.0338 0.8326
kontrast=subset 8.3827 45.0328 0.8523
spkrAccentRate 10.4269 2.1914 0.0000 ***

Table 5: Fixed-effects-only; adjacent antecedents

noun signals anything about antecedents, at least not
in the presence of these other significant factors.

4.2 Only Adjacent Antecedents
Here I limit the dataset to only those pronouns with
antecedents in the previous clause, thus reproduc-
ing the 2-utterance-scenario often discussed by the
attentional theories. This dataset has only 257 pro-
nouns. Still, most of the results of the larger dataset
are again found to be valid here.

First, logistic regression without any random-
effects (and without antecedent-distance metrics
since distance is constant here) produces a model
with a fairly good concordance of 0.805, and sig-
nificant pronIsSubj, contrastive kontrast and
spkrAccentRate again. Table 5 lists the coef-
ficients, p-values etc. for the different levels of the
various factors. Again, fast backward elimination
only retains the last three factors, and none of the
saliency-based antecedent factors.

However, the influence of speaker and pro-
noun variation is less clear here, perhaps due to
the smaller size of this dataset. A model with
only the two random-effects has a concordance
of 0.745, which is close to but slightly lower
than that of the fixed-effects only model. A
full mixed-effects model with the two random-

Factor ∆logLik P-value
pronIsSubj 1.33 0.1026
kontrast 8.73 0.0002 ***
spkrAccentRate 12.28 0.0000 ***
Speaker 0 0.9766
Pronoun 0.16 0.5703

Table 6: Mixed-effects; adjacent antecedents

Unaccented antecIsPro = 0 antecIsPro = 1
antecSubj = 0 24 24
antecSubj = 1 17 54

Accented antecIsPro = 0 antecIsPro = 1
antecSubj = 0 8 9
antecSubj = 1 3 22

Table 7: Subject pronouns with adjacent antecedents

effects and pronIsSubj, kontrastBinned
and spkrAccentRate fixed-effects has about
the same concordance as the fixed-effects-only
model for this dataset, namely 0.795, but model
comparisons show only kontrastBinned and
spkrAccentRate to be significant (see Table 6).

5 Discussion

On the whole, the results suggest that pronominal
accent may often be signaling contrast rather than
something about the attentional status of the pro-
noun’s referent. At the very least, we have no ev-
idence that topic shift is being signaled via accent in
spoken conversational speech. Instead, the recurring
theme is that speaker-propensities, pronoun identi-
ties, and contrast-status, will go a long way in pre-
dicting whether a speaker will produce a particular
pronoun with an accent.

The two-utterance discourses studied theoreti-
cally or via controlled experiments do seem to in-
tuitively support an attentional/saliency-ranking ac-
count, but actual naturalistic productions often do
not accord with such an account. Consider the
accent distribution among just subject pronouns in
this corpus which have antecedents in the previ-
ous clause, given in Table 7. In spite of topic-
discontinuity, 24 pronouns do not bear accent; and in
spite of topic continuity, 22 pronouns bear an accent,
counter to the predictions of the attentional story.
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Here, for instance, is an example of a subject pro-
noun she which was accented by a high accenting
speaker, even though the antecedent in the adjacent
clause is pronominal and in subject position:5

(2) Well, UM Y- you MENTIONED your
DAUGHTER had graduated from COLLEGE.
WELL, when SHE was in high SCHOOL did SHE
always HAVE to have all the new FASHIONS?

And here is a long stretch of discourse in which
the same speaker accents he nearly every time, even
though the referent, her brother, is clearly the con-
tinuing topic throughout:

(3) i MEAN UH MY BROTHER works for TI and
HE’S a computer PROGRAMMER or computer
ENGINEER. AND YOU know whenever HE was
going to school HE was EXPECTING to HAVING
to wear uh a TIE or a DRESS shirt EVERYDAY.
BUT UH he GOES to WORK in HIS blue JEANS
T-SHIRT and TENNIS shoes. And HE just
LOVES it.

However, it isn’t always the case that subject pro-
nouns get accented. Here is a more “balanced” pro-
duction by the same speaker with unaccented she:

(4) But she NEVER would BUY me like the NEW
designer JEANS that had come OUT that were
THIRTY dollars or UM or she wouldn’t BUY me
the FIFTY dollar TENNIS shoes and stuff like
THAT.

On the other hand, the following is an accented
subject pronoun he with an adjacent antecedent,
labeled as ‘contrastive’ because the referent, the
speaker’s dad, is being compared to people who do
not care about the environment:

(5) Well, my DAD’S in the in the SOLAR energy
BUSINESS. SO uh you know WE’RE
ACCUTELY AWARE of a lot of this. BUT you
KNOW on the OTHER hand he VOTED for
George BUSH. So UM you KNOW i i WONDER
SOMETIMES if HE knows what he’s DOING.

The presence of accent on a coreferential pronoun
could be the result of many interacting constraints,
semantic and prosodic, including those imposed by
both the larger discourse context and the words im-
mediately surrounding the pronoun. For example,
the dialogue act, the speaker’s and pronoun’s ten-
dencies, the overall prosody of the utterance, and
the presence of other referring expressions such as
my dad or even I or you must all interfere with the
presence of accent on a coreferential pronoun.

5Audio clips: www.stanford.edu/˜anubha/accentedPro.html.

While the models and examples presented here
cannot shed light on the precise mechanisms and
constraints, they do show that a simple attentional
story suffers from being limited to the analysis of
local 2-utterance-windows and (primarily) pronouns
like he or she. Also, they demonstrate that the role
of contrast may have been seriously underestimated
by previous theoretical work. It is especially vital to
understand whether contrast might in fact subsume
the attentional explanation for pronominal accent
because switching to a less salient referent for an
accented pronoun might very well be viewed as con-
trast between the expected situation (where the topic
is expected to be continued) and the unexpected sit-
uation in which a lower ranked referent takes front
stage. So in example (1), where the accented HE is
taken to refer to the lower-ranked object Bill from
the previous sentence, the accent could be signaling
contrast between the expected referent John and the
unexpected but true referent Bill.

Topic-continuity could be just one type of (lin-
guistic) expectation language-users are sensitive to,
such that they might choose to signal a violation
of that expectation through accentuation. Other
expectation-violations do lead to similar accentu-
ation patterns, as when a situation is judged to
be unexpected by common knowledge or context;
this is evident in an utterance like “SHE married
HIM?”, expressing surprise at an unlikely couple. A
contrast-based explanation is bolstered by the eye-
tracking experiments of Venditti et al. (Venditti
et al., 2002) which show that both potential an-
tecedents are evoked upon hearing an accented pro-
noun rather than just the antecedent predicted by a
saliency ranking; in fact, the referent is not fixed
until more propositional information is encountered
and the discourse coherence relation determined.
Moreover, if not for contrast, there is no explanation
of why accent appears appropriate on the pronouns
in the following discourse, even though their refer-
ents are not ambiguous at all:

(6) John called Mary a Republican. Then SHE
insulted HIM.

Future work would need to look at genres of
speech other than spontaneous conversational dia-
logue. Even more data from more speakers would
be beneficial, in order to cluster them into meaning-
ful speaker types or styles.
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6 Conclusions

The analysis presented here makes use of a large
quantity of spontaneous speech, with more features
and more sophisticated statistical models than have
been available or employed to date. The ensuing re-
sults lead to the following conclusions:

• Pronominal accent is not a robust cue of an “un-
usual” antecedent, at least not when “unusual”
is defined in terms of the attentional salience of
the pronoun’s referent.

• Pronominal accent does serve as a cue to con-
trast beyond the effects of antecedent properties
and speakers’ accentuation preferences, though
the exact constraints and interactions need to be
understood. A contrast-based explanation may
subsume the salience-based examples.

• Understanding speaker and pronoun dependen-
cies is highly important. It may be quite fruit-
ful to discover speaker types or styles. Also,
inter-pronoun variation in accentuation is also a
significant predictor of how likely a given pro-
noun is to bear accent, although it is possible
that variation between pronouns is an indirect
reflection of yet-to-be-discovered constraints.
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Abstract

We will discuss an approach to dialogue act
generation that reflects the multidimension-
ality of communication. Dialogue acts from
different dimensions in the taxonomy used
are generated in parallel, resulting in a buffer
of candidates. The main focus of the paper
will be on an additional process of evaluat-
ing these candidates, resulting in definitive
combinations of dialogue acts to be gener-
ated. This evaluation process is required to
deal with the interdependencies there still
are between dimensions, and involves logi-
cal, strategic and pragmatic considerations.

1 Introduction

In natural language dialogue, participants have to
take into account several aspects of the commu-
nicative process in interpreting and generating ut-
terances. Besides asking questions, giving instruc-
tions, and putting requests, related to some under-
lying task, the dialogue partners should also keep
track of the status of processing each other’s ut-
terances, deal with interaction management issues
such as turn-taking and topic management, and with
social aspects of communication like greeting and
apologising.

These different aspects of communication are re-
flected in the dialogue act taxonomy1 as developed
within Dynamic Interpretation Theory (DIT) (Bunt,
2000). This taxonomy consists of currently 10di-
mensions, each containing communicative functions

1http://let.uvt.nl/general/people/bunt/
docs/dit-schema2.html

addressing one of the aspects. The taxonomy allows
for multifunctional utterances, in the sense that ev-
ery utterance in a dialogue gets assigned at most one
function from each dimension.

This multidimensionality suggests that in generat-
ing dialogue behaviour, participants select dialogue
acts from different dimensions simultaneously and
independently, and then combine them into multi-
functional utterances. However, this combination
process is not straightforward. There are depen-
dencies between dialogue acts from different dimen-
sions that have to be taken into account. For exam-
ple, dialogue acts may be in conflict with each other,
so only one of them can be generated, or a dialogue
act may already be implied by another and a decision
has to be made whether or not to explicitly generate
it. Moreover, not every combination of dialogue acts
can be realised in a multifunctional natural language
utterance, but only in subsequent utterances.

In this paper, we will discuss an approach to di-
alogue act generation that both acknowledges the
multidimensionality of communication and deals
with the problem of interdependencies between di-
mensions. In this approach, we distinguish a sep-
arate process of evaluating candidate dialogue acts
that have been generated on the basis of dimensions
in isolation. In general, the evaluation involves 1)
resolving logical conflicts between dialogue acts, 2)
strategic and pragmatic considerations for prioritis-
ing dialogue acts, and 3) language generation and
non-verbal aspects of realising dialogue acts. Here,
we will particularly focus on the first and second
phases of the evaluation.

We have developed a dialogue manager using
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the abovementioned multidimensional taxonomy in
generating dialogue behaviour (Keizer and Bunt,
2006). Dialogue acts from different dimensions are
generated in parallel through severalDialogue Act
Agentsoperating on the system’s information state.
Each agent is associated with one specific dimen-
sion, and generates contributions related to that di-
mension only. An additionalEvaluation Agenttakes
care of constructing combinations of dialogue acts
for actual generation in system utterances. This
multi-agent design allows to experiment with differ-
ent dialogue strategies and styles of communication,
having their specification concentrated in the Eval-
uation agent. A similar argument is used in (Stent,
2002), discussing a dialogue manager consisting of
three independent agents operating in parallel. The
‘organisation of conversation acts into coherent and
natural dialogue contributions’ is taken care of by
one of these agents, called the Generation Manager.
The distinction between the processes of ‘contri-
bution planning’ and ‘contribution structuring’ has
some similarity with our distinction between the dia-
logue act agents (over-)generating dialogue acts and
the Evaluation agent selecting and combining the re-
sulting candidates. However, contribution structur-
ing deals with interrelationships between thelevels
of conversation acts, whereas our Evaluation agent
operates on the basis of interdependencies between
dimensionsof dialogue acts.

Another multi-agent approach to dialogue man-
agement is taken in JASPIS (Turunen et al., 2005),
a speech application architecture for adaptive and
flexible human-computer interaction. The system
uses so-called ‘Evaluators’ that determine which
agents should be selected for different interaction
tasks, based on evaluation scores. Part of an Eval-
uator’s task may be to decide on a particular dia-
logue strategy by selecting a corresponding dialogue
agent. Our approach of evaluation also involves is-
sues of dialogue strategy, but this is not carried out
by selecting between contributions from alternative
agents for the same task.

2 Dynamic Interpretation Theory

In Dynamic Interpretation Theory (DIT) (Bunt,
2000), utterances in a dialogue are modelled in terms
of combinations of dialogue acts that operate on

the information state of the dialogue participants.
A dialogue act has asemantic content, expressing
what the act is about, and acommunicative func-
tion specifying how the semantic content is to be
taken to change the information state of the ad-
dressee. Communicative functions are organised in
a 10-dimensional taxonomy, in which the dimen-
sions reflect different aspects of communication that
speakers may address simultaneously in their dia-
logue behaviour. In each utterance, several dialogue
acts can be performed, each dialogue act from a dif-
ferent dimension. The overview below shows a lay-
ered structure in which the dimensions are given in
boldface italic. So, besides theTaskdimension, the
taxonomy provides for severalDialogue Controldi-
mensions, organised into the layers ofFeedback, In-
teraction Management (IM)andSocial Obligations
Management (SOM).

• Task/domain: acts that concern the specific underlying task
and/or domain;

• Dialogue Control

– Feedback
∗ Auto-Feedback: acts dealing with the speaker’s pro-

cessing of the addressee’s utterances; contains posi-
tive and negative feedback acts on different levels of
understanding (see below);

∗ Allo-Feedback: acts dealing with the addressee’s
processing of the speaker’s previous utterances (as
viewed by the speaker); contains positive and neg-
ative feedback-giving acts and feedback elicitation
acts on different levels of understanding (see below);

– Interaction management
∗ Turn Management: turn accepting, giving, grab-

bing, keeping;
∗ Time Management: stalling, pausing;
∗ Partner Processing Management:

completion, correct-misspeaking;
∗ Own Processing Management: error signalling, re-

traction, self-correction;
∗ Contact Management: contact check, indication;
∗ Topic Management: topic introduction, closing,

shift, shift announcement;
– Social Obligations Management: initiative and re-

sponse acts for salutation, self-introduction, gratitude,
apology, and valediction.

A participant’s information state in DIT is called
his context model, and contains all information con-
sidered relevant for his interpretation and generation
of dialogue acts. A context model is structured into
several components:

1. Linguistic Context: linguistic information
about the utterances produced so far (an
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extended dialogue history); information about
planned system dialogue acts (dialogue future);

2. Semantic Context: contains current infor-
mation about the task/domain, including
assumptions about the dialogue partner’s
information;

3. Cognitive Context: the current processing
states of both participants, expressed in terms
of a level of understanding reached (see below)

4. Physical and Perceptual Context: the percepti-
ble aspects of the communication process and
the task/domain;

5. Social Context: current communicative pres-
sures.

In keeping track of the participants’ processing
states in the cognitive context, four levels of under-
standing are distinguished: 1)perception: the sys-
tem was able to hear the utterance (successful speech
recognition), 2)interpretation: the system under-
stood what was meant by the utterance (successful
dialogue act recognition), 3)evaluation: the infor-
mation presented in the utterance did not conflict
with the system’s context (successful consistency
checking), and 4)execution: the system could act
upon, do something with, the utterance (for exam-
ple, answering a question, adopting the information
given, carrying out a request, etcetera).

These levels of understanding are also used in
distinguishing different types of auto- and allo-
feedback dialogue acts, each for signalling process-
ing problems on a specific level.

3 Dialogue act generation

The architecture of the dialogue manager is given
in Figure 1. Central is the context model, currently
containing four of the five components defined in
DIT, the Physical & Perceptual Context currently
considered to be irrelevant four our purposes. The
Context Manager takes care of updating the context
model during the dialogue with every new utterance
being produced, be it a user or a system utterance.
Both for interpretation of user utterances and gen-
eration of system utterances, the dialogue manager
makes use of the multidimensional taxonomy. User
utterances are analysed and eventually interpreted

in terms of sets of dialogue acts by the Dialogue
Act Recogniser (DAR), the results of which are then
written in the dialogue history. The Context Man-
ager then takes care of updating the entire context
model and checking it for inconsistencies.

For dialogue act generation, separateDialogue
Act Agentsare used, that each take care of gener-
ating acts from a particular dimension of the taxon-
omy. These generated acts are recorded as candi-
dates in the dialogue future of the Linguistic Con-
text. Currently, five dialogue act agents have been
implemented, covering the five most relevant dimen-
sions for our purposes.

TheTask Agentis associated with the task/domain
dimension: it is responsible for the underlying task
itself. In the case of question answering (QA), it
basically generates answers to domain questions,
where it can turn to either a structured database with
domain information, or to a QA module taking self-
contained domain questions, to retrieve the informa-
tion to be contained in the answers it generates. The
Task Agent operates primarily on the information in
the Semantic Context.

TheAuto-FB Agentmonitors the own processing
state as stored in the Cognitive Context, making sure
that the system correctly understood the user’s utter-
ances. The agent generates negative auto-feedback
acts in case of processing problems and occasional
positive feedback in case of successful processing.

Similarly, the Allo-FB Agentmonitors the part-
ner’s processing state, also in the Cognitive Context.
It generates positive and negative feedback concern-
ing the extent to which the user understood the sys-
tem correctly.

The SOM Agenttakes care of the social aspects
of the communication. It generates reactive SOM
acts to release reactive pressures in the social con-
text (created by initiative SOM acts by the user). It
can occasionally generate initiative SOM acts such
as apologies (for example, after repeated processing
problems).

Finally, theTimeM Agentgenerates pausing acts
in case the system wants to gain time in order to
perform some task, like retrieving information for
answering a domain question.

Although the dimensions of the taxonomy are
supposed to be orthogonal, i.e., dialogue acts in a
dimension are selected independently, there are still
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Figure 1: Architecture of the dialogue manager.

dependencies between the dialogue acts that have to
be taken into account when combining them for ac-
tual generation in multifunctional system utterances.
Therefore, an additionEvaluation agentis intro-
duced that takes care of evaluating these candidate
dialogue acts and decide on definitive combinations
of dialogue acts for generation.

3.1 Design of the Evaluation Agent

The procedure for the Evaluation Agent to schedule
combinations of dialogue acts from the list of can-
didates is subdivided into three phases. In the first
phase, the dialogue act candidates are evaluated for
any inherent dependencies among them. Dialogue
acts from different dimensions may be in conflict
with each other, so only one of them can be selected
for generation, and the other has to be cancelled.
The choice of which one to select and which one
to cancel is based on some priority ordering among
dialogue acts.

The occurrence of dialogue acts having a logical
conflict implies that there is some inconsistency in
the context model. Although this is undesirable and
should be avoided in the design of the dialogue man-
ager, it is nevertheless preferable to design the Eval-
uation Agent in such a way that it can deal withany
combination of dialogue acts, irrespective of how
the candidates were generated on the basis of the
context model.

Moreover, the context model does allow for some
type of inconsistency, and therefore, the generation
of conflicting candidate dialogue acts. During the

updating of the context model with new utterances,
new information that has not been successfully inte-
grated in the context model yet, gets stored in what
is called thepending context, and therefore might
be conflicting with the definitive context. Once the
context manager has detected such an inconsistency,
it records an evaluation level processing problem in
the cognitive context, which could trigger the gener-
ation of a corresponding auto-feedback act. Incon-
sistencies might also occur within the pending con-
text itself.

In the second phase, the remaining list of non-
conflicting candidates is evaluated from a pragmatic
and dialogue strategic point of view. In some cir-
cumstances, depending on the nature of the under-
lying task and the communicative setting, it makes
more sense to postpone certain dialogue acts and
give priority to others.

One type of strategic consideration is related to
the planning of task acts and does not involve the
combination of dialogue acts from different dimen-
sions. For example, if the system has several ques-
tions to ask to the user, it has to decide whether to
combine these questions in a single turn, or to ask
them one at a time, in a particular order, distributed
over several turns. The latter strategy is the more
conservative one, and is used in situations where the
risk of misunderstandings is higher, like in noisy en-
vironments or where the quality of speech recogni-
tion is limited.

Another strategic issue involves the choice
whether or not to explicitly produce a dialogue act
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that is already implied by the other candidates. For
example, a positive auto-feedback act does not need
to be generated explicitly, if an answer gets gener-
ated that already implies this feedback. However,
in some circumstances, there might be good reasons
for explicitly performing the implied dialogue act
anyway.

A third evaluation issue related to strategic con-
siderations is that of dialogue acts being triggered
by reactive pressures, e.g., a thanking down-player
(“you’re welcome”). Such dialogue acts have to be
either generated ‘immediately’, or not at all: they
cannot be postponed. If the system is to behave
very socially and there is less need for efficiency,
it should generate these response social acts more
frequently. This is also true for the generation of
initiative social acts, like apologies and thanking.

Finally, in the third phase, combinations of dia-
logue acts are selected that can actually be realised
in multifunctional system utterances. Some combi-
nations of dialogue acts may not carry any logical
conflicts, but the particular natural language may not
provide a multifunctional utterance for the dialogue
acts to be realised. For example, a question in one
dimension cannot be combined with an inform in an-
other dimension using one single utterance, because
the question requires an interrogative and the inform
a declarative sentence.

Besides the construction of multifunctional utter-
ances, some of the dialogue acts can also be realised
in a non-verbal manner, for example by means of an-
imations on the graphical user interface of the sys-
tem, or by means of gestures made by the system if
it is an embodied virtual agent.

4 Logical conflicts

Suppose the list of candidates contains both a di-
alogue act with an answer function (WH-Answer,
YN-Answer, etc.) and a negative auto-feedback act
on the level of perception or interpretation. Clearly,
it would be absurd to generate both dialogue acts, as
the answer also implies (overall) positive feedback.
One exception would be that the negative feedback
act would be about a different utterance in the dia-
logue history than the question the answer referred
to. In that case, either the feedback act or the an-
swer has to be specific about which utterance in the

history it responds to. The dialogue act combina-
tion should be realised in an utterance following the
pattern ”<wh-answer>, but<neg-feedback>”.

Combining a negative auto-feedback act on exe-
cution level and an answer dialogue act also leads to
a logical conflict, since an answer implies success-
ful execution(-level processing) of the correspond-
ing question. Giving an answer and at the same time
signalling it could not find an answer is inconsistent.
Note that it might be the case that the Task Agent
found one or more answers to a question, but de-
cided they were not reliable enough to present them
to the user. Such answers might be stored some-
where by the Task agent, and possibly generated af-
ter all later in the dialogue, but initially they are not
candidate dialogue acts.

As in the case of answers, all dialogue acts that
have an aspect of referring back to some previous
utterance (or, in terms of the DAMSL dialogue act
annotation scheme (Allen and Core, 1997), that are
‘backward-looking’), imply overall positive feed-
back and hence conflict with negative auto-feedback
in the ways indicated above. In the DIT taxonomy,
this is the case for any type of allo-feedback, for
reactive SOM acts (react-greet, apology-downplay,
etc.) and for dialogue acts with a communicative
function such as Agreement, Correction, and Ad-
dress Request.

5 Strategic issues

Given a list of dialogue act candidates that have no
logical conflicts among them, it is still not just a mat-
ter of simply mapping them onto a multifunctional
utterance. Depending on the situation, it might be
strategically or pragmatically preferable to give pri-
ority to some dialogue acts and postpone or even
cancel others.

Whereas the relative priorities of dialogue acts for
dealing with conflicts are strict in the sense that they
should ensure rational behaviour (which means not
producing conflicting dialogue acts, nor giving pri-
ority to a dialogue act implying positive feedback
over a negative auto-feedback act), those of non-
conflicting dialogue acts can be adjusted for imple-
menting different dialogue strategies and styles of
communication.
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5.1 Negative auto-feedback

If the system encounters processing problems during
the dialogue, it should try to solve these problems,
before attending to any other aspects. So in general,
negative auto-feedback acts should be given priority
over all other dialogue acts.

As we have seen in the previous section, combina-
tions of answers and negative auto-feedback on the
level of either perception or interpretation give a log-
ical conflict. However, combinations of answers and
negative feedback on the level of evaluation do not.
The Task Agent can be triggered by a new user goal,
even if this is part of the pending context only. This
is the case if the dialogue act recogniser was able
to detect a question about the domain in the user
utterance, but the context manager did not check
this new information for consistency with the con-
text model yet, or already detected an inconsistency
(i.e., an evaluation problem was encountered). Now,
the candidates list could contain both an answer to
the question and a negative auto-feedback act on the
level of evaluation.

The example dialogue fragment below illustrates
such a situation in which only the feedback act is
selected for the eventual system utterance. The di-
alogue acts indicated reflect the system’s interpreta-
tion of the user’s utterances. The system encoun-
tered a conflict in his context model, because it be-
lieves that the user can see the ‘send button’ (af-
ter U0), and therefore knows where it is, but it
should also believe that the user wants to know
where the send button is (after U2). This conflict
makes the Auto-feedback agent generate a negative
auto-feedback act on evaluation level, whereas the
recognised user goal in U2 triggers the Task agent to
construct an answer. In the example, the Evaluation
agent selects only the feedback act for generation.

• U0: I see the send button. INFORM(seesbutton)

• S1: okay. POS-AUTO-FEEDBACK-EXE

• U2: where is the send button? WHQ(loc,sbutton)

• S3: but you just told me you saw the send button!
NEG-AUTO-FEEDBACK-EVAL

The answer to U2 is kept in the candidates list un-
til it is clear whether the system had misinterpreted
U0 or U2. In the following dialogue continuation,
the user in U4 corrects the system in his interpreta-
tion of U0, and hence, the answer can be generated:

• U0: I see the send button. INFORM(seesbutton)
[user intendedINF(needsbutton)]

• S1: okay. POS-AUTO-FEEDBACK-EXE

• U2: where is the send button? WHQ(loc,sbutton)
[user intendedWHQ(loc,sbutton)]

• S3: but you just told me that you saw the send button!
NEG-AUTO-FEEDBACK-EVAL

• U4: no, I told you that Ineededit.
NEG-ALLO -FB-INT; INF

• S5: oh, hold on ... the send button is on the bottom right.
POS-AUTO-FB-EXE; PAUSE;

WHA(loc,sbutton,bottomr)

Alternatively, the system misinterpreted U2, in
which case the answer can be cancelled. In the di-
alogue continuation below, the user in U4 corrects
the system in his interpretation of U2, and hence,
the answer has to be replaced:

• U0: I see the send button. INFORM(seebutton)
[user intendedINF(seesbutton)]

• S1: okay. POS-AUTO-FEEDBACK-EXE

• U2: where is the send button? WHQ(loc,button)
[user intendedWHQ(loc,pbutton)]

• S3: but you just told me that you saw the send button!
NEG-AUTO-FEEDBACK-EVAL

• U4: no, I wanted to know where theprint button is.
NEG-ALLO -FB-INT; IND-WHQ(loc,pbutton)

• S5: oh, hold on ... the print button is on the bottom left.
POS-AUTO-FB-EXE; PAUSE;

WHA(loc,pbutton,bottoml)

In the above examples, only the negative feed-
back act was selected for generating S3 and the an-
swer was cancelled. However, the system could also
follow an alternative strategy of generating both the
negative feedback evaluation and the answer, which
would result in something like “the ‘send button’ is
on the bottom right, but didn’t you just tell me you
saw it?”.

5.2 Negative allo-feedback

If the system, after processing a user utterance, has
reason to believe that the user did not correctly un-
derstand the system’s previous utterance, then this
last user utterance may not be so relevant anymore.
Any candidate dialogue acts triggered by changes
in the context model due to this user utterance will
not be so relevant either. Therefore, dealing with
the user’s processing problems should get priority
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over any other aspects. In general, negative allo-
feedback acts should be given priority over other di-
alogue acts, except for negative auto-feedback acts.

In the example dialogue fragment below, user
and system are discussing a music concert by the
Borodin Quartet. The system asks a question and
the user responds with a return question which, to
the system, seems unrelated. After processing U1,
the system could conclude that he misinterpreted the
user, because it expects some answer in the form
of numerical information only. In that case, no an-
swer would be generated as a candidate dialogue act.
Only a negative auto-feedback act on interpretation
level, possibly in combination with a request in the
task dimension would be generated, resulting in sys-
tem utterance (S2).

• S0: how many tickets do you want? WHQ

• U1: how much is the Kronos Quartet concert? WHQ

• S2: Sorry, I do not understand what you mean.
APO;NEG-AUTO-FB-INT

Please indicate the number of tickets you want
REQ

S2a:No, I would like to know the number of tickets
you want NEG-ALLO -FB-INT

S2b:The Kronos Quartet concert is 30 euro,
POS-AUTO-FB-INT; WHA

but I asked about the Borodin Quartet.
allo-fb:INF

S2c:The Kronos Quartet concert is 30 euro. WHA

Another scenario would be that the system suc-
cessfully interpreted U1 as a domain question, but
concludes that the user must have misinterpreted S0.
This causes the generation of two candidate dialogue
acts: a negative allo-feedback act on interpretation
level, and an answer to U1. The particular strategy
of the system will determine whether only the feed-
back act will be generated (S2a), both the feedback
act and the answer (S2b), or even only the answer
(S2c).

5.3 Scheduling task acts

After dealing with any processing problems, the un-
derlying task should be the most important thing to
attend to, so dialogue acts in the task dimension
should get the highest priority, after negative auto-
and allo-feedback acts.

On the basis of the user’s input, the generation of
several task-oriented dialogue acts can be triggered

at once. Some user question or request could trigger
several questions the system needs the user to an-
swer before he can answer the question or carry out
the request. In the case of several task-oriented dia-
logue acts, the relative priorities of these candidates
are based on task-specific considerations. This could
be based on some preferred, logical order in which
subtasks should be carried out; in route-planning for
example, it might be preferable to ask for the desti-
nation location before asking for the date on which
the user wants to travel.

5.4 Positive auto-feedback

Every time the system reaches some level of suc-
cessful processing a user utterance, a positive auto-
feedback act signalling this to the user can be trig-
gered. However, actually generating this dialogue
act in all of these cases leads to a kind of commu-
nicative behaviour that can be experienced by the
user as rather annoying. Instead, positive feedback
should be generated only occasionally, with a fre-
quency depending on the specific communicative
setting.

In the case of dialogues involving the transfer of
important information such as credit card numbers,
it is desirable to give more positive feedback, but
in the case of more informal dialogues, too much
positive feedback should be avoided. Although the
extent to which positive auto-feedback is given can
be taken care of by the Auto-feedback Agent in gen-
erating candidates, it is also a matter of evaluating
such acts against the other dialogue act candidates.
In particular, positive feedback is often already im-
plied by other acts, and therefore does not necessar-
ily have to be generated explicitly.

Also in the case of train table information, like in
the dialogue fragment below, giving positive feed-
back can be a good strategy. After U2, the system
has gathered enough information from the user in
order to answer his original (Indirect WH-)Question
U0. In S3, the system generates this answer, thereby
implying positive feedback about U2. However, suc-
cessful processing of U2 also results in an auto-
feedback candidate act that might be generated ex-
plicitly as well, as is the case in S3’ or S3”. In these
cases, generating the feedback act reflects a strategy
of implicit verification.

• U0: I’d like to know when the next train to Amsterdam is
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leaving. IWHQ

• S1: From where are you travelling? WHQ

• U2: From Tilburg. WHA

• S3: The next train leaves at 10:30h from platform 1.
WHA

S3’: So you want to go from Tilburg to Amsterdam. The
next train leaves at 10:30h from platform 1.

POS-AUTO-FB-EXE; WHA

S3”: The next train from Tilburg to Amsterdam leaves at
10:30h from platform 1.

POS-AUTO-FB-EXE WHA

Another typical example of generating positive
auto-feedback in combination with other acts is in
the dialogue fragment below. The system asks the
user a question (S0), but he is not happy about the
answer given by the user (U1):

• S0: When do you want to go? WHQ

• U1: I want to go to Amsterdam. INF

• S2: Okay, butwhen? POS-AUTO-FB-EXE
NEG-ALLO -FB-INT; WHQ

In S2, the system gives negative allo-feedback
about the user’s interpretation of S0 and positive
auto-feedback about U1. Only after successful inter-
pretation of the previous utterance (U1) as an answer
to his question, the system may conclude that the
user did not correctly understand the original ques-
tion (S0).

5.5 Styles of communicative behaviour

The extent to which positive feedback acts are gen-
erated, is also a matter of communication style, be-
sides the strategic considerations behind it. Com-
munication style is also reflected through the gen-
eration of both initiative and reactive SOM acts. In
more formal, task-oriented dialogues, the generation
of apologies for example should be kept to a mini-
mum, whereas in more informal dialogues, apolo-
gies can make the system’s behaviour more natural
and therefore, pleasant to the user.

Again, the dialogue act agent responsible for the
generation of these acts could take care of the fre-
quency in which these are actually generated, but
this also depends on the other available candidates,
making it an issue for the Evaluation Agent as well.
For example, apologies can be used in combination
with negative feedback acts, but their impact in ut-
terances like “sorry?” is not as high as in utterances
like “I’m sorry, I did not hear what you were say-
ing”.

6 Conclusion and future work

We have discussed an approach to dialogue act gen-
eration reflecting the multidimensionality of com-
munication. Particular focus was on the problem
of dealing with interdependencies between dialogue
acts from different dimensions that have been con-
structed independently. Giving priority to some dia-
logue acts and postponing or cancelling others in-
volved logical, strategic and pragmatic considera-
tions, besides specific language generation issues
that we did not discuss. A separate process of evalu-
ating candidate dialogue acts allows for implement-
ing different dialogue strategies and communication
styles in the dialogue manager.

An interesting topic for future research would be
to look at the possibility to assess the (relative) pri-
orities among candidate dialogue acts from data. An
advantage of this would be that one could easily ad-
just the dialogue manager for different types of dia-
logue (both in terms of the underlying task and style
of communication) by reassessing the priorities with
appropriate data.
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Abstract

The paper proposes two new approaches
for measuring adaptation between dialogs.
These approaches permit measurement of
adaptation both to conversational partner
(partner adaptation) and to the local dia-
log context (recency adaptation), and can be
used with different types of feature. We used
these measures to study adaptation in the
Maptask corpus of spoken dialogs. We show
that for syntactic features, recency adap-
tation is stronger than partner adaptation;
however, we find no significant differences
for lexical adaptation using these measures.

1 Introduction

Numerous psycholinguistic studies have demon-
strated that people adapt their language use in con-
versation to that of their conversational partners.
For example, conversational partners adapt to each
other’s choice of words, particularly referring ex-
pressions (Brennan and Clark, 1996), converge on
certain syntactic choices (Pickering et al., 2000;
C. Lockridge, 2002), adapt their prosody to help
their partners disambiguate syntactic ambiguities
(Kraljic and Brennan, 2005), and also adapt using
audiovisual information (Kraut et al., 2003).

Some of these results have been duplicated us-
ing corpus studies; for example, researchers have
found evidence of within-speaker and between-
speaker convergence to certain syntactic construc-
tions (Dubey et al., 2006; Reitter et al., 2006). Cor-
pus studies can be a good addition to more tightly

controlled empirical studies in cases where there is
a corpus already available. Corpus studies can con-
firm the results of psycholinguistic research, and can
identify issues that may ‘muddy’ empirical results.

Finally, there is some evidence that people adapt
their language use in conversation with computer
partners. For example, researchers have shown that
users of dialog systems adapt the system’s choice of
referring expressions (Brennan, 1996), the system’s
choice of modality for referring (Bell et al., 2000;
Skantze, 2002), or the system’s choice of words
(Gustafson et al., 1997).

Currently, there is a debate in the psycholinguis-
tics community about whether this adaptation is:

• partner adaptation– adaptation based on a
model of the partner. This type of adaptation
is sometimes called entrainment or audience
design (Brennan and Clark, 1996; Horton and
Gerrig, 2002).

• recency adaptation– adaptation due to the
representations of words, concepts etc. be-
ing activated, or brought to the forefront dur-
ing language production, by previous percep-
tion or comprehension. This type of adapta-
tion is sometimes called convergence, priming
or alignment (Brown and Dell, 1987; Pickering
and Garrod, 2004; Chartrand and Bargh, 1999).

In this paper, we consider measures used in
corpus-based studies of adaptation such as (Dubey et
al., 2006; Reitter et al., 2006; Church, 2000). These
measures do not permit examination of whether
adaptation is due to the partner or to recency, and do
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not measure the strength of adaptation. We propose
two new measures, one that measures the presence
of adaptation and another that measures its strength.
Together, these measures can identify adaptation
within a single document or between documents;
can identify the strength of adaptation as well as
its presence; and can be used to identify the source
of the adaptation. We use these measures to study
adaptation in the Maptask spoken dialog corpus. We
show that for syntactic features, recency adaptation
is stronger than partner adaptation; however, we find
no significant differences for lexical adaptation us-
ing these measures. We close with some ideas about
how to apply these measures to dialog system devel-
opment, and some ideas for future work.

2 Other Measures

Church (Church, 2000) introduced a method for
measuring lexical “adaptation” in text. This method
determines whether appearance of a lexical feature
in the ‘priming portion’ of a document affects the
likelihood of its appearance in the ‘target’ (later)
portion. This method requires the construction of
a contingency table for each feature in a corpus of
texts, showing how many of the texts contained the
feature: (a) in the ‘priming portion’ only, (b) in the
‘target’ only, (c) in both portions, and (d) in neither
portion. The probability of positive adaptation is
computed asc/(a+ c). This must be compared with
a prior probability, which is(a+ c)/(a+ b+ c+ d).
Church applied this method to the study of a corpus
of text documents, treating the first half of each doc-
ument as the ‘priming portion’ and the second half
as the ‘target’. He showed that positive lexical adap-
tation does occur, more strongly for content words
than for function words.

Dubey et al. used Church’s method to evalu-
ate adaptation for selected syntactic constructions in
the Brown and Switchboard corpora (Dubey et al.,
2006). They reported positive adaptation for each of
the syntactic constructions they considered.

Church’s measure was developed to identify the
most useful features for information retrieval, rather
than for study of adaptationper se. Consequently,
it has several disadvantages for studying adaptation
directly:

• For each feature, this method provides an an-

swer to the question ”Did the feature occur in
the prime/target?”; however, it does not take
into account the frequency of occurrence of
a feature, so cannot be used to measure the
strength of adaptation

• This method cannot be used to identify adapta-
tion in a single document or between a pair of
documents

• This method under-reports adaptation in fre-
quently occurring features

In recent work, Reitteret al. (Reitter et al., 2006)
investigated syntactic adaptation in Switchboard and
Maptask. Instead of using Church’s method, they
used logistic regression to examine short-term prim-
ing effects within a small window of time in sin-
gle dialogs. This method permits study of the time
course of adaptation, but because it applies within a
single document only it does not permit examination
of the source of adaptation (recency/partner model).

3 Our Measures

We propose two measures. The first one mea-
sures the prevalence of adaptation between two doc-
uments, while the second one measures the strength
of adaptation.

Throughout this discussion, we will use the term
‘document’ to refer to a dialog or part of a dialog,
and the term ‘feature’ to refer to any phenomenon
(lexical, syntactic, referring expression, dialog act,
etc.) that occurs in or is labeled in documents.

To measure the degree to which a featuref ex-
hibits adaptation, we divide the corpus into a collec-
tion of ‘prime’ documents and ‘target’ documents.
For each featuref , we compute the frequency of
occurrence of the feature in the ‘prime’ document
(p), the ‘target’ document (t), and the corpus as a
whole (baseline, orb). One may use relative fre-
quencies rather than absolute frequencies, or smooth
low-frequency features; we do not do this in the ex-
periments reported in this paper because earlier ex-
periments showed that these did not change our re-
sults. Both of our measures comparep and t to b.
We use the notationf ∈ D as a shortcut to indicate
that the frequency of occurrence off in document
D is greater than the baseline frequency forf .
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3.1 Measure 1: Adaptation Ratio

This measure is a modification of Church’s measure
in two ways. First, it uses the frequency of occur-
rence of each feature in each document rather than
merely its presence or absence. Second, instead of
using Church’s prior we use an estimate of the prob-
ability of feature co-occurence in prime and target
by chance.
ChanceThe probability of a feature co-occuring in
prime and target by chance is the product of proba-
bilities of its occurence in prime and target indepen-
dently, assuming independence of the two.

P (f ∈ prime ∩ f ∈ target) =

P (f ∈ prime) ∗ P (f ∈ target) (1)

ForN (prime, target) dialog pairs where feature
f occurs more thatb times inP primes and more
thanb times inT targets, the probability of chance
co-occurrence off in prime andtarget can be ap-
proximated by:

chance = (P/N) ∗ (T/N) (2)

+AdaptChurch defines positive adaptation for a fea-
turef as follows:

+adapt = Pr(f ∈ target | f ∈ Prime) (3)

which we approximate as:

+adapt = T ∩ P/P (4)

For this method, we compute for each feature both
chance and+adapt. We define theadaptation ratio
as+adapt/chance. We sort the features in decreas-
ing order by adaptation ratio. Those at the top of the
list exhibit more positive adaptation. We also com-
puteχ2 to identify features for which the adaptation
ratio is significant.

3.2 Measure 2: Adaptation Strength

For this measure, instead of using binary values for
each feature indicating presence or absence of that
feature in a document, we use the actual frequency
of occurrence of the feature in the document.

Target
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Figure 1: Graphical depiction of Distance

To measure the strength of adaptation on a per-
feature basis, we use adistance measure. For a fea-
ture f with frequency inprime of p, frequency in
target of t and baseline frequencyb,

distance = t− (p− b)/2 (5)

Distanceis computed for each feature for each dia-
log pair. Its value suggests the strength of adaptation
for this feature in this dialog pair. Imagine adapta-
tion as a force pullingt towardsp and away fromb.
If there is positive adaptation, thent will be closer
to p than tob, as illustrated in Figure 1 (we con-
servatively chose the midpoint betweenb andp; a
point closer tob could be chosen for a more liberal
interpretation of adaptation). We consider a feature
to beadaptedin a pair of dialogs if the target point
lies to the right of mid-point in figure 1. We define
the adaptation strengthfor a dialog as the average
distance over alladaptedfeatures.

4 Data

The Maptask corpus (Anderson and et. al., 1991)
contains 32 sequences of dialogs involving four
speakers who discuss routes displayed on maps and
trade dialog partners as shown in Table 1. In each
dialog, one partner is agiver of the route descrip-
tion and the other is areceiver. From each dia-
log sequence, we extract the dialog triples (1,4,6)
and (2,3,5). Thefollower, A, in the first dialog in
each triple (1 or 2) is thegiver in the second and
third dialogs; in the second dialog,A speaks with
a new conversational partner and in the third dia-
log A speaks with the giver from the first dialog.
We hypothesize that persistent recency adaptation
will display between the first (prime) and second
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(recency) dialogs in each triple (which are consec-
utive dialogs forA), and partner adaptation between
the first (prime) and third (partner) dialogs in each
triple.

Table 2 shows examples of two stem/POS fea-
tures. you/DET occurs in 13 prime dialogs and 11
target dialogs. For 8 (prime, target) dialog pairs it
occurs in both dialogs in the pair. For this feature,
chance is .14 and+adapt is .62, so we say that this
feature exhibits positive adaptation. For the feature
finish/VB+adapt is less thanchance, so this feature
does not exhibit adaptation.

dlg # giver follower pair1 pair2
1 a1 b1 prime
2 b2 a2 prime
3 a2 a1 recency
4 b1 b2 recency
5 a2 b2 partner
6 b1 a1 partner
7 a1 a2
8 b2 b1

Table 1: Maptask dialog order

5 Experiments

In these experiments we ask the following questions:

1. Can we identify the features that affect partner
adaptation and recency adaptation?

2. Is partner adaptation or recency adaptation
more prevalent?

3. Does the feature frequency in prime affect
adaptation of the feature?

We consider two feature types: lexical (word stems,
part-of-speech tagged to help distinguish between
word senses; and bigrams); and syntactic (produc-
tions from the Maptask parse tree annotations).

5.1 Identifying features that exhibit adaptation

In this experiment we identify features with high
adaptation ratios, looking at both partner and re-
cency adaptation dialog pairs. To minimize noise
from infrequently occurring features, in this exper-
iment we only consider features occurring in more

partner recency
ADJ right-hand bottom, right-

hand
ADV when, diagonal right, well,

about
AUX have
CONJ if till, that, so
DET you, across, on, what,

that
my, i, just, that

INTJ sorri, er, uh
NOUN bottom map
PREP across, through,

along, from
from, by, to

VERB know, got, take, pass say

Table 3: Stem/POS features whereadaptation ra-
tio>1

partner recency
your left, right-hand
side, come to, you
come, about the, when
you, go round, and
round, you got, if you,
up toward, a wee, you
just, round the, right
you, just abov, abov
the

no no, my map, okay
and, you just, on my,
down about, yeah i,
you got, down to, have
a, i mean, ’til you,
just below, just to, now
you, no you

Table 4: Bigrams of Stem/POS features whereadap-
tation ratio>1

than 30% of prime dialogs with frequency higher
than the baseline.

Tables 3, 4, and 5 show the stem/POS, bigram,
and syntactic features withadaptation ratio>1 and
significant χ2. We observe two interesting cate-
gories of features that adapt: perspective and direc-
tionality.

In Maptask, speakers can take up a ”map-based”
perspective (and use words likenorth, south, east,
west) or a ”paper-based” perspective (and use words
like right, left, top, bottom). Lexical features indi-
cating perspective are adapted in both partner and
recency dialog pairs; the same is true for bigram fea-
tures. (Other features in this category (e.g.left, top)
also show adaptation, but occur too infrequently for
the adaptation to be significant.)
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feature prime target prime +adapt chance
∩target

you/DET 13 11 8 0.62 0.14
finish/VB 11 9 1 .09 .10

Table 2: Example lexical features

partner recency
advp-> advp
np-> at at ap nn ap nn; np ap nn; at nn nn; np; np

np; pn; ppg nn
pp-> in; rp pp not pp; ql rp pp; rp aff
s -> s aff aff s; hv np vp; np; np bez; s

s
aff s; np; np s

vp-> vp be np; bez pp; to vp; vb np pp;
vb vb pp; vbg pp

advp vp; ber vp; md vp; vb np;
vbg; vbg pp vbn pp; vp vp

Table 5: Syntactic features whereadaptation ratio>1

Directionality in Maptask is indicated by prepo-
sitions such asacross, through, along, aroundand
verbs such asgo (vs. take, send). These preposi-
tions are adapted in both partner and recency dialog
pairs, for both lexical and bigram features; the verbs
exhibit partner adaptation.

More syntactic features exhibit recency adapta-
tion than partner adaptation.

Table 7 shows adaptation ratio and adaptation
strength for some of the syntactic features that were
examined in (Dubey et al., 2006). All but the first
and last features show comparable partner and re-
cency adaptation ratios. The adaptation strength for
the featureNP− > NPPP shows stronger partner
adaptation than recency adaptation. By contrast, the
featureNP− > NN shows stronger recency adap-
tation.

5.2 Comparing partner and recency
adaptation

In this experiment, we useadaptation ratio and
adaptation strengthto compare partner and recency
adaptation. Table 8 showsadaptation ratio and
adaptation strengthaveraged over all features for
each feature type (Stem/POS, Stem/bigram, Syntac-
tic). Positive adaptation for recency dialog pairs in
this corpus appears significantly stronger for each
feature type, however the probability of chance co-
occurrence is also significantly stronger for recency.

This explains why there is no significant difference
in adaptation ratiofor lexical features between part-
ner and recency adaptation dialog pairs.

According to theadaptation ratiomeasure, lex-
ical features do not exhibit significant differences
between partner adaptation and recency adaptation.
However, according to theadaptation strengthmea-
sure, lexical features have stronger adaptation in the
partner adaptation dialog pairs. Syntactic features,
taken as a whole, do exhibit significantly greater
adaptation ratiosfor partner adaptation than for re-
cency adaptation.

Table 9 reports the same measures as Table 8 over
the subset of features from Tables 3, 4, 5. The re-
sults on the subset of features that exhibit significant
positive adaptation are similar to the results for all
features.

5.3 Measuring effect of priming frequency on
adaptation

This section describes howadaptation ratio and
adaptation strengthdepend on the frequency of a
feature in the prime dialog. Table 10 shows the av-
erageadaptation ratioandadaptation strengthval-
ues for varying thresholds on the prime:prime >
baseline, prime > baseline + 1, prime >
baseline + 2. The adaptation ratiodoes not de-
pend on variations in the prime dialog frequencies;
however,adaptation strenthincreases as the thresh-
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feature Adapt. ratio Adapt. strength
partner recency partner recency

across 7.314 4.655 0.285 3.452
sorri 4.180 1.741 0.410 0.161
through 5.642 3.385 0.785 1.285
i 1.714 3.0 7.240 8.573
uh 3.413 5.973 1.054 0.471
sai 1.693 5.642 2.430 4.680

about the 4.478 1.492 0.640 2.016
right-hand side 5.924 3.022 2.099 1.640
when you 5.642 2.987 0.660 0.493
my map 2.418 7.052 1.816 0.416
on my 3.173 6.770 1.328 0.328
to be 0.846 3.847 0.265 1.065

Table 6: Comparison ofadaptation ratioandadaptation strengthbetween partner and recency adaptation
dialog pairs for the features that have highest differencesbetween the ratios

feature Adapt. ratio Adapt. strength
partner recency partner recency

NP->NP PP 1.896 2.6 31.699 17.249
NP->NN 2.963 2.963 0.781 2.656
NP->DT NN 3.048 3.048 0.445 0.695
NP->DT AP NN 2.308 3.077 0.254 0.503

Table 7: Adaptation to chance ratio and adaptation strengthfor the syntactic features examined by Dubey.

old for the prime dialog increases for both recency
and user-primed dialog pairs. This trend illustrates
that higher occurrence of a feature in the prime dia-
log causes stronger adaptation (higher frequency of
a feature in target), but has no effect on the probabil-
ity of adaptation.

6 Conclusion

In this paper, we presented two methods for measur-
ing adaptation in dialog. Ouradaptation ratiomea-
sure, a variation on Church’s measure of adaptation,
evaluates how likely a feature is to appear in a target
document with frequency> average if it appears in
the prime document with frequency> average. Our
adaptation strengthmeasure evaluates the strength
of adaptation. These measures have several advan-
tages over those used in previous work. Comparing
the frequency to average instead of using a binary
’occurred’/’did not occur’ allows us to measure ef-
fect on both frequent and infrequent features. We

think that our measure ofprior is more sound for
measuring adaptation in a relatively small corpus of
dialog pairs. Evaluation of adaptation strength al-
lows us to measure adaptation of a feature in single
dialog pair.

We used these measures to compare adaptation
in partner- and recency-primed dialog pairs. We
showed through a series of experiments using the
Maptask corpus that these measures can identify fea-
tures that exhibit variation and can be used across di-
alogs to evaluate the presence and strength of partner
and recency adaptation.

We are still not satisfied with these measures.
Some drawbacks to our measures include:

• Theadaptation strengthmeasure does not take
into account the probability of a feature repeat-
ing in the same document; some features may
be likely to repeat independent of priming.

• In theadaptation ratiomeasure we cut off fea-
tures that occurred less than 30% in the prime.
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feature Adaptation ratio Adaptation strength
partner recency partner recency

Stem/POS 2.64 2.71 3.46 3.67*
Stem/bigram 2.99 3.03 1.71 1.91*
Syntactic 2.71 2.92* 4.70* 4.11

Table 8: Adaptation ratio and adaptation strength averagedover all features. * indicates significant differ-
ence between partner and recency adaptation (p<.05)

feature Pr(+adapt)/Pr(Chance) Adapt. Strength
partner recency partner recency

Stem/POS 3.36 3.15 3.71 3.82
Stem/bigram 3.86 3.68 1.30 1.62*
Syntactic 3.09 3.36* 5.49* 4.99

Table 9: Adaptation ratio and adaptation strength averagedover significant features listed in Tables 3, 4 and
5. * indicates a significant difference between partner and recency adaptation (p<.05)

Taking a different cut-off may influence the re-
sult.

We hope to address these issues in future work.
In current work, we are incorporating models of

adaptation to syntactic and lexical choice into our
RavenCalendar dialog system (Stenchikova et al.,
2007). We are creating a tight integration between
parsing, dialog management and response genera-
tion so that words and syntactic constructions used
by the user can be highly salient for the system, and
ones used by the system are available for interpre-
tation of user utterances (cf. (Isard et al., 2006)).
In experiments with this system, we plan to use
our adaptation measures to evaluate user adaptation
to system behavior for different system adaptation
rates.
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Abstract

In this study we compare two sequence
learning approaches to chunk dialogue acts
within a speaker’s turn. We assign a dia-
logue act label to each token in the tran-
scribed speech stream of a dialogue partic-
ipant, additionally classifying if the token is
at thebeginningof, inside, or outsidethat
specific dialogue act. Experimental find-
ings show that both our approaches – condi-
tional random fields and memory-based tag-
ging – largely improve over local classifica-
tion methods, obtaining comparable scores
on distinct datasets. We discuss the interplay
between transcription granularity of turns
and dialogue act chunking.

1 Introduction

Previous supervised learning approaches to dialogue
act tagging are typically applied to dialogue units
that are pre-segmented on e.g. turn level, utterance
level, or functional unit level, the exceptions be-
ing (Warnke et al., 1997) and (Zimmermann et al.,
2005). However, automatic segmentation into dia-
logue units is a significant challenge in itself. Even
a short speaker turn can contain more than one dia-
logue act units, for example an agreement in reply to
a proposal and an immediate question (’Fine. Which
airport?’); on the other hand, multiple turns of the
same speaker may feature one single dialogue act,
for instance a sequence of statements.

An important aspect of corpus-based approaches
is that training data are mostly derived from tran-

scribed speech, where it is common practice to struc-
ture the dialogue participants’ token stream (typi-
cally containing words, but also disfluent elements,
non-speech events, symbols for overlapping speech,
etc.) into syntactically or semantically complete
units, which are then further segmented into turns
along speaker change and time line.

In some circumstances of interaction however,
like in situations in which interlocutors are under
time pressure to communicate, are under stress, or
are engaged in a heated discussion, spoken dialogue
does not fully proceed in sequence, but often con-
tains simultaneously occurring events, since speak-
ers may cross-react on each other’s (incomplete) ut-
terances in a dynamic way. Transcriptions inevitably
commit to one or another granularity criterion, and
as such superimpose knowledge-based considera-
tions on how to structure dialogue to some extent.
In (Traum and Heeman, 1996) the issue of defining
utterance units in spoken dialogue is treated exten-
sively.

Arguably, it is easier to automatically assign a dia-
logue act (DA) to (semantically) complete units than
to incomplete ones, and thus the question arises to
what extent DA classification generalises across ma-
terial created by annotation schemes of different DA
unit granularity. In the current study we attempt to
make the first explorations of this issue by pursuing
a boundary-knowledge-lean approach to two differ-
ently transcribed dialogue corpora, focusing on turn-
internal DA transitions.

The method we advocate is the application of
state-of-the art sequence learning approaches to
token-based classification of DAs. Our approach
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is to perform sequential tagging based on tran-
scribed words and disfluent elements (henceforth:
tokens) in streams of utterances up to the point of
a speaker change (aka turns). Two supervised clas-
sifiers, a memory-based tagger and conditional ran-
dom fields, are trained to identify each element of
the word stream as one of a set of DA types, and
also whether the token is an initial or an internal el-
ement of a larger DA chunk. This approach can be
likened to syntactic phrase chunking, and has been
shown to work well for identifying disfluent chunks
in spontaneous spoken Dutch discourse (Lendvai et
al., 2003).

In the following section we describe the corpora
employed in this study, and how token sequences
and their contextual attributes were derived from
transcribed material. Next, the classification proce-
dure is discussed, where we elaborate on sequence
learning as a tagging approach, as well as on the
measures of evaluating a chunking task. In Section
4 we present our experimental results, followed by a
summary of our findings and pointers to future work.

2 Data

The experiments reported in this paper are carried
out on two English language datasets drawn from
two corpora, each coding dialogue units in a differ-
ent way: the Monroe corpus and theMRDA corpus.

The Monroe corpus(Stent, 2000) consists of
human-human, mixed-initiative, task-oriented dia-
logues about disaster handling tasks. In each di-
alogue, the interlocutors are engaged in a collabo-
rative problem-solving, mixed initiative interaction,
which involved a scenario at an emergency control
centre: an instructor (U ) receiving incoming infor-
mation about a disaster, and a remote subject (S)
initially knowing nothing about the task. A typical
fragment of these interactions is given in Table 1.
For eight dialogues speech has been manually
transcribed, segmented into utterances and turns,
and annotated with theDAMSL tag set1, resulting in
a data set of 2,897 speaker utterances that are seg-
mented into 1,701 turns (on average 189 turns per

1Annotations are publicly available at
http://www.cs.rochester.edu/research/cisd/
resources/monroe/.

S1 there are [SIL] three people on a stretcher
at the airport

U1 mm hm

S2 then there’s one stretcher [SIL] patient [SIL] at
[SIL] the mall

U2 + uh huh [SIL] +

S3 + [SIL] and +

U3 here was the heart attack right

S4 yeah yeah yeah

S5 we should get them to the nearest hospital asap

Table 1: An excerpt from the Monroe corpus.

dialogue). Each utterance can have multiple com-
municative functions in four layers (Allen and Core,
1997); there is almost always at least one function
assigned to an utterance. The Monroe corpus is
annotated with 13 main DA types that can further
contain arguments. We worked with the nine labels
contained in the forward-looking and the backward-
looking dimension of the annotation. These are:
statement, influence-on-listener,
influence-on-speaker,
info-request, conventional, other,
agreement, understanding, answer.

Because of the nature of theDAMSL scheme, the
transcribed utterances in this dataset tend to be long,
as DA units are segmented in a rather coarse-grained
fashion. It can be guessed however, that interaction
between the participants is of a more segmented na-
ture, since overlapping speech is marked by numer-
ous turn-internal+ symbols in the transcriptions.

TheMRDA corpus (Shriberg et al., 2004) is a com-
panion set of segmentations and annotations on the
ICSI Meeting Corpus, which consists of 75 non-
scenario based meetings that each are roughly an
hour in length. On average, there are about six En-
glish speakers, native and non-native, per meeting.
Most of the meetings were group discussions about
the ICSI meeting recorder project itself or on top-
ics on natural language processing. The sample in
Table 2 illustrates an interaction with three dialogue
participants.
The utterances in theMRDA corpus have been anno-
tated with a modified version of theSWBD-DAMSL
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c1 um ... so far I have thought of it as sort of adding it
onto the modeler knowledge module

c0 that is the d-

c3 hmm

c0 ok

c0 yeah

Table 2: An excerpt from theMRDA corpus.

tagset (Jurafsky et al., 1997), in which a dialogue
act is a combination of at least one general tag, with
a variable number of possible specific tags attached.
There are 11 general tags. TheMRDA corpus has
been used in various segmentation and dialogue
act classification studies, e.g. (Zimmermann et
al., 2005), and as in most of these studies we
worked with dialogue act labels grouped into five
types: backchannels (B), disruptions
(D), floorgrabbers (F), questions
(Q), and statements (S), as well as two
miscellaneous labels,(X) and(Z).

In this corpus tokens from a speaker are seg-
mented into minimal units that are semantically
complete, so that a unit always has only one gen-
eral DA tag assigned to it. Tags in this dataset are
thus mutually exclusive, which is a major difference
from the Monroe material. TheMRDA data contains
51,452 turns (on average 826 turns per dialogue).

It is important to see that due to these fine-grained
DA chunks, the speech stream of one speaker tends
be transcribed in a much more scattered way along
the course of the interaction than in the Monroe
corpus. All three utterances from the speaker on
channel0 in Table 2 would have been transcribed
as one utterance in the Monroe corpus, because the
DAMSL annotation scheme applied there allows for
assigning DA labels on different dimensions, so that
a statement and a backchannel could be segmented
into one unit. But in theMRDA transcriptions, these
token streams are considered as separate units, even
with a DA unit of a different speaker inserted be-
tween them.

There is an abundance of self-interruptions an
other type of disfluencies, overlapping speech, and
turn-internal silence in both corpora. The latter
two elements are also encoded in markedly different

ways in the two datasets: the Monroe transcriptions
contain these directly as symbols (+ and[SIL], re-
spectively) in the token stream, whereas theMRDA

material breaks up the token stream along overlap-
ping speech into separate segments, and encodes si-
lence between tokens by time stamps.

There are a number of other differences between
our datasets. First, the DA sets in the two cor-
pora overlap to only a small extent, both in their
amount and their aspects:statement is a DA
in both of them, and there is aQuestion DA
type in theMRDA andInformation request
in the Monroe corpus, but the mapping between
Backchannel in MRDA andAgreement as well
as Understanding in the Monroe material is
only partial, whereas the other DA types are difficult
to relate across corpora. Additionally, the amount
of data in the two datasets differs as well: the Mon-
roe dataset is rather sparse, whereas theMRDA cor-
pus provides thousands of examples to the learners.
Finally, the Monroe corpus is a two-party interac-
tion with ’giver and follower’ type of roles, whereas
the MRDA discussions involve many speakers and a
more intertwined flow of interaction.

3 A chunking approach to segmenting
dialogue acts

3.1 Classifiers

For the joint learning of the segmentation and
labeling, we used two different sequence-based
machine learning techniques:conditional random
fields (CRFs)and memory-based tagging (MBT).
Both of these have been shown to be particularly
suitable for sequential natural language processing
tasks such as part-of-speech (POS) tagging.

CRFs (Lafferty et al., 2001) are probabilistic
learners for labeling and segmenting structured data.
The algorithm defines a conditional probability dis-
tribution over label sequences given a particular ob-
servation sequence (in our case a sequence of to-
kens), rather than a joint distribution over both label
and observation sequences. The main advantage of
CRFs over e.g. hidden Markov models (HMMs) is
their conditional nature, resulting in the relaxation
of the independence assumptions that is required by
HMMs in order to remain computationally feasible.
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We used the CRF++ package with default settings2.
MBT is a memory-based tagger-generator that

generates a sequence tagger on the basis of a training
set of labelled sequences, and consecutively can tag
new sequences (Daelemans et al., 2003). It has been
used to generate POS taggers and various chunkers.
MBT can make use of full algorithmic parameters of
TiMBL 5.2, a memory-based software package3.

In our setup, a learner classifies a token from a
dialogue (the token under consideration, which we
call the focus token) in its context of other tokens
(the context tokens). It depends on internal design
how much of a context a sequence learner will con-
sider during classification, we worked with a default
token context of1. For all classifiers we mostly used
default settings. It is possible to provide the learn-
ers additional information, by means of a vector of
features. We discuss our selection of features below.

3.2 Features

Our method for both corpora was to merge all tokens
into one single sequence up to a transcribed speaker
change. In this way, we preserved a minimum
boundary information uniformly for both corpora.
In the Monroe dataset a sequence-to-be-chunked on
average contains 1.5 DA boundaries, and consists
of rather long utterances (e.g.,S4 and S5 in Ta-
ble 1 would constitute a sequence). In theMRDA

dataset, the last two DA units on channel0 would be
merged, as they are transcribed consecutively, but
the unit transcribed betweenc1 and c3 is regarded
as a single-token sequence. By merging the ’utter-
ances’ into longer segments of ’turns’, we created
about 5% less segment boundaries in theMRDA data
than in the transcriptions. On average there are 1.8
DA type boundaries in the segments.

The features that we use are straightforward and
automatically extractable from the dialogue tran-
scriptions. The majority of these would be internally
available from a linearised token stream in a dia-
logue application as well. Some attributes were de-
rived using some knowledge of transcribed bound-
aries; this has to do with the fact that although se-
quence learners can handle a sequence of hundreds

2CRF++ is publicly available at
http://crfpp.sourceforge.net/

3MBT and TiMBL are publicly available at
http://ilk.uvt.nl/

of tokens, it is not feasible to feed them an entire
dialogue.
TokensAll words were tokenised, dealing with cap-
italisation, separating and expanding clitics, etc.,
and subsequently stemmed with a Porter stemmer
(Porter, 1980). Apart from taking the word token
as a focus feature, we also use the token’s part-of-
speech tag, automatically obtained by using MBT
trained on the Wall Street Journal treebank. We in-
cluded in the feature vector a context window of
12 left context and six right context elements, both
tokens and POS tags. The size of the left con-
text is taken to be the average turn length in to-
kens, which is estimated 12 for both the Monroe
and theMRDA corpus. The context window does
not include information contained across the above-
explained speaker boundary.
Bag-of-words It has been shown in previous work
that redundant encoding of dialogue context may
improve the automatic detection of DAs (Lendvai
and van den Bosch, 2005). We thus additionally
represent lexical context as a bag-of-words (BOW):
BOWleft contains the lastly uttered 12 words of the
current speaker, BOWleftOth contains the most re-
cently uttered 12 words of the speaker that spoke im-
mediately before the focus speaker, and BOWright

covers six tokens of right-context for the current
speaker only, since it would be incorrect to assume
the current speaker to have certainty about what the
next speaker will contribute. A threshold on the lex-
icon size of the BOW has been set to only consider
the 200 most frequent word tokens. Note that the
BOWs exclude information contained across their
own boundaries, and that speaker identity is not en-
coded.
Silence and overlapping speechFor the Monroe
data the [SIL] and+ markings in the transcriptions
were used to derive features. These indicate whether
or not an utterance starts or stops with a silence. For
theMRDA data, we represented the time elapsed be-
tween the previously uttered token in the interaction
and the focus token.

3.3 Experimental setup

Our task is to identify in one process for each token
in a sequence its DA label, and whether it is a la-
bel boundary or not. We represent the DA labels by
so-calledIOB tags (Tjong Kim Sang and Veenstra,
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1999), which is one of the many encoding possibil-
ities. For each DA label a prefix marks whether a
token is starting a new DA chunk (B <DAtype>),
is inside a DA chunk (I <DAtype>), or outside
(O <DAtype>), cf. Table 3. This extended DA la-
bel is the class to be guessed by the learners.

token Q S . . . comb.

U can I O . . . I-q
you I O . . . I-q
see I O . . . I-q
the I O . . . I-q
map I O . . . I-q
have B O . . . B-q
you I O . . . I-q
found I O . . . I-q
it I O . . . I-q

S i O I . . . I-s
can O I . . . I-s
not O I . . . I-s
see O I . . . I-s
it O I . . . I-s

Table 3: IOB encoding for questions (Q) and statements (S)
in binary classification on the Monroe data.

3.4 Evaluation aspects and metrics

In many previous work on segmentation and classi-
fication of dialogue acts, accuracy-based measures
such as segmentation and dialogue act error rates
have been proposed to asses segmentation and clas-
sification performance. Even though these metrics
give reasonable insight about performance on the
task, higher accuracy or lower error rates do not nec-
essarily imply better performance on DA chunking.
Hence we will pay most attention to the traditional
measure of information retrieval and chunking:F1

score, a harmonic mean of precision and recall. For
comparison with similar work, we additionally re-
port on dialogue act error rate (DER), as described
in (Zimmermann et al., 2005): the percentage of
misrecognised DAs (i.e., the lower the DER is, the
better), where a DA is successfully recognised if
both the predicted DA type is correct and the chunk
boundaries are successfully predicted. Note that
in terms of information retrieval, the DER is none
other than theinvertedDA chunk recall (recall is the
proportion of correctly found chunks over the gold-
standard amount of chunks). On the token level, we
report on the accuracy of predicting the correctIOB

tag.
All experiments are carried out separately on the

Monroe and on theMRDA datasets. TheMRDA

dataset allows for multi-class learning, but the Mon-

roe corpus is not annotated with mutually exclusive
DAs, yielding over 200, often low-frequent multi-
dimensional tags, whose boundaries do not always
overlap. Multi-class DA chunking on these data is
not straightforward, thus we trained a separate bi-
nary classifier for each of the nine occurring DA
classes. If we average the results over the classes,
we calculate macro averages (in the case of F1 scores
denoted by F1,ma). These are in general significantly
lower than micro averages that are traditionally re-
ported for chunking tasks. We therefore also report
on the F1 micro score (denoted by F1,mi), which is
available for theMRDA data results. Accuracy is not
affected by this difference of classification method.

4 Experiments and results

On each dataset we run both sequence learners
twice: first they have access to the token sequence
only, and in a different experiment they can draw on
the full feature vector. Additionally, to put the re-
sults of CRF and MBL into perspective, we test a
baseline method on the DA chunking task, as well
as two local classification methods: a Naive Bayes
and ak-nearest neighbour approach. The results for
Monroe are presented in Table 4 and those forMRDA

in Table 5.

4.1 Baselines

A simple majority class baseline is to always guess
the majority chunk, which is in both datasets
statement. This approach labels the beginning of
each sequence asB statement, and the rest of the
sequence asI statement. We get markedly dif-
ferent scores on the two corpora, since inMRDA the
majority of turns include a number of chunks (recall
that this material is segmented according to mini-
mal units), whereas in Monroe the segments are typ-
ically larger (because theDAMSL annotation scheme
allows for assigning multi-level tags to one and the
same unit).

When we look to Table 5, we see that for the
MRDA dataset this baseline (denoted withMajChu)
is already rather accurate, (81%), but recalls only a
small fraction of the chunks correctly, yielding the
relatively low F1 score (27 points). On the Monroe
dataset with separate binary classifiers this labeling
clearly is a very bad strategy (8% accuracy, see Ta-
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ble 4), since only one out of the nine binary classi-
fiers has a chance to score at all.

Next, we test powerful local classifiers on the DA
chunking task. The naive Bayes classifier is proba-
bilistic and assumes feature independence. It often
requires only a small amount of training data to be
rather effective. We indeed see that on the Monroe
dataset, which contains longer and in a sense more
complete utterances, this baseline acquires high ac-
curacy (89%), from only knowing the focus token.
When it is provided a relatively large and unorgan-
ised additional feature set (recall that the feature vec-
tor encodes among others three times 200 bits of
contextual bags-of-words), its performance is how-
ever dramatically undermined. The same trend can
be observed on theMRDA set for the naive Bayes
classifier.

Our third baseline is computed by running the
IB1 algorithm implemented in the TiMBL package.
IB1 is a memory-based learning technique, a di-
rect descendant of the classicalk-nearest neighbour
approach to classification. The number of nearest
neighbours used in the experiments was set to nine,
and the modified value difference metric was em-
ployed in the internal weighting of features. Thek-
nearest neighbours voted on the class using the in-
verse distance weighting parameter. Note that our
sequence learner MBT is also set to employ the IB1
algorithm and the above parameters, thus the differ-
ences between a local and a sequential application of
the same algorithm are directly comparable. Con-
trary to the performance of the naive Bayes classi-
fier, IB1’s F1 score improves (onMRDA) or at least
remains constant (on Monroe) when it can draw on
additional features.

4.2 Sequence learners

A direct comparison between the scores from the
two datasets in Tables 4 and 5 may not be infor-
mative, due to the differences between these, as ex-
plained in Section 2. Nonetheless, we can observe
trends within each dataset. The F1 scores of both se-
quence learners improve largely over all baselines,
indicating that sequential approaches are superior to
global classification in the DA chunking task.

CRF’s performance is affected in the allFeatures
setup to its disadvantage on the Monroe corpus (30
vs 23 F1,ma), whereas on this material MBT scores

identically regardless of the features involved (22
and 23 F1,ma). The best score is 30 points of micro
F score, obtained by the CRF algorithm.

On theMRDA data we see a slight improvement
over the token-only experiment for CRF (44 vs 41
F1,mi). In contrast, MBT’s scores seem to weaken
on the large feature vector (40 vs 47 F1,mi).

The two sequence learners work in a rather differ-
ent way inherently, which explains this divergence.
On the smaller dataset (Monroe) CRF performs bet-
ter than MBT, especially in the TokenOnly experi-
ment (30 vs 22 F1,ma), but it is not the case on the
large dataset (MRDA): at least on the single focus to-
ken, MBT beats CRF (47 vs 41 F1), but not in the
allFeatures experiment.

In general, we see that the magnitude of perfor-
mance is in the same range for both datasets, despite
that it may be more difficult to find a large number
of boundaries of short chunks than to identify longer
spans of fewer DA type spans. Note that we have
much more data from theMRDA corpus, that proba-
bly allows the learners to be better trained.

Arguably, we set a rather hard task for the learn-
ers by limiting the token sequence to material from
one speaker only, regardless of own and others’ pre-
viously uttered tokens, and thereby missing all con-
text that an utterance can have. We deliberately for-
mulated this task, and conjecture that the scores we
obtained are in fact out-of-context baseline scores to
turn-internal DA chunking, and as such are rather
high already. Comparison of our results with previ-
ous work cannot be straightforwardly done, due to
the differences in creating the token sequences that
need to be chunked. The obtained DER scores verify
the general trend of the sequence learners improving
over local classification methods.

We have additionally run experiments to give an
impression of the effect of adding more context to
the focus token, in the form of the BOW from the
immediately previous other speaker (BOWleftOth).
When splitting down the scores according to DA
types, the results indicate that on some DA types
there is indeed an improvement over the AllFeatures
approach (although not over the TokenOnly experi-
ment), from this additional information. The figures
for the two datasets are reported in Table 6 and Ta-
ble 7.
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tokenOnly allFeatures
Acc F1,ma F1,mi DER Acc F1,ma F1,mi DER

MajChu 8 3 - 97 8 3 - 97
NBay 89 18 - 84 77 6 - 91
IB1 87 13 - 87 85 13 - 83
CRF 88 30 - 74 84 25 - 77
MBT 86 22 - 80 86 23 - 82

Table 4: Classification performance of nine binary classifiers on the Monroe corpus.

tokenOnly allFeatures
Acc F1,ma F1,mi DER Acc F1,ma F1,mi DER

MajChu 81 5 27 78 81 5 27 78
NBay 82 15 16 79 8 7 2 98
IB1 79 1 23 80 83 23 37 61
CRF 83 27 41 65 84 27 44 60
MBT 84 30 47 57 84 25 40 61

Table 5: Classification performance on theMRDA corpus, computed in multi-class learning of seven DA
types.

5 Conclusions and future work

In this study we aimed to explore if it is feasible to
take a boundary-knowledge-lean approach to jointly
segment and label dialogue acts in two corpora. Di-
alogue processing is dependent on transcribed mate-
rial, but the representation and segmentation of DA
units in dialogue transcriptions is not standardised.
Supervised learning of DAs is however dependent
on labelled material, where variations of encoding
the flow of dialogue supposedly bias the mapping of
a dialogue unit to a DA type.

We proposed to refrain from encoding
knowledge-based unit boundaries as much as
possible, and based DA processing on tokens as
basic units. Sequence learning procedures were
applied to each token uttered by a speaker, including
disfluencies, and a token was classified either as
chunk-initial or chunk-internal with respect to
a limited set of DA types in theSWBD-DAMSL,
respectively theMRDA annotation scheme.

Two sequence learners, a memory-based tagger
and conditional random fields, were trained and
tested on the task of segmenting tokens into turn-
internal DA chunks. They could draw on a set of
straightforward features, or on the token sequence
only. We showed that sequence learning methods

are suitable for DA chunking, improving over the
results of a chunk majority baseline and local classi-
fiers. The best chunk F1 score we obtained is 47 on
the transcribed tokens ofMRDA spoken discussions,
using the MBT sequence tagger in multi-class learn-
ing of seven DA types. (Note that two out of the
seven employed DA labels are highly sparse meta-
labels, on which the classifiers typically yield near-
zero scores, which severely affects the F1 scores.)

Our sequence learning methods that performed
token-based DA chunking were able to produce
comparable results on rather distinctly transcribed
dialogue datasets, both on theMRDA meeting tran-
scriptions and the more traditionally transcribed
Monroe scenario dialogues that feature longer turns
and a giver-follower dialogue style. Comparing the
utility of the lexical token only versus a large bag
of straightforward contextual features, we conclude
that in our setup lexical items carry the best informa-
tion for assigning chunk-initial and chunk-internal
DA types.

We regard our method as a baseline technique
to objectively investigate the role of context in DA
chunking. Our plans include explorations on how
larger context, including prosodic phenomena, af-
fects performance of sequence learning approaches
on DA chunking.
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Agr Und Answ Stat IList ISpk IReq Conv Oth

TokenOnly 54 60 23 33 26 21 23 6 26
CRF AllFeatures 45 52 16 29 19 15 16 32 3

Token+ BOWleftOth 47 52 17 30 15 12 12 0 2
TokenOnly 53 58 6 39 13 9 18 0 6

MBT AllFeatures 46 51 11 35 18 15 11 0 17
Token+ BOWleftOth 38 43 10 32 11 8 7 16 14

Table 6: F scores per DA type on the Monroe corpus using different feature sets and sequence learners.

Backch Disr Floorgr Quest Statem X Z

TokenOnly 69 14 40 23 38 0 5
CRF AllFeatures 68 1 38 20 44 0 21

Token + BOWleftOth 66 1 28 10 38 0 14
TokenOnly 70 16 39 34 46 0 4

MBT AllFeatures 59 16 31 26 39 0 4
Token + BOWleftOth 64 18 38 31 42 0 5

Table 7: F scores per DA type on theMRDA corpus using different feature sets and sequence learners.
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Abstract

We present a disfluency model derived from
analysing transcriptions of the AMI meet-
ing corpus. Our model goes beyond pre-
vious work in that it discriminates several
classes that are elsewhere regarded the same.
Furthermore, we provide a formal account
for naturally occurring phenomena that are
rarely modeled in other schemes. Our anno-
tations show significant occurrences of these
classes. An evaluation of the annotations
from four different annotators reveals a high
agreement, �����	��

�����	��

�������������	��

� .

1 Introduction

Speech differs highly from written language. Spo-
ken language contains a lot of linguistic irregular-
ities, so called disfluencies (Henceforth DF), e.g.,
(Shriberg, 1994). In general, disfluencies can be
classified on different levels, but in this work, we
will solely treat syntactic and grammatical errors ac-
cording to standard syntax and grammar. Hence, we
present a classification scheme for speech DFs that
defines DF classes according to their surface struc-
ture.

Previous approaches have failed to cover the ex-
istent phenomena to a satisfying degree. To our
knowledge, the presented scheme is more fine-
grained than previous schemes and covers a larger
set of DF types. In fact, this scheme models almost


�� of the phenomena found in our corpus.�

This research is funded by the EU 6th Framework Pro-
gram under grants FP6-506811 (AMI) FP6-033502 (i2home)
The responsibility lies with the authors.

In a data-driven approach, we identified the ex-
isting phenomena via examinations of meeting tran-
scriptions from the AMI1 meeting corpus (Mc-
Cowan et al., 2005). The corpus contains unre-
stricted and uncontrolled human-human discussions,
recorded in business meetings. The meetings were
held in English, but not all participants were native
speakers.

We consider only phenomena that actually lead to
the interruption of the syntactic or grammatical flu-
ency of an utterance. This excludes meta comments
and certain stylistic devices from the classification.
Our approach is only concerned with the structural
correctness of an utterance and thus no analysis of
the semantic or pragmatic impacts of DFs were con-
sidered. The underlying psychological processes
were neither examined.

The disfluency classification scheme was devel-
oped as part of the AMI project. The project’s goal
was to develop technology to support and enrich
communications between individuals and groups of
people. Some research topics of the project are 1)
Definition and analysis of meeting scenarios, 2) In-
frastructure design, data collection and annotation,
3) Processing and analysis of raw multi-modal data,
4) Processing and analysis of derived data, and 5)
Multimedia presentation, see also (McCowan et al.,
2005). The project was, e.g., concerned with auto-
mated meeting summarizations. Disfluency detec-
tion and correction is a nearly mandatory matter for

1AMI = “Augmented Multi-party Interaction”, see http:
//www.amiproject.org and its successor AMIDA =
“Augmented Multi-party Interaction with Distance Access”, see
http://www.amidaproject.org.
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reaching this goal.
The paper is organised as follows: In the next sec-

tion (2) the classification scheme is thoroughly de-
scribed. Section 3 presents a scheme for DF anno-
tations in XML format. In section 4 an evaluation
of DF annotations according to some metrics is con-
ducted. In 5 we present and discuss previous work.
Finally, we conclude the paper with section 6.

2 A Classification Scheme

This section will give definitions for all DF classes
that we have identified for the classification scheme.
For some classes, XML-annotated examples will be
presented. The annotations follow an annotation
scheme for DFs that we have developed based on
the DF classifications (see 3).

lorem ipsum
<DF>

<RM>erroneous material</RM>
<interregnum>editing material</interregnum>
<RS>correction</RS>

</DF>
consectetuer adipiscing elit.

Figure 1: The general schema of a disfluency
consists of the disfluency material—reparandum
(RM)—followed by the interregnum (IM). The third
part called reparans (RS) constitutes the actual re-
pair.

Beforehand, we illustrate the general surface
structure of a DF, see figure 1: DFs usually con-
sist of three parts. The first part contains the “er-
roneous”, disfluent material, that will be corrected
later on, the reparandum (RM). The RM is followed
by the interregnum (IM), a term which is adapted
from (Shriberg, 1994). The third part of a DF is the
repairing section, the reparans (RS). The RM de-
notes the whole stretch of material from the begin-
ning of the DF’s first part to the beginning of the IM,
not only the words that are replaced or corrected in
the reparans. This is due to the fact that replacing the
RM with the RS has to result in a meaningful, gram-
matically correct sentence, which would not always
be the case if only the modified parts were denoted
as RM.

The DFs are grouped into three sets based on their
surface similarity: uncorrected DFs, deletable phe-
nomena, and revisions, see figure 2. Only revisions

can optionally contain an IM whereas RS is omit-
ted in all uncorrected phenomena. We divided the
deletable DFs into two subgroups: delay and paren-
thesis. DFs of type delay are sounds, not words, that
hold up the speech flow, e.g. for gaining time to plan
the utterance. Parenthesis DFs are real words that do
not contribute to the utterance’s meaning.

In what follows, we provide definitions for all
DFs and examples for some:

2.1 Uncorrected

The following two conditions have to be fulfilled by
a DF to be classified as uncorrected:

1. The speaker’s original utterance may only con-
tain a RM. The RS (and thus the IM) is missing.

2. The content of the RM is relevant for the sen-
tence and may not just be deleted. Therefore,
the correction of the DF implies creating a suit-
able RS.

There are three types of uncorrected utterances:

Mistake: A mistake is an uncorrected speech error,
which leads to a grammatically incorrect sentence.
Examples are agreement errors and other grammati-
cal errors.
Omission: The speaker omitted a word, which
would be necessary for the segment in order to be
grammatically correct.
Order: The segment’s word order has to be changed
in order to make the utterance grammatically cor-
rect.

2.2 Deletable

The following two conditions have to be fulfilled by
a DF to be classified as uncorrected:

1. The DF’s content can be discarded from the
utterance without impact on the utterance’s
propositional content.

2. The DF does only contain a RM and no correc-
tion, which is quite naturally following from 1,
since non-contentional expressions can hardly
be corrected.

There are six types of deletables. The types Hesita-
tion and stuttering are grouped into Delay, and EET
and DM are grouped into the class Parenthesis.
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Figure 2: The hierarchy of our disfluencies where the classes are grouped into three main branches, uncor-
rected, deletable and revisions. The classes stuttering and hesitation are specializations of delay and EET
and DM are specializations of Parenthesis.

Hesitation: Hesitations are rather sounds than
words. They are usually used in order to gain time
and are thus expressions of the speaker’s cogitation.
Typical hesitations are: uh, uhm, eh, em, mm etc.
Stuttering: Stutterings are non-lexical word frag-
ments, which are similar to the beginning of the next
fully articulated word.
Example:

(1) <stutter>N n</stutter> no, I don’t
think so.

As the example shows, sequences of stuttering
sounds are seen as one single stuttering and are not
treated separately.
Disruption: Denotes whole or partial segments that
do not form a meaningful statement and are so
fragmentary that no meaning can be established by
adding information. The fragmentary material may
not occur at the beginning of a segment.
Slip Of the Tongue (SOT): SOTs are speech
sounds, syllables or syllable fragments which do not
form a correct (existing) word and cannot be classi-
fied as stuttering.
Example:

(2) looking at the <sot>tex</sot> technical
functions. . .

Discourse Marker (DM): DMs do not contribute
to the content of an utterance, but have a rather
discourse related function. Their usage gives the
speaker time to think of what to say next and to hold
the turn. Examples are: I mean, so, well, you know,
like etc.
Explicit Editing Term (EET): EETs are roughly
the same expressions as DMs but they always stand
in the IM of a revision.
Example:

(3) <replace>
<RM>The design of</RM>
<eet>or</eet>
<RS>the point of</RS>

</replace>
putting two sensors on each side

2.3 Revisions

Revisions are phenomena, where both RM and RS
are given by the speaker. They could also be named
“self-corrections” or “self-repairs”.
Deletion: The RS repeats some parts of its RM,
while omitting some other material. The deleted ma-
terial has to be from the central region of the RM.
Example:

(4) But
<delete>

<RM>it’s really not</RM>
<RS>it’s not</RS>

</delete> functional.
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Insertion: The RS repeats the RM with supplemen-
tary information added at some point. The added
information may not be the last material in the RS.
Example:

(5) <insert>
<RM>What else it</RM>
<RS>what else do we want it<RS>

</insert>
to do?

Repetition: Those are expressions that occur sev-
eral times consecutively. This does not include word
fragments. RM and RS have to contain exactly the
same material.
Replacement: The RS repeats some material of the
RM. The remaining information is substituted with
new material.
Restart: The RS replaces all the information given
in the RM. It restarts the region of the sentence,
which was started by the RM. The restart does not
have to occur at the beginning of the sentence.
Example:

(6) How would we go about
<restart>

<RM>making</RM>
<RS>getting</RS>

</restart>
rid of our weak points?

Other: Those are DF structures that do not match
any of the specified classes.

2.4 Complex Disfluencies

DFs are called complex if some of the contained ma-
terial belongs to more than one DF. An example is
shown in (7) where the first “she” is both RS to the
first DF and RM to the second.

(7) he she she went

When a DF is completely contained in the RM or
RS of another DF, it is called a nested DF. The anno-
tation is simply carried out starting from the inmost
DF and then proceeding stepwise outwards:

(8) But then to go back
<replace>

<RM>to the</RM>
<RS>to

<sot>th</sot>
<stutter>s</stutter>
something

<RS>
</replace>
along those things.

Troublesome events are complex partially
chained DFs (Shriberg, 1994), where not all of one
DF’s output is the input to another DF, see (9)2.

(9) show me the flight the delta flight delta fare

Here “the delta flight” substitutes “the flight” by
an insertion and “delta fare” replaces “delta flight”.
The complication is that the first DF’s output (and
second DF’s input) is not “delta flight” but “the delta
flight”. This means, that “delta fare” actually re-
places “the delta flight”. Thus “the” is omitted re-
sulting in the corrected sentence “show me delta
fare”.

This arises due to the fact that our annotations are
made from left to right. Our annotation scheme does
not yet provide a solution for this. Thus, in the case
of a partially chained DF some loss of information
must be accepted, see (Shriberg, 1994) for a discus-
sion on this issue.

3 Annotation

In order to evaluate the reliability and clearness of
the DF class definitions, we have annotated a sub-
set of four meetings from the AMI meeting corpus
(McCowan et al., 2005) based on an annotation man-
ual we developed. The meetings contained a total
of 2876 segments as identified during dialogue act
(DA) annotation. These 2876 segments were parsed
with the LKB parser (Copestake, 2002). The 792
segments ( ������ �� ) that did not receive a parse were
extracted and considered for manual annotation by
four annotators. On average, 74% of these 792 seg-
ments received a DF annotation. In what follows,
we call these segments “corpus A”.

At the time of writing, the four meetings used
in creating corpus A have been completely re-
annotated. Additionally, three more meetings have
been annotated. For these annotations, the complete
meetings were considered for annotation by the an-
notators. In total these meetings contain 4718 seg-
ments. 2095 segments, corresponding to 44% (rang-
ing from 28% to 52%), were annotated with at least
one disfluency.

3.1 Statistics and Metrics

We have applied two different statistics in order to
rate the inter-annotator agreement: the � -statistic

2taken from (Shriberg, 1994)
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and the AC1-formula (Gwet, 2002). The reason for
using AC1 is that it is insensitive to disproportion-
ate distribution of class frequencies. Otherwise they
share the same co-domain.

The formulae have been adapted to the compari-
son of multi-category annotations by two annotators.
There, ! stands for the total number of compared
annotations, " is the number of categories, # is an
integer ( $ ,. . . , " ), �&%('*) is the number of agree-
ments on category i, + ) is the number of annotations
into category i by annotator A, and ,�) is the number
of annotations into category i by annotator B.� -statistic

�-�/. �10324�65$7�80�24�65
. is the total agreement of the annotators, whereas
e( � ) computes their agreement by chance (value be-
tween 0 and 1). . and 0�24�65 are calculated in the
following way:

. �
9:)<;>= 2?�&%('@)?5! �A0�24�65B� 9C)<;>=

D +E)!GF D ,*)!HF
AC1-statistic

+JI&$E� . �8032LKM5$E�8032LKM5
Again, . is the total agreement of the annotators. It is
calculated in the same way as in the � -statistic. The
chance agreement e( K ) computes a value between 0
and 0.5:

032LKM5(� : 9)N;>=PO )Q2R$S� O )45"T�U$ � O ) � 2V+@)PWX,@)?5ZY[�!
The number of agreements and disagreements as

well as the number of compared annotations ( ! )
were gained by applying the following four metrics
to the gathered data:

Strict comparison: Two DF annotations are equal
if both annotators have marked the same stretch of
material with the same disfluency type. If the DF
contains RM and RS (and IM), also those have to be
absolutely equal.
Strict comparison without DF type: The condi-
tions are the same as for the first metrics, but the

annotated DF type may be different. If, e.g., anno-
tator A classified the phenomenon as a replacement
whereas B classified it as a restart, the annotations
would count as equal anyway. This is motivated by
the existence of some relatively similar DF classes,
which can be hard to distinguish.
Result oriented comparison: In this metrics the re-
gions, which were marked for deletion by the an-
notators, are compared. This includes RMs, hesi-
tations, stutterings, DMs, EETs, SOTs and disrup-
tions. If the same regions are marked with one of
these tags, they are counted as equal.

In this way the metrics accounts for the fact that
if the same regions of a segment are erased, then
the final outcome of the correction is the same, no
matter, which class assignments were made.
Liberal concerning IM: This metrics compares an-
notations in the same way as the first metrics (strict
comparison) but EETs are treated in a special way:
Two annotations containing an EET are also counted
as equal, if the boundaries of the EETs are the same
but the EET is annotated as part the RM in both or
in one of the annotations . The annotations are also
considered equal if the a region was labelled as EET
in one annotation but as DM in the other.

It should be noted that uncorrected DFs were ex-
cluded from the result-oriented evaluation, since the
comparison of their corrections can be quite hard
to assess and would often some semantic analysis.
For example, if annotator A adds “an” as missing
determine (RS), and annotator B “the”, their anno-
tations are different from a shallow perspective, but
they could be seen as equal regarding functional per-
spective.

4 Evaluation

The results from the comparisons according to the
different metrics were gathered in confusion matri-
ces. We then calculated the � - and the AC1-value
for each matrix with the statistics described above.
The total agreement was derived by calculating the
average of all computed � - vs. AC1-values of all
meetings. This gave the results presented in table
1. Column 4 shows the percentage of the DF in-
stances that had equal boundaries and were also as-
signed the same DF type. It becomes clear that once
the annotators identified the same boundaries for a
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Table 1: Inter-annotator agreement according to
both statistics for strict and liberal comparison, the
total agreement, and the percentage of DFs that were
assigned to the same class.

� -
value

AC1-
value

Total
agree-
ment

Same
DF
type

Strict com-
parison

0.924 0.934 0.958 93.8 %

Liberal con-
cerning IM

0.930 0.936 0.967 94 %

DF, the agreement on the class assignment was very
high. The demanding task was rather to agree on the
boundaries of a phenomenon. It can, e.g., be quite
hard to decide where the reparans of a DF ends. Also
the decision on the class assignment of a phenom-
enon can influence the definition of its boundaries.

Additionally, we have computed the AC1- and � -
value for the three main classes in the DF hierarchy:
uncorrected, deletable and revision. We received a� -value of 0.998 and an AC1-value of 0.999 for the
strict comparison. Thus, the annotators agreed in-
variably on the DF assignment to the main classes.

The evaluation of the result-oriented metrics
yielded that the annotators agreed to 77.5 % on the
material that would have to be removed for correc-
tion purposes.

Altogether, the annotators identified an average of
1206 DFs in the 792 segments. This means that the
mean number of DFs per DA was 1.5.

Table 2 shows the number of occurrences of each
DF type, along with the total and proportional an-
notator agreement for each class. The DF classes
are not equally distributed and there is a high dis-
crepancy between the most common phenomenon
(hesitations) and the scarcest one (deletion). The
six most prevalent DF classes constitute 67 % of
the encountered phenomena, whereas the five least
common types correspond to only 5 % of the DF in-
stances.

Classes rarely mentioned in previous schemes,
e.g., mistake and omission are prevalent in our cor-
pus. However, order only occurs in about 1% of the
annotated segments. (Finkler, 1997) considers these

Table 2: The average number of annotations of a cer-
tain DF type in corpus A and corpus B. “%” depicts
the proportion of a certain DF-type in the corpus and
“% Agr” depicts the percentage of cases in which
all four annotators agreed on the DF annotation.

Corpus A B
DF \EY^] % % Agr \ %

Delete 2 0.0 0.0 2 0.0
Disrupt 143 11.9 11.2 509 11.9

DM 165 13.7 52.7 642 15.0
EET 16 1.3 43.8 43 1.0
Hesit 202 16.8 84.7 842 19.7
Insert 15 1.2 33.3 38 0.8

Mistake 79 6.6 34.2 259 6.0
Omiss 68 5.6 35.3 276 6.4
Order 12 1.0 16.7 32 0.7
Other 14 1.2 7.1 44 1.0
Repeat 177 14.7 72.3 641 15.0
Replace 69 5.7 39.1 165 3.8
Restart 41 3.4 24.4 190 4.4
SOT 124 10.3 78.2 366 8.5

Stutter 79 6.6 82.3 223 5.2\ 1206 100 — 4272 100

three phenomena as one: “uncorrected”. However,
our findings support the division. Finally, disrup-
tions are very common but seem to be hard to an-
notate reliably. A similar low reliability is found for
order. This is probably due to their inhomogeneous
structure. However, it is our hope that an annotator
will improve the performance over time.

4.1 Discussion

The annotator agreement on the classes hesitation,
stuttering, SOT and repetition is especially high.
The structure of these phenomena is easy to iden-
tify, independent of their context. Even if they
occur within complex multi-nested DF structures.
The lowest agreement lies on the classes disruption,
other and order. The assignment to these categories
is to a high degree based on the annotator’s estima-
tion of the phenomenon. Moreover, the structure
of these phenomena is inhomogeneous and cannot
clearly be defined. Furthermore, we counted only
phenomena as equal that were annotated with ex-
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actly the same boundaries. For the regarded classes
it is particularly hard to say for sure where they end
and start. Annotation differences though do not nec-
essarily have an impact on the meaning of the sen-
tence after the correction has been applied, since dif-
ferent annotations can still result in the same correc-
tion.

Such facts could be accounted for via a less strict
comparison of the annotations. Phenomena that
overlap widely but do not have exactly the same
boundaries could be counted as equal. The presented
work does not include such an approach, since we
could not implement a corresponding metrics due to
time limitation. Such tolerant metrics is complicated
by the existence of complex disfluencies. They im-
ply that overlapping DFs do not always need to cor-
respond to each other. They can even be assigned to
different layers of a complex DF. The inmost DF of
one complex DF does not have to be the inmost DF
of another annotator’s (complex) DF.

5 Related Work

Several researchers have investigated speech dis-
fluencies before with different underlying motiva-
tions. There are four basic types of disfluencies
that have been identified by most previous classifi-
cation schemes, e.g. (Liu et al., 2003), (Shriberg,
1999), (Heeman and Allen, 1999), and (de Mareüil
et al., 2005). Those are fillers (e.g. filled pauses,
discourse markers, and editing terms), repetitions,
fresh starts and modifications. Fresh starts denote
cases in which an utterance is abandoned and a new
one is started. Modifications are self-corrections, in
which the RS modifies the RM and has a strong cor-
respondence to the RM.

Only some schemes go beyond this classification.
One of them was developed in (Shriberg, 1994).
Her thesis is an absolute foundation in this research
field. She elaborated regularities in the production
of DFs and created a detailed classification scheme
of DF phenomena. The scheme has been adapted
by several other approaches, for example by (Zech-
ner, 2001) and (Strassel, 2004). Zechner has sum-
marization in mind whereas the main motivation
in (Strassel, 2004) is rich metadata annotation for
the production of maximally readable transcripts.
Another valuable and elaborate classification—also

based on the findings in (Shriberg, 1994)—is pre-
sented in (Finkler, 1997). His main motivation is
the incremental generation of natural language ut-
terances.

Although some of these schemes are quite elabo-
rated, they do not give a formal account for all dis-
fluency phenomena occurring in our corpus. For ex-
ample, in (Shriberg, 1994), no DFs were considered
where material has to be added or changed in or-
der to gain the sequence the speaker (presumably)
intended. Thus phenomena, which are classified as
Omission or Order in our scheme are not covered
by her classification. These phenomena have been
mentioned in (Carbonell and Hayes, 1983), but are
only informally described.

We also applied changes to some prevalent defini-
tions of certain DF phenomena. An example for this
is repetition. In Shriberg’s approach these include
also cases, where the first element of the repetition
(the RM) is a word fragment or a mispronunciation.
Our work is more rigid: a DF is only classified as
repetition in case the RM consists of full words and
RM and RS contain exactly the same material. Frag-
ments are instead modelled in stuttering, SOT and
replacement.

Moreover, our schema is more fine grained than
the related work mentioned here. This concerns
e.g. the uncorrected classes and the class disrup-
tion. Some schemata, do not differenciate between
our stuttering and slip-of-the-tongue either.

6 Conclusions

Our aim has been to develop a classification scheme
for disfluencies occurring in spontaneous speech.
With the goal of serving as a theoretical basis for
all applications that have to deal with such phenom-
ena, our scheme extends previous work on this topic,
e.g., (Shriberg, 1994; Finkler, 1997; Strassel, 2004;
Heeman and Allen, 1999).

We identified the existent phenomena by exam-
ining transcriptions of business meetings from the
AMI meeting corpus (McCowan et al., 2005). Our
investigations led to an identification of 15 DF
classes that we defined according to the disfluen-
cies’ surface structure. We developed a hierarchy of
disfluencies and divided them into three subgroups.
The subgroups are uncorrected DFs, deletable DFs,
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and revisions. Uncorrected DFs are phenomena that
were not corrected by the speaker. For these DFs, a
correction has to be created to eliminate the irregu-
larity. Deletable DFs are removed in order to correct
the utterance. Revisions are DFs where the speaker
made a self-correction.

We also developed an annotation manual for dis-
fluencies. Four annotators annotated 792 segments
from the AMI meeting corpus that could not be
parsed by the LKB parser. It turned out that the num-
ber of DFs identified by the annotators was quite
high (1206 DFs in a total). This supports the fact
that disfluencies are very common in spontaneous
speech. On the other hand, this might be due to the
high number of non-native speakers in our corpus.

We defined four metrics for comparing the an-
notations. The metrics counted only phenomena
as equal that were annotated with exactly the same
boundaries. Annotations with the same boundaries
showed a high agreement (0.93) with respect to the
DF type. We also computed the agreement for the
three main classes in the DF hierarchy. There we
yielded a score of 0.999. The inter-annotator agree-
ment was measured by the � -statistic and the AC1-
formula (Gwet, 2002). In this experiment, they both
yielded approximately the same value. The result-
oriented metrics, comparing the output of the anno-
tations, gained 77.5% agreement.

Our evaluation showed that the DFs are not
equally distributed ranging from 16.8% (hesitation)
to approximately 0% (deletion). There is also a dis-
crepancy in the accuracy of identifying the different
DFs. The proportion of identically annotated DFs
varied strongly. We attribute this to the DF struc-
tures rather than to the clearness of the annotation
manual. This is motivated by the fact that the agree-
ment was much higher for phenomena that have an
easily recognised structure.

Future work will include more annotation of com-
plete meetings and an evaluation thereof. The man-
ual has already received some update, and we expect
this to happen again. We plan to publish the annota-
tions along with the complete AMI/AMIDA corpus.
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Abstract 

We discuss the design and preliminary re-
sults of an experiment for modeling hu-
man-human multi-threaded dialogues. We 
found that participants tend to complete ad-
jacency pairs in dialogues before switching 
to a new dialogue thread. We also have in-
dications that, in the presence of a manual-
visual task, the difficulty of the task influ-
ences switching between dialogue threads. 

1  Introduction 

Humans can carry on multi-threaded spoken dialo-
gues in which several dialogue threads overlap in 
time. Humans can do this while they are involved 
in manual-visual tasks, such as driving. For exam-
ple a driver can discuss the weather with one pas-
senger in the car, while periodically talking to 
another passenger about directions. However, it is 
an unsolved problem how to enable human-
computer spoken multi-threaded interaction, espe-
cially while the human participant is involved in a 
manual-visual task. Our major hypothesis is that 
this problem can be solved by applying models of 
human-human interactions to human-computer 
interactions. 

In this paper, we describe an experimental ap-
proach to model human-human spoken interactions 
in the presence of a manual-visual task, specifical-
ly driving a simulated car. We performed experi-
ments with pairs of participants who were involved 
in an ongoing task but periodically needed to 
switch to an interrupting task. In the ongoing task 
one of the participants drove a simulated car and 
received verbal navigation instructions from the 
other participant who had a map of the simulated 

world but was not in the driving simulator. The 
interrupting task was initiated by a visual stimulus 
presented to the driver in the simulator and it had 
to be completed verbally. The driver had to initiate 
the switch to the new dialogue thread verbally. 

We were interested in three elements of the 
model of this human-human interaction. First, we 
investigated how the urgency of the interrupting 
task affects the timing of the interrupting task. We 
hypothesized that more urgent interruptions will be 
dealt with more quickly. 

Next we looked in which dialogue state partici-
pants choose to initiate a switch to the interruption 
dialogue thread. We define the state of the dialo-
gue in terms of whether the speakers are in the 
midst of an adjacency pair. 

Finally, we explored the relationship between 
driving task difficulty and how quickly participants 
initiated an interruption. From our previous expe-
riments we know that driving task difficulty has a 
significant influence on the performance of spoken 
tasks in the simulator. Therefore, we expect that 
driving task difficulty (and in general manual-
visual task difficulty) has to be incorporated in our 
model. We hypothesized that participants will re-
spond to interruptions more quickly when the driv-
ing task is less difficult. 

2 Related Research 

We investigate the use of multi-threaded dialogues 
similarly to cognitive load studies in which partici-
pants switch between two separate manual-visual 
tasks (McFarlane, 1999). In our prior work we ex-
plored the timing of switches between dialogue 
threads in human-human conversations, depending 
on the urgency of the interrupting task (Heeman, 
2005). We found that some participants varied the 
place within a dialogue where they switch to the 
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interrupting task, depending on the urgency of the 
interrupting task. However, the tasks were artifi-
cial, that of playing a card game and determining 
whether a player has a certain colored shape on 
their computer screen. Furthermore, only gross 
discourse structure was examined, rather than the 
local discourse phenomena of adjacency pairs.  

3 Experiment 

Two participants took part in each session. One 
was assigned the role of a police officer, and the 
other was the dispatcher. The police officer operat-
ed the driving simulator, while the dispatcher sat in 
another room. Participants used headsets and mi-
crophones to communicate with each other. This 
task was related to the ongoing work at the Univer-
sity of New Hampshire on the Project54 system. 
The Project54 system integrates devices in police 
cruisers and provides a speech user interface to 
these devices (Kun, 2004). Our use of navigation 
as the ongoing task was inspired by the Map Task 
experiments (Anderson, 1991). 

3.1 Ongoing task 

We conducted our experiments in a high-fidelity 
driving simulator with a 180º field of view and a 
motion base, as shown in Figure 1. The simulator 
presented a city scenario with two-lane (one lane 
for each direction) roads (7 meters wide). The city 
consisted of sixteen intersections organized in a 
four-by-four grid, as shown in Figure 2. The limits 
of the area were marked with construction barrels. 
The officer was instructed not to drive past the bar-
rels. Participants were not allowed to travel faster 
than 30 mph and they were required to stop at 
every stop sign, in order to lower the possibility of 
motion sickness (Mourant, 2000). 

The dispatcher had a map with four marked lo-
cations that the officer had to visit. In order to en-
sure that the officer and the dispatcher engaged in 
a dialogue with each other, some city streets were 
also blocked with construction barrels, as shown in 
Figure 2. The barrel locations changed dynamical-
ly depending on the officer’s location. The officer 
had to explain to the dispatcher if a street was 
open, so the dispatcher could make corrections to 
his/her instructions. 

 
Figure 1. Driving simulator. 

Destination
Starting
point

  
Figure 2. Blocked streets and possible path. 

3.2 Interrupting task 

Periodically the officer was presented with a visual 
stimulus. The officer then had to tell the dispatcher 
about the visual stimulus. Visual stimuli consisted 
of a text message and a progress bar. We used two 
different text messages for the interrupting task to 
make sure that the participants shift their attention 
from the ongoing task. 

A progress bar was used to inform the officer 
about the urgency of the stimulus. Visual stimuli 
had one of two urgency levels. Officers had to re-
spond to “urgent” visual stimuli (47% of all visual 
stimuli) within 10 seconds. For “non-urgent” visu-
al stimuli officers had 20 seconds to respond. If the 
officer failed to inform the dispatcher about a visu-
al stimulus within these time limits, the car would 
stop moving for 10 seconds (these car break-downs 
were controlled by the experimenter). Participants 
were told to complete the ongoing task as fast as 
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possible, and car break-downs provided an addi-
tional incentive to inform the dispatcher about vis-
ual stimuli quickly. 

3.3 Procedure and participants 

Participants were given an overview of the simula-
tor, and were trained to perform the ongoing task 
and then both tasks. Training took about 10 mi-
nutes. Participants then performed the actual expe-
riment which lasted about 30 minutes. At the end, 
participants completed questionnaires and received 
a debriefing. The experiment was completed by ten 
participants (five pairs) between 20 and 43 years of 
age. The average age of the participants was about 
30 years and 30% were female. 

4 Analysis and Results 

We recorded the speech of all participants, as well 
as the car position. Vehicle data was collected at 
10 Hz, resulting in about 90,000 vehicle data 
points for 2.5 hours of driving. We also recorded 
the time the visual stimuli appeared and synchro-
nized these times with the audio recording of the 
participants. The five pairs of participants were 
presented with a total of 286 visual stimuli. 

We analyzed three aspects of the data. First we 
looked at the average response time of the officer 
to urgent and non-urgent visual stimuli. We found 
no significant difference in response time depend-
ing on the urgency of the interruption (one tail t-
test p=0.434), possibly because participants did not 
realize that some interruptions were more urgent 
than others. 

  
Figure 3. Average response times. 

Figure 3 shows the plot of average response 
times for different participants. The response times 
are slower (average around 2.8 seconds for all cas-
es) than reported by Tsimhoni et al. (2001) (aver-
age 1.3 seconds), who investigated reading mes-
sages on a heads-up display while driving. A rea-

sonable explanation for this is that in our experi-
ment the officer was engaged in verbal communi-
cation with the dispatcher and did not pay as close 
attention to the messages as the participants in the 
study of Tsimhoni et al. Even more likely, the of-
ficer was complying with established conventions 
in human-human dialogue, and so waited for a 
suitable point in the interaction. This waiting for an 
opportunity to speak slowed down his/her re-
sponse. 

We next analyzed what dialogue states allow 
people to initiate a dialogue thread switch. Figure 4 
shows a model of the local dialogue state of the 
ongoing task, based on sequences of adjacency 
pairs (Schegloff, 1973). In the first part of an adja-
cency pair, either the dispatcher or the police offic-
er speaks (e.g. poses a question). We denote the 
first part with “a” when the dispatcher speaks and 
with “e” when the officer speaks. After a pause 
(denoted with “b” after the dispatcher speaks and 
“f” after the officer speaks), the dialogue continues 
with the second part of the adjacency pair. The 
second part is denoted with “c” when the officer 
speaks and with “g” when the dispatcher speaks. 
Finally, when the second part ends, and before the 
next first part begins, we have a pause in the dialo-
gue, denoted with “d.”  

Dispatcher speaking Police officer speaking

Police officer speaking Dispatcher speakingTime

e gf

a cbd d

d d

First Part Second Part

 
Figure 4. Adjacency pairs. 

We coded each presentation of a visual stimulus 
with “a” through “g” based on where it happened 
with respect to the model in Figure 4. Each presen-
tation resulted in the eventual initiation of an inter-
ruption (switch to the interrupting task). We also 
coded the interruption initiated by the officer based 
on where it happened with respect to the model in 
Figure 4. Note that the officer could have ignored 
the visual stimulus, but this happened only 5 out of 
286 times, hence we did not further consider these 
cases.  This left us with 7 x 7 = 49 possible types 
of interruption. In this paper, we decided to focus 
on interruptions in which the stimulus occurred 
during the first part of an adjacency pair (“a” or 
“e”) as this is the point in the local discourse struc-
ture that is the most embedded. 
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When a stimulus is presented during the offic-
er’s first part (“e”) 10% of the time the officer in-
terrupts his/her own first part (“ee”). In 25% of the 
cases he/she completes the first part and then in-
troduces the interruption (“ef”). In about 1% of the 
cases the officer introduces the interruption during 
the dispatcher’s second part (“eg”). Most often, in 
51% of the cases, the officer waits until after the 
adjacency pair is over (“ed”). In about 11% of the 
cases the officer introduces the interruption during 
the first part of the next adjacency pair when the 
dispatcher is speaking (“ea”). Finally, in 3% of the 
cases he/she interrupts after the dispatcher’s first 
part in the next adjacency pair (“eb”). 

When the stimulus is presented while the dis-
patcher is speaking the first part (“a”), the officer 
interrupts immediately in about 23% of the cases 
(“aa”) and after the first part in about 26% of the 
cases (“ab”). Again, most often, 40% of the time, 
the interruption came after the adjacency pair was 
over (“ad”). In about 2% of the cases each, the in-
terruption came in the next adjacency pair during 
or after the officer’s first part. 

The above data shows that the officer often 
waited to initiate the interrupting task until after 
the adjacency pair was done. This might account 
for the difference between the average response 
times in this study and the one reported by Tsim-
honi et al (2001). 

Finally, we also looked at the average response 
time of officers during difficult and easy driving 
conditions. We defined difficult driving as driving 
within a radius of 10 meters of the center of an in-
tersection. We found that officers on average re-
sponded slower under difficult driving conditions, 
however, our findings were not statistically signifi-
cant. Note that the officers spent only about 8% of 
their time driving through the intersections and 
thus, on average this resulted in 5 visual stimuli out 
of 57 being presented in difficult driving condi-
tions. 

5 Conclusion and Future Directions 

In this paper, we tried to determine the conventions 
that humans follow in initiating a switch to a new 
dialogue thread. We found that when the stimulus 
to signal the interruption was in the first part of an 
adjacency pair, participants either immediately in-
terrupted the first part, or waited until the conclu-
sion of the adjacency pair. This might indicate that 

participants were trying to avoid having the first 
part of an adjacency pair pending during a thread 
switch, so that there is a simpler discourse context 
to resume to. However, more analysis is needed to 
fully explore this issue, including examining other 
stimulus points, and distinguishing between differ-
ent types of adjacency pairs.  

Our analysis also shows that we need to further 
revise our task setup. We need to revise the expe-
rimental setup so that the urgency of the interrupt-
ing task is more realistic. We also need to better 
balance the easy with the difficult driving seg-
ments in order to better understand the impact of 
driving difficulty. 
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Abstract

We describe a system for conversation type
classification which relies exclusively on
multi-participant vocal activity patterns. Us-
ing a variation on a well-studied model
from stochastic dynamics, we extract fea-
tures which represent the transition proba-
bilities that characterize the evolution of par-
ticipant interaction. We also show how vo-
cal interaction can be modeled between spe-
cific participant pairs. We apply the pro-
posed system to the task of classifying meet-
ing types in a large multi-party meeting cor-
pus, and achieve a three-way classification
accuracy of 84%. This represents a rela-
tive error reduction of more than 50% over a
baseline which uses only individual speaker
times (i.e. no interaction dynamics). Ran-
dom guessing on this data yields an accuracy
of 43%.

1 Introduction

An important and frequently overlooked task in au-
tomatic conversation understanding is the character-
ization of conversation type. In particular, search
and retrieval in multi-participant conversation cor-
pora stands to benefit from indexing by broad con-
versational style, as tending towards one or more
speech-exchange prototypes (Sacks et al, 1974) such
as interactive seminar, debate, formal business meet-
ing, or informal chat. Current state-of-the-art speech
understanding systems are well-poised to tackle
this problem through up-stream fusion of multipar-
ticipant contributions, following automatic speech

recognition and dialog act classification. Unfortu-
nately, such reliance on lexical information limits
the ultimate application of conversational style clas-
sification to only a handful of languages with well-
developed lexical components, notably English.

In the current work, we attempt to address this
limitation by characterizing conversations in terms
of their patterns of on-off vocal activity, referred to
as vocal interaction by the psycholinguistic com-
munity (Dabbs and Ruback, 1987). In doing so,
we rely only on the joint multi-participant vocal ac-
tivity segmentation of a conversation (Renals and
Ellis, 2003), and ignore other features. The text-
independent features we explore here can of course
be combined with text-dependent cues, and prosodic
and/or speaker cues, depending on the reliability of
these components.

To the best of our knowledge, there is currently
little if any work on the continuous modeling of vo-
cal interaction for conversations with arbitrary num-
bers of participants. Some very recent research ex-
ists with goals related to those in this work, most
frequently focusing on the classification of time-
dependent, evolving phenomena. Examples include
the recognition of meeting states and participant
roles (Banerjee and Rudnicky, 2004), the detection
of interaction groups in meetings (Brdiczka et al.,
2005), the recognition of individual and group ac-
tions in meetings (McCowan et al, 2005), and the
recognition of participant states (Zancanaro et al,
2006). Modeling multi-participant vocal interaction
to improve vocal activity detection in meetings was
first explored in (Laskowski and Schultz, 2006) and
elaborated in (Laskowski and Schultz, 2007); it has
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since been explored for privacy-sensitive data col-
lection in more general settings (Wyatt et al, 2007).
The rare examples of time-independent characteri-
zation of conversations in their entirety, as pursued
in the current work, include the detection of conver-
sational pairs (Basu, 2002) and the classification of
dominance in meetings (Rienks and Heylen, 2005).

We begin this paper by proposing a computational
framework which allows for the modeling of interac-
tions among specific participants. We propose sev-
eral time-independent interaction features, together
with a robust means for computing them. Finally,
we apply the proposed text-independent classifica-
tion system to the task of meeting type classification.
Our results show that features extracted from the
multi-participant segmentation of a conversation can
be successfully used for classifying meeting type
through the observed conversational style.

2 Bayesian Framework

We introduce the notion of agroup of participants,
which we denote asG and which we define to be a
specific ordering of allK ≡ ‖G‖ participants in a
particular conversationC. Each conversation is of
exactly one typeT , from amongNT possible types.
Participants are drawn without replacement from a
potentially unknown populationP, of size‖P‖. In
general,‖P‖ > ‖G‖.
G [k], for 1≤k≤K, is an attribute of thekth partic-

ipant; k represents a particular cardinal ordering of
participants in groupG, which is immutable for the
duration of a meeting (in this work,k is the channel
number).G may be unique inP, i.e. it may repre-
sent a specific participant; alternately, it may repre-
sent a category of participant, such as age group, so-
cial standing, or vocalizing time rank. When partic-
ipants are unique inP, the number of unique groups
NG = ‖P‖!/ (‖P‖ − ‖G‖)! is simply the number of
permutations of‖P‖ taken‖G‖ at a time.

Our observation space is the complete vocal in-
teraction on-off pattern description for conversation
C, a discretized version of which we denote asqt

for 1≤t≤T , whereT is the duration of the con-
versation. Our goal in the present work is to ex-
tract from q = {q1,q2, . . . ,qT } a feature vector
F ≡ f (q) which will discriminate among theNT

different conversation types under study.

We classify the typeT of conversationC, given
observationsF, using:

T ∗ = arg max
T

P ( T |F )

= arg max
T

∑

G

P (G, T , F )

= arg max
T

∑

G

P ( T )× (1)

P (G | T )
︸ ︷︷ ︸

Membership
Model

× P (F | G, T )
︸ ︷︷ ︸

Behavior
Model

.

The behavior model in Equation 1 is responsible for
the likelihood ofF, describing the behavior of the
participants ofG during a conversation of typeT .
The membership model provides a prior distribution
for participant presence in conversations of typeT .

3 Vocal Interaction Features

We propose to extract interactional aspects of mul-
tiparticipant conversations by studying the presence
of vocal activity for all participants at a fixed anal-
ysis frame rate. After some limited initial experi-
mentation, we have chosen to use a frame shift of
100 ms. We consider two mutually exclusive vo-
cal activity states, vocalizing (V) and not vocalizing
(i.e. silent,N ). Figure 1 graphically depicts the dis-
cretization of a multichannel segmentation, which
allows us to treat a particular conversation as the out-
put of a simple Markov processq over an alphabet
of 2K symbols, with

qt ∈ Ψ×Ψ×Ψ× . . .×Ψ (2)

of K products, whereΨ ≡ {N ,V}, andt is the time
index of the frame.

3.1 Feature Design

In the current work, we assumeq to be a first-order
Markov process which can be described by symbol
transition probabilities

aij = P (qt+1 = Sj |qt = Si ) . (3)

Furthermore, we assume that participants behave in-
dependently of each other, given their immediately
preceding joint vocal activities,

aij =
K∏

k=1

P (qt+1 [k] = Sj [k] |qt = Si ) . (4)
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k = 2
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k = 3

k = 4
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V
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V

V
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Figure 1: Discretization of multichannel segmenta-
tion references by assigningV for participantk at
timet if that participant vocalizes for more than 50%
of the duration of the frame centered att, andN oth-
erwise.

We propose to characterize the vocal behavior of
participants over the entire course of conversationC
using a subset of the probabilitiesaij . The features
we explore, shown in Equations 5 to 8, represent the
probability that participantk initiates vocalization
during silence (VI), the probability that participant
k continues non-overlapped vocalization (VC), the
probability that participantk initiates overlap (OI)
while only participantj vocalizes, and the probabil-
ity that participantk continues vocalizing in overlap
(OC) with participantj only, respectively. For this
work, we neglect cases where more than one par-
ticipant (other thanj) is vocalizing at timet before
participantk starts vocalizing, since such instances
are rare.

The probabilities in Equations 5 to 8 can be es-
timated directly using a maximum likelihood (ML)
criterion by accumulating bigram counts matching
the event classes in each equation. For simplicity,
we set the probabilities for which the conditioning
context is never observed to 0.5.

In characterizing an entire conversational group
of K participants, the feature vectorF consists of
K one-participant features of typefV I

k andK one-
participant features of typefV C

k , as well asK2 −K
two-participant features of typefOI

k,j andK2 − K

two-participant features of typefO
k,jC. This results

in a total ofNF = 2K2 features per conversation;
we note that conversations vary in the participant
numberK and therefore in their feature vector size.

3.2 Feature Estimation using the Ising Model

We contrast ML estimation of features with estima-
tion which relies on a particular form of parameter
tying, under an asymmetric infinite-range variant of
the Ising model (Glauber, 1963). Canonically, the
Ising model is used to study an ensembles emer-
gent macroscopic properties, which are due to the
microscopic interactions among its very large num-
ber of binary particles; we apply it here to study
the emergent vocal interaction patterns ofK partic-
ipants. The modified Ising model is easily imple-
mented as a single-layer neural network (Hertz et
al., 1991) ofK input units,K output units, and a
sigmoid transfer function,

yk (x) =
1

1 + e
−β

(
∑K

j=1
wk,jxj+bk

) , (9)

whereβ is a parameter which is inversely propor-
tional to the pseudo-temperature; we set it here to
unity for convenience.xj are the elements of vec-
tor x, wk,j are the elements of a weight matrix
W ∈ ℜK×K , andbk are the elements of a bias vec-
tor b ∈ ℜK . We show this network in Figure 2.
When presented with an input vectorqt, the network
produces at each output unit the quantity

P (qt+1 [k] = V |qt = Si ) = yk (Si) . (10)

In computingyk (Si), V andN are mapped to 1 and
0, respectively.

The network is characterized by the parameters
W andb, which can be learned fromqt, 1≤t≤T ,
using a standard first-order or second-order gradient
descent technique, for example. At each time frame,
the currentqt binary vector can be used as a “pat-
tern”, with the subsequentqt+1 binary vector as the
“target”; there are a total ofT−1 such pattern-target
pairs. The appropriate objective function for out-
puts representing multiple (conditionally) indepen-
dent attributes is the binomial error (Bishop, 1995).
To distinguish from features estimated using ML, as
described in the previous section, we henceforth re-
fer to features estimated using the Ising model as
“NN”.
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fV I
k = P (qt+1 [k] = V |qt [i] = N ∀ 1≤i≤K ) , (5)

fV C
k = P (qt+1 [k] = V |qt [k] = V , qt [i] = N ∀ i6=k , 1≤i≤K ) , (6)

fOI
k,j = P (qt+1 [k] = V |qt [j] = V , qt [i] = N ∀ i6=j , 1≤i≤K ) , j 6=k , (7)

fOC
k,j = P (qt+1 [k] = V |qt [k] = qt [j] = V , qt [i] = N ∀ i6=j , i6=k , 1≤i≤K ) , j 6=k . (8)

qt [1]

qt [2]

qt [3]

qt [4] P (qt+1 [4] = V |qt )

P (qt+1 [3] = V |qt )

P (qt+1 [2] = V |qt )

P (qt+1 [1] = V |qt )

Figure 2: Infinite-range Ising model for predicting
conditionally independent probabilities of activation
at timet + 1 given activations at timet, for a con-
versation with four participants; for clarity, bias con-
nections are elided.

In closing this section, we note that the proposed
interaction features have a particularly prosaic form
under this model, whenN = 0 andV = 1:

fV I
k =

1

1 + e−bk
, (11)

fV C
k =

1

1 + e−bk−wk,k
, (12)

fOI
k,j =

1

1 + e−bk−wk,j
, (13)

fOC
k,j =

1

1 + e−bk−wk,j−wk,k
. (14)

Furthermore, the total number of parameters to be
estimated from segmentation data isK (K + 1),
rather than2K2 for the bigram ML model.

4 Modeling Groups

In this section we describe the structure, parameter
estimation, and probability evaluation for the mem-
bership and the behavior models as introduced in
Equation 1.

4.1 Behavior Model

We assume conditional independence among the el-
ements of the feature vectorF,

F =
K⋃

k=1






fV I

k , fV C
k ,

K⋃

j 6=k

{

fOI
k,j , fOC

k,j

}






, (15)

such that

P (F | G , T ) = (16)
K∏

k=1

P
(

fV I
k | θV I

T ,G[k]

)

P
(

fV C
k | θV C

T ,G[k]

)

×

K∏

j 6=k

P
(

fOI
k,j | θ

OI
T ,G[k],G[j]

)

P
(

fOC
k,j | θOC

T ,G[k],G[j]

)

.

In the above, eachθ represents a single one-
dimensional Gaussian meanµ and varianceΣ pair.
These parameters are maximum likelihood estimates
from thefk andfk,j values in a training set of con-
versations, smoothed towards their global values.

4.2 Membership Model

Equation 1 allows for the inclusion of a prior prob-
ability on the presence and arrangement of partic-
ipants with respect to channels. Although partici-
pants may have tendencies to sit in close proximity
to certain other participants, we ignore channel pref-
erence in the current work. We employ the simple
membership model

P (G | T ) =
1

ZG

K∏

k=1

P (G [k] | T ) , (17)

where ZG is a normalization constant which en-
sures that

∑

NG
P (G | T ) = 1. We set each fac-

tor P (G [k] | T ) to the ML estimate for participant
G [k] in the training data. For example, ifG [k] rep-
resents an identifier unique inP, i.e. a name, then
P (G [k] | T ) is simply the proportion of meetings
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of typeT attended by the participant with that name.
To allow the model to hypothesize rarely observed
participants in the training material, we set this prob-
ability no lower than 0.1, a factor selected empiri-
cally without extensive validation.

4.3 Search

Equation 1 calls for the exhaustive enumeration
of all possible groupsG. As mentioned in Sec-
tion 2, there areNG = ‖P‖!/ (‖P‖ − ‖G‖)! dif-
ferent groups, which may make such enumeration
intractable. Since we are not interested in automati-
cally classifying participants, clustering participants
in the training material and thereby reducing‖P‖!
offers a simple means of limiting the magnitude of
NG .

In the current work, we choose to cluster partic-
ipants by training models not for specific partici-
pants, but for participant rank in terms of vocaliz-
ing time proportion. This makes the attributeG [k]
unique inG rather than inP. For each training con-
versation, we rank participants in terms of the over-
all proportion of time spent in stateV, in descending
order, such that participant rank 1 refers to that par-
ticipant who vocalizes most often during the conver-
sation in question. This form of clustering also elim-
inates the problem of estimating models for specific
participants which appear in only a handful of con-
versations.

Since a test conversation ofK participants con-
tains participant ranks{1, 2, . . . , K} and no others,
the enumeration ofNG unique participant groups
G in Equation 1 is replaced by an enumaration of
K! = ‖G‖! unique rank groups. However, we
note that under this simplification, the membership
model has only a small impact.

5 Classification Experiments

5.1 Data

In our experiments, we use the ICSI Meeting Cor-
pus (Janin et al., 2003), consisting of 75 unscripted,
naturally occurring multi-party meetings. There are
3 aspects which make this corpus attractive for the
current work. First, it is larger than most multi-
party conversation corpora. This is important be-
cause, in our framework, each meeting represents
one data point. Second, meeting participants are

‖G‖
T # ‖P‖

mod min max

Bed 15 13 6 4 7
Bmr 29 15 7 3 9
Bro 23 10 6 4 8

Table 1: Characteristics of the three ICSI meet-
ing types considered: number of meetings (#); size
of population from which participants are drawn
(‖P‖); mode (mod), minimum (min) and maximum
(max) number of participants (‖G‖) per meeting
typeT .

drawn from a pool of 52 speakers, several of whom
occur in more than one meeting type. Finally, meet-
ings are not fixed in participant number, allowing us
to demonstrate the generalization of our methods to
arbitrary conversational group sizes.

67 of the meetings in the corpus are of one of three
distinct meeting types,Bed, Bmr, andBro, rep-
resenting different projects, with different purposes
for holding meetings. This is reflected in differences
between patterns of vocal interaction; for example,
Bmr meetings consist of more free-form discussion,
presumably among peers, than eitherBed or Bro
meeting types. In contrast, the latter two types ex-
hibit more asymmetry in participant roles than do
Bmr meetings, and therefore the more easily infer-
able social structure. Furthermore, there are three
speakers in the corpus which attend bothBro and
Bmr meeting types, and one speaker which attends
both Bed andBmr meeting types;Bro andBed
types, however, have disjoint attendee subpopula-
tions. A participant which appears in multiple meet-
ing types may affect the overall interaction styles of
the two types to be less distinct. This is especially
true if he or she attends the majority of meetings of
both types, as is the case for two of the participants
which attend bothBmr andBro meetings.

We present several additional characteristics of
these three meeting types in Table 1. We ignore
the remaining 8 meetings in the corpus, representing
types of which there are too few exemplars for mod-
eling. As Table 1 shows, the prior distribution over
the 3 considered types is such that random guessing
yields a 43% three-way classification accuracy.

We obtain the vocal interaction recordq =
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{q1,q2, . . . ,qT } for each of the 67 meetings by dis-
cretizing their reference segmentations. The latter
were produced by: (1) generating a talk spurt seg-
mentation through forced alignment of transcribed
words (available as part of the ICSI MRDA Corpus
(Shriberg et al, 2004)), and bridging of inter-word
gaps shorter than 0.3 s; (2) inferring a segmentation
for transcribed laughter from the forced alignment
of surrounding words, and manually segmenting iso-
lated bouts of laughter (as described in (Laskowski
and Burger, 2007)); and (3) merging the talk spurt
and laugh bout segmentations. Fully automatic in-
ference of the vocal interaction record, from audio,
is beyond the scope of the current work.

5.2 Baseline Performance

To assess the difficulty of the problem, we propose
a baseline which relies only on the proportion of vo-
calizing time,fT

k , for each participantk. This is a
frequently studied quantity for describing conversa-
tional style (Burger et al., 2002) and for assessing
the performance of speaker diarization systems (Jin
et al., 2004) (Mirghafori and Wooters, 2006).

The classification accuracy of the baseline, using
the framework described by Equations 1, 16 and 17,
is 65.7%. This performance is achieved with leave-
one-out classification, using 66 meetings for train-
ing and one for testing, 67 times. The accuracy fig-
ures in this and in the subsequent section should be
treated as estimates on a development set; since the
longitudinal nature of the ICSI corpus is relatively
unique, it is has not been possible to construct a
fair evaluation set without significantly depleting the
amount of training material.

We note that, as mentioned in Subsection 4.3, the
membership model has negligible impact when par-
ticipant vocalizing rank is used as the clustering cri-
terion during training. This condition identically af-
fects all of the experiments which follow, allowing
for an unbiased comparison of the proposed vocal
interaction features.

5.3 Feature Comparison

We present several leave-one-out experiments in or-
der to evaluate the utility of each of the VI, VC, OI,
and OC feature types separately, withoutfT

k , esti-
mating them from the multichannel reference seg-
mentation for each meeting using both maximum

ML Estimation NN Estimation
Feature(s)

w/o fT
k w/ fT

k w/o fT
k w/ fT

k

baseline — 65.7 — 65.7
fV I

k 59.7 67.2 56.7 65.7
fV C

k 62.7 77.6 56.7 71.6
〈fOI

k,j 〉j 35.8 52.2 64.2 67.2
〈fOC

k,j 〉j 53.7 67.2 64.2 80.6
fOI

k,j 41.8 46.3 67.2 64.2
fOC

k,j 61.2 68.7 73.1 79.1
all 61.2 64.2 74.6 82.1
opt — — 74.6 83.6

Table 2: Leave-one-out meeting type classification
accuracy using various feature combinations within
the proposed Bayesian framework. “opt” consists of
the featuresfV I

k , fOI
k,j , andfOC

k,j .

likelihood (column 2), and the proposed neural net-
work model (column 4). The results show that
classification using ML-estimated single-participant
featuresfV I

k andfV C
k outperforms classification us-

ing NN-estimated features. However, NN estima-
tion outperform ML estimation when it comes to
the two-participant featuresfOI

k,j andfOC
k,j . This re-

sult is not surprising, since vocalization in overlap
is much more rare than vocalizing alone, rendering
maximum likelihood estimation of overlap behavior
uncompetitive without additional smoothing.

In addition to the two-participant interaction fea-
turesfOI

k,j andfOC
k,j described in Section 3, we also

show the performance of summary single participant
features〈fOI

k,j 〉j =
∑K

j=1 fOI
k,j /K and 〈fOC

k,j 〉j =
∑K

j=1 fOI
k,j /K, which average the overlap behavior

of participantk over the possible identities of the
already vocalizing participantj. When these fea-
tures are used alone, they are outperformed by the
two-participant features. This suggests that average
overlap behavior does not distinguish between the
three meeting types as well as does the overlap in-
teraction between participants of specific vocalizing
time rank.

Columns 3 and 5 of Table 2 show the performance
of the same 6 feature types, in combination with the
fT

k features. Due to space constraints, we mention
only that most feature types appear to combine ad-
ditively with fT

k . We also show, in the last two lines
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Actual Type
Estimated

Bed Bmr Bro
Bed 11 1 3
Bmr 2 26 1
Bro 3 1 19

Table 3: Confusion matrix among the three ICSI
meeting types studied, for classification with NN-
estimated “opt” feature set (fV I

k , fOI
k,j , andfOC

k,j ).

of the table, the performance of all feature types to-
gether, as well as of an “oracle” feature set derived
using backward feature selection, by removing the
worst performing feature one at a time from the “all”
feature set. The best number achieved, 83.6%, was
obtained using total vocalizing proportionfT

k , NN-
estimated single-participantfV I

k , and NN-estimated
two-participant featuresfOI

k,j andfO
k,jC, which de-

scribe the overlap behavior of specific participant
ranks with respect to specific other participant ranks.
The accuracy represents a 52% relative reduction
over the baseline (from 34.3% to 16.4%).

We show the confusion matrix of the “opt” NN-
estimated feature set in Table 3. Although the
amount of data is too small to draw statistically
meaningful conclusions, the symmetrical misclassi-
fication of 3Bro meetings as typeBed and 3Bed
meetings as typeBro suggests that in fact theBro
and Bed meeting types are more similar to each
other than either is to theBmr meeting type.

6 Conclusions

We have proposed a framework for the classifica-
tion of conversational style in multi-participant con-
versation. The framework makes use of several
novel elements. First, it relies exclusively on text-
independent features, extracted from the multipar-
ticipant vocal interaction patterns of a conversation;
the technique is directly deployable for languages
for which mature automatic speech recognition or
dialog act classification infrastructure may be lack-
ing. Second, we have made use of a well-studied
model in stochastic dynamics, the Ising model, to
improve estimates of the transition probabilities that
describe the evolution of multiparticipant vocal in-
teraction over the course of conversation. Third, we
have introduced the concept of enumerable groups

of participants, making it possible to include fea-
tures which model the interaction between specific
pairs of participants, for meetings with any number
of participants. Finally, we have applied the frame-
work to the task of classifying meeting types. Our
experiments show that features describing the text-
independent interaction between participants of spe-
cific vocalizing time rank, when used in conjunc-
tion with a feature which performs poorly on its own
fV I

k , lead to a relative error reduction of 52% over
our baseline.

The key findings from the analysis of differ-
ent interaction features are that having detailed 2-
participant features is better than simply using the
average for a given target speaker, and that using
interaction features (conversation dynamics) gives
better results than the static measure of relative
speaking time. Of course, the best results are
achieved with a combination of these types of fea-
tures.

7 Future Work

In the future, we will apply the proposed classifica-
tion system to automatically generated multichannel
segmentation and alternatives to the Gaussian clas-
sifier. It may also be interesting to investigate sep-
arately representing different types of vocalization
(e.g. speech vs. laughter) and features related to
overlaps of more than two speakers.

For resource rich languages, meeting type can be
classified using lexical features from speech recog-
nition. However, if one is interested in detecting
meeting type independent of content, the choice of
word features needs to factor out topic. It would be
interesting to assess the relative importance of words
vs. interactions, and the degree to which they are
complementary, in the topic-independent context.

Finally, another important future direction is the
application of the techniques to the dual of Equa-
tion 5,

G∗ = arg max
G

P (G |F )

= arg max
G

∑

T

P (G , T , F )

= arg max
G

∑

T

P ( T )× (18)

P (G | T )× P (F | G, T )
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namely the problem of jointly characterizing partic-
ipants rather than conversations.
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Abstract

A method is presented that helps novice
users understand the language expressions
that a system can accept, even from unac-
ceptable utterances made that may contain
automatic speech recognition errors. We
have developed a method that dynamically
generates help messages, which can avoid
further unacceptable utterances from being
made, by estimating a users’ knowledge
from their utterances. To improve the ac-
curacy of the estimation, we developed a
method to estimate a user’s knowledge from
utterance verification results. This method
estimates whether a user knows an utterance
pattern that the system considers acceptable,
and suppresses useless help messages from
being generated.

1 Introduction

We have developed a user friendly spoken dialogue
system, even for novice users, that generates help
messages dynamically (Fukubayashi et al., 2006).
Since novice users do not necessarily know the lan-
guage expressions that can be accepted by a system,
help messages need to be generated to instruct them
of acceptable expressions. Such messages can be
generated by estimating each user’s knowledge of
the system through their interactions with the sys-
tem.

Users often make out-of-vocabulary or out-of-
grammar utterances. This is unavoidable because of
the characteristics of speech, that is, speech inter-
faces do not provide enough affordance (Norman,

1988). A graphical user interface (GUI) provides
users with a clear representation of the kind of in-
put required by the system; however, users have
difficulty in understanding the input required when
speech interfaces are used. Unfortunately, the range
of language expressions a spoken dialogue system
can handle is inherently limited. Even when a sta-
tistical language model is used in automatic speech
recognition (ASR) and large numbers of expressions
can be handled, patterns of language expressions
are limited in language understanding (LU) or dia-
logue management (DM) components. This prob-
lem is compounded when novice users do not know
what utterances can be accepted by a system. This
is the very situation in which help messages should
be generated, but ASR results for this type of ut-
terance are unreliable because the utterances are of-
ten considered unacceptable. Even from such erro-
neous ASR results, systems have to estimate a user’s
knowledge accurately.

We addressed this problem by introducing an ut-
terance verification technique. Since utterance ver-
ification does not use ASR results but uses acoustic
scores of ASR, information about a user’s utterances
can be obtained, even from utterances that are con-
sidered unacceptable. By using its result, we can
measure how close an utterance is to the grammar of
a system.

Several studies have focused on generating help
messages (Gorrell et al., 2002) (Hockey et al., 2003).
Since they did not consider changes in the user’s
knowledge during the dialogue, the same help mes-
sages were generated when the same speech recog-
nition results were obtained. Furthermore, these
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(to be verified)
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Lsys

Lref

Figure 1: Overview of utterance verification

studies used ASR results from a “secondary” sta-
tistical language model when the primary grammar-
based ASR failed. We ensured a user’s knowledge
state was updated appropriately, even when their ut-
terances did not perfectly match utterances expected
by a system developer, by detecting them as out-of-
grammar utterances.

2 Generating Dynamic Help Messages
Using Utterance Verification

2.1 Utterance Verification Using Differences in
Acoustic Likelihoods

Utterance verification is generally performed by
comparing log-scaled scores between an ASR out-
put to be verified and a counter hypothesis based
on a reference model. Same acoustic models were
used in both recognizers. An outline of this pro-
cess is shown in Figure 1. We denote the acoustic
likelihood of the reference recognizer as Lref , the
acoustic likelihood of the target-domain recognizer
as Lsys, the duration of the utterance as T (sec.), and
the threshold as θscore. The verification is assessed
by using the following equation:

{
S = (Lref − Lsys)/T < θscore (Accept)

≥ θscore (Reject)
(1)

The difference in the scores between the two rec-
ognizers indicates how close the user’s utterance is
to the system’s grammar, which provides different
information from conventional confidence measures
(CMs) that are calculated for each word (Komatani
and Kawahara, 2000).

Various studies have investigated the different ref-
erence models used in utterance verification (Sukkar
et al., 1995; Kawahara et al., 1998). We used a sim-
ple utterance verification method in which the differ-
ence between log-scaled acoustic scores of the two
recognizers is calculated. This is because we are
now focusing on how utterance verification results

Figure 3: Example of help messages for each node

can be used in spoken dialogue systems. The ut-
terance verification method itself can be replaced if
more accurate methods become available.

2.2 Generating Dynamic Help Messages

We have developed a method to generate help mes-
sages that fills the gap between a user’s knowledge
and the actual structure considered acceptable by the
system. A detailed explanation of an algorithm we
developed has been presented in our previous paper
(Fukubayashi et al., 2006). The following is a con-
cise explanation of that algorithm.

A domain concept tree was designed to represent
a concept structure of a system, which represents
the hierarchical layers of the target domain. This
tree consists of four layers: “system”, “function”,
“element”, and “content word”. The domain con-
cept tree of the Kyoto sightseeing guide system is
shown in Figure 2 as an example. Known degrees of
each node in the domain concept tree are estimated.
The degree represents how well a user knows a con-
cept corresponding to the node. Known degrees are
updated after each user’s utterance; for example, a
known degree of a node in the content word layer is
increased if the content word is contained in an ASR
result, and the effect is propagated to the known de-
grees of its ancestors. Lastly, a help message is gen-
erated after searching for a node having the lowest
known degree. The message is generated by using
templates, as shown in Figure 3.

The domain concept tree was updated on the basis
of the ASR results from the user’s utterances and
the generated help messages. A user’s knowledge,
however, must be updated correctly, even when the
content words in the user’s utterances contain ASR
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Figure 2: Domain concept tree of Kyoto sightseeing guide system

errors. For example, if a user says “Please tell me an
approach to Yoshida Shrine.” Even if an approach
is unknown to the system, the system should be able
to estimate that this user knows the utterance pattern
considered acceptable but that they do not know the
content words considered acceptable by the system.

2.3 Updating Domain Concept Tree Using
Utterance Verification Results

Two loss functions are defined as:

cost1 = (FA + SErr)/2
cost2 = (FA + SErr + (1−Acc))/3

Ratio FA (false acceptance) is the ratio of incor-
rectly accepted utterances that should be rejected,
and SErr (slot error) is the ratio of correct utter-
ances that are not accepted (Komatani and Kawa-
hara, 2000). We also calculated the accuracy of
the language understanding by using the following
equation: Acc = (N −D − S − I)/N , where N is
the number of correct content words, and D, S and I
are the numbers of deletion, substitution, and inser-
tion errors, respectively. The accuracy of utterance
verification is represented as cost1, and cost2 takes
the accuracy of the language understanding results
into consideration.

We defined two thresholds, θ1 and θ2, to minimize
cost1 and cost2, respectively. Therefore, thresholds
θ1 and θ2 focus on whether a whole utterance is in-
grammar and whether content words in an utterance
are correct. As a result, user utterances can be clas-
sified into one of the following three categories:

1. S < θ1: in-grammar and correct language un-
derstanding result,

2. θ1 ≤ S < θ2: in-grammar but incorrect lan-
guage understanding result, and

3. S ≥ θ2: out-of-grammar and incorrect lan-
guage understanding result.

The known degrees can be updated based on the
above classification. When S < θ1, known de-
grees are ordinarily updated on the basis of the con-
tent words in the ASR results. Utterances whose
S is greater than θ2 are normally rejected. When
θ1 ≤ S < θ2, this utterance is estimated to be an
in-grammar utterance, but its language understand-
ing result seems to be incorrect. That is, the ut-
terance seems to match to the system’s grammar,
even though it may contain incorrect content words.
Then, the known degrees of the nodes in the func-
tion layer increase. This update allows the system to
acquire information as to the user’s knowledge re-
garding the system’s grammar for the domain con-
cept tree, even for utterances whose content words
are not correctly recognized, and consequently sup-
presses unnecessary help messages from being gen-
erated regarding grammars.

3 Experimental Evaluation

We used dialogue data collected from users when
they operated the Kyoto sightseeing guide system
(Fukubayashi et al., 2006) in our evaluation. The
dialogue data consists of 1,518 utterances from 12
subjects, none of which had previously used the sys-
tem. Therefore, many user utterances were outside
the range considered acceptable by the system and
caused many ASR errors.

We used a grammar-based ASR engine, Julian1,
that has a vocabulary of 673 words. The average ac-
curacy of the ASR was 42.9%. As a reference model
for utterance verification, we used the outputs from
a speech recognizer, Julius, which is based on sta-
tistical language models. Its language model was
trained using newspaper articles and has a vocabu-
lary of 20,000 words. The same acoustic model was

1http://julius.sourceforge.jp/
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Table 1: Classification of utterances when setting θ1 to 75 and θ2 to 125
Correct answer

of UV LU results S < θ1 θ1 ≤ S < θ2 S ≥ θ2

Accept Correct (100%) 454† 50(�) 8
Accept Some errors (<100%) 84 29(��) 34
Accept No output 28 13(���) 23
Reject Some errors (insertion error) 158 104 185‡

Reject No output (correct rejection) 166 86 98

UV: utterance verification, LU: language understanding

used in both recognizers.
Loss functions cost1 and cost2 were minimized

when θ1 was 125 and θ2 was 75. We counted the
number of utterances in each category. The results
are listed in Table 1. We compared the results from
Table 1 with the results when the utterances with
S ≥ θ2 were simply rejected in which the perfor-
mance was optimized by considering both the ut-
terance verification and language understanding re-
sults. A value denoted by (��) in Table 1 repre-
sents utterances that were incorrectly accepted de-
spite some errors being contained in their language
understanding results, and a value denoted by (���)

represents utterances that were rejected because no
language understanding result was obtained. There-
fore, the system obtained new information indicat-
ing that a user knows about the expression consid-
ered acceptable by the system, from 42 utterances
which are denoted by (��) and (���). This enables the
system to correctly update the domain concept tree
at the function layer, even when correct language un-
derstanding results are not obtained.

In this case, correct language understanding re-
sults will be incorrectly rejected for 50 utterances
denoted by (�). Therefore, the performance needs
to be improved. One reason for the inadequate per-
formance is that the utterance verification algorithm
used was very simple: only the differences in acous-
tic scores between the two recognizers were used.
The performance of the classification is currently be-
ing improved, especially for short utterances whose
differences in acoustic scores were not large enough,
by considering other features.

4 Conclusion

We developed a method to update a user’s knowl-
edge that uses results from utterance verification,

even when correct ASR results are not obtained. By
using the utterance verification results, the system
can estimate whether a user knows utterance pat-
terns and can increase known degrees in the domain
concept tree accordingly, which results in suppress-
ing help messages from being generated regarding
utterance patterns. Our future work includes im-
proving the classification accuracy and using actual
dialogues in experimental evaluations.
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Abstract 

This paper presents a data-driven decision-

theoretic approach to making grounding deci-

sions in spoken dialogue systems, i.e., to de-

cide which recognition hypotheses to consider 

as correct and which grounding action to take. 

Based on task analysis of the dialogue do-

main, cost functions are derived, which take 

dialogue efficiency, consequence of task fail-

ure and information gain into account. Dia-

logue data is then used to estimate speech 

recognition confidence thresholds that are de-

pendent on the dialogue context. 

1 Making grounding decisions 

One of the greatest challenges when building spoken 

dialogue systems is to deal with uncertainty, which 

stems partly from the ambiguity of language itself and 

partly from the error-prone speech recognition process. 

Speakers handle uncertainty in dialogue by exchanging 

positive and negative evidence of understanding, a 

process commonly referred to as grounding (Clark, 

1996). In order for a speaker to evaluate the addressee’s 

understanding of the concepts involved, two kinds of 

evidence are especially useful: display of understanding 

(DISPLAY) and clarification requests (CLARIFY). The 

addressee can also choose not to provide any direct evi-

dence, but to simply ACCEPT or REJECT the hypothesis. 

These options are exemplified in the following alterna-

tive system responses in a human-computer dialogue, 

where the system is uncertain about the red building: 

(1) U: I can see a red building. 

S (ACCEPT): Ok, can you see a tree in front of you? 

S (DISPLAY): Ok, a red building, can you see a tree in 

front of you? 

S (CLARIFY): A red building? 

S (REJECT): What did you say?  

In many dialogue systems, CLARIFY and DISPLAY are 

referred to as explicit and implicit verification.  

The problem addressed in this paper can be de-

scribed as follows: Given these different grounding op-

tions, how should a dialogue system choose what kind 

of evidence to give and which hypotheses to accept and 

reject? We will refer to this as the grounding decision 

problem. There are at least three important factors that 

speakers may take into account when making this deci-

sion: 

1. Level of uncertainty 

2. Task-related costs and utility 

3. Cost of grounding actions 

First, the more uncertain listeners are, the more evi-

dence they provide. Second, as less evidence is given, 

the risk that a misunderstanding occurs will increase – 

thereby jeopardizing the task the speakers may be in-

volved in. However, the cost of such a misunderstand-

ing depends on the task at hand. Third, it would not be 

efficient to always display understanding or clarify eve-

rything that is said. Sometimes it may be more efficient 

to risk a misunderstanding and take the consequences. 

A common approach to grounding decisions is to 

compare the speech recognition confidence score 

against a set of hand-crafted thresholds, and choose 

ACCEPT when the confidence is high, DISPLAY for mid-

dle-high scores, CLARIFY for middle-low scores and 

REJECT for low scores (see for example Bouwman et al., 

1999). However, in this simple account, only Factor 1 

above (level of uncertainty) is considered, and the 

thresholds used are typically only based on intuition.  

In order to take Factor 2 (task-related costs and util-

ity) into account, Bohus & Rudnicky (2001) uses a data-

driven technique to derive actual costs from dialogue 

data, which showed that false acceptances were more 

costly than false rejections. Another aspect is that task 

costs are dynamic and often depend on the current state 

of the dialogue. To incorporate this aspect, Bohus & 

Rudnicky (2005) presents a method where binary logis-

tic regression is used to determine the costs (in terms of 

task success) of various types of understanding errors 

involved in the rejection trade-off. Different regressions 

may then be calculated in different dialogue states, re-

sulting in dynamic thresholds. However, these methods 

do not consider other grounding actions than ACCEPT 
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and REJECT. To do this, Factor 3 above (cost of ground-

ing actions) must also be considered.  

Paek & Horvitz (2003) presents a decision theoretic 

approach to the grounding decision problem, based on 

the framework of decision making under uncertainty. 

According to this proposal, the optimal grounding ac-

tion GA should satisfy the Principle of Maximum Ex-

pected Utility (MEU), which can be defined as follows: 

Choose an action a, so that the expected utility EU(a) is 

maximized. When making this decision, the world may 

be in one of the states h1, h2, h3…hn, and this state may 

have an impact on the effect of the action taken. This 

effect can be described by the function Utility(a,hi), 

which is the utility for action a under state hi. Thus, for 

each action a, the probability for each possible state and 

the utility for taking action a, given that state, should be 

summed up:  

(2) ∑
=

×==

n

i

ii
aa

haUtilityhPaEUGA
1

),()(maxarg)(maxarg  

This approach is promising, in that it may account for 

all decision factors listed above. However, in Paek & 

Horvitz (2003), the utilities used in the model were es-

timated directly by the user (via a GUI) and were not 

derived from data.  

2 The proposed model 

In this paper, we will show how the utilities may be 

estimated directly from collected dialogue data. To do 

this, the problem will be described as that of minimising 

costs: Choose a grounding action a, so that the sum of 

all task-related costs and grounding costs is minimised, 

considering the probability that the recognition hy-

pothesis is correct. Thus, the world may be in two states 

(correct and incorrect recognition), and a probability 

measure for these states is needed, as well as a cost 

function for calculating the costs of the different 

grounding actions, given these states. The problem is 

expressed in the following equation (where P(incorrect) 

equals 1-P(correct)): 

(3) 









×

+×

=
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To select the optimal grounding action according to 

equation (3), a probability measure of the state correct 

is needed, as well as a cost function for calculating the 

costs of the different grounding actions, given these 

states. 

In this paper, we will assume that P(correct) can be 

derived from the speech recognition confidence score. 

While confidence scores typically delivered by speech 

recognisers should not be used as a direct measure of 

probability, it should be possible to derive probabilistic 

scores (Jiang, 2005).  

3 Data 

The model presented in this paper will be applied to 

data collected using the HIGGINS spoken dialogue sys-

tem developed at KTH (Edlund et al., 2004). The initial 

domain for the system developed within the project is 

pedestrian city navigation and guiding. A user gives the 

system a destination and the system guides the user by 

giving verbal instructions. The system does not have 

access to the user’s position. Instead, it has to figure out 

the position based on the user’s descriptions of the sur-

roundings. Since the user is moving, the system con-

tinually has to update its model of the user’s position 

and provide new, possibly amended instructions until 

the destination is reached. For simulation, a 3D model 

of a virtual city is used. Example (1) above is typical for 

this domain. A typical dialogue consists of three main 

phases or sub-tasks: a goal assertion phase, a position-

ing phase, and a guiding phase. 

A version of the HIGGINS system, with different sets 

of handcrafted confidence thresholds for making 

grounding decisions, was evaluated with users. The 

evaluation involved 16 participants, all native speakers 

of Swedish. The collected data consists of 2007 user 

utterances. A more detailed description of the data col-

lection is provided in Skantze (in press).  

4 Cost measure and functions 

The model presented in this paper relies on a unified 

cost measure, which may be used for estimating both 

the task-related costs and the cost of grounding actions. 

The ultimate measure of cost would be the reduction of 

user satisfaction. However, user satisfaction is practi-

cally only obtainable on the dialogue level, and we need 

a much more detailed analysis. A cost measure that is 

relevant for both grounding actions and the task, and 

that is obtainable on all levels of analysis, is efficiency. 

This is reflected in the principle of least effort (Clark, 

1996): “All things being equal, agents try to minimize 

their effort in doing what they intend to do”. Thus, effi-

ciency and user satisfaction should correlate to some 

degree, at least in a task-oriented dialogue setting as the 

one used in this paper. In the data collected here, the 

best predictor for user satisfaction was the total number 

of syllables uttered (from both the user and the system) 

(R
2
 = 0.622). The impact of efficiency on user satisfac-

tion in task-oriented dialogue has also been reported in 

other studies, such as Bouwman & Hulstijn (1998). 

Using efficiency as a cost measure, we will analyse 

the consequences of different actions, given the correct-

ness of the recognition hypothesis. The actions that will 

be considered are the ones listed in example (1): 

ACCEPT, DISPLAY, CLARIFY and REJECT. Table 1 summa-

rises these costs based on a set of parameters, which are 

all average estimations over a set of dialogues.  
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Table 1: Costs for different grounding actions, given the cor-

rectness of the recognition (COR=Correct, INC=Incorrect). 

Action,Hyp Costs 

ACCEPT,COR No cost 

ACCEPT,INC The number of extra syllables the misun-

derstanding adds to the dialogue (SylMis). 

DISPLAY,COR Grounding dialogue (SylDispCor). 

DISPLAY,INC Grounding dialogue (SylDispInc). Risk 

that the user does not correct the system 

(P(Fail|Disp,Inc)) times the consequences 

of a misunderstanding (SylMis). 

CLARIFY,COR Grounding dialogue (SylClarCor). Risk 

that the user does not confirm the system 

(P(Fail|Clar,Cor)) times the syllables for 

recovering the rejected concept (SylRec). 

CLARIFY,INC Grounding dialogue (SylClarInc) 

REJECT,COR The number of syllables it takes to receive 

new information of the same value as the 

rejected concept (SylRec). 

REJECT,INC No cost 

 

The costs for DISPLAY and CLARIFY may need some 

explanation. In HIGGINS, a concept that is displayed is 

treated as correct unless the user initiates a repair. A 

concept that is clarified is treated as incorrect unless the 

user confirms it. Thus, they can be said to fail if the user 

does not correct a displayed misunderstanding or con-

firm a clarification of a correct concept. The number of 

syllables an average grounding dialogue takes involves 

both the grounding act and possible responses. For ex-

ample, the following clarification dialogue involves 2 

syllables (SylClarCor): 

(4) S: Red? 

U: Yes  

Using these costs and equation (3) above, cost function 

may be defined for the different actions, as shown in 

Table 2. 

Table 2: Cost functions for different grounding actions.  

Action Expected cost 

ACCEPT P(incorrect) x SylMis 

DISPLAY P(correct) x SylDispCor + P(incorrect) x 

(SylDispInc + P(Fail|Disp,Inc) x SylMis) 

CLARIFY P(correct) x (SylClarCor + P(Fail|Clar,Cor) 

x SylRec) + P(incorrect) x SylClarInc 

REJECT P(correct) x SylRec 

5 Parameter estimation from data 

To show how these parameters may be estimated from 

data, we will make a task analysis specific for the navi-

gation domain presented here. We will start with the 

positioning phase of the dialogue, i.e., when the user 

describes her position, as in example (1) above.  

The parameter SylRec describes the number of syl-

lables it will take to get the same amount of information 

after a concept has been rejected. This parameter is 

highly context dependent – it depends on how much 

information the hypothesised concept provides (its in-

formation gain), compared to the average concept. This 

proportion will be referred to as ConValueH. The sys-

tem and the user spent on average 15.0 syllables per 

important concept
1
 accepted by the system. We will 

refer to this as SylCon. Based on these two parameters, 

SylRec can be calculated as follows: 

(5) SylRec = SylCon x ConValueH 

How can ConValueH be estimated for the positioning 

phase? The purpose of the positioning phase is to cut 

down the number of possible user locations. Thus, the 

value of a concept can be described as the proportion of 

the set of possible user locations that are cut down after 

accepting it, compared to the average concept. The pro-

portion of possible locations that are reduced on average 

after a single concept is accepted can be estimated from 

data (CutDownA). The dialogue system can then use the 

domain database to calculate the proportion of possible 

locations that would be cut down if the hypothesised 

concept would be accepted (CutDownH). By accepting 

ConValueH number of average concepts, each leaving a 

proportion of 1 - CutDownA possible locations, a pro-

portion of 1 - CutDownH locations should be left. This 

is expressed in the following formula: 

(6) (1 - CutDownA)ConValueH = (1 - CutDownH) 

By combining equations (5) and (6), SylRec can be cal-

culated with the following formula: 

(7) 

)1log(

)1log(

CutDownA

CutDownH
SylConSylRec

−

−
×=

 

We will now turn to the parameter SylMis, which de-

scribes the number of extra syllables a misunderstand-

ing adds to the dialogue. The risk of accepting an 

incorrect concept during the positioning phase is that the 

set of possible user positions may be erroneously con-

strained. If this happens, the positioning often has to 

start all over again. Thus, SylMis should reflect the 

number of syllables a complete positioning takes (on 

average 97.0, which we will refer to as SylPos). How-

ever, the set of possible user locations does not need to 

be erroneously constrained when accepting an incorrect 

concept (the user may actually see a red building, even 

if this was not what she said). The probability that the 

correct position actually is lost can be described by the 

parameter CutDownH defined above, i.e., the proportion 

of possible locations that is reduced if the hypothesised 

concept is accepted. Thus SylMis can be calculated as 

follows: 

                                                           
1 By important concept, we mean concepts that contribute in 

the current task. In this example, RED is important, but not 

BUILDING, since there are buildings everywhere. 
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(8) SylMis = SylPos x CutDownH 

The rest of the parameters can be calculated from the 

data by counting the number of syllables spent on the 

grounding sub-dialogues and the number of times they 

failed. These parameters are shown in Table 3. SylGA is 

the number of syllables involved in the grounding act 

(in the case of DISPLAY or CLARIFY).  

Table 3: Estimation of parameters.  

Parameter Value 

SylClarCor SylGA + 1.4  

SylClarInc SylGA + 2.1 

SylDispCor SylGA + 0.1 

SylDispInc SylGA + 1.2 

P(Fail|Clar,Cor) 0.33 

P(Fail|Disp,Inc) 0.82 

 

The high value of P(Fail|Clar,Cor), and especially 

P(Fail|Disp,Inc), might be explained by the fact that the 

system did not use an elaborate prosodic model for the 

realisation of fragmentary DISPLAY and CLARIFY acts. 

Also, the use of such fragments is still very uncommon 

in dialogue systems, which often resulted in that the 

users did not recognise their function. 

We will now consider two examples where the con-

cept information gain differs a lot (the concepts under 

question are underlined): 

(9) I can see a mailbox (CutDownH = 0.782; SylGA = 2) 

(10) I can see a two storey building  

(CutDownH = 0.118; SylGA = 1) 

CutDownA can be estimated from data as 0.336. Using 

these parameters, the cost function for the different 

grounding actions, depending on P(correct), can be cal-

culated to find out which action has the least cost for 

each value of P(correct) and thus derive confidence 

thresholds, as shown in Figure 1 and Figure 2.  As can 

be seen in these figures, example (9) has a much higher 

information gain and thus a wide confidence interval 

where a clarification request is optimal, whereas exam-

ple (10) has less information gain and is optimally either 

accepted or rejected, but never clarified. 

In the previous examples, we have only considered 

the positioning phase of the dialogues. However, there 

is another important phase, the goal assertion phase:  

(11) U: I want to go to an ATM (SylGA=3) 

If this hypothesis would constitute a misunderstanding, 

it would lead to much higher costs than a misunderstood 

positioning statement. In this case, we can define SylMis 

as the number of syllables it takes on average until the 

user has reached the (incorrect) goal or restated the goal, 

which can be estimated to 261.6 from the data. We will 

assume that SylRec is equal to SylCon (15.0), and that 

the other parameters are the same as in the positioning 

phase. The cost functions and thresholds for grounding 
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Figure 1: Cost functions and confidence thresholds for 

grounding the concept MAILBOX after “I can see a mailbox”. 
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Figure 2: Cost functions and confidence thresholds for 

grounding the concept TWO after “I can see a two storey build-

ing”. 

0

5

10

15

20

25

30

35

40

45

50

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

P(correct)

E
x
p

e
c

te
d

 c
o

s
t

Accept

Display

Clarify

Reject

0

5

10

15

20

25

30

35

40

45

50

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

P(correct)

E
x
p

e
c

te
d

 c
o

s
t

Accept

Display

Clarify

Reject

 

Figure 3: Cost functions and confidence thresholds for 

grounding the concept ATM after “I want to go to an ATM”. 
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 “ATM” in the example above are shown in Figure 3. 

Due to the high cost of misunderstandings, a simple 

accept requires a very high confidence, and goal asser-

tions will therefore most often be clarified. 

6 Discussion 

The graphs presented above, and the calculation of 

thresholds, are of course only useful for illustrative pur-

poses. A dialogue system would just calculate the most 

optimal action, given the value of P(correct). It should 

be noted that these estimations are based on the data 

collected with hand-crafted confidence thresholds. If the 

derived thresholds would be applied to the system, the 

parameters values would change, thus affecting the 

thresholds. This means that the presented model should 

be derived iteratively, using bootstrapping, and the pa-

rameter values presented here are just the first step in 

such an iteration. To estimate the parameters, transcrip-

tion of the dialogues and some annotation is needed. 

However, given that the logging is adapted for this, we 

believe that this can be done rather efficiently. 

The functions presented in Table 2 describe general 

characteristics of the grounding actions and should be 

applicable to many different dialogue domains. How-

ever, the parameter estimation presented here is specific 

for the navigation domain. For some domains, it may be 

more problematic to use syllables as a general measure. 

There are some simplifying assumptions in the 

model presented above. First, only one concept in the 

hypothesis is considered as correct or incorrect. It would 

of course also be possible to consider some concepts as 

correct and some concepts as incorrect. In such concept-

level error handling (Skantze, in press), it is for example 

possible to clarify one concept while silently accepting 

or rejecting another. The model presented here could be 

extended to also cope with several concepts in an utter-

ance with different probabilities, as in the following 

example (with probabilities in parenthesis): 

(12) U: I can see a red building to the left  

[RED (0.8) LEFT (0.2)] 

In this case, we should consider 4 possible states instead 

of 2, 16 actions instead of 4, and 64 costs instead of 8. 

Here are some examples of the actions that should be 

considered: 

Red? (CLARIFY RED, ACCEPT LEFT) 

Do you have the red building on your left? 

(DISPLAY RED, CLARIFY LEFT) 

A red building on your left? 

(CLARIFY RED, CLARIFY LEFT) 

Another simplification is that temporal modelling of 

grounding (as discussed in Paek & Horvitz, 2003) is not 

considered, i.e., the fact that the utility of grounding 

actions change when they are repeated subsequently. 

However, it should be possible to account for this by 

conditioning the parameters, depending on the order in 

which the grounding action is taken. An elaborate 

model of P(correct) could also take this into account.  

A more complex approach to grounding decisions is 

to use POMDP models (Williams & Young, 2007). The 

strength of such models is that they account for parallel 

recognition hypotheses and planning. The model pre-

sented here is much simpler and includes more bias. 

However, it requires less resources and is easier to apply 

and scale.  

Of course, the presented model also remains to be 

evaluated, for example by comparing the performance 

of a system using this model with a system based on 

handcrafted thresholds.  
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Abstract

When constructing a task-oriented dialogue
system, it is usual to perform an acquisition
of dialogues for the system’s task. This ac-
quisition can be used to define the behaviour
of the dialogue system, and it can be rule-
based or corpus-based. In the corpus-based
case, the models that define the behaviour
are automatically inferred from annotated
dialogues. The annotation process is time-
consuming and error-prone, and the use of
assistant tools for the annotation can reduce
the effort in this process. In this work, the
data requirements of a previously presented
annotation tool are presented, and the results
show that the technique obtains its maxi-
mum performance even with a relative small
amount of annotated dialogues.

1 Introduction

A dialogue system (Kuppevelt and Smith, 2003) is
usually defined as an automatic system that interacts
with a human user using dialogue, with the objective
of solving a certain problem. Tasks such as timetable
consultation (Aust et al., 1995) are common exam-
ples of dialogue system applications.

A dialogue system is defined by its behaviour,
which tries to imitate a real dialogue situation. The
most common method to define this behaviour is
to acquire a corpus of dialogues on the task to be
solved. In this acquisition, a set-up known as Wiz-
ard of Oz (Fraser and Gilbert, 1991) is used.

Then, the behaviour of the system is defined by
analysing the acquired corpus of dialogues. Two

∗Work partially supported by VIDI-UPV under PAID06-
20070315 program.

main approximations have been used in the sys-
tem’s behaviour definition: rule-based (Gorin et al.,
1997) and corpus-based (Stolcke et al., 2000). In
the corpus-based approach the behaviour is deter-
mined by statistical models that are automatically
inferred and updated. Therefore, in the corpus-based
approach it is easier to adapt the system behaviour to
new tasks and situations by inferring a new model.

The corpus-based approach needs huge amounts
of data (dialogues) conveniently annotated to esti-
mate the parameters of the statistical models. The
most widely used annotation scheme is the Dialogue
Act (DA) labelling (Searle, 1969). In this scheme,
every turn of the dialogue is segmented into a utter-
ance (Stolcke et al., 2000) and annotated with one
DA, which defines its function in the dialogue.

The annotation of the corpus implies the defini-
tion of the set of DA and the annotation rules (Al-
cacer et al., 2005; Jurafsky et al., 1997), followed
by the annotation itself, which is a very time-
consuming process. Therefore, the development of
automatic annotation techniques is very useful in the
development of corpus-based dialogue systems.

Some automatic annotation techniques have been
proposed in previous works (Stolcke et al., 2000).
These techniques use part of the annotated dialogue
corpus to infer the automatic annotators. These an-
notators are statistical models that, given the se-
quence of words, return the utterances with their cor-
responding DA labels. The automatic annotators are
not error-free, and they improve their error rate as
long as more training data is provided.

In this work, the influence of the amount of train-
ing dialogues on the automatic annotator error rate
is presented. The results show that when using more
than a certain number of dialogues, no significant
improvements in the annotation error rate are no-
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ticed. This allows to determine the size of the cor-
pus that must be manually annotated to obtain the
highest automatic annotation performance with the
lowest manual annotation cost.

The paper is organised as follows. In Section 2,
the annotation technique is presented. In Section 3,
the used dialogue corpora are described. In Sec-
tion 4, the performed experiments and their results
are discussed. In Section 5, conclusions and future
work lines are presented.

2 GIATI based annotation technique

The automatic annotation technique which is anal-
ysed in this work is based on a general Stochas-
tic Finite-State Transducer (SFST) inference tech-
nique known as GIATI (Casacuberta et al., 2005).
This technique has been successfully used in Ma-
chine Translation tasks and in dialogue annota-
tion (Martı́nez-Hinarejos, 2006).

GIATI infers a SFST from a parallel corpus us-
ing a re-labelling process of input-output pairs of
sentences. From the re-labelled corpus, a smoothed
n-gram is inferred and then it is converted into the
final SFST by reverting the initial re-labelling. A
modification of the GIATI annotation was proposed
in (Martı́nez-Hinarejos, 2006) to perform the anno-
tation directly using the n-gram instead of the SFST.

In dialogue is easy to find a re-labelling scheme
because no cross-alignments are usually present (a
DA label is attached to a complete utterance in a
linear manner). For example, the DA label can be
attached to all the words in the corresponding utter-
ance, or only to the last word of the utterances. In
this work, this last re-labelling strategy is used, fol-
lowing the steps presented in (Martı́nez-Hinarejos,
2006).

After the inference from the re-labelled corpus,
the n-gram can be used as an annotator model.
For the annotation, a Viterbi n-gram implementa-
tion was used following the ideas of (Martı́nez-
Hinarejos, 2006). Intensive beam-search was ap-
plied in the implementation to avoid the problems
with large exploration trees in the Viterbi process.

3 Dialogue corpora

In the experiments, two different dialogue corpora,
with very different features, were used to assess the
performance of the automatic annotation technique.

3.1 Dihana corpus
Dihana (Benedı́ et al., 2004) is a task-oriented cor-
pus which is composed of computer-to-human dia-
logues. The main aim of the task is to answer tele-
phone queries about timetables, fares, and services
for long distance trains. The language of the corpus
is Spanish.

The corpus is composed of 900 different dia-
logues that were acquired using the Wizard of Oz
technique and semicontrolled scenarios. The to-
tal set of dialogues comprises 6,280 user turns and
9,133 system turns, with a vocabulary of 980 words.
All the dialogues were annotated by human experts.
The annotation scheme used in Dihana was pre-
sented in (Alcacer et al., 2005). The labels are or-
ganised in three different levels. The total number of
labels which are present in the corpus is 248 (153 for
user turns and 95 for system turns). If only the first
and second level are taken into account, 72 different
labels (45 for user and 27 for system) are present.

3.2 SwitchBoard corpus
SwitchBoard (Godfrey et al., 1992) is a well-known
speech corpus which was obtained from human-to-
human telephone conversations. These conversa-
tions were not task oriented, and both speakers were
allowed to express themselves in a free manner and
to interrupt the other speaker, discussing a general
topic, but with no task to accomplish.

The corpus is composed of 1,155 conversations,
with a total number of 126,754 different turns of
spontaneous speech. The vocabulary size is 42,672
words. The corpus was annotated using a simplifi-
cation of the DAMSL annotation scheme (Jurafsky
et al., 1997) which comprises a total number of 42
different labels.

4 Experiments and results

The objective of the experiments is to determine
which amount of labelled dialogues is enough to ob-
tain the best possible GIATI-based dialogue labeller
with the minimum annotation effort. It is clear that
the quality of the labellers should be assessed with
respect to a set of dialogues which is not included in
the training corpus and that it must be fixed for all
the variable-size training corpora. In our case, a set
of 100 dialogues of the Dihana corpus and a set of
155 dialogues of the SwitchBoard corpus were taken
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as the test corpora. The sizes of the training corpora
were from 100 up to 800 in the Dihana corpus, and
up to 1,000 in the case of the SwitchBoard corpus
(with increments of 100 dialogues).

Some common preprocessing steps were per-
formed in order to reduce data sparseness: case uni-
fication (all the words were transcribed in lowercase)
and punctuation marks treatment (the punctuation
marks were separated from the words).

For the Dihana corpus, two more preprocessing
steps were applied: a categorisation (it was per-
formed for categories such as town names, the time,
dates, etc.) and the addition of a speaker identifier.
These preprocessing steps reduced the vocabulary to
705 user and 190 system words. For this corpus, the
annotation with only the two first levels was used.

In the case of the SwitchBoard corpus, one more
preprocessing step was applied. It was utterance
joining: the interrupted utterances (which were la-
belled with ’+’) were joined to the correct previous
utterance. No categorisation was performed because
of the no-task oriented nature of the SwitchBoard
corpus. After these preprocessing steps, the vocab-
ulary consisted of 21,797 different words, which re-
veals that the annotation of this corpus is more diffi-
cult because of the data sparseness.

For both different annotations (Dihana two-level
and SwitchBoard), the set of incremental training
corpora were defined. From both training corpora,
three different GIATI-based models were trained:
for 2, 3 and 4-grams. These automatic labellers
were used to annotate the different test dialogue cor-
pora (Dihana two-level and SwitchBoard). The au-
tomatic annotation was compared with the reference
one with the Dialogue Act Error Rate (DAER) mea-
sure. DAER (which is similar to the Word Error
Rate) computes which rate of the assigned labels are
correct and do not have to be revised or corrected.

Absolute results on DAER for both corpora are
presented in Figure 1. As it was expected, the results
are worse as the complexity of the corpus increases:
Dihana is the less complex, because of the reduced
vocabulary and set of labels, and SwitchBoard is the
most complex (with a large vocabulary). Another
clear inference from the graphics is that the larger
the training set size, the better the results.

This general tendency is quite more clear with
the SwitchBoard corpus, and could be related to the

decrement of out of vocabulary (OOV) words as the
training corpus comes larger. In Dihana the OOV
reduction rate is really small for a medium-size cor-
pus, but in SwitchBoard this reduction is higher even
for a large training corpus.

One more interesting observation is that there are
no significant differences between the 3-gram and
4-gram results in the Dihana corpus, but the results
with 4-grams with the SwitchBoard corpus are the
worst of all, while there is no significant difference
between the 2-gram and 3-gram results with this cor-
pus. The explanation is that the high complexity of
the SwitchBoard corpus makes association between
words and DA too sparse to appropriately infer such
a complex model as a 4-gram.

In order to assess the improvement as the cor-
pus increases, the relative improvement of passing
from one training corpus to the next one in the se-
quence was calculated. In both corpora, these re-
sults showed that using more than 300 dialogues for
training did not provide any significant improvement
(lower than 5%).

Some error analysis was performed on the results
with 3-grams and 300 dialogues as training corpus.
The analysis revealed that most of the errors in Di-
hana were substitutions between similar labels or la-
bels which annotate similar sentences but with dif-
ferent dialogue meaning depending on the context.
This indicates that the high locality of the models
do not allow to distinguish between some situations
(e.g., a question and an answer). Meanwhile, in the
SwitchBoard corpus most errors involved the am-
biguous statement-opinion (sv) and statement-non-
opinion (sd) labels, which are difficult to determine
even for human annotators (Stolcke et al., 2000).

With respect to the speed of the process, the an-
notation technique revealed itself as really fast. In
the Dihana corpus, no more than 2 seconds per
whole turn on average were needed. In the case of
SwitchBoard, although is quite more complex, sim-
ilar times were obtained.

5 Conclusions and future work

This work shows the behaviour of an automatic di-
alogue annotation technique, studying the effect of
the amount of training data on the accuracy of the
obtained models. The experiments were carried out
with very different corpora, but the results show
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Figure 1: Absolute DAER rates for Dihana two-level and SwitchBoard.

the same behaviour: an amount of 300 dialogues is
enough to obtain an appropriate annotation model.
From this point, adding more dialogues to the train-
ing set does not improve significantly the accuracy
of the models. Therefore, when applying this an-
notation technique in a dialogue corpus annotation,
no new models should be inferred after the correct
annotation of a relatively small number of dialogues
(in this experiment, 300 dialogues). This speeds up
the process, because the only task from this point is
correcting the automatically annotated dialogues.

The results were obtained using the GIATI-based
technique, but other annotation and identification
techniques are available (Grau et al., 2004). There-
fore, the same experimental framework should be
applied on these techniques in order to know if they
have the same limitations as the GIATI-based one.
One interesting thing is the combination of several
models for different tasks. Finally, although these
conclusions were obtained from experiments with
two corpora, experiments with more corpora could
generalise these conclusions.
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Abstract
Partially Observable Markov Decision Pro-
cesses (POMDPs) are attractive for dialogue
management because they are made to deal
with noise and partial information. This pa-
per addresses the problem of using them in a
practical development cycle. We apply fac-
tored POMDP models to three applications.
We examine our experiences with respect to
design choices and issues, and compare per-
formance with hand-crafted policies.

1 Introduction
Partially Observable Markov Decision Processes
(POMDPs) are attractive for dialogue management
in the cases where the dialogue manager has to
make choices which depend on statistical informa-
tion. They can determine optimal strategies in the
face of error and partial information. POMDPs can
take advantage of statistical information about be-
havior or error to the fullest extent, and take into ac-
count extensive hidden information.

Using POMDPs for spoken dialogue manage-
ment has been examined thoroughly in (Williams
and Young, 2007). Current POMDP-based dialogue
managers model a complete slot-�lling dialogue in-
cluding all slots with all values. Large numbers of
slots and values lead to a large state space, which
is not tractable for current POMDP solvers. Usu-
ally, this restricts us to toy problems. Recent ef-
fort to scale up POMDP-based models is reported
in (Williams and Young, 2007; Bui et al., 2007).

It is not yet clear enough how to employ POMDPs
in a systematic development cycle. A number of
practical issues with POMDPs has not really been
addressed yet. How do you obtain the user model
and the probability distributions? How do you test
and debug POMDPs? How do you tweak reward

values? How do you evaluate and compare per-
formance of the POMDP policy which other ap-
proaches? We address these questions by using
the factored POMDP models (Williams and Young,
2007; Bui et al., 2007) as a basis, and applying them
to three dialogue management systems.

2 Methodology
Design guidelines. The state space represents the
user's state and action. It is de�ned as a set of fea-
tures. We should keep it compact. This can be
done by specifying only features which are relevant
in selecting the system action and by pruning all
unreachable states. For example, when analyzing
the Williams's 1945-state travel problem (Williams
and Young, 2007), we found that could increase
tractability by pruning 1626 states1, leaving only
319 reachable states. The system actions are not
only the actions toward the user but also actions for
other dialogue manager tasks such as querying the
database. Similar to the state space, the observation
space is also de�ned as a set of observation features
such as user's action with noise (from the ASR) and
observed user's emotional state.

Designing a reward model that leads to a good
policy is a very challenging task. The typical param-
eters used to design a reward model are task success,
the number of turns, and dialogue act appropriate-
ness (for example, the system should not con�rm a
value if it has not yet been provided by the user). The
precise numerical values used may have signi�cant
impact on the policy and convergence behaviour.
Evaluation setup and toolset. From the literature,
the typical approach is �rst to test the quality of
the POMDP-based dialogue policy with a simulated
user. The real-user evaluation is considered at the

1For example, the states which the user's goal feature is ab
and the user's action feature is c
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�nal step. An advantage of modeling dialogue as a
POMDP is that we can use the POMDP environment
model itself as a simulated user model. The prob-
ability distributions of the simulated user (testing
model) might be varied with the ones of the dialogue
manager (training model). The probability distribu-
tions of all the user models used in our three appli-
cations are handcrafted. We have developed a soft-
ware toolkit to conduct our experiments, which in-
cludes a factored POMDP to �at POMDP translator,
and an interactive simulator for both the user and the
system. The POMDP problem is �rst solved with a
POMDP solver (we used Perseus (Spaan and Vlas-
sis, 2005) and ZMDP (Smith and Simmons, 2005)).
The generated alpha �le is then used to carry out
the performance test with simulated user models.
Section 3 shows our test results on three different
problems. We conducted a large number of dialogue
episodes (≥ 10, 000) to guarantee the statistical sig-
ni�cance.

3 Evaluation

Ritel QA dialogue system. Ritel (Galibert et al.,
2005) is a telephone-based question answering (QA)
dialogue system. Dialogue functionality includes
con�rmation of key phrases and the type of the an-
swer sought, and handling follow-up questions. In
our model, we focus on con�rmation, modeling key
phrases and answer type as slots. In the real system,
there are thousands of possible key phrases, but an-
swer type only has a few possible values. To make
it tractable, we simpli�ed the model to one slot with
between 3 and 10 values, suitable at least for model-
ing answer type fully.

The POMDP state space consists of the user goals
and the user actions (S = Gu×Au). The user goals
are the different questions or question types that the
user may ask, Gu = q1, ..., qn. The user actions are
composed of the questions, plus positive and nega-
tive feedback, a `bye' utterance, and a `hang-up' sig-
nal, Au = q1, ..., qn, pos, neg, bye, null. The obser-
vation set Z is the same as Au. The system actions
consist of con�rming each question, answering it,
and the `ask' action, asking an open question to the
user, A = confirmqi , answerqi , ask. When the
system answers the correct question, the user poses
a new question, otherwise the user either repeats or

gives negative feedback. The user may hang up in
any dialogue turn, with a �xed probability 0.1.

We made the reward model as simple as possible:
give a reward of 1 for answering the right question,
−1 for answering a wrong one, zero otherwise. We
found that modelling dialogue state was not neces-
sary, and it increases state space to intractable levels.
This model yields the desired behaviour, though like
Williams et al., we found that the system starts con-
�rming even when the user has not yet said anything.
This can be remedied by rewarding the ask action
with a reward slightly more than 0. Note that it is
not necessary to give an explicit penalty for dialogue
length. The problem can be translated as: answer
as many questions as possible before the user hangs
up. The results of Perseus were not useable, so the
experiments were done with ZMDP only. Conver-
gence was good up till nine slot values. We ob-
served that, when the ASR error becomes high, 0.7
or above, the system actually wants to hear a ques-
tion multiple times in a row before answering it. The
policy was compared to a hand-crafted policy (�g-
ure 1), similar to the actual Ritel policy, which is
based on counting the number of times a particular
keyword was heard. It was optimised to each partic-
ular problem by determining the optimal number of
times a question should be heard before con�rma-
tion is suf�cient, just as the POMDP does.

Figure 1: Performance comparison of POMDP and
optimised hand-crafted models for different prob-
lem sizes and ASR error rates. The solid line is the
POMDP, the dashed line is the hand-crafted model.
For three values, an error more than 0.6 would re-
sult in the probability of hearing the wrong question
being higher than the right one. For nine values and
error=0.8, no sensible policy could be calculated.

ICIS route navigation system. In the ICIS
project2, we are developing a multimodal human-

2http://www.icis.decis.nl/
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computer framework for crisis management (Fitri-
anie, 2007). A subtask of the system is to assist res-
cuers to �nd a route description to evacuate victims
from an unsafe tunnel. This task has been imple-
mented as a multimodal route navigation dialogue
system (Bui et al., 2007).

The simpli�ed POMDP for this problem (one slot
case) is represented by S = 〈Gu×Au×Eu×Du〉 =
〈{v0, ..., vm} × {v0, ..., vm, yes, no} ×
{stress, nostress} × {notstated, stated}〉,
A = {ask, confirm-v0, ..., confirm-vm, ok-v0,
..., ok-vm, fail}, and Z = 〈OAu × OEu〉 =
〈{v0, ..., vm, yes, no} × {stress, nostress}〉.
The full �at-POMDP model is composed of
(4m2 + 8m + 1) states (including a special end
state), (2m+2) actions, and (2m+4) observations.

The transition and observation models are gen-
erated from the two time-slices Dynamic Decision
Network (Bui et al., 2007). We assume that the ob-
served user's action only depends on the true user's
action (i.e. P (oau|au) = (1 − poa) if oau = au,
otherwise P (oau|au) = 1/(m + 1) × poa). The
observed user's emotional state is computed in a
similar way. The reward model is de�ned as fol-
lows: if the system confirms when dialogue state
is notstated, the reward is -2, the reward is -5
for action fail, the reward is 10 for action ok-x
where gu = x (x ∈ v0, ..., vm), otherwise the re-
ward is -10. The reward for any action taken in the
absorbing end state is 0. The reward for any other
action is -1.

We set different values for parameters
m, pe, poa, poe

3 and use two POMDP solvers
Perseus and ZMDP to compute the near-optimal
policy. Previous research showed that the optimal
policy depends on the user's stress level in case
pe > 0 and the POMDP policy outperforms hand-
crafted policies (Bui et al., 2007). The size of the
state space of POMDP model increases as the square
of slot numbers and computing the optimal policy
is not possible when the number of slot values is
greater than 30 because the POMDP parameter �le
size rapidly increases (for example with m = 30,
the size is bigger than 200MB). Therefore, the
POMDP solver got stuck in initializing the problem.

3pe is the probability of the user's action error being induced
by stress. poa and poe are the probabilities of the observed
user's action and observed user's stress errors.

An alternative solution is to use DDN-POMDP (Bui
et al., 2007) or summary POMDP (Williams and
Young, 2007). However, when the number of slot
values is greater than 100, the belief update task is
not tractable. Therefore, a further research on the
POMDP problem representation is necessary. A
practical issue is that ZMDP is more suitable for
the more complex problem (10 ≤ m ≤ 30). This
is because ZMDP is able to handle a larger state
space by more effective use of sparsity (Smith and
Simmons, 2005). On the other hand, Perseus solves
small problems very well. The reason for this was
not theoretically indicated in the Perseus paper, but
they found the same result when testing with the
standard POMDP problems from the literature.

Virtual Guide application. The Virtual Guide is
a character in a Virtual Reality model of the Music
Centre in Enschede (Hofs et al., 2003). The charac-
ter can help users �nd their way in the building. It
encompasses a multimodal dialogue system that al-
lows users to refer to locations and objects with spo-
ken or written language or by pointing at a location
on a map. The system uses clari�cation questions
and implicit con�rmations. The user can continue a
dialogue with follow-up questions.

It is currently impossible to create a tractable
POMDP model for the system. In our simpli�ed
models the user can only ask for the route between
two objects, and the world is limited to three or eight
objects. Moreover we made a closed model where
follow-up questions are not allowed. We have �t the
problem into a POMDP dialogue model of Williams.
A reward is given when the system gives the correct
route and the user provided both locations.

Evaluations were performed for four models. For
each of them we compared the solutions of Perseus
and ZMDP and an adapted hand-crafted system. The
solvers were run for ten minutes, when convergence
was usually slowing down, although it had not al-
ways reached a desirable level. We then ran dia-
logues with an automatic user simulation based on
the user model of the POMDP.

The �rst model stops after giving any answer, has
observation error 0.2, and three locations. We var-
ied the observation error of the simulator. The re-
sults in �gure 2 show that with increasing errors the
POMDP solutions produced higher returns than the
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hand-crafted system.

Figure 2: Average returns for simulation with differ-
ent observation errors

For the second model, we increased the observa-
tion error to 0.6. The Perseus solution contained a
state from which the dialogue never ended. ZMDP
did not converge acceptably. Therefore its solution
performed worse than the hand-crafted system.

The third model has observation error 0.2 again,
but the dialogue only stops after giving a correct an-
swer. The average returns for Perseus, ZMDP and
the hand-crafted system were 8.08, 6.84 and 6.69
(higher than the �rst model, because of a reward for
an extra system action).

In the last model we increased the number of lo-
cations to eight, resulting in 729 POMDP states in-
stead of about 80. Perseus was not able to load this
problem. The average returns obtained with ZMDP
and the hand-crafted system were 5.08 and 4.04.

4 Conclusions
Although our experiments indicate that POMDP-
based dialogue systems can perform better than
hand-crafted ones, we identi�ed several problems
with modelling them. One of the major problems
remains tractability. It is not possible to obtain use-
ful solutions for any but strongly simpli�ed models,
which may bear little relation to the original prob-
lem. For example, when reducing the number of
slot values, the strategy of trying them one by one
can be employed, something that may not have been
feasible for the original number of values. Another
example was the need to simplify an open model,
where the end of a dialogue is determined by the
user, to a closed model.

The de�nition of a good reward model is another
hard problem. While the reward model models psy-
chological factors such as user satisfaction, which

cannot easily be quanti�ed precisely, the POMDPs
proved very sensitive to small changes in the reward
model, in particular the relative magnitude of differ-
ent types of reward. In practice we had to experi-
ment with different reward values.

The POMDP policies sometimes came up with
surprising strategies. For example, some policies
decided to con�rm multiple times in a row, some-
thing which our original hand-crafted models did
not. We could signi�cantly improve performance of
the hand-crafted policies by adapting them accord-
ing to the strategies found by the POMDP policies.
This shows how POMDPs could be used to improve
hand-crafted systems.
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Abstract

We develop a new mechanism to detect and
respond to miscommunications in human-robot
dialogs, distinguishing between computer mis-
understandings vs. human inexperience. Prob-
lem indicators drive an error/help state machine,
which augments the dialog state and is used
in tailoring response generation. A user study
shows that the task success rate and user satis-
faction is improved substantially by the two-part
miscommunication model.

1 Introduction

A major challenge in spoken dialog systems is miscom-
munication: speech recognition errors and misunder-
standings often result in error spirals from which the user
can hardly escape. This leads to user frustration and task
failure. The problem of error handling has been the sub-
ject of several studies, and errors often cause system de-
signers to use a dialog management strategy based on sys-
tem initiative and explicit confirmation. In human-robot
dialogs, miscommunication can arise not only from im-
perfect speech recognition and understanding, but also
from user uncertainty about the robot’s knowledge and
capabilities. Moreover, in most applications for hu-
manoid robots, there is a need for a mixed-initiative di-
alog strategy to support more natural communication.

To handle human-robot miscommunication in this con-
text, we have developed a strategy to detect and track two
types of problems: computer misunderstanding vs. user
need for help. Computer misunderstandings may be due
to speech recognition or understanding errors. Users may
need help, either because they are unsure how to proceed
in a dialog or because they are asking for something that
is beyond the current capability/knowledge of the robot.
From the robot’s perspective, these problems can some-
times be hard to distinguish, but they require different re-
sponses in order to resolve miscommunications.

Consider the following extract of an actual dialog with
our robot, where “U” is the human user and “R” is the
robot. The robot knows about things in the kitchen; it can
help with meals by reciting recipes and bringing things to
the human; but it cannot actually cook.

∗Now with Lucy Software and Services GmbH, Munich,
Germany

U: Robbi, I am very hungry. Could you please
prepare something to eat?
R: In the fridge, there are tomatoes, eggs, milk,
and butter. With these ingredients you can
make different dishes, such as Spaghetti Napoli
or a pancake. What do you want to eat?
U: Spaghetti Napoli please.
R: Sorry, I didn’t catch that.
U: Robbi, you just told me that it is possible
to cook some Spaghetti Napoli. I would like to
have that please.
R: Okay.
U: Fine, thank you.
R: Thank you.
U: Could you prepare something, a dessert?
R: [silence]
. . .
U: Don’t you want to cooperate with me?

In the first utterance, the robot failed to detect that “pre-
pare” indicated that the user was asking it to do some-
thing beyond its capability. Thus, the user assumes that it
can cook, which seems to be confirmed when the robot
says “okay” to “it is possible to cook...,” though for
the robot this means that the ingredients are available.
Recognition errors further complicate the misunderstand-
ing, and not surprisingly lead to frustration.

To deal with such problems, variables indicative of dif-
ferent types of errors are tracked, based on analyses of the
recognized user utterance. Together with the current dia-
log state and “problem state,” these variables are used to
predict whether the conversation is functioning normally
vs. in an error spiral or help-needed condition. The re-
sponse generation strategy is then adjusted accordingly,
both in terms of the type of response and its wording.
The details of this strategy and experimental validation
are described below, following a review of related work.

2 Related Work

There have been several analyses of communication fail-
ures in human-computer dialog, looking at characteris-
tics of utterances where speech understanding errors oc-
cur, as well as those of attempted corrections of errors.
Studies have found that the speech recognition error rate
increases with increasing depth into the error correction
subdialog (Swerts et al., 2000), as does user frustration

219



(Bulyko et al., 2005). There are studies showing that er-
ror corrections have acoustic and prosodic features dif-
ferent from normal user utterances (Swerts et al., 2000),
and combining acoustic and lexical cues to detect correc-
tions, e.g. (Kirchhoff, 2001). Such studies inform speech
recognizer design as well as automatic error (correction)
detection.

Other studies have focused on factors that impact the
dialog management strategy. Shin et al. (Shin et al.,
2002) analyzed 161 dialogs from the NIST 2000 Com-
municator Evaluation (Walker et al., 2001) in terms of
system behavior in order to find out how users discover
that an error occurred. The results revealed the need for
more explicit confirmations, since users need more time
to get back on track and fail more often when they dis-
cover errors through implicit (vs. explicit) confirmations.
Results from human-human communication also stress
the need for explicit confirmations in error subdialogs
(Gieselmann, 2006). An approach for using error correc-
tion detection output to decide between different degrees
of system initiative in the generation strategy is outlined
in (Bulyko et al., 2005), together with generation wording
variations motivated by studies showing effects on user
frustration. The goal of this work is to extend the results
on dialog strategy and response wording to problems that
include not only error handling but also human inexpe-
rience, with the goal of shortening miscommunications
and increasing user satisfaction.

Within the robotics community, new application do-
mains such as taking care of old people, delivering hospi-
tal meals, etc., are driving the development of robots that
can interact with humans. It is considered important that
people can communicate with these robots as to another
human (Sidner and Dzikovska, 2005). Most research in
this field concentrates on designing the robot as similar as
possible to a human in terms of both its appearance and
its communicative behavior (Breazeal, 1999). The focus
here on help responses is consistent with this view.

3 Task and Baseline System

Our robot can accomplish different tasks in the house-
hold environment; e.g. it can deliver and retrieve kitchen
items, switch on or off lights, and provide information
about recipes or about the contents of the refrigerator
(Gieselmann et al., 2003). The robot should be able to
interact with inexperienced and older users, e.g. in as-
sisted living situations, so it is important that the com-
munication be as comfortable as possible for the user. In
addition, since the robot does not yet have all of the ca-
pabilities of a human and an inexperienced user will not
know its limits, it is important that the robot can inform
the user about its capabilities.

For speech recognition, we use the JANUS Recogni-
tion Toolkit with the IBIS decoder which decodes using

a grammar controlled by the dialog manager, which pe-
nalizes specific rules depending on the situational context
(Fügen et al., 2004). The recognizer grammar also pro-
vides a parse for interpreting the utterance. It is a context-
free grammar enhanced by information from the ontology
defining all the objects, tasks and properties about which
the user can talk. The parse tree is converted into a se-
mantic representation and added to the current discourse.
The semantic representation consists of the speech act
and the objects/properties expressed within the user ut-
terance.

For dialog management, we use the TAPAS dialog
tools (Holzapfel, 2005) based on the language- and
domain-independent dialog manager ARIADNE (De-
necke, 2002), which uses typed feature structures to rep-
resent semantic input and discourse information. If all the
information necessary to accomplish a goal is available
in discourse, the dialog system calls the corresponding
service. Otherwise, clarification questions are generated
using a template-based approach.

4 Mixed Initiative Dialog Management

Our strategy is to try distinguish between problems due to
system errors vs. human inexperience, using different in-
dicators of possible communication problems and a sepa-
rate problem state model with problem-sensitive response
generation, as described next.

4.1 Factors Indicating Problematic Situations

Computer misunderstandings can occur for a variety of
reasons. The system has to cope with high variability
in spontaneous speech, self corrections, segmentation er-
rors, and barge-in, for example. An utterance may in-
clude words that are out of the recognizer’s vocabulary,
either an infrequent wording of a known concept or a
totally new concept. Since the recognizer will hypoth-
esize words that are consistent with its vocabulary and
language model, the robot can only detect these problems
indirectly. Implicit error indicators we use include:

• The utterance is not parsed or only partly parsed.

• No speech act can be found, neither in the user ut-
terance nor in the discourse.

• The user utterance is inconsistent with the current
discourse or with the robot’s expectations.

• The user repeatedly asks for the same information.

In addition, some problems are explicitly indicated:

• The user explicitly asks for help.

• The user tries to correct a preceding utterance.

• The user asks for something that the robot knows it
cannot yet do, such as cleaning.
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4.2 Problem State Model

For representing different problems, we developed a 4-
state finite-state automaton on top of the dialog manager:

• Start state: Used at the start of a dialog and between
tasks as an idle state; the discourse history is empty.

• Error state : Information needs to be corrected.

• Help state: The user does not know how to proceed
and needs help by the robot about its capabilities.

• Normal state: No known problematic situation.

The transitions between the states are rule-based, de-
termined by the information in the discourse history and
the user utterances, and the problem indicators. The robot
is initially in the start state and goes to the normal state as
long as no problems occur. Implicit problem indicators
trigger a transition to either error state or help state, de-
pending on whether there is information available in the
discourse that the user might want to correct. The user
stays in the help state (or in the error state) as long as
the problems persist. After a non-problematic utterance
the user returns to the normal state. To switch from the
help state to the error state, a user utterance must contain
some information which is put in the discourse. The user
can also put the system into the help state or the error
state directly by uttering an explicit help request or er-
ror correction, respectively. In addition, whenever a user
asks for a known task the robot cannot accomplish, such
as cleaning, the user is also transferred to the help state.
When an error is resolved, the user goes back to the nor-
mal state. The system goes back to the start state and the
discourse is cleared whenever a user request to the robot
has been met or the user explicitly clears the discourse
using an utterance such as ”start over” or ”abort”.

4.3 Problem-Sensitive Response Generation

In order to appropriately respond to the user, we have the
following features to keep track of the ongoing situation:

• HELP NECESSITY: a variable that increases with
each problem indicator, and decreases with a tran-
sition to the normal state (to some minimum).

• ERROR SPIRAL: count of the number of successive
turns in the error state, cleared after a transition to
the normal or start states.

• USER KNOWLEDGE: a list that contains the infor-
mation already given to the user and how many of
times it was given.1

Within the help state, the user will get information
about the robot’s capabilities. The full set of robot ca-
pabilities is too large to describe in one response, so we

1We track only the current interaction; long term knowledge
from multiple interactions is not addressed here.

Baseline V1 V2
No Predefined Task
Concept Error Rate 68% 52% 49%
No. of new Concepts 5.0 2.8 4.6
With Predefined Task
Concept Error Rate 50% 42% 25%
No. of new Concepts 3.0 1.4 2.1
Task Completion Rate 57% 70% 96%
Turns per Task 8.4 5.1 2.7

Table 1: Results of the User Study

use a set if responses organized according to a task hier-
archy. At the highest level, the most general capabilities
are described, i.e. for a dialog with a new user, and details
related to those capabilities are covered in lower level re-
sponses. The user knowledge list is used to determine
whether the user has already been given a particular help
message. If so, the user is either given a different help
message for that dialog state or the robot asks the user if
s/he would like to hear again about the robot capabilities.
When the help necessity gets above a given threshold, the
robot asks the user to speak some predefined sentences to
better adapt to the user’s voice, and the problem state is
reset to the “start” state.

Within the error state at the beginning of the dialog,
the user is asked to check microphone placement. Later,
potential errors are handled by a repeat request, with dif-
ferent wording depending on the error spiral as in (Bu-
lyko et al., 2005). In cases of repeated requests that are
out of scope, the robot explicitly tells the user tasks that
it cannot do.

5 Experimental Details and Results

We conducted a user study to assess the impact of using
a general help/error state vs. separating the help and error
correction modes. Two different development cycles of
the dialog system were tested and compared to a baseline
system that had no explicit error handling. Version 1 (V1)
used a dialog management and generation strategy with
a single state for errors and help together, and version
2 (V2) includes a division of the problem handling into
error vs. help states.

We tested V1 and V2 each with 8 users, with no over-
lap of people in these groups. The baseline system was
tested with 3 trials, with 1 person running two trials of
the baseline system and 1 trial of V1. Of the 16 people
participating, half were native speakers of English and
half were fluent English speakers with another native lan-
guage. All subjects were familiar with computers, but
only six had talked to a dialog system before.

The user study consists of three parts. The first part
was a free interaction with the robot: users were told that
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they had a new household robot that can support them
in the kitchen. This situation is more realistic, but also
harder for the users because they have limited knowledge
of what the robot can do. In the second part, each user
was given (the same) 10 tasks to accomplish with the
robot. Using specified tasks, we can assess task com-
pletion, but we get less information on the types of capa-
bilities that users expect. After the dialog with the robot,
users fill in a short questionnaire. They answered three
directed questions about how much they liked the system,
how successful they were, and how much they would like
to use such a robot again. In additional open questions,
participants could report their problems and suggestions
for further improvements.

To evaluate the dialogs, we measured concept error rate
(percent of semantic concepts not understood by the sys-
tem for whatever reason) and tracked the number of new
concepts introduced. The semantic concepts include ac-
tions (e.g. bring, report) and objects (e.g. cup, cabinet) in
the robot’s ontology. For the predefined tasks, we also
tracked task completion and number of turns per task.

The fact that the concept error rate decreases with each
design cycle (cf. Table 5) confirms the usefulness of er-
ror handling in general, and specifically the separation
of error and help needs. As expected, the concept error
rate and the average number of new concepts decrease
when the subjects are given predefined tasks. Note that,
even when the tasks are predefined, users still invent new
concepts that the robot does not know, so the help func-
tionality is still useful. (The drop in the number of new
concepts between the baseline and V1 may be due to user
learning; all users of V2 were new to the task.) For the
dialogs with predefined tasks, there is an increase in the
task completion rate and a decrease in the number of turns
per task for each step in the design cycle, with bigger
changes in moving from V1 to V2. Differences found in
the condition without predefined tasks do not reach statis-
tical significance, but all the differences within the prede-
fined task condition are significant (p-value smaller than
.008 for concept error rate andp-value smaller than .005
for turns per tasks and task completion rate).

The results of the user survey revealed that in V2 the
users liked the robot more and felt they had been more
successful in their interactions, compared to V1. The dif-
ferences in responses related to whether they would like
to use such a robot again were not significant, possibly
because problem handling does not impact the robot’s ac-
tual capabilities. Within the free-text answers, some users
mentioned the nice recovery after misunderstandings and
stressed that it was very clear about its capabilities.

6 Conclusion

In summary, we developed a new dialog management
strategy which is sensitive to different types of miscom-

munications in human-robot dialogs. We use several
types of problem indicators to drive state transitions in
a 4-state indicator of error/help modes. The generation
strategy is modified according to the type of problem, if
any. The results of a user study showed that the task suc-
cess rate, concept accuracy, and user satisfaction are im-
proved substantially by these changes.

In the future, the error handling component can
be improved by expanding the problem state space,
and including new features such as word confidence,
out-of-vocabulary word detection, acoustic cues, and
new problem indicators. Another potential direction is to
use the problem indicators as input to a Markov decision
process for controlling the dialog state. Finally, we note
that automatic learning of new concepts and skills on the
robot’s side will require dynamic update of the problem
tracking and help response generation mechanisms.

Acknowledgment: This research is partially funded by
the German Research Foundation (DFG) under SFB 588.

References
C. Breazeal. 1999. Robot in society: Friend or appliance?

Proc. Workshop on Emotion-based Agent Architectures.

I. Bulyko et al. 2005. Error correction detection and response
generation in a spoken language dialogue system.Speech
Communication, 45:271-288.

M. Denecke. 2002. Rapid prototyping for spoken dialogue
systems.Proc. ACL, pp. 1-7.
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Abstract

We propose a method for rapid develop-
ment of dialogue systems where a Gram-
matical Framework (GF) grammar is com-
piled into a complete VoiceXML applica-
tion. This makes dialogue systems easy
to develop, maintain, localize, and port to
other platforms, and can improve the lin-
guistic quality of generated system output.
We have developed compilers which pro-
duce VoiceXML dialogue managers and EC-
MAScript linearization code from GF gram-
mars. Along with the existing GF speech
recognition grammar compiler, this makes
it possible to produce a complete mixed-
initiative information-seeking dialogue sys-
tem from a single GF grammar.

1 Introduction

In current industrial practice, dialogue systems are
often constructed using VoiceXML for dialogue
management, context-free speech recognition gram-
mars for input, with semantic tags for interpreta-
tion, and concatenation of canned text and output
data for system responses. Developing several com-
ponents which all need to cover the same concepts
increases development costs. Having multiple in-
terdependent components in formalisms with few
automatic correctness and consistency checks also
complicates maintenance, since any change in the
coverage of one component may require changes in

∗This work has been partly funded by the EU TALK
project, IST-507802, and Library-Based Grammar Engineering,
Swedish Research Council project dnr 2005-4211.

the others. Since all the components are language-
specific, much effort is needed to port the system to
a new language, and to keep the implementations for
different languages in sync. The lack of a powerful
method for output realization makes it hard to gen-
erate high-quality output, especially for languages
with a more complex morphology than English.

We address these problems by specifying the sys-
tem in a single high-level formalism, which is then
compiled into the existing lower-level formalisms.
The developer writes a GF abstract syntax module
which defines the user input and system output se-
mantics, and a concrete syntax module which de-
scribes how each construct in the semantics is rep-
resented in natural language. The GF grammar is
then compiled to a complete VoiceXML applica-
tion. The dialogue flow is determined by the ab-
stract syntax (ontology) of the grammar. This is
based on the idea by Ranta and Cooper (2004) that
a proof editor for constructive type theory can be
used to implement the information gathering phase
of information-seeking dialogue systems.

In contrast to earlier rapid dialogue system devel-
opment approaches, such as CSLU’s RAD (McTear,
1999) and the GEMINI AGP (Hamerich et al.,
2004), we use a compiler-like model instead of a
graphical design environment. In addition, our de-
velopment model is focused on the specification and
realization of the inputs and outputs of the system,
rather than on the dialogue flow or the underlying
database. Compared to existing dialogue systems
built with GF (Ericsson et al., 2006), our approach
does not require an external dialogue manager.
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2 Grammatical Framework

Grammatical Framework (GF) (Ranta, 2004) is a
grammar formalism based on constructive type the-
ory. GF separates grammar into abstract syntax and
concrete syntax.

2.1 Abstract Syntax

The abstract syntax defines the ontology of the ap-
plication, that is, what can be said. An abstract syn-
tax contains category (cat) and function (fun) defini-
tions. This is an example of a small abstract syntax:

cat Order;Size;
fun pizza :Size→ Order;small :Size;

This allows us to construct an abstract syntax term
pizza small of type Order. In addition to functions,
abstract syntax terms can also contain metavari-
ables, written ?. For example, the term pizza? con-
tains a metavariable of type Size.

2.2 Concrete Syntax

A concrete syntax defines how each abstract syntax
construct is realized in a particular language. From a
concrete syntax, the GF system can derive both pars-
ing and realization components. A concrete syntax
contains linearization type (lincat) and linearization
(lin) definitions. The linearization type of a category
is the type of the concrete syntax terms produced for
abstract syntax terms in the given category. A lin-
earization definition is a function from the lineariza-
tions of the arguments of an abstract syntax term to
a concrete syntax term. Terms in concrete syntax
can be records, strings, tables, and parameters. This
is an example of a concrete syntax for the abstract
syntax above:

lincat Order,Size = {s :Str};
lin pizza x = {s = “a”++ x.s++ “pizza”};

small = {s = “small”};

3 An Example Dialogue System

This section shows a GF grammar from which a
complete dialogue system (excluding the domain re-
sources) can be derived automatically. For reasons
of brevity, this system is very small. An extended
version of this system is available online1.

1http://www.cs.chalmers.se/∼bringert/xv/pizza/

3.1 Abstract Syntax

The abstract syntax in Figure 1 describes the possi-
ble things that the user can say, in a semantic form.
There is one category for each kind of input. In this
application, the main input object is an Order. A
order can in this small example only be for a num-
ber of pizzas, all of the same size and with the same
topping. A number is “one” or “two”, the sizes are
“small” and “large”, and the toppings are “ham” and
“cheese”. An example abstract syntax term in the
Order category is: pizza two small cheese.

abstract Pizza = {
flags startcat = Order;
cat Order;Number;Size;Topping;
fun pizza :Number→ Size→ Topping→ Order;

one, two :Number;
small, large :Size;
cheese,ham :Topping;

}

Figure 1: Abstract syntax for the example system.

3.2 Concrete Syntax

The concrete syntax in Figure 2 defines how the
terms in the abstract syntax are realized (and in-
versely, how concrete syntax terms can be inter-
preted as representations of abstract syntax terms).
For example, the linearization type of Topping is
{s :Str}, that is, a record with a single field s which
contains a string. The linearization for cheese is the
concrete syntax term {s = “cheese”}.

The linearization type of Number contains a field
n, which is used for agreement. The type of n is
Num, defined by a param definition to be either Sg
or Pl. In the linearization of pizza, the n field of the
Number is used to inflect the noun “pizza”.

An important feature of this grammar is that it al-
lows partially specified input. While the utterance
“two small pizzas with cheese” results in the abstract
syntax term pizza two small cheese, the partial ver-
sions “two pizzas with cheese” (pizza two ? cheese),
“two small pizzas” (pizza two small?), and “two piz-
zas” (pizza two ? ?) are also allowed. The intention
is that the system will ask follow-up questions to re-
place all metavariables with complete terms. This
process is type-directed: the system asks for a sub-
term of the appropriate type. Partial input, imple-
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concrete PizzaEng of Pizza = {
lincat Number = {s :Str;n :Num};

Order,Size,Topping = {s :Str};
param Num = Sg | Pl;
printname cat

Order = “What would you like to order?”;
Size = “What size pizzas do you want?”;
Topping = “What topping do you want?”;

lin pizza n s ts = {s =
n.s++variants{s.s; [ ]}++pizza N.s ! n.n
++variants{“with”++ ts.s; [ ]}};

one = {s = “one”; n = Sg};
two = {s = “two”;n = Pl};
small = {s = “small”};
large = {s = “large”};
cheese = {s = “cheese”};
ham = {s = “ham”};

oper pizza N = {s = table{Sg⇒ “pizza”;
Pl ⇒ “pizzas”}};

}

Figure 2: Concrete syntax for the example system.

mented with suppression, is thus used to achieve a
mixed-initiative dialogue.

The printname definitions are used as prompts
for each category.

3.3 Example Dialogues

The system generated from the grammar in the pre-
vious section allows dialogues such as the examples
below. After each system action we show the in-
formation state, i.e. the current state of the abstract
syntax term that we are constructing.

S: What would you like to order?
U: two pizzas
pizza two ? ?
S: What size pizzas do you want?
U: small
pizza two small?
S: What topping do you want?
U: ham
pizza two small ham

Here, more information is given in the first answer:
S: What would you like to order?
U: two pizzas with ham
pizza two ? ham

S: What size pizzas do you want?
U: small
pizza two small ham

3.4 Extending the Example System

Recursive structures One possible extension to
the example system is to use a recursive structure
to allow more complex orders:

cat Order; Item; [Item ];
fun order : [Item ]→ Order;

pizza :Number→ Size→ Topping→ Item;
printname cat [Item ] = “Anything else?”;
lin order is = {s = is.s};

ConsItem x xs =
{s = x.s++variants{“and”++ xs.s; [ ]}};

BaseItem = {s = “nothing”++ “else”};

While this can be done with subdialogues and script-
ing in VoiceXML (by essentially writing by hand the
code that we generate), it appears to be beyond the
scope of standard practice. If we also add drinks as a
kind of Item, the system will support dialogues such
as this one:

S: What would you like to order?
U: one large pizza
order [pizza one large?, ?]
S: What topping would you like?
U: cheese
order [pizza one large cheese, ?]
S: Anything else?
U: one beer
order [pizza one large cheese,drink one beer, ?]
S: Anything else?
U: nothing else
order [pizza one large cheese,drink one beer ]

System output At the end of the dialogue, we
would like the system to give a response based on
the output of some domain resource. For example,
the pizza ordering system might return the price of
the order. This could be used to construct a confir-
mation using an addition to the grammar:

cat Output;
fun confirm :Order→ Number→ Output;
lin confirm o p =
{s = o.s++ “costs”++p.s++ “euros”}
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Multilinguality To port a dialogue system to a
new language, all that needs to be done is to write
a new concrete syntax. For many languages, writing
speech recognition grammars and realization func-
tions is more complicated than for English. For ex-
ample, Swedish adjectives agree with the gender and
number of the noun they modify. GF’s expressive
concrete syntax makes it possible to implement such
features with little effort, and if the GF Resource
Grammar Library is used, it is as easy to write the
Swedish grammar as the English.

Multimodality GF can be used to write multi-
modal grammars (Bringert et al., 2005). The ex-
tended online version of the example system uses
a concrete syntax which linearizes pizza and drink
orders to vector drawings to display graphical repre-
sentations of the completed orders.

4 Implementation

The concrete syntax is compiled (Bringert, 2007) to
an SRGS speech recognition grammar, with SISR
semantic interpretation tags. This grammar has one
category for each GF category.

The abstract syntax and the prompts from the con-
crete syntax are compiled to a VoiceXML applica-
tion with one form for each GF category. Each such
form takes an argument, which the caller sets to the
currently known abstract syntax term. If the given
term is a metavariable, input is requested in the ap-
propriate speech recognition grammar category. For
each subterm of the abstract syntax term returned
by the semantic interpretation, a subdialogue call is
made to the corresponding VoiceXML form.

The concrete syntax is also compiled to an EC-
MAScript program which can be used to linearize
system outputs.

5 Future Work

Currently, the dialogue model is quite limited. For
real-world use, more flexible dialogue management
would be needed. The Trindi tick list (Bohlin et
al., 1999) could be used to guide such work. Other
possibilities could include support for dependently
typed abstract syntax (Ranta and Cooper, 2004), a
help system with automatically generated examples
for each category, and context-sensitive prompt gen-
eration.

6 Conclusions

We have shown that GF grammars can be used to
implement mixed-initiative information-seeking di-
alogue systems. From the declarative and linguisti-
cally powerful specification that a GF grammar is,
we generate the interconnected components needed
to run dialogue systems using industry standard in-
frastructure. Hopefully, this method can reduce
the development and maintenance costs for dialogue
systems, and at the same time improve their linguis-
tic quality. The methods described in this paper are
implemented as part of the open source GF system2.
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Mikael Sandin. 2006. Software illustrating a unified
approach to multimodality and multilinguality in the
in-home domain. D 1.6, TALK.

Stefan Hamerich, Volker Schubert, Volker Schless, Ri-
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Abstract
This paper presents experiments into the
resolution of “you” in multi-party dialog,
dividing this process into two tasks: dis-
tinguishing between generic and referential
uses; and then, for referential uses, identi-
fying the referred-to addressee(s). On the
first task we achieve an accuracy of 75% on
multi-party data. We achieve an accuracy
of 47% on determining the actual identity of
the referent. All results are achieved without
the use of visual information.

1 Introduction

This paper discusses the disambiguation and resolu-
tion of second-person pronoun “you” in dialog. Our
objectives are to automatically disambiguate the ref-
erential and generic senses, and to resolve the refer-
ential instances through addressee identification us-
ing linguistic features.

This work is motivated by the effort to automat-
ically extract useful information from multi-party
human-human conversation. For example, Purver et
al. (2006) attempt to extract action items: concrete
decisions in which one (or more) individuals makes
a commitment to perform a given task. One critical
roadblock is that of personal deixis: identification of
the individuals in question usually involves personal
pronouns – either singular or plural, as (1) and (2) –
rather than explicit naming.

(1)
A: and um if you can get that binding point also

maybe with a nice example that would be helpful
for Johno and me.

B: Oh yeah uh O K.
∗∗This work was supported by the CALO project

(DARPA grant NBCH-D-03-0010) and ONR (MURI award
N000140510388).

(2)
A: So y- so you guys will send to the rest of us um a

version of um, this, and - the - uh, description -
B: With sugge- yeah, suggested improvements and -

However, to complicate the matter, many second-
person pronoun uses1 do not refer to the addressee
and are generic, as in example (3):

(3)
B: Well, usually what you do is just wait until you

think it’s stopped,
and then you patch them up.

The problem of “you” resolution can therefore be
seen as two sub-problems: (1) determining whether
a “you” is referential, and if so, (2) determining the
number and identity of the addressee(s) referred to.

2 Related Work

Prior linguistic work has recognized that “you” is
not always addressee-referring – e.g. Jurafsky et al.
(2002) distinguish three cases (generic, referential,
and the conventional phrase “you know”) in an in-
vestigation of phonological form – but little work
exists on automatic disambiguation.2 In (Gupta et
al., 2007), we described such a study (to our knowl-
edge, the first) on two-person telephone conversa-
tions, achieving 84% accuracy on disambiguating
generic and referential senses. Here, we extend this
to multi-party data, and add addressee resolution.

In multi-party dialog (unlike two-party dialog),
addressee identification is an important problem,
and there is a growing body of research address-
ing this (Jovanovic et al., 2006b; Katzenmaier et

1There are five second-person pronouns in English: you,
your, yours, yourself, and yourselves.

2Although there is related work on classifying “it”, which
also takes various referential and non-referential readings
(Müller, 2006).
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al., 2004). Jovanovic et al. (2006b) achieve an ac-
curacy of 83.74% when including visual features
such as gaze information, along with more com-
plex information such as meeting action types (e.g.
discussion, presentation, white-board). Galley et
al. (2004) showed some success using only speech-
based information for a related problem – identify-
ing the first halves of adjacency pairs (whose speak-
ers will in many cases be the addressees of the sec-
ond halves) – achieving an accuracy of 90.2%. Our
approach in this paper is closer to the latter in us-
ing only non-visual information, in order to support
a solution in environments lacking video.

3 Data

We used the AMI Meeting Corpus (McCowan et
al., 2005), a multi-modal dataset of 4-party meet-
ings. The meetings are scenario-driven – partici-
pants are assigned roles in a loosely scripted collab-
orative design task, averaging about 30 minutes in
duration. All meetings are hand-transcribed and an-
notated for dialog acts; we used a 15-meeting subset
which is also annotated for addressee (Jovanovic et
al., 2006a), with each utterance labeled with the set
of addressees. Jovanovic et al. (2006a) report that
34.2% of utterances were addressed to all partici-
pants, 61.7% were addressed to single individuals,
with <2% being addressed to 2-person subgroups.

We randomly selected a subset of utterances con-
taining “you” to annotate. Only text and/or audio
were made available to annotators – no videos were
provided during annotation. The result was a 4-way
classification on a per-utterance basis using the fol-
lowing classes: generic, referential, reported refer-
ential, and discourse marker. Examples of the first
three of these classes are given above. The reported
referential class was used to mark when speakers are
quoting other speakers’ referential uses, as in exam-
ple (4). Finally, the discourse marker class was used
to mark instances of the commonly-occurring, se-
mantically bleached version of “you know”.

(4)

B: Well, uh, I guess probably the last one I went to I
met so many people that I had not seen in probably
ten, over ten years.
It was like, don’t you remember me.
And I am like no.

A: Am I related to you?

The reliability of our annotations was acceptable,

with kappa of .84 and raw inter-tagger accuracy of
.92 (assessed over a subset of 108 instances tagged
by two authors). The resulting dataset for generic
versus referential consisted of 952 utterances for
training and 374 for test; overall, 47.4% of cases
were generic. Since the addressee annotations do
not cover all utterances in the meetings, the dataset
for addressee detection had only 291 utterances for
training and 176 utterances for testing (this set of ex-
periments were performed for the utterances marked
as referential); 59.7% of the utterances were ad-
dressed to one person.

For the experiments below, we excluded the re-
ported referential and the discourse marker class
since they both occurred in less than 2% of the
dataset. Note also that the author performing clas-
sification experiments annotated the training set, re-
serving the test set for annotation by another author.

4 Referentiality Detection

We first investigate the disambiguation of generic
versus referential uses. In our earlier work on the
two-party Switchboard corpus, we achieved an accu-
racy of 84.4%, significantly above the baseline per-
formance of 54.6% (always predicting the dominant
class). The best classifier made use of a diverse set
of features including lexical, part-of-speech, and di-
alog act features, together with a set of oracle con-
text features (which assumed perfect knowledge of
the classes of the preceding utterances).

Here, as well as applying the approach to more
complex multi-party data, we wanted to remove the
requirement for these unrealistic oracle context fea-
tures. We therefore used a sequence classifier —
conditional random field (CRF), first introduced by
Lafferty et al. (2001) — allowing us access to the
same contextual information, but via the output of
the classifier. The full set of features is shown in
Table 1.

Note that in the absence of an available DA tag-
ger for this data, we use manually produced DA tags.
This is also unrealistic; we therefore investigated the
substitution of the full DA tagset features with a sin-
gle Q DA feature which indicates the presence of a
questioning dialog act (the AMI elicit acts).
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N Features
Sentential Features (Sent)

2 you, you know, you guys
N number of you, your, yourself
2 you (say|said|tell|told|mention(ed)|mean(t)|sound(ed))
2 you (hear|heard)
2 (do|does|did|have|has|had|are|could|should|n’t) you
2 “if you”
2 I|we
2 (which|what|where|when|how) you

Part of Speech Features (POS)
2 Comparative JJR tag
2 you (VB*)
2 (I|we) (VB*)
2 (PRP*) you

Dialog Act Features (DA)
16 DA tag of current utterance i
16 DA tag of previous utterance i − 1
16 DA tag of utterance i − 2

Other Features (QM)
2 Question mark

Table 1: Features investigated (adapted from (Gupta
et al., 2007)). N indicates the number of possible
values (there are 16 DA tags).

Features Accuracy
Baseline 57.9%
Sent + POS + QM 63.0%
DA 71.9%
Sent + POS + QM + Q DA 70.6%
Sent + POS + QM + DA 75.1%

Table 2: CRF results: generic versus referential

4.1 Results & Discussion

A dominant class baseline on this data gives an accu-
racy of 57.9% (see Table 2). Our best set of features
achieve an accuracy of 75.1% (see Table 2).

Our automatically extracted features (sentential,
part of speech and question mark) achieve an accu-
racy of 63% which is above the baseline. Adding
oracle dialog act information increases accuracy to
75.1%; substituting the more realistic Q DA feature
gives a smaller improvement, resulting in 70.6%.
Note that accuracy is lower than the 84.4% achieved
for two-person data, suggesting that referentiality in
multi-party meetings is a harder task.

5 Reference Resolution

For referential cases, we must now identify the ref-
erence of “you” – in other words, the addressee. As
our interest is in resolving “you”, we investigate this

only for the referential utterances as marked by our
annotators (not for all utterances). The AMI corpus
has 4 meeting participants for each meeting. As 2-
person subgroup addressing is rare (see above), we
can model the problem as a four way classification
task for each utterance – each of the 3 other partici-
pants and the entire group.

Since we have multiple meetings with possibly
different participants, it makes little sense to index
potential addressees by their real-world identity. In-
stead, for a given utterance, the potential addressee
to speak next gets a label of 1; the other two are
given labels of 2 and 3 based on the order in which
they next speak. We use a label of 4 to represent
addressing to the entire group.

Baseline. We can build two baselines. The Next
Speaker baseline always predicts the addressee to be
the next (different) speaker (i.e. a label of 1). The
Previous Speaker baseline predicts the addressee to
be the most recent previous different speaker.

Features. We expect that the structure of the di-
alog gives the most indicative cues to addressee:
forward-looking dialog acts are likely to influence
the addressee to speak next, while backward-looking
acts might address a recent speaker. We therefore
use similar features to those of Galley et al. (2004)
for the related task of identifying the first half of an
adjacency pair. However, since their task was ret-
rospective, their features all involve facts about the
previous discourse context. We therefore adapt the
approach to examine features of subsequent as well
as preceding utterances.

For each utterance and potential addressee, we ex-
amine the pair made up of the original utterance A
and the next (or previous) utterance B spoken by that
potential addressee. We then extract features of the
pair which might indicate the degree of relatedness
of the utterances, including their overlap, separation
and lexical similarity, as shown in Table 3.

We also added a feature for the number of speak-
ers that talk during the next 5 utterances to allow for
better prediction of group addressing. In addition we
included the features from Table 1, to test whether
the features found useful for generic vs. referential
disambiguation would be useful for the task of ad-
dressee detection.
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Structural Features
. number of speakers between A and B
. number of utterances between A and B
. number of utterances of speaker B between A and B
. number of speakers that talk during the next 5 utterances
. do A and B overlap?
Durational Features
. duration of A
. if no overlap, time separating A and B
. if overlap, duration of overlap
. time of overlap with previous speaker
. time of overlap with next speaker
. speech rate of A
Lexical Features
. number of words in A
. number of content words in A
. ratio of words in A that are also in B
. ratio of words in B that are also in A
. number of cue words (Hirschberg and Litman, 1993) in A

Table 3: Features for addressee identification
adapted from (Galley et al., 2004). We obtain a set
of backward looking (BL) and forward looking (FL)
features for an utterance.

Features Accuracy
Baseline: Previous Speaker 23.0%
Baseline: Next Speaker 37.0%
FL + BL + Table 1 47.2%

Table 4: Addressee detection results.

Results & Discussion A CRF trained using all our
features achieves an accuracy of 47.2%, which is a
significant improvement on the baseline. Table 4
presents all the results.

The biggest confusion was found to be between
utterances being classified as 1 or 4 (i.e. the next
speaker or the entire group). Future work will there-
fore involve selecting features which can better dis-
cern between these two classes.

6 Conclusion

For generic vs. referential you disambiguation, our
approach developed on two-party data transfers rea-
sonably well to multi-party data. While accuracy is
lower, it is significantly above the baseline. Use of a
sequence model classifier has allowed us to operate
without oracle context features, and a reduced dialog
act tagset (question identification) provides reason-
able (though reduced) accuracy. A next step here
could be to use automatically classified dialog act
tags.

Addressee detection is a hard problem, but we
have shown promising results. We expect that in-
vestigation of further features, potentially including
video information, will improve performance.
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Abstract

The SIDGrid architecture provides a frame-
work for distributed annotation, archiving,
and analysis of the rapidly growing volume
of multimodal data. The framework inte-
grates three main components: an annota-
tion and analysis client, a web-accessible
data repository, and a portal to the dis-
tributed processing capability of the Ter-
aGrid. The architecture provides both a
novel integration of annotation, analysis,
and search for multimodal data and a pow-
erful framework for web-based, distributed
collaborative annotation and analysis. The
flexibility and capabilities of the system
have been demonstrated through archiving
Talkbank and other spoken discourse and
dialogue data and performing joint multi-
modal analysis of lexical, prosodic, turn-
taking, and other multimodal factors.

1 Introduction

Recent research programs in multimodal environ-
ments, including understanding and analysis of
multi-party meeting data and oral history recording
projects, have created an explosion of multimodal
data sets, including video and audio recordings,
transcripts and other annotations, and increased in-
terest in annotation and analysis of such data. How-
ever, multimodal data poses particular challenges in-
cluding a broad range of annotation and analysis
measures, large storage requirements for media data,
and increased computational complexity of media

data and multi-factor analyses. Furthermore, since
this data is costly to collect and annotate, both in
terms of time and money, there is additional incen-
tive to share data and collaborate on annotation ef-
forts. The wide range of annotations, from aligned
transcripts to gaze to reference to gestural form, of-
ten leads to annotation by multiple expert groups,
possibly geographically distributed, to fully exploit
these resources.

A number of systems have been developed to
manage and support annotation of multimodal data,
including Annotation Graphs (Bird and Liberman,
2001), Exmeralda (Schmidt, 2004), NITE XML
Toolkit (Carletta et al., 2003), Multitool (Allwood
et al., 2001), Anvil (Kipp, 2001), and Elan (Witten-
burg et al., 2006).

The framework described here, developed under
the NSF Cyberinfrastructure Program, aims to ex-
tend the capabilities of such systems by focusing on
support for large-scale, extensible distributed data
annotation, sharing, and analysis. The system is
open-source and multi-platform and based on exist-
ing open-source software and standards. The sys-
tem greatly eases the integration of annotation with
analysis though user-defined functions both on the
client-side for data exploration and on the TeraGrid
for large-scale distributed data processing. A web-
accessible repository supports data search, sharing,
and distributed annotation. While the framework
is general, analysis of spoken and multi-modal dis-
course and dialogue data is a primary application.

The details of the system are presented below.
Sections 2, 3, and 4 describe the annotation client,
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Figure 1: System Architecture

the web-accessible data repository, and the portal to
the TeraGrid, respectively, as shown in Figure 1
below. Section 6 describes system availability and
planned extensions to system functionality.

2 The SIDGrid Client

The SIDGrid client provides the primary interac-
tive multimodal annotation interface. A screenshot
appears in Figure 2. The client extends the open-
source ELAN annotation tool from the Max Planck
Institute1. ELAN supports display and synchro-
nized playback of multiple video files, audio files,
and arbitrarily many annotation ”tiers” in its ”music-
score”-style graphical interface. The annotations are
assumed to be time-aligned intervals with, typically,
text content; the system leverages Unicode to pro-
vide multilingual support. Time series such as pitch
tracks or motion capture data can be displayed syn-
chronously. The user may interactively add, edit,
and do simple search in annotations. For exam-
ple, in multi-modal multi-party spoken data, anno-
tation tiers corresponding to aligned text transcrip-
tions, head nods, pause, gesture, and reference can
be created.

The client expands on this functionality in two
main ways. First, the system allows the application
of user-defined analysis programs to media, time
series, and annotations associated with the current
project, such as a conversation, to yield time series
files or annotation tiers displayed in the client inter-
face. Any program with a command-line or script-
able interface installed on the user’s system may be
added to a pull-down list for invocation. For ex-

1http://www.mpi.nl/tools/elan.html

Figure 2: Screenshot of the annotation client inter-
face, with video, time-aligned textual annotations,
and time series displays.

ample, to support a prosodic analysis of spoken di-
alogue data, the user can select a Praat (Boersma,
2001) script to perform pitch or intensity tracking.
Currently a variety of Praat, R, and Matlab scripts
are supported, and topic segmentation and reference
resolution algorithms are being integrated. Also, the
client provides integrated import and export capabil-
ities for the central repository. New and updated ex-
periments and annotations may be uploaded directly
to the archive from within the client interface. Ex-
isting experiments may be loaded from local disk or
downloaded from the repository for additional anno-
tation.

3 The SIDGrid Repository

The SIDGrid repository provides a web-accessible,
central archive of multimodal data, annotations, and
analyses. This archive facilitates distributed anno-
tation efforts by multiple researchers working on a
common data set by allowing shared storage and ac-
cess to annotations, while keeping a history of up-
dates to the shared data, annotations, and analysis.

The browser-based interface to the archive allows
the user to browse or search the on-line data collec-
tion by media type, tags, project identifier, and group
or owner. A simple permission scheme, based on
Unix-style group permissions, provides public ac-
cess to freely available data while restricting access
to more sensitive data to authorized users. Once se-
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lected, all or part of any experiment may be down-
loaded. In addition to lists of experiment names or
thumbnail images, the web interface also provides
a streaming preview of the selected media and an-
notations, allowing verification prior to download.
(Figure 3)

The repository also supports import of new data.
To support interoperability with other annotation
tools, conversion functions have been developed for
a range of annotation formats, in collaboration with
developers2, using Annotation Graphs as an inter-
change format, in addition to the existing ELAN-
based import capabilities.

All data is stored in a MySQL database. Anno-
tation tiers are converted to an internal time-span
based representation, while media and time series
files are linked in unanalyzed. This format allows
generation of ELAN format files for download to the
client tool without regard to the original source form
of the annotation file. The database structure further
enables the potential for flexible search of the stored
annotations both within and across multiple annota-
tion types.

4 The TeraGrid Portal

The large-scale multimedia data collected for mul-
timodal research poses significant computational
challenges. Signal processing of gigabytes of me-
dia files requires processing horsepower that may
strain many local sites, as do approaches such as
multi-dimensional scaling for semantic analysis and
topic segmentation. To enable users to more effec-
tively exploit this data, the SIDGrid provides a por-
tal to the TeraGrid (Pennington, 2002), the largest
distributed cyberinfrastructure for open scientific
research, which uses high-speed network connec-
tions to link high performance computers and large
scale data stores distributed across the United States.
While the TeraGrid has been exploited within the as-
tronomy and physics communities, it has been little
used by the computational linguistics community.

The SIDGrid portal to the TeraGrid allows the
user to specify a set of files in the repository and
a program or programs to run on them on the Grid-
based resources. Once a program is installed on the
Grid, the processing can be distributed automatically

2http://www.multimodal-annotation.org

Figure 4: Progress of execution of programs on Ter-
aGrid. Table lists file identifiers and status. Graph
shows progress.

to different TeraGrid nodes. Software supports ar-
bitrarily complex workflow specifications, but the
current SIDGrid interface provides simple support
for high degrees of data-parallel processing, as well
as a graphical display indicating the progress of the
distributed program execution, as shown in Figure
4. The results are then reintegrated with the origi-
nal experiments in the on-line repository. Currently
installed programs support distributed acoustic anal-
ysis using Praat, statistical analysis using R, and ma-
trix computations using Matlab.

5 Prototype Use

The system has been applied to spoken and mul-
timodal discourse and dialogue data ranging from
recordings and annotations of multi-party interac-
tions to oral history data to the Talkbank corpus3,
including child language data. This data served as
a corpus for basic development of system capabili-
ties. The developers converted the data from their
original formats for integration into the repository.
The publicly available Talkbank data, such as audio
and video media files, can be viewed, browsed, and
downloaded from the repository and manipulated in
the client-side annotation tool. Prosodic extraction
experiments have been performed both using the lo-
cal client and on the Teragrid, using the dispatch
procedures to concurrently analyze data and me-
dia files on widely distributed hardware resources.
Pitch extraction processes, where analysis of a sin-
gle file runs out of memory on 2GB, dual-processor
Opteron machines, can be completed on 10 files in
1.5 hours with Grid-based servers. These tasks il-
lustrate the scalability of large-scale computation-

3http://www.talkbank.org

233



Figure 3: Screenshot of the archive download interface, with thumbnails of available video and download
and analysis controls.

ally expensive analyses supported by the SIDGrid
framework.

In addition, some preliminary experiments to
assess multimodal search and analysis were con-
ducted. These experiments considered the interac-
tion of prosodic features, such as pitch, with other
modalities such as gaze or head movement, within
turns. These trials demonstrated the capability of
search across multiple annotation tiers - including
manual speech transcriptions and turn annotations -
and time series data from pitch tracking.

6 Future Directions

The SIDGrid infrastructure provides a powerful and
flexible environment for annotation, archiving, and
analysis of multimodal data. The novel, extensi-
ble integration of annotation and analysis both in
the client and in the Grid portal will support greater
ease of data exploration and large-scale data analy-
sis. The overall framework supports both local data
access and distributed annotation and analysis via
access to the repository and TeraGrid.

While the basic infrastructure developed thus far
is already useful, many extensions to functionality
are underway. A major focus is the enhancement
of search functionality, for both data and meta-data
search. We aim to support both aggregate search for
text and annotations across sets of files in the repos-
itory under a range of user-specified constraints and
search for images in the video recordings. Access
to the SIDGrid software and systems is possible
through http://sidgrid.ci.uchicago.edu. Future users
of the system further will guide its development as
new needs come to light.
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Abstract

We will introduce ScIML, a domain specific
language for voice user interface (VUI) cre-
ation that is based on the generic expressive
means of the Unified Modelling Language.
In particular, we employ UML statecharts
for interaction flow modelling.

1 Introduction

In the course of the last decade and beyond, signif-
icant research has been carried out in the field of
dialogue management, in general, and spoken dia-
logue systems, in particular (see, e.g., (Traum, 1996;
Seneff et al., 1998; Larsson et al., 1999; Bohus and
Rudnicky, 2003). On the other hand, available ap-
proaches and technology for developing commercial
dialogue systems – which we will term as Voice User
Interfaces (VUIs) throughout this paper – have so far
not advanced beyond the simple form-filling mecha-
nism underlying VoiceXML (Oshry, 2004). The lat-
ter, at the same time, exhibits a severe lack of modu-
larisation as far as a separation of concerns between
dialogue management, on the one hand, and prompt
and grammar creation, on the other, is concerned.

Missing transformation achievements between re-
search and the ‘voice industry’ may partially be due
to the fact that the latter strongly requires a visual
representation format for VUIs that makes transpar-
ent the functionality of a VUI to all stakeholders in
a project, be it technical or business staff. In addi-
tion, industry projects require that any aspect of a
VUI, in particular its interaction flow, be principally
subject to particular design decisions, i.e. it needs to

be hand-craftable. Both requirements, however, are
outside the primary scope of research on dialogue
management. In fact, the concept of a generic di-
alogue management component which implements
a range of domain independent interaction routines
may even be seen as marking a contrary position, as
long as its functionality is not foreseen to be at least
overridable by domain specific implementations.

Given these findings, this paper will outline the
basic ideas underlying the Scene based Interaction
Modelling Language (ScIML),1 which approaches
the issue of voice user interface creation from the
perspective of model based user interface design.
The expressive means of ScIML are a range of VUI-
specific concepts that are formalised as extensions of
the UML meta model (Group, 2004), whose visuali-
sations are well established within the IT industry. In
particular, ScIML employs UML statecharts (Harel,
1987) for dialogue management purposes, i.e. it re-
lies on a generic formalism for describing the be-
haviour of complex event-driven systems.

Methodologically, ScIML adheres to an ac-
count of user interface modelling that is known as
OO&HCI (Object Oriented Modelling and Human
Computer Interaction). It conceives of UI design as
involving a range of different interrelated modelling
activities. ScIML adopts this approach and supports
the respective activities through appropriate expres-
sive means which exploit the current state of the art
in dialogue systems research. In particular it em-
ploys the two basic concepts of dialogue acts (Poe-
sio and Traum, 1998; Bunt and Girard, 2005) and of

1The ScIML notion of scene is based on proposals for GUI
modelling in (de Paula, 2002).
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Figure 1: Integrated representation format for ScIML, depict-
ing, main and event workflows, topicality relations, non-local
response spaces and move formation

grounding (Clark and Brennan, 1991; Matheson et
al., 2000).

2 ScIML Modelling Activities and
Artefacts

ScIML VUI Referent Models provide, for each ac-
tivity of an underlying Task Model2, a structured
description of the entities that are addressed by the
VUI and/or the user in the course of the realisation
of that activity. Referent models, hence, specify the
potential topics of conversation for some VUI. The
ScIML meta model assumes three abstract referent
types: activity, entity and event, which are concre-
tised as domain activity and VUI activity, domain en-
tity and VUI entity and domain event and VUI event,
respectively. Examples for the latter are, e.g., fail-
ures of speech recognition or missing inputs on the
part of the user.

Over the set of referents of a ScIML referent
model, we further assume the relations of occur-
rence between events and activities, and the one of
involvement that specifies associations between en-
tities, on the one hand, and activities or events, on
the other, as well as between two activities. We
further assume that entities may be complex, which
is reflected by a constituency relation between en-

2ScIML Task Models describe, at a coarse-grained level, the
activities that are actually or supposedly – from a user’s per-
spective – supported by the VUI. Activities may be either do-
main activities or VUI activities, and are structured in the sense
that some activity may involve the realisation of a range of sub-
activities.

tity referents. Activities and events, on their part,
will be considered as complex referents by nature.
Methodologically, these relations serve as a starting
point for referent identification on the basis of a task
model. Assuming that each activity of the latter cor-
responds to an activity referent in the referent model,
it is possible to determine both the entities that are
involved in some activity and the events that may
occur in it.

For authoring a VUI referent model, we use UML
class diagrams whose classes and associations are
profiled on the basis of the assumed referent types
and relations between them.

ScIML Interaction Structure Models define the
topical structure of interactions over some given
VUI referent model. For this purpose, an interac-
tion structure model identifies, first of all, a set of
scenes which can be conceived of as topically co-
herent contexts that span over sequences of moves
by the user and the VUI. Moves, on their part, are
modelled as sets of dialogue acts.3 Both for scenes
and for dialogue acts, the referents that serve as their
respective topics are provided by the constituents of
the VUI referent model. For scenes, it is addition-
ally required that their topics be complex referents.
Interaction structure models, further, describe which
domain functions for accessing backend data and ex-
ecuting transactions are required for each scene’s re-
alisation.

Interaction structure models are authored as class
diagrams that define the topicality association be-
tween the members of the referent model and the as-
sumed scenes and dialogue acts. They further spec-
ify the association between dialogue acts and those
scenes in whose realisations the acts are involved.
Note that interaction structure models are structural
models in the sense that they merely define the set of
scenes for some VUI application, as well as, for each
scene, the set of dialogue acts that may be involved
in its realisation. Both the actual dialogue flow by

3ScIML’s notion of dialogue acts is based on the idea that
for the purpose of VUI modelling, dialogue acts can be de-
scribed by a generic dialogue act type and a domain specific ref-
erent that identifies the topic of the act. This proposal withdraws
from thinking of the propositional content of dialogue acts as
rich semantic representations of system and user utterances. In-
stead, it assumes that the illocutionary force of dialogue acts
– or their update effect, in other terms, see e.g. (Poesio and
Traum, 1998) – operates on assignments of referent values.
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Figure 2: Generic Processing Model for a Workflow in
ScIML

means of which a scene is realised and the cluster-
ing of elementary dialogue acts into moves is outside
the scope of this model type.

ScIML interaction flow models define, for each
scene of an interaction structure model, the realisa-
tion of this scene through a set of event-triggered
workflows. A workflow is a sequence of state transi-
tions between VUI dialogue acts, domain functions
and sub scenes. In this approach, dialogue acts per-
formed by the user are conceived of as a particular
type of event that may trigger the initialisation of
a workflow or a state transition within some active
workflow.

The concepts underlying this type of model are
described, in more detail, in the following section.

ScIML presentation models comprise, on the
one hand, a VUI move model that defines patterns
of VUI dialogue acts that constrain the move forma-
tion on the part of the VUI. On the other hand, they
include the definition of a response space model.
The latter assigns, for each occurrence of a VUI dia-
logue act in the interaction flow model, a set of user
moves that are assembled, on their part, from dia-
logue acts. Presentation models are authored within
an integrated representation format for ScIML that
is exemplified by figure 1.

3 Statecharts-based interaction flow
Modelling

Given our notion of scene as the domain with regard
to which interaction flow will be specified, the pur-
pose of an interaction flow model is to determine,
for each realisation of a scene, whether it is in one
of the following activity states:

• the performance of a dialogue act

• the performance of some domain function for
backend data access or transaction execution

• the realisation of some subscene

For dialogue act states, ScIML assumes that the
corresponding dialogue act will only be realised if
its preconditions hold and as long as they do hold.
This way, e.g., a form filling algorithm can be re-
constructed – as in figure 1 – by a sequence of
query wh dialogue acts which will only be realised
if their respective referents have not been specified
before. Thus, ScIML’s notion of dialogue act states
is able to account for dialogue flow phenomena like
Overanswering.

However, rather than specifying the control algo-
rithm for a scene as a single FSM, we propose to
think of it as being described by a set of workflows
that define transitions over the above states and that
are triggered by events of the following types:

• VUI Events, which indicate a failure to recog-
nise a user’s input, the missing of input by the
user, or any other exceptional behaviour partic-
ular to the usage of a VUI.

• Dialogue Act Events, which signal the perfor-
mance of a dialogue act by the user.

• Grounding Events, which express a change of
the grounding status of some referent. Ground-
ing events will be caused, on their part, by the
performance of dialogue acts.4

• Domain Events, which may be thrown during
the execution of some domain function. The
call of a domain function may, on its part,
be triggered by the occurrence of a grounding
event, e.g. a specified event with regard to
some referent or set of referents.

For each scene there will, further, be one main
workflow that will be triggered upon entering the
scene and that describes, e.g., a form-filling flow.

4We assume that a referent’s grounding status may be either
unspecified, specified, i-grounded, c-grounded, i-rejected
or c-rejected. The notions of i-grounded and i-rejected, on
the one hand, and c-grounded and c-rejected, on the other,
reflect the two dimensions of reliability with regard to a user’s
intention and validity with regard to the given application do-
main.
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4Note, however, that triggering of a workflow may
not immediately result in executing it. Instead, there
is, additionally, a generic workflow prioritisation al-
gorithm that determines the ordering in which work-
flows will be executed. E.g., in case a trigger event
for some workflow occurs outside the context of
the corresponding scene, this workflow will, fur-
ther, generically be prioritised over the scene’s main
workflow. Particularly in voice portals that offer a
variety of services under single entrance point, these
processing routines allow that a user may not only
identify a desired service, but may also provide more
information with regard to the latter’s referents.

As a complementary process to workflow trigger-
ing, ScIML allows to discard workflows that have
been made obsolete by events that occurred after
they have been initialised. With regard to workflow
obsoletion, ScIML assumes that obsoletion condi-
tions can be derived from the triggering conditions
of a workflow.5

For authoring, ScIML employs an abbreviation
of the actual statechart representation. Using stat-
echarts in their particular version as UML activity
diagrams, only the particular flow inside the generic
workflow execution model – i.e. the content of the
Executing state – will be explicitly authored. As
figure 1 shows, these workflows will be specified in
the parallel regions of a scene state.

4 Outlook

The ScIML execution model described in the pre-
vious section has been verified on the basis of the
existing Apache reference implementation of an
SCXML interpreter. SCXML is an XML syntax
for statecharts and has recently been proposed by
the W3C (Auburn et al., 2005) as a standard for
UI interaction flow control. It is also meant to en-
hance VoiceXML towards the creation of more flex-
ible ‘advanced’ VUIs. However, statecharts lack ex-
pressive means for this particular purpose. ScIML,
in contrast, shows how statecharts can be intuitively
profiled for VUI modelling and thus means to con-

5For example, if an i-rejected grounding event occurs for
any referent value involved in a workflow trigger, or if a spec-
ified event specifies an alternative value for the latter, the af-
fected workflows will be obsolete. This will not be the case,
however, if the workflow contains a subscene state that, on its
part, specifies a workflow for the respective event.

tribute to the uptake of SCXML in the voice indus-
try.
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Abstract

We have developed interactive multimodal
software tutors to teach users how to use a
spoken dialogue timetable by guiding users
and monitoring their interaction. They fea­
ture  a  visual  representation  of  the  spoken
dialogue  to  support  error  recognition  and
recovery and thus helping the users to learn
the required interaction style. Two different
versions  of  tutoring  were  compared  to  a
static  web  manual  in  a  between­subjects
experiment (N=27).

1 Introduction

The challenges of  designing spoken dialogue  sys­
tems  are  well  known,  as  are  the  usual  solutions.
How do the users know the functionality provided
by  a  speech­based  system?  How  do  they  know
when  to  speak  and  what  to  say  to  the  system?  A
well designed  speech  interface supports  the users’
natural way of speaking. However,  in practice  the
interface  must also guide users  to  speak  in  a  way
that the system  is able to understand.  Implicit and
explicit  prompts,  hints,  and  tapering  embed  the
guidance  in  the  spoken  interaction.  (Yankelovich,
1996) When a system is used repeatedly, it is plau­
sible that the users are willing to invest some effort
into fully learning service.

How, then, are speech­based systems introduced
to new users? When speech is an additional modal­
ity  e.g.  in  the  case  of  voice  control  systems  in
automobiles, the speech­based features can be de­
scribed  in  the  owner’s  manual  or  users  can  dis­
cover  the  voice  control  possibilities  through  the
graphical  part  of  the  interface.  Unimodal,  tele­
phone­based  spoken  dialogue  systems  need  some

auxiliary material to introduce them to the users. In
addition to an introduction to the service, users are
often  provided  with  some  instructions  on  how  to
use the system. Such a web­based tutorial can im­
prove the user experience and users’ perception of
the system (Kamm, Litman, and Walker, 1998).

Another  approach  to  introducing  new  applica­
tions to users is  software tutoring. This  is popular
with  graphical  interfaces,  particularly  in  video
games, but it has been almost neglected in the case
of speech­based applications. However, the tutorial
type  guidance  can  be  embedded  into  a  dialogue
system, e.g., as a specific guided mode, which can
make the system more transparent to users and thus
help them, for instance, in knowing how to correct
errors (Karsenty and Botherel, 2005). This kind of
guidance can be extended by implementing a soft­
ware tutor, a separate dialogue partner,  which not
only  guides  users  but  also  monitors  their  interac­
tion and makes sure  that  the users  indeed  learn  to
use the system. We have implemented such a tutor
and found it reduced the amount of problems users
have  during  the  learning  period  (Hakulinen,  Tu­
runen, and Räihä, 2006).

Here  we  follow­up  our  previous  work  on  uni­
modal  tutoring  by  studying  graphical  tutoring  in
speech interface. The visual presentation can over­
come the transient and linear nature of speech and
its low output rate. The multimedia tutors are con­
nected to the spoken dialogue system so that a user
can try out the system under the supervision of the
tutor.  Different  tutor  concepts  were  developed
(Hakulinen, Turunen, and Salonen, 2005) and two
most  promising  ones  were  chosen  for  an  experi­
ment.  The  tutors  introduce  the  spoken  dialogue
system to users, guide them through an elementary
scenario, monitor users’  interaction with a  spoken
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dialogue  system  and  provide  guidance  as  neces­
sary, for example, after recognition rejections.

We collected data on users’ interaction with the
tutor  and  the dialogue  system  and users’  attitudes
towards  the  guidance  materials  and  the  system.
The data did not show significant differences in the
task  completion  rates,  but  the  most  troublesome
interactions  occurred  in  the  web  guidance  condi­
tion. The software tutor with more interaction pos­
sibilities  was  ranked  highest  in  the  subjective
evaluations,  while  the  other  tutor  was  ranked  the
worst  among  the  three  conditions. Thus,  the  mul­
timedia tutor can help in learning to interact with a
spoken  dialogue  system,  but  only  when  designed
properly. The graphical  form used  in  the most  in­
teractive guidance helps users in understanding the
functionality  of  the  spoken  dialogue  system.  The
results point out the importance of constructing the
guidance  material  in  a  manner  that  closely  corre­
sponds to the  interaction model of the system: the
interface is essentially a form­filling dialogue, and
the  highest  ranked  tutor  is  based  on  a  graphical
version of the form.

2 Guidance Materials

The  tutors are graphical software  applications  run
on  a  personal  computer  and  they  communicate
with the spoken dialogue application running on a
server. A web manual has been constructed based
on the  tutors by  removing all  interactivity and ar­
ranging the information into a static document. All
material  is  in  Finnish,  figures  and  examples  have
been translated for the paper.

The  spoken  language  dialogue  system  that  the
tutors guide users on  is  called Busman.  It  is a re­
search  prototype  of  a  telephone­based  service  for
Tampere area public transport timetables (Turunen
et al. 2005). Typical utterances understood by the
system  include “Which  line  runs  from  University
Hospital to the city center” and “When after six pm
does  a  bus  depart  from  Hervanta  to  university”.
The  system  uses  form­based  dialogue  manage­
ment.  Implicit  confirmations  are  used extensively
and mostly the interaction is user initiative. System
initiative  prompts  are  used  for  obtaining  missing
information  and  after  repeated  error  situations.  A
short and a rather exhaustive spoken help messages
can be heard by giving respective commands.

The  system  uses  the  Finnish  language  ASR
(Philips SDK with unisex Finnish acoustic models,

about  1500 words  per  grammar) and TTS(Mikro­
puhe by Timehouse). The system does not support
barge­in but telephone keypad can be used to inter­
rupt the system.

2.1 Tutor Design
The goal of  the  tutors  is to  introduce  the Busman
system to new users and teach them how to inter­
action  with  it.  In  five  to  ten  minutes,  users  will
learn the functionality of the system and use it by
following the instructions given by the tutor.

The tutors were presented to users as application
windows  as  can  be  seen  in  Figures  1  and  2.  The
only aural component in the tutors is a notification
sound that directs users’ attention from the applica­
tion context to tutoring when necessary.

The snapshot of Balloon tutor during the hands­
on exercise part can be seen in Figure 1.

Fig. 1: A screenshot of the Balloon tutor.

The Form  tutor  includes all  the  functionality of
the Balloon tutor. And a form consisting of graphi­
cal user interface components, which users can use
to  create queries  that  can be asked  from the Bus­
man system. The GUI form can be seen as a visual
representation of the timetable system. The benefit
of a graphical form is based on a finding by Terken
and teRiele (2001) that a multimodal interface with
a  graphical  query  interface  provided  a  mental
model that can be useful with a speech only inter­
face. The Form tutor is shown in Figure 2.

Guidance  in  both  tutors  is  organized  similarly
into  six  segments,  each  consisting  of  one  text
screen. In addition, there is a hands­on exercise  in
the  middle  of  the  tutoring  where  users  try  out
Busman  under  the  supervision  of  the  tutor.  This
part  consists  of calling Busman and  making  three
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queries.  In  the  end,  there  is  free  experimentation
while the tutor is still active. The last text segment
before the free experimentation is a summary.

Fig. 2: A screenshot of the Form tutor.

Speech  balloons  are  used  to  visualize  spoken
dialogue,  i.e.,  speech  recognition  results  and  sys­
tem outputs, both during the hands­on exercise and
the  free  experimentation.  They  are  also  used  to
display  an  example  dialogue  before  the  exercise.
The balloons use bold face font to emphasize key­
words in user utterances. Furthermore, the balloons
provide a short dialogue history.

The  tutors  guide  the  users  step  by  step  during
the  hands­on  exercise.  The  users  are  told  exactly
what to say when they call the timetable system for
the first time. The tutors monitor the speech recog­
nition  results  for  errors  and  by  comparing  ASR
results  to  the  requested  input,  the  tutors  can  spot
errors  with  certainty  but  not  deduct  their  reason.
They do not guess but provide guidance on how to
remedy  the  situation.  If  the  recognition  results do
not match  the  required input closely enough, help
is  given, and  the user  is asked  to  try  again  maxi­
mum three times, simplifying the requested input if
some information has already been given success­
fully.  The  help  provided  includes  instructions  on
how to speak, such as to use normal voice and talk
after a tone. By pointing out errors and providing
relevant  guidance,  the  tutors  can  help  users  in
learning to detect, diagnose, and correct errors.

In addition  to  the  two  tutors,  a  web based  ver­
sion of  the same material  was created.  It  contains
the same texts and graphics as  the tutors as far as
possible.

3 Experiment

There  were  three  conditions  (named  web,  balloon
and  form), one for  each guidance  material, with 9
participants each. Age of participants ranged from
16 to 41 years with an average of 26. Ten of them
were male and 16 female. Most of them had never
used  spoken  dialogue  systems  and  the  remaining
had had  random usage. Participant’s computer us­
ing skill  ranged from  inexperienced user to active
hobbyist,  most  being  common  users.  There  were
no significant differences on background variables
between the conditions. The participants received a
movie ticket for their participation. They were ran­
domly assigned to the conditions.

The test consisted of a 15 minute learning period
with  the  guidance  and  a  15  minute  period  for
working  with  a  set  of  11  tasks  without  the  guid­
ance material. In the end, participants filled in two
questionnaires where the timetable system and the
guidance material were evaluated.

A  SASSI  questionnaire  (Hone  and  Graham
2000) was used to gather opinions on the Busman
timetable system. A set of questions developed by
Hassenzahl et al. (2000) was used  to gather opin­
ions on the guidance. Both used seven­item Likert­
scale  questions  and  an  additional  field  for  open
comments.  The  guidance  questionnaire  also  in­
cluded  scales  on  the  length,  amount,  and  consis­
tency of guidance. The questions were in Finnish.

In the tasks the participants were asked to find a
bus line number for a given  route and a departure
time that was near a given time.

3.1 Results
Task  completion  rates  were  similar  in  all  condi­
tions. The telephone calls reveal a wider variety of
error  rates  in  the  Web  condition.  Questionnaires
and  general observations made during  the experi­
ments  raise  the  Form  tutor  as  the  most  highly
ranked  guidance  type  and  provide  some  insights
into differences between different kinds of users.

Interaction  with  the  System Users’  interaction
under the guidance of tutors seems to be more con­
sistent while some users of a static manual do just
fine and others have serious problems. While there
were  no  statistically  significant  differences  in  the
error rates between the conditions, the variances of
utterance level error rates (i.e., percentage of utter­
ances  that  did  not  result  in  correct  system  re­
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sponse) between the  three conditions were signifi­
cantly  different  (Bartlett  test  of  homogeneity  of
variances,  df  =  2,  p  <  0.05).  The  Web  condition
had  the  highest  variance  in  error  rates  while  the
Balloon condition had the  lowest. When the train­
ing  part,  i.e.,  the  direct  effect  of  the  condition  is
removed, and only the  interaction during the tasks
is  considered,  the  error  rate  distributions  become
more similar.
Questionnaires The  guidance  evaluation  ques­
tionnaire  resulted  in  different  overall  evaluations
for  the  guidance  materials.  The  differences  are
highly  significant  (Friedman  rank  sum  test  (of
evaluation medians), df = 2, p < 0.001). Rank sums
(higher value – better evaluation) were 55.5 for the
Web condition, 39.5 for the Balloon condition, and
73.0 for the Form condition. There were no statis­
tically  significant  differences  between  the  condi­
tions within single guidance evaluation questions.

There was no significant difference between the
conditions on the SASSI evaluation of the Busman
system. However, participants’ backgrounds corre­
late  with  some  evaluations.  Computer  skills  is  a
variable  that highly  significantly  correlated  (Pear­
son’s  product­moment  correlation  df  =  25,  p  <
0.01)  with  answers  to  five questions.  In  all  cases
more  experienced  computer  users  considered  the
timetable  system  worse,  i.e.,  less  pleasant  and
more  irritating.  Speech  user  interface  experience
correlates  also  with  computer  skills  (Pearson’s
product­moment  correlation,  df  =  25,  p  <  0.05).
However,  computer  skills  did  not  correlate  with
error levels or task completion rates. Furthermore,
the correlations of computer skills were only  with
system evaluations. There was no significant corre­
lation  with  the  guidance  evaluations,  which  sug­
gests that the tutors, while not equally necessary to,
were equally accepted by the different users.

In guidance questions age correlated (Pearson’s
product­moment  correlation,  df  =  25,  p  <  0.001)
negatively with answers to the question “Guidance
was too long”, i.e., younger participants considered
the guidance too long more often than older ones.

4 Discussion

In this study, we compared different guidance ma­
terials to teach to use of a spoken dialogue system.
The  results  indicate  that  interactive  tutoring helps
especially  those  people,  who  would  have  most
problems learning the use with static guidance ma­

terials. While some users can learn to use a system
just fine with just a static manual or even without
any guidance, others have many problems in learn­
ing  the  style  of  interaction  required  in  human­
computer spoken dialogue. Unlike static guidance,
tutors were able to take care of all users. It is worth
mentioning,  that  especially  those,  who  felt  more
insecure  on  using  the  system,  reported  that  they
felt comfortable  when  they received  support  from
the  tutor  in  the  beginning.  Tutoring  can  support
users  who  could  not  learn  the  system  otherwise,
but not all users should be forced to use one.
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Abstract

Usually, human-computer dialogue systems
rely on ad-hoc solutions for the component
performing speech turn generation, in natu-
ral language. However, integration of task-
specific and general world knowledge in or-
der to provide a more reliable and natural in-
teraction with humans also through more so-
phisticated language generation techniques
becomes needed. In this paper we present
performance improvements of a module
simulating in first-order logic Segmented
Discourse Representation Theory for lan-
guage generation in dialogue. These im-
provements concern reductions in computa-
tional costs and enhancements in rhetorical
coherence for the discourse structures ob-
tained, and are obtained using speech-act re-
lated information for driving rhetorical rela-
tions computations.

1 Introduction

Most human-computer dialogue systems rely on
handcrafted, usually template-based, language gen-
eration modules for producing machine’s utterances
(McTear, 2002). However, in the last decade or
so, with the emergence of research results and ideas
from the multi-agent systems domain dialogue sys-
tems became more sophisticated, aiming at better
responses to user’s requests, via a greater natural-
ness and relevance of the speech turns produced, in
relation to the context of the dialogue and to the
users involved (Caelen and Xuereb, 2007), (McTear,

2002). Hence, the natural language generation com-
ponent itself should aim towards more contextual-
ized and pragmatically situated language produc-
tions, involving consideration of rhetorical and ac-
tional aspects of language production. In this con-
text, two research trends became distinguishable: (i)
a rhetoric-based approach, using formal accounts
of discourse originally designed for language inter-
pretation: thus, theories such as Rhetorical Struc-
ture Theory or, more recently, Segmented Discourse
Representation Theory - SDRT (Asher and Las-
carides, 2003) have been adopted for natural lan-
guage generators (Danlos et al., 2003); (ii) a speech-
act based approach, relying on speech act theory
(Vanderveken, 1990-1991) or on extensions of it has
been used in several systems (Stent, 2002).

In this paper, we show performance improve-
ments for a SDRT-based rhetorical structuring com-
ponent of a task-oriented spoken dialogue system;
these, triggered by the usage of speech acts, consist
in: (i) reductions in computational costs involved by
discourse structure update, and (ii) improved selec-
tion capabilities for choosing the most coherent dis-
course structure, out of several possibilities.

The paper is structured as follows: the next sec-
tion provides a brief overview of the baseline rhetor-
ical structuring component, the third one advocates
the usage of speech acts in rhetorical structure up-
date, through a discourse update algorithm; then,
a discourse update example is presented, allowing
comparisons between the baseline approach and the
one integrating speech acts; finally, conclusions and
pointers to further research are put forward.
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2 Logic-Based Rhetorical Structuring
Component

Our team has designed a rhetorical structuring com-
ponent integrated in a natural language generation
module of a task-oriented spoken dialogue system.
In this context, seventeen rhetorical relations have
been chosen, in the framework of SDRT, namely:

- first-order rhetorical relations - Q-Elab, IQAP,
P-Corr and P-Elab, with informal semantics as in
(Asher and Lascarides, 2003), that are strongly re-
lated to temporal aspects in dialogue, hence used in
an approximate manner, specific to the type of dia-
logue concerned (i.e., conversations involving nego-
tiations on time intervals of resource availability);

- second-order rhetorical relations - Backgroundq,
Elabq, Narrationq, QAP, ACK and NEI, with infor-
mal semantics as in (Asher and Lascarides, 2003),
that are less constrained by the temporal aspects of
the dialogues concerned, hence used in a manner
closer to that specified in vanilla SDRT;

- third-order rhetorical relations, specific to mono-
logues and used to relate utterances within a speech
turn, generated by one of the speakers (either the
human or the machine) - Alternation, Background,
Consequence, Elaboration, Narration, Contrast and
Parallel, with semantics as in vanilla SDRT (Asher
and Lascarides, 2003).

Each of these 17 rhetorical relations is expressed
as a predicate in first-order logic; each such predi-
cate is expressed in terms of other predicates instan-
tiating actions, operations and relationships between
entities. These entities are objects either in a task-
independent discourse ontology, or in a task ontol-
ogy, as described in (Popescu et al., 2007); these
predicates take as arguments objects either in the
discourse ontology, or in the task ontology (the en-
tities expressing the semantics of the two utterances
due to be related via a rhetorical relation. The predi-
cates expressing the semantics of the rhetorical re-
lations are linked through the usual connectors in
first-order logic, namely ∧ (“and”), ∨ (“or”), ¬ or
⇒ (implication); furthermore, each predicate in the
discourse ontology is expressed in terms of several
predicates in the same ontology and of objects in ei-
ther of the two ontologies.

3 Speech Acts in Rhetorical Structure
Computation

Previous studies of our team advocated for the cor-
respondences that exist between pairs of speech acts
(Vanderveken, 1990-1991) (customized for human-
computer dialogue) and mapping tables have been
proposed, using a spoken dialogue corpus, acquired
via the Wizard-of-Oz method in the context of a
meeting room reservation task (Caelen and Xuereb,
2007).

The taxonomy of speech act types proposed by
our team supposes that human-computer dialogue is
a coordination of actions according to some rules (in
order to reach a present or future goal). Hence, the
interaction proceeds through an exchange of acts,
each one having two components: (i) a proposi-
tional content, expressing the semantics conveyed
by the utterance produced, and (ii) an illocutionary
act that characterizes the utterance in terms of lan-
guage use. Certain acts are performed in order to
determine changes in the state of things - FA: per-
forming an action (denoted by “DO”), FF: deter-
mining (a speaker) to perform an action (denoted
by “MAKE-DO”); other acts are epistemic in na-
ture, that is, they aim at determining changes in
the discourse state or mental states of the speakers
- FS: informing a speaker about certain facts (de-
noted “MAKE-KNOW”), FFS: asking (a speaker)
about certain facts (denoted “MAKE-DO-KNOW”).
Finally, there are two act types that are deontic in
nature, i.e., they create obligations (necessities) or
give choices (possibilities) - FD: compel (a speaker)
to do something (denoted “MAKE-MUST”), FP:
give a speaker choices of doing something (denoted
“MAKE-CAN”). Each utterance is characterized by
one speech act type, computed, in our architecture,
by the dialogue controller for machine turns and by
the pragmatic interpreter for user turns (Caelen and
Xuereb, 2007); for each pair of utterances one thus
has a pair of speech acts and, from a rhetorical point
of view, a set of rhetorical relations connecting them.

The point we make here is that the set of rhetor-
ical relations connecting a pair of utterances is con-
ditioned not only by the semantics of the utterances
(expressed as logic forms), but also by the speech
acts characterizing them from an illocutionary point
of view; an extensive corpus study regarding this
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FFS
U : Where can I find book “X”?

Possible answers of M

FS
M : It is at the end of this corridor QAP

The plan of the book shelves is down the entrance hall P-Elab
FFS

M : Is it for a scientific report you have to write? Elabq

FP
M : You can take either the hardcover edition, or the DVD edition of this book P-Elab

Figure 1: Speech acts and rhetorical relations: some examples.

for each utterance α to be added to the dialogue SDRS:

1. read its corresponding logic form K(α), through a query
to the dialogue controller (Caelen and Xuereb, 2007);

2. for each utterance β already in the dialogue SDRS:

(a) read its corresponding logic form K(β);
(b) read the pair (γα, γβ) of speech acts for this ut-

terance and the utterance at step 1.;
(c) retrieve the set P of rhetorical relations autho-

rized by the pair of speech acts read at 2.(a);
(d) for each rhetorical relation ρ in set P :

i. read the semantics Σρ of rhetorical relation ρ;
ii. compute the truth value γ of the proposition

Σρ(K(α), K(β));
iii. if γ = FALSE, then go to step 2.(c);

else add ρ to the set of rhetorical relations in
the SDRS and α to the set of utterances in the
SDRS and go to 2.(c).

Figure 2: Dialogue SDRS updating algorithm.

problem is provided in (Caelen and Xuereb, 2007).
An illustrative example in this respect is given in

Figure 1, where we have two speakers, the human
subject (denoted by U ) and the machine (denoted by
M ), and that U tries to reserve a book in a library.

Using corpus-drawn examples of the type pre-
sented in Figure 1, our team has shown that for each
pair of speech acts in dialogue, only some (usually,
two or three) rhetorical relations (out of all the 17
considered) are authorized to connect the utterances
involved (Caelen and Xuereb, 2007).

These results are used for refining the set of can-
didate rhetorical relations in (segmented) discourse
structure - SDRS update, according to an improved
version of the algorithm presented in (Popescu et al.,
2007), by taking into account speech acts in rhetori-
cal structure update.

A rather informal statement of this improved al-
gorithm is presented in Figure 2; steps added in the
present version of the algorithm are shown in bold-

face. A rough estimation of the reductions in the
computational cost involved by discourse structure
updating can be computed supposing that the SDRS
to be updated already contains N utterances, that
the total number of possible rhetorical relations be-
tween utterances is R = 17, and that the average
number of rhetorical relations authorized by a cer-
tain pair of speech acts is M (usually, 3, according
to our studies). Furthermore, assuming that the time
needed to read or retrieve logic formulas or speech
acts is a negligible constant (since these elements
are computed by the dialogue controller, indepen-
dent of the language generation component (Caelen
and Xuereb, 2007)), the computational cost of up-
dating the SDRS with one utterance is N×R proofs,
since each of the R rhetorical relations needs to be
checked for each of the N utterances in the dialogue
SDRS. We suppose that the time needed to prove a
rhetorical relation between two utterances is a con-
stant, T , thus the computational cost could be eval-
uated at N × R × T without speech acts, and at
N × M × T with speech acts, hence a reduction
of R/M is achieved. For the average values of R
and M , the computational cost is reduced around 6
times when using speech acts.

4 Discourse Structure Update Example

In order to illustrate the augmentation of the perti-
nence for an updated SDRS, we consider the dia-
logue below (here, πi denotes the label of the i-th
speech turn):

U : π1: Where can I find some book about “F”?
M : π2: You want a book on “F” written by whom?

U : π3: What’s available?

From this point on, the machine is supposed to
answer that books by authors “A” and “B” are avail-
able on the subject “F” and to give the user the op-
portunity to choose between these two authors; this
drives M to produce two utterances, as an act of
informing the user (a FS), and as an act of giving
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U : π 1: F F S

: π : F F SM 2
Elab q

U : π : F F
3

S

: π : F F SM 2
Elab q

U : π : F F
3

S

: π : FM 4
S U : π 1: F F S

: π : FM 5
P : π : F F SM 2

U : π : F F
3

S : π : FM 4
S : π : FM 5

P

Elab q

Elab q
U : π 1: F F S

ConsequenceQ−ElabQ−Elab

Consequence
Background

QAP

Q−Elab

P−Elab

Figure 3: Discourse structure update process.

him a choice (a FP); for these, only logic forms
are available (from the dialogue controller (Caelen
and Xuereb, 2007)); however, for the ease of com-
prehension, possible linguistic forms for them are
given, in italics, below:

M : π4: We have books by authors “A” and “B”.

M : π5: Which one you like?

Then, the machine builds a sub-SDRS using these
two utterances, π4 and π5, and adjoins this sub-
structure to the dialogue SDRS, formed with the
utterances π1 to π3. This process is illustrated in
Figure 3; the rhetorical relations between utterances
are marked by directed labeled arrows. In da-dotted
lines are marked the rhetorical relations computed
as valid by the logic-based SDRS update module,
but not authorized by the pair of speech acts. Thus,
when the machine links π4 and π5 through a rhetor-
ical relation, only Consequence, authorized by the
pair of speech acts FS and FP in a monologue con-
text, is found between these utterances. Next, the
sub-SDRS thus obtained is connected to the dia-
logue SDRS containing utterances π1 to π3 via sev-
eral rhetorical relations: (i) QAP (π3, π4), (ii) Back-
ground (π4, π2), (iii) P-Elab (π2, π5), (iv) Elabq (π1,
(π4, π5)). From these, Background(π4, π2) and
Elabq(π1, (π4, π5)) are not authorized by the pairs
of speech acts, which corresponds to our intuitions
and to the informal semantics of the rhetorical rela-
tions in SDRT (Asher and Lascarides, 2003).

5 Conclusions and Further Work

In this paper we have presented several improve-
ments concerning a rhetorical structuring compo-
nent for language generation in dialogue. These,
based on speech act induced constraints, consisted
in reduced computational costs for discourse struc-

ture update, and in greater agreement between the
discourse structures obtained and human intuitions.

At present, a rhetorical structuring component
prototype, integrating constraints induced by speech
acts, is under development. In the near future,
the discourse structuring module described in this
paper will be coupled with other aspects rele-
vant to spoken language generation in human-
computer dialogue, namely illocutionary force con-
trol (Vanderveken, 1990-1991) and (pragmatically-
motivated) anaphora generation.
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Abstract 

This paper describes a dialogue manage-
ment method suitable for automatic trou-
bleshooting and other problem-solving ap-
plications. The method has a theorem-
proving flavor, in that it recursively de-
composes tasks into sequences of sub-tasks 
and atomic actions. An explicit objective 
when designing the method was that it 
should be usable by other people than the 
designers themselves, notably IVR applica-
tion developers. Therefore the method has 
a transparent execution model, and is con-
figurable using a simple scripting language.  

1 Introduction 

In what follows, we will consider problem-solving  

dialogues with the following characteristics: 

• The dialogue participants are a novice and 
an expert. 

• The novice has a problem he cannot solve, 
but is able to make observations and per-
form actions. 

• The expert has the required domain knowl-
edge to solve the problem, but has a limited 
capacity to make observations and perform 
actions. 

• Because of this, the novice and expert need 
to communicate (using natural language) to 
jointly solve the problem. 

Such dialogues appear, for instance, in the con-
text of over-the-phone technical support and trou-
bleshooting. Consider the situation where a service 
agent is helping to restore a customer’s Internet 

connection. The agent may perform some tests re-
motely (pinging the customer’s computer, check-
ing for network failures, etc), but for the most part 
the agent tries to nail down the problem by asking 
the customer to perform a number of actions: re-
starting the modem, restarting the computer, dis-
connecting routers and hubs, checking and chang-
ing network settings in the computer, etc. The cus-
tomer mostly acts as an answer supplier and the 
executor of the actions proposed by the agent.  

In this paper, we will consider the challenge of 
automating the expert by means of a spoken dia-
logue system. Several issues need to be addressed. 
First, because the system cannot perform all ac-
tions or make all necessary observations, ground-
ing and avoiding misunderstandings become very 
important. The system must make the user under-
stand what action to perform next, and then itself 
understand the outcome of that action. 

Second, the system must be able to adapt to dif-
ferent users with different levels of domain knowl-
edge. This is particularly important in tech-support 
domains. While some users are perfectly comfort-
able with terms like “modem”, “command win-
dow”, “IP number”, etc, many others don’t know 
the technical terms, and indeed have very vague 
conceptions of computers in general. Therefore the 
system needs to adapt its explanations to the needs 
of the specific user. 

Third, the system must be readily configurable, 
maintainable, and possible to port to new domains 
by application developers who do not (need to) 
know exactly how the system is implemented. To 
this end, it is important that the system offers a 
scripting language in which applications can be 
coded. This scripting language must have a trans-
parent execution model, so that developers can 
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foresee all possible situations that can arise during 
interaction with a user. (This last point is crucial 
for achieving “VUI completeness” in the sense of 
Pieraccini and Huerta (2005), and thus a prerequi-
site for a dialogue system to be useful in an indus-
trial setting). 

This paper describes a configurable dialogue 
manager for problem-solving dialogue applications. 
It is currently being used in a prototype for provid-
ing automated broadband support to the customers 
of TeliaSonera1, and we will use examples from 
this domain throughout the article. An earlier ver-
sion of the model (not as easily configurable) was 
used in the “Nice” fairy-tale computer game proto-
type (Boye and Gustafson 2005, Boye et al. 2006) 
as a means to control the behavior of virtual game 
characters (see Sect 8). 

2 Problem-solving tasks and dialogues 

Consider the Internet connection problem again. 
The service agent knows that in order for the cus-
tomer‘s connection to work, several conditions 
need to be satisfied: the network must be function-
ing, the user must have paid his bill, and the user’s 
equipment must be functioning and set up appro-
priately. Put equivalently, if the Internet connec-
tion does not work, one of the conditions just men-
tioned must be unfulfilled. This latter formulation 
suggests a procedure for finding the source of the 
connection error; just check the prerequisite condi-
tions one at a time, until the error is uncovered. If 
we find that one condition is fulfilled (e.g. the net-
work is working properly), we can cross it off our 
check list and proceed to examining the other con-
ditions, as the problem surely must lie with one of 
them.  

Some of the conditions are complex, and can be 
decomposed further into sub-conditions. For in-
stance, that “the user’s equipment is functioning” 
involves checking that the modem, router, com-
puter, wires, etc. are all ok, and some of these sub-
conditions can be further broken down into sub-
sub-conditions, and so on. That is, the trouble-
shooting process takes the form of a hierarchical 

task decomposition process.  
The way propositions are expressed in terms of 

sub-propositions as above is reminiscent of Prolog 

                                                 
1 TeliaSonera is the leading telecommunications provider in 

the Nordic-Baltic region in Europe. 

(Sterling and Shapiro, 1994). The problem could 
also be viewed as one of finding a sequence of ac-
tions that transform the current state of affairs (in 
which the Internet connection is not working) into 
a desired goal state (in which the connection 
works). On this viewpoint, the problem seems 
amenable to AI planning approaches like STRIPS 
(Fikes and Nilsson, 1971).   

However, both Prolog and STRIPS-like ap-
proaches assume that full information is available 
from the very beginning, and that problem solving 
amounts to searching through known facts about 
the domain. This is not the case in the problem-
solving domains we are considering. A further 
complication is the fact that the agent cannot carry 
out actions directly, and cannot foresee which in-
structions will be understood or not. This is evident 
from the following fragment (taken from a longer 
dialogue): 

 
1. Agent: We will need to restart your mo-

dem. Do you know where your modem is? 
2. User: Uh, no. 
3. A: I’ll help you find it. Can you locate the 

telephone plug in the wall? 
4. U: Uh, yes. 
5. A: One of the cables going from the tele-

phone plug should lead to a little box that 
probably has some lights on it. 

6. U: Ok. 
7. A: That is your modem. 
8. U: Ok, I see it. 
9. A: Good! Now, the modem has a power 

cord as well. I want you to unplug that 
power cord in order to restart the modem. 
Can you do that now? 

 
The user cannot directly restart his modem since he 
cannot locate it, so the agent needs to embark on a 
longer explanation (utterances 3–8).  

A striking feature of such troubleshooting dia-
logues is the amount of effort the agent spends on 
grounding. In fact, the agent needs to have almost 
every instruction acknowledged by the user (usu-
ally a brief “yes” or “OK” is sufficient). If the user 
does not know how to carry out an instruction (as 
in utterance 2 above), or rejects it for some other 
reason, the agent will either explain further, or 
abandon the current strategy altogether and try an 
alternative way to proceed. 
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Smith and Hipp (1994) proposed the “missing 
axiom theory” as the driving force in problem-
solving dialogue management. In this view, com-
pletion of actions is represented by theorems, and 
making sure that an action has been completed in-
volves constructing a proof for the corresponding 
theorem. If the proof can not be carried out be-
cause some needed axiom is missing, the theorem 
proving process is suspended, and the user is asked 
to provide the missing axiom (this amounts to a 
request to the user to perform an action needed to 
complete the overall task). 

Since Smith’s system, several other researchers 
have applied hierarchical task decomposition to 
dialogue, notably Rich and Sidner (1996), Lemon 
et al (2002), and Bohus and Rudnicky (2003). The 
approach presented in this paper differs from 
aforementioned approaches primarily by featuring 
a much simpler way of scripting dialogue applica-
tions. Automated troubleshooting dialogue has re-
cently been addressed by Acomb et al (2007), and 
by Williams (2007), who uses a statistical dialogue 
management approach rather than hierarchical task 
decomposition. 

3 Encoding the domain 

3.1 Speech acts 

An analysis of a corpus of dialogues between hu-
man service agents and customers revealed that the 
vast majority of the agent’s utterances can be de-
scribed using only six speech acts. These are “re-

quest action” (e.g. “Locate the telephone plug in 
the wall”), “request info” (“What operating sys-
tem is your computer running?”), “request info 

yes/no” (“Is your router wireless?”), “ground 

status” (“Now a window should appear”), “in-

form” (“There may be a problem with your 
router”), and “acknowledge” (“Good!”).  

After having performed an “inform” speech act, 
the agent is not really expecting any reply from the 
customer; making an “inform” is just granting ex-
tra information concerning the state of the trouble-
shooting process (often used when a topic is intro-
duced (“We will need to disconnect your router”) 
or when it’s closed (“Now we’ve disconnected 
your router.”)). In contrast, the “request info” 
speech act requires a reply from the customer, and 
the agent cannot proceed without it. A “ground 

status” is used when the agent wants to confirm a 
certain result, for instance that the user can see the 

“Start” menu appearing on his screen after having 
clicked the “Start” button. The main purpose of a 
“ground status” speech act, from the agent’s point 
of view, is to make sure that the user has indeed 
carried out and understood the effects of the latest 
action, and is ready to receive the next instruction. 

Similarly, the customers’ utterances can be clas-
sified using speech acts such as “inform” (typi-
cally as a reply to a “request info”), “inform-yes” 
and “inform-no” (in response to a “request info 
yes/no”), “acknowledge” (typically signaling un-
derstanding in response to a “request action” or 
“ground status”), “please clarify” (signaling non-
understanding), and “please wait” (when the user 
needs more time to carry out some action). Addi-
tionally, the customer usually states the problem at 
the very beginning of the dialogue. We will not 
consider this heterogeneous group of utterances in 
this article, as they are dealt with using statistical 
classification methods (see Boye and Wirén 2007 
for a description of that system), quite unlike those 
presented here. 

We will also consider instantiations of the basic 
speech acts. For instance, “locate the telephone 
plug in the wall” is an instantiation of a “request 

action”, which we will represent as requestAc-

tion(locate_telephone_plug).  In general, we will 
represent (the semantic value) of an utterance2 by 
such an instantiated speech act f(a1, a2, …, an), 
where f is the basic speech act, and the arguments 
a1…an are terms representing the additional infor-
mation. As another example, “the IP number is 
131.1.15.23” would be represented as in-

form(ipNumber, 131.1.15.23)  whereas “no” 
would be represented simply as inform-no.   

We can now encode the entire dialogue example 
of section 2, as follows: 

 
1. Agent: inform(restart_modem);  
   requestAction(locate-modem) 
2. User: pleaseClarify 
3. A: requestAction(locate-telephone-plug) 
4. U: acknowledge 
5. A: requestAction(follow-cable-from-

telephone-plug) 
6. U: acknowledge 
7. A: groundStatus(locate-modem) 

                                                 
2 In general, an utterance may be represented by a se-
quence of speech acts (and not necessarily a single 
speech act). 
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8. U: acknowledge 
9. A: acknowledge 
            requestAction(unplug-power-cord-
from-modem) 

 

3.2 Information state 

Relevant information about the domain is stored as 
attribute-value pairs. For instance, we may con-
ceive of an attribute ipNumber whose value is 
131.1.15.23. A “proposition” is any statement of 
the domain that can be either true or false. In par-
ticular, the expression valueOf(x,y)  denotes the 
proposition that the attribute x has the value y. 
Some attributes can only take the values true, 
false, or don’t know. If x is such an attribute, we 
will take the expression x to mean the same thing 
as valueOf(x,true). For instance, modem-

restarted means the same thing as val-

ueOf(modem-restarted, true).  We will refer to 
the ensemble of attribute-value pairs as the “infor-
mation state”.  

A proposition is considered to be true, and 
stored in the information state, as soon it is ac-
cepted by the user. For instance, the proposition 
locate-telephone-plug is added after the user’s 
acknowledgement in utterance 4, and follow-

cable-from-telephone-plug is added after utter-
ance 6.The proposition locate-modem is not added 
after utterance 2 since the user does not acknowl-
edge, but is added after utterance 8.  Thus, the 
presence of a proposition like locate-modem in the 
information state in this case means that the user 
has confirmed that he has performed the action 
“locate modem”.  (One may argue that the user 
having located his modem is an observation rather 
than an action. However, the distinction between 
verified executed actions and verified observations 
is intentionally blurred.) 

Non-Boolean values of attributes are added after 
an inform reply from the user (as, for instance, in 
the exchange: “What operating system is your 
computer running?”, “Windows”). The presence of 
the proposition valueOf(operating-system, win-

dows) in the information state means that the sys-
tem has already performed a speech act request-

info(operating-system), or obtained the informa-
tion by some other means. In any case, the ques-
tion needs not be asked again. 

4 Deciding system actions 

4.1 Dialogue rules: syntax and informal in-

terpretation 

In what follows, we will use a rule-based approach 
of representing the problem decomposition process 
outlined previously. A rule for making the user 
restart his modem might look like this: 
 
satisfy(restart-modem) { 

  satisfy locate-modem; 

  perform requestAction(unplug-power-

cord-from-modem); 

  perform requestAction(plug-power-

cord-into-modem); 

  perform groundStatus(restart-

modem); 

} 

Informally, such a rule is to be interpreted: “In 
order to have the modem restarted, first make sure 
that the modem is located (by the user), then ask 
the user to unplug the power cord, and then ask the 
user to plug the power cord back in again. Finally, 
ask the user to verify that the modem actually has 
been restarted”. (We will return to the formal in-
terpretation of the rule shortly.)  

That is, the process of satisfying a certain goal 
can be broken down into a sequence of steps, each 
of which is either a sub-goal to be satisfied, an ac-
tion to be executed, or a condition that should be 
true. The general form of a rule is 
 
satisfy( G ) { B1; B2; …; Bn; } 

 
where G is a proposition to be satisfied (“the 
goal”), and each Bi is an expression of one of the 
following forms: 

• satisfy P (where P is a proposition) 

• perform A (where A is an action, i.e. 

either a speech act or a request for a non-
verbal action, such as pinging the user’s 
computer) 

• holds P (where P is a proposition) 

 
(We will explain the holds construct in end of 

this section.) 
Continuing the example, there are two rules for 

the sub-goal locate-modem, corresponding to 

two alternative strategies for how the agent can 
proceed. The simple way of making sure the user 
has located his modem is simply to ask him: 
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satisfy(locate-modem) { 

  perform requestAction(locate-

modem); 

} 

The speech act requestAction(locate-

modem) could for instance be verbalized as “Do 
you know where your modem is?”, as in the sec-
ond sentence of  utterance 1 in the example of sec-
tion 2. If the user okays this request, the system 

will draw the conclusion that the goal locate-

modem is fulfilled (i.e. add that proposition to its 
information state). Another strategy to fulfill the 

goal locate-modem is to give a step-by-step 
explanation: 
 
satisfy(locate-modem) { 

    perform requestAction(locate-

telephone-plug); 

    perform requestAction(follow-

cable-from-telephone-plug); 

    perform groundStatus(locate-

modem) 

} 

This is what the agent does in utterances 3-8 in the 
example of section 2. 

The informal interpretation of the construct 
“holds P” is that the proposition P must be true 

at that point in order for the rule to be applicable. 
Usually, it is used as a pre-condition, as in the rule: 

 
satisfy(check-network-settings) { 

holds valueOf(operating-system,      

windows); 

. . . more . . .  

} 

 

Unless the system already knows that the user’s 
operating system is Windows, this rule is not ap-
plicable.  

We will also allow variables in rules, as in the 
following rule (variables are prefixed with a “$”): 

 
satisfy(valueOf(radio-button($x),$y){  

  perform requestAction(tick(radio-

button($x, $y));  

} 

This rule states that one way of ensuring that the 
alternative $y is ticked in the radio button $x is to 
ask the user to tick it (whatever the values of $x 
and $y). The use of variables is a notational con-
venience that reduces the number of rules by in-
creasing their applicability. 

Rules such as these constitute a static specifica-
tion of how the automated agent can go about di-
agnosing and correcting the error (by “static” we 
mean that the rules will not change during the 
course of a dialogue).  

4.2 The agenda and the formal interpretation 

of dialogue rules 

During the course of the dialogue, the system 
makes use of the rules to construct and traverse a 
dynamic tree-structure, the agenda, which at any 
point in time represent current and future goals and 
actions. The agenda is a tree-structure since goals 
are represented as parent nodes of the sub-goals 
and actions needed to fulfill them. 

Agenda trees can be defined inductively as fol-
lows: 

• if P is a proposition, then a single node la-
beled with “satisfy P” is an agenda; 

• if A1 is an agenda, then A2 is an agenda if 
A2 can be constructed from A1 by means 
of the following expansion operation: 
(1) choose a leaf node L which is labeled 

“satisfy X”  

(2) choose a matching dialogue rule 
“satisfy Y { B1; … Bn }”, 

where σ is a binding of the variables in 

Y, such that σ(Y)=X. Add n children 

to L, labeled σ(B1), …, σ(Bn). 
 

As an example, the agendas in figures 1c and 1d 
(found at the end of the article) are both obtained 
by expansion (using two different rules) of the 
agenda in figure 1b, which in its turn is an expan-
sion of the agenda 1a.  

Note that it is also possible to transform agenda 
1c into 1d by selecting the node labeled “satisfy 

locate-modem”, pruning all children below that 
node (we will refer to this operation as performing 
a “cut-off” at that node), and then expanding that 
same node using another rule.  

Whenever the system needs to decide what to do 
next, it searches, expands and transforms the 
agenda in order to find the next action node. The 

next action node is always labeled “perform A”, 
where A is taken to be the action to be carried out 
next. 

In order to find the next action node, the agenda 
is searched depth-first, left-to-right, starting from 
the top node, ignoring already satisfied goals and 
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executed actions, until the first non-executed ac-
tion is encountered. More precisely, for each vis-
ited node n, the following decisions are made: 

1. If n is labeled “perform A”:  

a. If A has already been performed 
(this is determined as described in 
section 3.2), then proceed to the 
next sibling node.  

b. If A has not been performed, then 
n is the next action node, and A is 
the action to carry out next.  

2. If n is labeled “satisfy P”:  

a. If P is a true proposition then pro-
ceed to the next sibling node.  

b. If P is not true, then proceed to the 
leftmost child of n. If n is a leaf 
node, then expand (using the ex-
pansion operation above), and then 
proceed to the leftmost child of n. 

3. If n is labeled “holds P”:  

a. If P is a true proposition, then pro-
ceed to the next sibling node.  

b. If P is not true, remove n and all of 
n’s siblings. Then expand n’s par-
ent node, using another rule than 
before, and proceed to the leftmost 
child of n. 

 
In cases 2b and 3b, the system currently uses the 

Prolog-like strategy of using the rules in the order 
they are listed. That is, in case 2b the first match-
ing rule is selected, and in case 3b the first unused 
matching rule is selected. 

To illustrate how the system uses the agenda, 
suppose figure 1a is the starting point. The system 
would expand the agenda twice, leading to figure 
1c. The next action node is thus labeled “perform 

requestAction(locate-modem)”, which is what the 
system will say (verbalized as utterance 1 of the 
dialogue example of section 2).  

Since the user does not acknowledge but rather 
asks the system to clarify (in utterance 2), the sys-
tem considers the chosen strategy to be no good. 
As a reaction, the agenda is rebuilt into figure 1d.  

5 Interpreting user input 

Each speech act has an associated system utter-
ance, and most of them have an associated gram-
mar. Furthermore, all speech acts have an associ-
ated set of expectations that tells the system how 

to interpret the user’s input. When a particular 
speech act is chosen by the system as the next ac-
tion, the associated utterance is played, and then 
speech recognition is performed using the associ-
ated grammar. If there is no associated grammar, 
the system assumes that it is its turn to speak again. 

After request action and ground status speech 
acts, a grammar is used which is capable of recog-
nizing the user speech acts acknowledge, please 

clarify, and please wait (speech recognition 
grammars with semantic attachment rules are used, 
so there is no need for a separate parsing step). As 
explained in section 3.2, an acknowledgement 
from the user makes the system consider the 
proposition under discussion to be true (and add it 
to the information state).  This is what happens in 
the utterances 3-8 in the dialogue example. Using 
the algorithm described in section 4.2, the system 
traverses the agenda (in figure 1d), and visits the 
nodes marked A, B, and C, in that order.  

On the other hand, if the user asks the system to 
clarify, the system will abandon its current strat-
egy, and rebuild the agenda. That is what happens 
after utterance 2, when agenda 1c is rebuilt into 
agenda 1d. This is done by removing the current 
action node and all its siblings, and re-expanding 
the parent node (in this case labeled “satisfy lo-
cate-modem”) using the next applicable rule. 

Some speech acts have specially developed as-
sociated grammars. For instance, the speech act 
requestInfo(ipNumber) has a grammar recogniz-
ing IP numbers, and so on. The recognized utter-
ance will be interpreted as a value for the attribute 
(ipNumber, in this case), unless the user makes a 
please clarify  or please wait speech act (these are 
always among the user’s options).  

 

6 Associating utterances with tree events 

In the algorithm of section 4.2, the agenda is trav-
ersed, expanded and transformed in order to find 
the next action. During this process, a number of 
events are generated, notably 

• When a satisfy node is expanded (a 
“topic intro” event). 

• When a cut-off is performed at a satisfy 
node, and the node is expanded using the 
next applicable rule (a “new strategy” 
event). 
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• When a proposition P is first found to be 
true, after it has previously been found to 
be false (a “topic outro” event). 

• When the system attempts to rebuild the 
tree, but there are no more unused match-
ing rules (a “cannot solve” event). 

 
Note that the first two events correspond 

(roughly) to the “call” and “redo” entry points in 
the Prolog “procedure box” control flow model 
(Byrd 1980), whereas the two latter events corre-
spond, respectively, to the “exit” and “fail” points 
in the same model.  

A useful feature in the dialogue manager is that 
it allows the dialogue designer to associate system 
utterances to such events. If there is no associated 
utterance, an event will just pass unnoticed, other-
wise the associated system utterance will be gener-
ated.   

For example, the event topicIntro(restart-

modem) is generated when the agenda in figure 1a 
is expanded into figure 1b, and the event topicIn-

tro(locate-modem) is generated in the transition 
from 1b to 1c. Suppose we associate the utterance 
“We will need to restart your modem” with the 
former event (and no utterance with the latter 
event); then this utterance is generated just before 
the requestAction(locate-modem) utterance (“Do 
you know where your modem is?”). Together, 
these two make up the system’s first utterance in 
the dialogue example of section 2. 

In the same vein, we may associate the utterance 
“Good!” with the event topicOutro(locate-

modem). When the user has finally located his 
modem (in utterance 8), the proposition locate-

modem is added to the information state. At that 
point in time, the agenda looks like figure 1d. 
When the system traverses it and reaches the “sat-

isfy(locate-modem)” node, the topicOutro(locate-

modem) event is generated just before the system 
moves to the next node and generates the re-

questAction(unplug-power-cord-from-modem) 
utterance. Together, these two make up utterance 9 
in the dialogue example. 

7 Putting it all together 

This is a summary of the execution model of the 
dialogue manager: 

1. The agenda is traversed (and possibly ex-
panded or transformed) using the algo-

rithm of section 4.2. All utterances asso-
ciated with the ensuing tree events are 
generated. 

2. The result of step 1 is an action or a 
speech act (if there is no result, the dia-
logue is finished). Perform this action (in 
the case of a speech act, generate the as-
sociated utterance).  

3. If the speech act has an associated gram-
mar, perform speech recognition. Then in-
terpret the resulting speech act based on 
the expectations associated with the sys-
tem’s latest speech act. 

4. Go to 1. 
 

8 Other kinds of problem-solving appli-

cations 

We began the paper by considering dialogues fea-
turing an expert and a novice, trying jointly to 
solve a problem. The endeavor here has been aim-
ing at automating the expert side of such a dia-
logue.  

 Other configurations are also possible. In spo-
ken natural language robot control interfaces, such 
as considered e.g. in Rayner et al. (2000), the hu-
man takes the role of the expert, having the respon-
sibility for long-term planning, whereas the robot 
is the novice, responsible for executing actions and 
making observations. If the robot or device has 
some planning capabilities of its own, the expert-
novice distinction is not clear-cut, and plans may 
be constructed jointly (see Rich and Sidner 1996, 
Lemon et al 2002).  

An interesting situation is when both the expert 
and the novice are automated. This might be the 
case in interactive entertainment (Cavazza et al 
2002), or in computer games such “Nice” (Boye 
and Gustafson 2005, Boye et al 2006). The Nice 
game features two animated characters with whom 
the user can talk; however they can also communi-
cate with each other and interfere in each other’s 
plans.  

The Nice game used the same dialogue man-
agement kernel as the one described in this paper. 
However, free input was allowed (using a stochas-
tic language model for speech recognition, and a 
separate robust parsing step), and the system was 
also capable of performing some reference resolu-
tion. Another difference is that the tech-support 
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application described here has a fixed overall goal 
with the dialogue (the top node of the agenda), 
which is kept throughout. By contrast, the game 
characters in the Nice game added new goals to the 
agenda during the dialogue, as a result of the user’s 
requests and questions.  

9 Concluding remarks  

In the introduction, we stated three important is-
sues: (1) grounding and avoidance of misunder-
standings, (2) on-the-fly adaptation to different 
kinds of users, and (3) ease-of-use for application 
developers.  

Misunderstandings are avoided, or at least made 
less probable, by not updating the information state 
without a confirmation from the user. Rules that 
encode action chains in several steps are best con-
cluded with a ground status speech act, which the 
user has to confirm (“Now you’ve restarted your 
modem.”, “Ok!”).  

The system adapts to the user by rejecting the 
current strategy and replacing it with an alternative 
strategy (an alternative dialogue rule) as soon as 
the user indicates that he does not understand. This 
may amount to no more than replacing a direct re-
quest (“Can you restart your modem?”) with a 
more elaborate step-by-step description to achieve 
the same thing. But it may also mean trying an al-
ternative way to proceed. For instance, if the user 
is unable to detect the “Start” button on the screen 
of his Windows computer, the system may instead 
ask him to press the “Windows” button on his key-
board.  

Finally, as concerns ease-of-use for application 
developers, our initial experiences are positive, 
though the broadband tech-support prototype is 
still under development. It is planned to be de-
ployed by the end of 2007.  
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Figure 1(a): An agenda consisting of one node 
 

 
Figure 1(b): An agenda which is an expansion of 1(a) 
 
 

 
Figure 1(c): An agenda which is an expansion of 1(b) 
 
 

 
Figure 1(d): Another agenda which is an expansion of 1(b) 

 

satisfy restart-modem 

satisfy restart-modem 

satisfy locate-modem 

perform requestAction(unplug-power-cord-from-modem) 

perform requestAction(plug-power-cord-into-modem) 

perform groundStatus(restart-modem) 

satisfy restart-modem 

satisfy locate-modem 

perform requestAction(unplug-power-cord-from-modem) 

perform requestAction(plug-power-cord-into-modem) 

perform groundStatus(restart-modem) 

perform requestAction(locate-modem) 

satisfy restart-modem 

satisfy locate-modem  

perform requestAction(unplug-power-cord-from-modem) 

perform requestAction(plug-power-cord-into-modem) 
(13) (11) 

perform groundStatus(restart-modem) 

perform requestAction(locate-telephone-plug) (A) 

perform requestAction(follow-cable-from-telephone-plug) (B) 

perform groundStatus(locate-modem) (C) 
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Abstract 

In this paper we propose the use of a novel 

learning paradigm in spoken language in-

terfaces – implicitly-supervised learning. 

The central idea is to extract a supervision 

signal online, directly from the user, from 

certain patterns that occur naturally in the 

conversation. The approach eliminates the 

need for developer supervision and facili-

tates online learning and adaptation. As a 

first step towards better understanding its 

properties, advantages and limitations, we 

have applied the proposed approach to the 

problem of confidence annotation. Experi-

mental results indicate that we can attain 

performance similar to that of a fully su-

pervised model, without any manual label-

ing. In effect, the system learns from its 

own experiences with the users.
 *
  

1 Introduction 

Spoken language interfaces are complex systems 

that combine many diverse sources of knowledge. 

Oftentimes, simple algorithmic approaches are in-

sufficient for solving the difficult problems that 

arise. Instead, machine learning techniques are 

used, and one of the most often encountered para-

digms is that of supervised learning. In this para-

digm, the developer provides a training dataset that 

contains pairs of inputs and desired outputs, and 

various learning algorithms can be used to derive a 

model that captures and generalizes the relation-

ship between the two. At runtime, the system gen-

erates the corresponding output based on the cur-

                                                 
*
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rent input and on the learned model. Such ap-

proaches are used in a variety of tasks in spoken 

dialog systems: acoustic and language-modeling, 

confidence annotation, dialog act tagging, emotion 

detection, user modeling, etc.  

Supervised learning approaches have however at 

least two important limitations. First, they require a 

pre-existing corpus of labeled data. Unfortunately, 

such corpora are difficult and expensive to collect, 

especially in the early stages of system develop-

ment. Secondly, they generally favor an off-line, or 

“batch” approach. A corpus is collected, manually 

labeled, and then model parameters are estimated 

from this data. The resulting model mirrors the 

properties of the training set, but does not respond 

well to changes in the system’s environment and 

the underlying data distribution. Unfortunately, 

such changes are generally expected. Oftentimes, 

system developers might alter various aspects of 

system functionality based on feedback and obser-

vations. In addition, the users’ behavior changes as 

they repeatedly interact with the system and famil-

iarize themselves with it. Finally, the very intro-

duction of the newly trained model can lead to 

changes in the interaction. Conversational spoken 

language interfaces are interactive systems that 

operate in dynamic environments, and shifts in the 

underlying data distribution are inevitable. 

In this paper, we propose and evaluate a novel 

learning paradigm that addresses these drawbacks. 

The proposed approach, dubbed implicitly-super-

vised learning, builds on a key property of spoken 

dialog systems: their interactivity. The central idea 

is to extract the required supervision signal from 

naturally-occurring patterns in the conversation, 

for instance from user corrections. No developer 

supervision is therefore required. Rather, the sys-

tem learns on-line, throughout its lifetime, by in-

teracting with its users. We believe this new para-
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digm can be applied in a number of learning prob-

lems, and can pave the way towards building rou-

tinely self-improving systems. 

Consider for instance the problem of confidence 

annotation. Spoken dialog systems use confidence 

scores to guard against potential misunderstand-

ings: for every utterance, a confidence score re-

flecting the probability that the system correctly 

understood the user’s utterance is computed. Con-

fidence annotation models are traditionally built 

using supervised learning techniques (Litman et al, 

1999; Carpenter et al, 2001; San-Segundo et al, 

2001; Hazen et al, 2002; Hirchberg et al, 2004.) A 

corpus of dialogs (typically thousands of utter-

ances) is manually labeled by a human annotator: 

each utterance is marked as either correctly-

understood or misunderstood by the system. Su-

pervised learning techniques are then used in con-

junction with features that characterize the current 

utterance to train a model that can predict whether 

or not this utterance was misunderstood by the sys-

tem. This approach suffers from the shortcomings 

we have outlined above: it requires a pre-existing 

corpus of in-domain utterances, a significant 

amount of human effort and expertise for labeling 

this corpus, and it produces a static solution. 

The alternative implicitly-supervised solution 

eliminates these drawbacks. The starting point is 

the observation that the system could obtain the 

necessary information (i.e. the misunderstanding 

labels) by leveraging a particular confirmation pat-

tern that occurs naturally in conversation. Consider 

the example in Figure 1, from Let’s Go! Public 

(Raux et al, 2006), a spoken dialog system that 

provides bus schedule information in Pittsburgh. In 

the first turn, the system asked for the departure 

location. The user responded “the airport”, but this 

was misrecognized as “Liberty and Wood”. Next, 

in turn 2, the system tried to explicitly confirm the 

departure location it heard. The user corrected the 

system by answering “no”. The immediate reason 

for the user response in turn 2 was to allow the 

conversation to proceed correctly. Notice however 

that this interaction pattern generates additional 

useful information: the system now knows that it 

misunderstood the user in turn 1 and can use this 

information to refine the confidence annotator. 

Spoken dialog systems should be able to suc-

cessfully elicit and leverage this and other interac-

tion patterns to continuously improve their per-

formance, without developer supervision. For in-

stance, we can envision a system that starts by ex-

plicitly confirming all the pieces of information it 

acquires from the user – many systems do this rou-

tinely. As the system collects more labels through 

interaction and updates its confidence annotation 

model, its error detection abilities improve and the 

system can start trusting the confidence annotation 

model more, and use explicit confirmations only 

when the confidence score is very low. Several 

interesting questions arise: (1) can a system make 

effective use of the information obtained through 

interaction? (2) How can a system balance its long-

term knowledge elicitation goals with the short-

term need to efficiently provide information to the 

user? (3) Could a system discover new interaction 

patterns that can provide labels for confidence? 

We believe that implicitly-supervised learning 

approaches can be used in a number of other prob-

lems in spoken language interfaces (more on this in 

Section 7.) The work described in this paper con-

stitutes only a starting point for a larger research 

program aimed at investigating the properties, ad-

vantages and limitations of this paradigm. We be-

gin our investigation by applying the proposed ap-

proach to the confidence annotation problem. 

Moreover, we focus for now only on the first one 

of the three questions we have raised above: can a 

system make effective use of the information ob-

tained through interaction to build a high quality 

confidence model? In future work, we plan to ad-

dress the remaining questions, and to investigate 

the use of this paradigm in other problems.  

2 Implicitly supervised learning for con-

fidence annotation 

We have already outlined the basics of using im-

plicitly-supervised learning for building confidence 

annotation models. The key idea is that the system 

can obtain the required supervision signal by lev-

eraging a certain pattern that occurs naturally in 

1 S: Where are you leaving from? 

 U: the airport 
 R: LIBERTY AND WOOD 
 

2 S: Leaving from Liberty and Wood..  

Is that correct? 

 U: no 
 R: NO 

 

misunderstanding 

Figure 1. User responses to explicit confirmation 

questions can provide labels for building  

a confidence annotation model 
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conversation: in this case user responses to explicit 

confirmation questions. This eliminates the need 

for developer supervision (i.e. for manually label-

ing data) and in the process creates an opportunity 

for continuous, on-line learning. The implicitly 

obtained labels (implicit labels in the sequel) can 

be used in conjunction with a traditional super-

vised learning methodology to construct or refine a 

confidence annotation model. 

More specifically, the implicit labels are gener-

ated automatically as follows: if the system en-

gages in an explicit confirmation and the recog-

nized user response was yes (or equivalent), then 

the previous user turn is labeled as correctly under-

stood by the system; alternatively, if the recog-

nized user response was no (or equivalent) the pre-

vious user turn is considered misunderstood by the 

system; finally if the recognized user response did 

not contain a positive or negative marker, no im-

plicit label is generated. Note that the implicit la-

bels are not noise-free. In the example from Figure 

1, the user response was a simple “no”, which was 

correctly understood by the system. In general, 

user responses to explicit confirmation actions ex-

tend beyond simple yes and no answers, and can 

also be subject to recognition errors (Krahmer et 

al, 2001; Bohus and Rudnicky, 2005.) As a conse-

quence, the labels produced by this interaction pat-

tern will not always be perfect.  

The implicit labels can be characterized in terms 

of accuracy and recall. In this context, by accu-

racy we will refer to the accuracy of the implicit 

labels with respect to the reference set of manual 

labels. By recall we refer to the proportion of ut-

terances for which this interaction pattern can gen-

erate labels (i.e. the utterances followed by an ex-

plicit confirmation and a simple user response.) 

Finally, there is a third factor that affects the qual-

ity of the implicitly labeled data: the sampling 

bias. Even though the proposed interaction pattern 

provides labels for a certain proportion of the ut-

terances in the corpus, these implicitly labeled ut-

terances do not constitute a random sample of the 

entire corpus. Rather, these are utterances that are 

followed by explicit confirmations, which in turn 

are followed by simple user responses. The under-

lying distribution of the features in this subset of 

utterances does not necessarily match the general 

distribution in the full set of utterances. Similarly, 

because this implicit labeling scheme relies on rec-

ognition of user responses, it might bias the im-

plicit labels towards one of the two classes. 

Whether or not these implicit labels are suffi-

cient for training an accurate confidence annotation 

model remains an open question. In this paper, we 

empirically investigate this question, using corpora 

collected with two different spoken dialog systems. 

3 Systems  

The first system, Room-Line, is a telephone-based, 

mixed-initiative spoken dialog system that can as-

sist users in making conference room reservations 

on the CMU campus (Bohus, 2007). The system 

has access to the live schedules of 13 conference  

rooms on campus, and to their characteristics, and 

can engage in a negotiation dialog to identify the 

room that best matches the user’s needs.  

The second system, Let’s Go! Public (Raux et 

al, 2006), provides bus route and schedule infor-

mation in the greater Pittsburgh area. Since March 

2005, this system has been connected to the Pitts-

burgh Port Authority customer service line during 

non-business hours, and therefore receives a large 

number of calls from users with real needs.  

4 Data 

The RoomLine corpus consists of 484 dialogs 

(8037 user turns) collected in a user study in which 

46 participants were asked to perform 10 scenario-

based interactions with the system. The Let’s Go! 

Public corpus consists of a subset of 617 dialog 

sessions (6029 utterances) collected during the first 

month of public operation for the system. Both 

corpora were orthographically transcribed, and 

misunderstandings were manually labeled. Table 1 

shows a number of basic corpus statistics.  

The RoomLine and Let’s Go! Public systems 

used very different policies for engaging in explicit 

confirmations. RoomLine made this decision by 

comparing the confidence score of the recognized 

utterance against a confirmation threshold. As a 

result, the total number of explicit confirmations in 

this corpus is 1412, amounting to 17.6% of the to-

tal number of utterances (8037). In contrast, given 

the more adverse environment, the Let’s Go! Pub-

lic system used a simpler, more conservative con-

firmation policy: the system always explicitly con-

firmed every piece of information received from 

the user. The number of explicit confirmations in 

the Let’s Go! Public corpus is therefore signifi-
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cantly larger – 2594, representing 43.0% of the 

total number of utterances (6029). 

Due to the different confirmation policies, the 

recall and the accuracy of the implicit labeling 

scheme proposed above was different in these two 

domains. As expected, given that explicit confir-

mations were more often engaged in the Let’s Go! 

Public system, the recall of the implicit labeling 

scheme was significantly larger than in the 

RoomLine system: 33.1% versus 10.8%. At the 

same time, given the more adverse noise condi-

tions and worse recognition performance in this 

domain, the accuracy is lower: 82.5% versus 

89.9% in the RoomLine system. 

5 Features 

To build the confidence annotation model, we con-

sidered a large set of features extracted from dif-

ferent knowledge sources in the systems. Below, 

we give a brief overview of these features. The full 

feature set is presented in detail in (Bohus, 2007): 

• speech recognition features, e.g. acoustic 

and language model scores; # of words and 

frames; word-level confidence scores gener-

ated by the recognizer; signal and noise-

levels; speech-rate; etc. 

• prosody features, e.g. various pitch charac-

teristics such as mean, max, min, standard 

deviation, min and max slopes, etc. 

• lexical features, e.g. presence or absence of 

the top-10 words most correlated with mis-

understandings (these are system-specific.)  

• language understanding features, e.g. 

number of (new / repeated) semantic slots in 

the parse; measures of parse-fragmentation;  

• inter-hypotheses features. features describ-

ing differences between the top-most hy-

pothesis from each recognizer (each system 

used 2 gender-specific parallel recognizers); 

• dialog management, e.g. match-score be-

tween the recognition result and the dialog 

manager expectation; dialog state; etc.  

• dialog history, e.g. # of previous consecu-

tive non-understandings; ratio of non-under-

standings up to the current point in the dia-

log; tallied averages of the acoustic-, lan-

guage-model, and parse-scores.  

6 Experimental results 

We used stepwise logistic regression (Myers et al. 

2001) to train confidence annotation models based 

on the implicitly labeled portions of the RoomLine 

and Let’s Go! Public corpora. The features de-

scribed in the previous section served as independ-

ent variables in the model; the dependent (target) 

variable was whether or not the utterance was cor-

rectly understood by the system. The models were 

trained and evaluated using a 20-fold cross-

validation procedure. The quality of the models 

was assessed in terms of mean squared error, also 

known as Brier score. In contrast to classification 

error metrics, the Brier score is a proper-scoring 

rule that captures both the refinement (accuracy) as 

well as the calibration of the confidence annotator 

(Cohen and Goldszmidt, 2004.) 

We begin by describing results in the Let’s Go! 

Public system, because the number of implicitly 

labeled training points in this corpus is larger and 

enables a more robust analysis.  

6.1 Results in the Let’s Go! Public domain 

The results are illustrated in Figure 2. The Brier 

score for the majority baseline (i.e. always predict-

ing the majority class) is 0.2156. The average test-

set Brier score for the fully-supervised model, i.e. 

the model that uses the entire Let’s Go! Public 

corpus with the manually annotated labels, is 

0.1200. The proposed implicitly-supervised ap-

proach leads to an average test-set Brier score of 

0.1443, closing 75% of the gap between the major-

ity baseline and the fully-supervised model, with-

out requiring any manually labeled data.  

If a small amount of manually labeled data is 

available, it can be used to calibrate the implicitly-

supervised model. The post-calibration step con-

sists of training the parameters of an additional 

sigmoid to map the implicitly-supervised model 

scores into more accurate probabilities, based on 

the manually labeled data (Platt, 1999.) This pro-

Statistics RoomLine Let’s Go  

# of sessions 484 617 
# of utterances 8037 6029 

# of misunderstandings 1523 1863 

% misunderstandings 18.9% 30.9% 

# of explicit confirmations 1412 2594 

% of explicit confirmations 17.6% 43.0% 
# Implicit labels  976 1998 

Implicit labels recall 10.8% 33.1% 

Implicit labels accuracy 89.9% 82.5% 

 
Table 1. Corpora statistics 
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cedure (based in our case on 100 randomly chosen 

labeled data-points) further increased the model’s 

performance to 0.1390, therefore closing 80% of 

the gap between the baseline and fully supervised 

model. The difference between the un-calibrated 

and calibrated models is statistically significant 

(paired t-test, p=0.002). 

The remaining performance gap between the 

implicitly and fully-supervised models is explained 

by the recall, accuracy and sampling bias of the 

implicit labels To better understand the effect of 

these factors on model performance, we con-

structed a number of additional models. 

First, to distinguish between the effects of accu-

racy and recall, we constructed a model, dubbed 

full-accuracy/same-recall (FA/SR). In training 

this model we only used the subset of utterances 

that were implicitly labeled (hence same-recall), 

but in conjunction with the manually obtained la-

bels for these utterances (hence full-accuracy). The 

average test-set Brier score for this model was 

0.1321, about half-way between the implicitly-

supervised and fully-supervised models, with both 

differences statistically significant (p<10
-6

) – see 

Figure 3. This result indicates that both the lack of 

recall and the lack of accuracy in the implicit la-

bels contribute in roughly equal amounts to the 

observed performance gap.  

Next, we constructed two additional models to 

investigate the effect of sampling bias on perform-

ance. (Recall that the subset of implicitly labeled 

utterances does not constitute a random sample for 

the entire corpus.) The first one of these models, 

full-accuracy/random-same-recall (FA/RR), ad-

dresses the recall-bias issue and was trained with a 

randomly selected subset of utterances that has the 

same recall (size) as the implicitly labeled subset 

(hence random-same-recall). The second model, 

random-same-accuracy/ same-recall (RA/SR), 

addresses the accuracy-bias issue. This model uses 

the utterances that were implicitly labeled (hence 

same-recall); the training labels were however con-

structed by starting from the reference labels and 

randomly altering them to attain the same accuracy 

level as the implicit labels have.  

The performance of the full-accuracy/random-

same-recall model, 0.1239, places it closer to the 

fully-supervised model (0.1200) than to the full-

accuracy/same-recall-model (0.1321) – see Figure 

3. Both differences are statistically significant in a 

paired t-test. The larger difference to the full-

accuracy/same-recall model seems to indicate that 

the recall bias does affect performance in this case. 

On the other hand, the random-same-accuracy/ 

same-recall model performs similarly to the im-

plicitly supervised model, in fact slightly worse 

(0.1475 versus 0.1443, no statistically significant 

post-calibrated model 

75% 

*

Figure 2. Implicitly- versus fully-supervised  

learning on Let’s Go! Public data 

post-calibrated 

model 

  
Figure 3. Implicitly- versus fully-supervised learning performance gap decomposition in Let’s Go! Public do-

main (arrows with stars mark statistically significant differences, p<0.001) 

*
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accuracy/same recall 

 

FA/SR: full accuracy/same 
 recall  
 

FA/RR: full accuracy/random 
 recall 
 

FS: fully supervised 
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difference detected). This result indicates that, at 

least in the Let’s Go! Public system, the proposed 

implicitly generated labels do not exhibit a detri-

mental accuracy bias.  

On a final note, recall that in Figure 2 we have 

seen that the implicitly-supervised approach closes 

75% of the gap between the majority baseline and 

a fully-supervised approach (using the whole cor-

pus). A comparison with the full-accuracy/random-

same-recall model is more informative, because 

this model uses the same amounts of labeled data. 

Correcting for sample bias represents a difficult 

and interesting research problem (Zhang and Rud-

nicky, 2006). At the same time, we can easily envi-

sion using more data (since we don’t need to 

manually label it.) As more data becomes avail-

able, the full-accuracy/random-same-recall model 

will eventually reach the performance of the fully 

supervised model. When compared to this model, 

the proposed implicitly-supervised approach closes 

78% of the performance gap; the post-calibrated 

model closes 84% of this gap. 

6.2 Results in the RoomLine domain 

We now shift our attention to the RoomLine do-

main. Here, due to the more optimistic confirma-

tion policy, the recall of the proposed implicit la-

beling scheme is lower: 10.8%. At the same time, 

due to better environmental conditions and less 

recognition errors, the accuracy is higher: 89.9%.  

The results in this domain are illustrated in Fig-

ure 4. The implicitly-supervised approach again 

attains a significant improvement over the majority 

baseline. The relative improvement is smaller than 

the one attained in the Let’s Go! Public domain. 

On the RoomLine corpus, the implicitly-supervised 

approach closes only 48% of the gap to the fully-

supervised model; the post-calibrated model per-

forms slightly better, but the improvement is not 

statistically significant. When compared to the full-

accuracy/random-same-recall model, the implicitly 

supervised approach closes 59% of the gap (vs 

78% in the Let’s Go! Public domain.)  

The lower performance on the RoomLine do-

main was expected due to the more optimistic con-

firmation policy and the resulting lower recall of 

the implicit labeling scheme. Overall, the Room-

Line corpus contains 977 implicitly labeled train-

ing points, while the Let’s Go! Public corpus con-

tains more than double that amount. In the ideal 

case, in order to build a confidence annotation 

model using the proposed implicitly-supervised ap-

proach we would like the system to start with an 

always-confirm policy, like in the Let’s Go! Public 

system. The full-accuracy/same-recall model (FA/ 

SR in Figure 4), confirms that a significant part of 

the remaining performance gap is indeed explained 

by the lower recall. At the same time, part of the 

remaining performance gap is also explained by 

the lack of accuracy. This is somewhat surprising, 

since the accuracy is higher than in the Let’s Go! 

Public domain. A possible explanation is that, 

when only small amounts of data are available for 

training, and/or when the class marginals are more 

skewed, precision plays a more important role.  

Finally, the random-same-accuracy/same-recall 

and full-accuracy/random-same-recall models re-

veal that there is no detrimental sampling or recall 

bias in this domain. Like before, as the amount of 

training data increases, we can expect the gap be-

tween the full-accuracy/same-random-recall and 

fully-supervised model to decrease; further per-

Figure 4. Implicitly- versus fully-supervised learning performance gap decomposition in RoomLine domain 

(arrows with stars mark statistically significant differences, p<0.001) 
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formance gains for the implicitly-supervised model 

are therefore expected, as we increase the dataset 

size. Experiments in which we trained the models 

using increasingly larger amounts of implicitly-

labeled training data corroborate this conjecture 

(more details are presented in Appendix A.)  

7 Discussion and future plans 

While the empirical results we described in the 

previous section are very encouraging, they repre-

sent only a first step towards understanding the 

properties, advantages and limitations of the pro-

posed implicitly-supervised paradigm. 

So far, we have only performed a batch mode 

evaluation. However, apart from eliminating the 

need for a manually labeled corpus, a second im-

portant advantage of the implicitly-supervised ap-

proach is that it facilitates online learning and ad-

aptation. The next question therefore is: how can a 

system engage in explicit confirmations in pursuit 

of its learning goals but without significantly dis-

rupting the interaction? This is a control problem, 

where the system must balance the benefits of 

gaining knowledge via explicit confirmations 

against the costs potentially incurred by the user.  

To some extent, dialog managers already have 

to solve similar trade-offs when deciding between 

different confirmation strategies, for instance be-

tween explicit or implicit confirmation. Explicit 

confirmations take an extra dialog turn, but the 

system has a better chance of understanding the 

follow-up user response, especially if the informa-

tion to be confirmed is incorrect (Krahmer et al, 

2001; Bohus and Rudnicky, 2005.) Typically, the 

costs are assumed to be known and are immediate. 

Solutions to these trade-off problems range from 

hard-coded heuristics to various offline corpus-

based methods. In an online implicitly-supervised 

approach, the additional learning goals change the 

nature of the problem in two different ways. First, 

system actions not only create immediate dialog 

costs, but also produce knowledge that can be used 

to improve future performance. To address this 

new trade-off, the system must be able to assess 

the long-term benefits of the knowledge that stands 

to be gained. Secondly, in order to provide an 

online solution, systems should be able to continu-

ously monitor their current performance and adjust 

their control policies, as their models improve.  

Finally, another interesting question regards the 

knowledge-producing interaction pattern itself. In 

the experiments discussed above, the pattern con-

sisted of user responses to system confirmation 

questions. Intuitively, other informative patterns 

could be found. For instance, if in a certain seg-

ment the dialog advances normally towards its 

goals, and no non-understandings occur, we might 

consider all those user turns correctly understood 

by the system. Alternatively, if a certain concept is 

corrected by the user at a later point in the dialog, 

we might mark the utterance from which the sys-

tem extracted the first value for that concept as 

incorrect. We believe that an interesting avenue for 

future research is to develop techniques that allow 

systems to automatically discover such knowledge-

producing interaction patterns.  

The central idea in the proposed implicitly-

supervised learning paradigm is therefore to ac-

quire knowledge online, by discovering, eliciting 

and leveraging natural patterns that occur in inter-

action as a by-product of the collaboration between 

the system and an invested user. This paradigm can 

eliminate the need for developer supervision and 

can enable fast online adaptation and learning. We 

conjecture that it can supplement and or even pro-

vide a strong alternative to existing learning ap-

proaches, and enable significant autonomous learn-

ing in interactive systems.  

The use of implicit feedback and human super-

vision for labeling, learning or adaptation purposes 

appears before in a number of other areas, like in-

formation retrieval (Brown and Claypool, 2003; 

Shen et al, 2005), image labeling (von Ahn and 

Dabbish), meeting segmentation (Banerjee and 

Rudnicky, 2007). To our knowledge, the work de-

scribed in this paper is the first effort in learning 

from implicit supervision in the context of conver-

sational spoken language interfaces. While in this 

paper we have focused only on one learning prob-

lem (i.e. building confidence annotation models), 

we believe that the proposed implicitly-supervised 

paradigm can be applied to a number of other 

problems in conversational spoken language inter-

faces. In fact, we have already developed and will 

soon report on an implicitly-supervised approach 

for learning how to automatically correct non-

understanding errors in a spoken dialog system.  
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8 Conclusion 

In this paper, we have proposed the use of an im-

plicitly-supervised approach for learning in spoken 

language interfaces and have applied it for con-

structing confidence annotation models. Previous 

supervised learning solutions (Litman et al, 1999; 

Carpenter et al, 2001; San-Segundo et al, 2001; 

Hazen et al, 2002; Hirchberg et al, 2004.) rely on 

pre-existing, in-domain, manually labeled data and 

lead to static solutions. In contrast, the proposed 

approach does not require developer supervision. 

Instead, the system obtains the supervision signal 

from follow-up user responses to the system’s ex-

plicit confirmation questions. In effect, the system 

learns from its own experiences.  

We evaluated the proposed approach in two dif-

ferent dialog domains: RoomLine and Let’s Go! 

Public. Empirical results confirm that a system can 

indeed successfully leverage interaction patterns to 

automatically construct a confidence annotation 

model that performs similarly to a fully-supervised 

model. The experiments we have reported here 

represent only a first step towards a fuller under-

standing of the proposed implicit-learning para-

digm. The encouraging results we have obtained 

on the confidence annotation task point towards 

what we believe to be a very interesting research 

avenue. We conjecture that the proposed approach 

can be applied to address a number of other prob-

lems in conversational spoken language interfaces, 

and in interactive systems in general. Ultimately, 

we hope that it will enable the development of 

autonomously self-improving systems.  
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Appendix A. Performance as a function  

of training set size 

We investigated the relationship between the per-

formance of the implicitly-supervised confidence 

annotation models and the overall training set size. 

The results are shown in Figure 5.A for the 

RoomLine domain, and Figure 5.B for the Let’s 

Go! Public domain.  

In the RoomLine domain, the performance of 

the implicitly-supervised model does not yet reach 

an asymptote by the time we have considered the 

full training set (7537 utterances.) This result cor-

roborates our previous conjecture that, if more data 

were available, further performance gains would 

be possible. As more data becomes available, the 

full-precision/random-same-recall model is guar-

anteed to reach the same asymptote as the fully 

supervised model. At the same time, we expect that 

the gap between the implicitly supervised method 

and the full-precision/random-same-recall model 

will stay roughly constant. As a consequence, we 

expect corresponding gains in the implicitly-

supervised model performance.  

Another interesting observation is that the ran-

dom-same-precision/same-recall model closely 

tracks the implicitly supervised model, and the 

full-precision/random-same-recall model closely 

tracks the full-precision/same-recall model. These 

trends confirm that there is no detrimental sample 

bias (neither in terms of accuracy nor recall) in the 

proposed implicit learning scheme in the 

RoomLine data.  

In the Let’s Go! Public domain, the implicitly-

supervised model seems to have reached a per-

formance asymptote; this is not surprising, given 

the larger recall of the implicit labeling scheme in 

this domain. As the amount of data increases, the 

full-precision/random-same-recall model shows 

increasingly larger improvements over the full-

precision/same-recall model.  

 

Figure 5. Implicitly supervised confidence annotation model performance as a function of train-

ing set size (in the RoomLine and Let’s Go! Public domains) 
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Abstract

The problem of planning dialog moves can
be viewed as an instance of the more gen-
eral AI problem of planning with incomplete
information and sensing. Sensing actions
complicate the planning process since such
actions engender potentially infinite state
spaces. We adapt the Linear Dynamic Event
Calculus (LDEC) to the representation of di-
alog acts using insights from the PKS plan-
ner, and show how this formalism can be
applied to the problem of planning mixed-
initiative collaborative discourse.

1 Introduction

Successful planning in dynamic domains often re-
quires reasoning about sensing acts which, when ex-
ecuted, update the planner’s knowledge state with-
out necessarily changing the world state. For in-
stance, reading a piece of paper with a telephone
number printed on it may provide the reader with
the prerequisite information needed to successfully
complete a phone call. Such actions typically have
very large, even infinite, sets of possible outcomes
in terms of the actual sensed value, and threaten to
make search impracticable. There have been sev-
eral suggestions in the AI literature for how to han-
dle this problem, including Moore (1985); Morgen-
stern (1988); Etzioni et al. (1992); Stone (1998); and
Petrick & Bacchus (2002; 2004).

Stone (2000) points out that the problem of
planning effective conversational moves is also a
problem of planning with sensing or knowledge-
producing actions, a view that is also implicit in

early “beliefs, desires and intentions” (BDI) -based
approaches (e.g., Litman & Allen (1987); Bratman,
Israel & Pollack (1988); Cohen & Levesque (1990);
Grosz & Sidner (1990)). Nevertheless, most work
on dialog planning has in practice tended to segre-
gate domain planning and discourse planning, treat-
ing the former as an AI black box, and capturing the
latter in large state-transition machines mediated or
controlled via a blackboard or “information state”
representing mutual belief, updated by specialized
rules more or less directly embodying some form of
speech-act theory, dialog game, or theory of textual
coherence (e.g., Lambert & Carberry (1991); Traum
& Allen (1992); Green & Carberry (1994); Young
& Moore (1994); Chu-Carroll & Carberry (1995);
Matheson, Poesio & Traum (2000); Beun (2001));
Asher & Lascarides (2003); Maudet (2004)). Such
accounts often lend themselves to optimization us-
ing statistical models (e.g., Singh et al. (2002)).

One of the ostensible reasons for making this sep-
aration is that indirect speech acts, i.e., achieving
coherence via implicatures, abound in conversation.
(For instance, Green and Carberry cite studies show-
ing around 13% of answers to Yes/No questions are
indirect.) Nevertheless, that very same ubiquity of
the phenomenon suggests it is a manifestation of the
same planning apparatus as the domain planner, and
that it should not be necessary to construct a com-
pletely separate specialized planner for dialog acts.

This paper addresses the problem of dialog plan-
ning by applying techniques developed in the AI
planning literature for handling sensing and incom-
plete information. To this end, we work with plan-
ning domains axiomatized in the language of the
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Linear Dynamic Event Calculus (LDEC), but ex-
tended with constructs inspired by the knowledge-
level conditional planner PKS.

2 Linear Dynamic Event Calculus (LDEC)

The Linear Dynamic Event Calculus (LDEC)
(Steedman, 1997; Steedman, 2002) is a logical for-
malism that combines the insights of the Event
Calculus of Kowalski & Sergot (1986), itself a
descendant of the Situation Calculus (McCarthy
and Hayes, 1969), and the STRIPS planner of
Fikes & Nilsson (1971), together with the Dynamic
and Linear Logics developed by Girard (1987),
Harel (1984), and others.

The particular dynamic logic that we work with
here exclusively uses the deterministic “necessity”
modality [α]. For instance, if a program α computes
a function f over the integers, then an expression
like “n ≥ 0 ⇒ [α](y = f (n))” indicates that “in
any situation in which n ≥ 0, after every execution
of α that terminates, y = f (n).” We can think of
this modality as defining a logic whose models are
Kripke diagrams, where accessibility between situ-
ations is represented by events defined in terms of
the conditions which must hold before an event can
occur (e.g., “n ≥ 0”), and the consequences of the
event that hold as a result (e.g., “y = f (n)”).

Thus, actions (or events) in LDEC provide the
sole means of change and affect the fluents (i.e.,
properties) of the world being modelled. Like other
dynamic logics, LDEC does not use explicit situa-
tion terms to denote the state-dependent values of
fluents, but instead, chains together finite sequences
of actions using a sequence operator “;”. For in-
stance, [α1;α2; . . . ;αn] denotes a sequence of n ac-
tions and [α1;α2; . . . ;αn]φ means that φ must nec-
essarily hold after every execution of this sequence.

One of the novel features of LDEC is that it
mixes two types of logical implication. Besides
standard (or intuitionistic) implication ⇒, LDEC
follows Bibel et al. (1989) and others in using lin-
ear logical implication, denoted by the symbol (.
Linear implication extends LDEC’s representational
power and provides a solution to the frame problem
(McCarthy and Hayes, 1969), as we’ll see below.

An LDEC domain is formally described by a col-
lection of axioms. For each action α, a domain in-

cludes an action precondition axiom of the form:

L1 ∧ L2 ∧ . . . ∧ Lk ⇒ affords(α),

where each Li is a fluent or its negation (we discuss
affords below), and an effect axiom of the form:

{affords(α)} ∧ φ( [α]ψ,

where φ and ψ are conjunctions of fluents or their
negations. LDEC domains can also specify a collec-
tion of initial situation axioms of the form:

L1 ∧ L2 ∧ . . . ∧ Lp,

where each Li is a ground fluent literal. Finally,
LDEC domains can include a set of background ax-
ioms (e.g., for defining the properties of other modal
operators), and a set of simple state constraint ax-
ioms (e.g., for encoding inter-fluent relationships).
We will not discuss the details of these axioms here.

Action precondition axioms specify the applica-
bility conditions of actions using a special affords
fluent. Effect axioms use linear implication to build
certain “update rules” directly into the LDEC repre-
sentation. In particular, the fluents of φ in the an-
tecedent of an effect axiom are treated as consum-
able resources that are replaced by the fluents of
ψ in the consequent when an action α is applied.1

{affords(α)} means that it is not defined whether
affords(α) still holds after α. All other fluents are
unchanged. Thus, LDEC’s use of linear implication
builds a STRIPS-style (Fikes and Nilsson, 1971)
treatment of action effects into the semantics of the
language, which lets us address the frame problem
without having to write explicit frame axioms.

Previous work has demonstrated LDEC’s versatil-
ity as a language for modelling dialog, by introduc-
ing notions of speaker/hearer supposition and com-
mon ground (Steedman, 2006). This is achieved by
defining a new set of modal operators of the form
[X], that designate the participants in the dialog and
provide a reference point for the shared beliefs that
exist between those participants. For instance, [S]
and [H] refer to the “speaker” and “hearer”, respec-
tively, while [CSH] refers to the common ground be-
tween speaker and hearer.2 Using these modalities

1We treat consumed fluents as being made false.
2Additional participant modalities can be defined as needed.

A set of LDEC background axioms is provided as part of a do-
main to govern the behaviour of these modalities.
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we can write LDEC formulae that capture common
propositions that arise in dialog. For instance, [S] p
means “the speaker supposes p”, [S] [H] p means
“the speaker supposes that the hearer supposes p”,
and [CSH] [X] p means “it is common ground be-
tween the speaker and hearer that X supposes p”.

In this paper we extend LDEC even further.
First, we recognize the need to model knowledge in
LDEC, which is a necessary prerequisite for plan-
ning with sensing actions, including those needed
for effective discourse. Second, we require that our
extended representation lend itself to tractable rea-
soning, in order to facilitate a practical implementa-
tion. Finally, although LDEC supports classical plan
generation through proof (Steedman, 2002), prior
work has not addressed the problem of translating
LDEC domains into a form that can take advantage
of recent planning algorithms for reasoning with in-
complete information and sensing. For a solution to
these problems we turn to the PKS planner.

3 Planning with Knowledge and Sensing
(PKS)

PKS (Planning with Knowledge and Sensing) is a
knowledge-level planner that can build conditional
plans in the presence of incomplete information and
sensing (Petrick and Bacchus, 2002; Petrick and
Bacchus, 2004). Unlike traditional approaches that
focus on modelling the world state and how actions
change that state, PKS works at a much higher level
of abstraction: PKS models an agent’s knowledge
state and how actions affect that knowledge state.

The key idea behind the PKS approach is that
the planner’s knowledge state is represented using
a first-order language. Since reasoning in a gen-
eral first-order language is impractical, PKS em-
ploys a restricted subset of this language and lim-
its the amount of inference it can perform. This ap-
proach differs from those approaches that use propo-
sitional representations (i.e., without functions and
variables) over which complete reasoning is fea-
sible, or works that attempt to represent complete
sets of possible worlds (i.e., sets of states compati-
ble with the planner’s incomplete knowledge) using
BDDs, Graphplan-like structures, clausal represen-
tations, or other such techniques.

What makes the PKS approach particularly novel

is the level of abstraction at which PKS operates.
By reasoning at the knowledge level, PKS can avoid
some of the irrelevant distinctions that occur at the
world level, which gives rise to efficient inference
and plans that are often quite “natural”. Although
the set of inferences PKS supports is weaker than
that of many possible-worlds approaches, PKS can
make use of non-propositional features such as func-
tions and variables, allowing it to solve problems
that can be difficult for world-level planners.

Like LDEC, PKS is based on a generalization of
STRIPS. In STRIPS, the world state is modelled by
a single database. In PKS, the planner’s knowledge
state, rather than the world state, is represented by a
set of five databases whose contents have a fixed,
formal interpretation in a modal logic of knowl-
edge. To ensure efficient inference, PKS restricts the
types of knowledge (especially disjunctions) each
database can model. We briefly describe three of
these databases (Kf , Kv, and Kw) here.
Kf : This database is like a standard STRIPS
database except that both positive and negative facts
are stored and the closed world assumption is not
applied. Kf can include any ground literal `, where
` ∈ Kf means “` is known”. Kf can also contain
knowledge of function values.
Kv: This database stores information about func-
tion values that will become known at execution
time, such as the plan-time effects of sensing ac-
tions that return numeric values. During planning,
PKS can use Kv knowledge of finite-range functions
to build multi-way conditional branches into a plan.
Kv function terms also act as “run-time variables”—
placeholders for function values that will only be
available at execution time.
Kw: This database models the plan-time effects of
“binary” sensing actions. φ ∈ Kw means that at
plan time the planner either knows φ or knows ¬φ,
and that at execution time this disjunction will be
resolved. PKS uses such “know-whether” facts to
construct binary conditional branches in a plan.

PKS also includes a database (Kx) of known
“exclusive-or” disjunctions and a database (LCW)
for modelling known instances of “local closed
world” information (Etzioni et al., 1994).

Actions in PKS are modelled as queries and up-
dates to the databases. Action preconditions are
specified as a list of primitive queries about the state
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of the databases: (i) Kp, is p known to be true?, (ii)
Kvt, is the value of t known?, (iii) Kw p, is p known
to be true or known to be false (i.e., does the plan-
ner know-whether p)?, or (iv) the negation of (i)–
(iii). Action effects are described by a set of STRIPS-
like database updates that specify the formulae to
be added to and deleted from the databases. These
updates capture the changes to the planner’s knowl-
edge state that result from executing the action.

Using this representation, PKS constructs plans
by applying actions in a simple forward-chaining
manner: provided an action’s preconditions are sat-
isfied by the planner’s knowledge state, an action’s
effects are applied to form a new knowledge state.
Conditional branches can be added to a plan pro-
vided the planner has Kw or (particular types of) Kv

information. For instance, if the planner has Kw in-
formation about a formula p then it can add a binary
branch to a plan. Along one branch, p is assumed
to be known while along the other branch ¬p is as-
sumed to be known. PKS can also use Kv informa-
tion to denote certain execution-time quantities in a
plan. Planning continues along each branch until all
branches satisfy the goal.

4 Planning Speech Acts with LDEC/PKS

Our approach to planning dialog acts aims to intro-
duce certain features of PKS within LDEC, with the
goal of generating plans using the PKS framework.
In this paper we primarily focus on the representa-
tional issues concerning LDEC, and simply sketch
our approach for completing the link to PKS.

The most important insight PKS provides is its
action representation based on simple knowledge
primitives: K/Kf “know”, Kv “know value”, and
Kw “know whether”. In particular, PKS’s tractable
treatment of this information—which underlies its
databases and queries—is essential to its ability to
build plans with incomplete knowledge and sensing.

In order to model similar conditions of incom-
plete information in LDEC, we introduce a set of
PKS-style knowledge primitives into LDEC in the
form of knowledge fluents (Demolombe and Pozos
Parra, 2000). Knowledge fluents are treated as or-
dinary fluents but are understood to have particular
meanings with respect to the knowledge state. For
instance, in our earlier example of reading a piece

of paper with a telephone number printed on it, we
could use a knowledge fluent KhavePaper to indi-
cate that an agent knows it has the required piece
of paper, KvphoneNumber to represent the result of
reading the phone number from the paper (i.e., the
agent “knows the value of the phone number”), and
Kwconnected to denote the result of actually dialling
the phone number (i.e., the agent “knows whether
the call connected successfully”).

In a dialog setting, we must also ground all
knowledge-level assertions to particular participants
in the dialog, or to the common ground. Other-
wise, such references will have little meaning in a
multi-agent context. Thus, we couple speaker/hearer
modalities together with knowledge fluents to write
LDEC expressions like [S] Kp — “the speaker
knows p”, [H] Kvt — “the hearer knows the value of
t”, or more complex expressions like [CSH] [H] Kw p
— “it’s common ground between the speaker and
hearer that the hearer knows whether p”.

Although we treat knowledge fluents as ordinary
fluents in LDEC, we retain their knowledge-level
meanings with respect to their use in PKS. Thus,
knowledge fluents serve a dual purpose in LDEC.
First, they act as queries for establishing the truth
of particular knowledge-level assertions (e.g., an ac-
tion precondition axiom like [X] Kp ⇒ affords(α)
means “if X knows p then this affords action α”).
Second, they act as updates that specify how knowl-
edge changes due to action (e.g., an effect axiom
like {affords(α)} ( [α][X]Kvt means “executing α

causes X to come to know the value of t”). This
correlation between LDEC and PKS is not a coinci-
dence but one, we hope, that will let us use PKS as
a target planner for LDEC domains.

We illustrate our LDEC extensions in the follow-
ing domain axiomatization, which is sufficient to
support planning with dialog acts.

4.1 Background Axioms

(1) [X] p⇒ p Supposition Veridicality

(2) [X]¬p⇒ ¬ [X] p Supposition Consistency

(3) ¬ [X] p⇒ [X]¬ [X] p Negative Introspection

(4) [CSH] p⇔ ([S] [CSH] p ∧ [H] [CSH] p)
Common Ground
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(5) [X] [CXY] p⇒ [X] p
Common Ground Veridicality

4.2 Initial Facts
(6) a. “I suppose Bonnie doesn’t know what train I

will catch”
b. [S]¬ [B] Kvtrain

(7) a. “If I know what time it is, I know what train
I will catch.”

b. [S] Kvtime⇒ [S] Kvtrain

(8) a. “I don’t know what train I will catch.”
b. [S]¬Kvtrain

(9) a. “I suppose you know what time it is.”
b. [S] [H] Kvtime

(10) a. “I suppose it’s not common ground that I
don’t know what time it is.”

b. [S]¬ [CSH]¬ [S] Kvtime

4.3 Rules
(11) a. “If X supposes p, and X supposes p is not

common ground, X can tell Y p”
b. [X] p ∧ [X]¬ [CXY] p

⇒ affords(tell(X,Y, p))

(12) a. “If X tells Y p, Y stops not knowing it and
starts to know it.”

b. {affords(tell(X,Y, p))} ∧ ¬ [Y] p
( [tell(X,Y, p)] [Y] p

(13) a. “If X doesn’t know p and X supposes Y
does, X can ask Y about it.”

b. ¬ [X] p ∧ [X] [Y] p
⇒ affords(ask(X,Y, p))

(14) a. “If X asks Y about p, it makes it common
ground X doesn’t know it”

b. {affords(ask(X,Y, p))}
( [ask(X,Y, p)] [CXY]¬ [X] p

Axioms (1) – (5) capture a set of standard assump-
tions about speaker/hearer modalities and common
ground. In (3), we assume the presence of a nega-
tive introspection axiom, however, we do not require
its full generality in practice.3

Axioms (6) – (10) specify a number of initial
facts about speaker/hearer suppositions. In partic-
ular, (10) asserts a speaker supposition about com-

3The weaker property [X]¬p ⇒ [X]¬ [CXY] p (which also
follows from negative introspection) will typically suffice.

mon ground that illustrates the types of conclusions
we typically require. These facts also include two Kv

knowledge fluents, Kvtrain and Kvtime. As in PKS,
these fluents act as placeholders for the values of
known functions that can map to a wide range of
possible values, but whose definite values may not
be known at plan/reasoning time.

Rules (11) – (14) encode action precondition and
effects axioms for two speech acts, ask and tell.

Using this axiomatization, we consider the task of
constructing two dialog-based plans, as a problem of
planning through proof.

4.4 Planning a Direct Speech Act

Goal: I need Bonnie to know which train I’ll catch.

By speaker supposition, the hearer knows what time
it is:

(15) ⇒ [H] Kvtime (9b); (1)

The speaker doesn’t know what time it is:

(16) ⇒ ¬ [S] Kvtime (8b); (2); (7b)

By speaker supposition, Bonnie doesn’t know what
train the speaker will catch:

(17) ⇒ ¬ [B] Kvtrain (6b); (1)

The speaker supposes it’s not common ground with
Bonnie as to what train the speaker will catch:

(18) ⇒ [S]¬ [CSB] Kvtrain (8b); (2); (5); (3); (4)

The situation affords ask(S,H,Kvtime):

(19) ⇒ affords(ask(S,H,Kvtime)) (16); (9b); (13b)

After applying ask(S,H,Kvtime):

(20) ⇒ [CSH]¬ [S] Kvtime (19); (14b)

The situation now affords tell(H,S,Kvtime):

(21) ⇒ affords(tell(H,S,Kvtime))
(15); (20); (4); (5); (11b)

After applying tell(H,S,Kvtime):

(22) ⇒ [S] Kvtime (21); (16); (12b)

—which means I know what train I will catch:

(23) ⇒ [S] Kvtrain (22); (7b)

The situation now affords tell(S,B,Kvtrain)

(24) ⇒ affords(tell(S,B,Kvtrain)) (23); (18); (11b)

After applying tell(S,B,Kvtrain):
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(25) ⇒ [B] Kvtrain (24); (17); (12b)

4.5 Planning an Indirect Speech Act

The original situation also affords telling the hearer
that I don’t know the time:

(26) ⇒ [S]¬ [S] Kvtime (8b); (2); (7); (3)

(27) ⇒ [S]¬ [CSH]¬ [S] Kvtime (10)

(28) ⇒ affords(tell(S,H,¬ [S] Kvtime))
(26); (27); (11b)

After saying “I don’t know what time it is”—that
is, applying the action tell(S,H,¬ [S] Kvtime),

(29) ⇒ [CSH]¬ [S] Kvtime (14b)

Since (29) is identical to (20), the situation again af-
fords tell(H,S,Kvtime), and the rest of the plan can
continue as before.

Asking the time by saying “I don’t know what
time it is” would usually be regarded as an indirect
speech act. Under the present account, both “direct”
and “indirect” speech acts have effects that change
the same set of facts about the knowledge states of
the participants. Both involve inference. In some
sense, there is no such thing as a “direct” speech act.
In that sense, it is not surprising that indirect speech
acts are so widespread: all speech acts are indirect in
the sense of involving inference. Crucially, the plan
does not depend upon the hearer identifying the fact
that the speaker’s utterance “I don’t know what time
it is” had the illocutionary force of a request or ques-
tion such as “What time is it?”.

From an axiomatic point of view, the above exam-
ples illustrate that the reasoning required to achieve
the desired conclusions is straightforward—in most
cases only direct applications of the domain axioms
are used. Most importantly, we do not need to re-
solve knowledge-level conclusions like Kvtrain at
this level of reasoning and, thus, do not require stan-
dard axioms of knowledge to reason about the for-
mulae within the scope of K/Kv/Kw.

Direct manipulation of fluents like Kvtrain means
that we can manage knowledge and sensing actions
in a PKS-style manner in our account. For instance,
the above plans result in the conclusion [S] Kvtime as
a consequence of the ask and tell actions. The par-
ticular effect of “coming to know the value” of time
means that we should treat these actions as sensing

actions. At the knowledge-level of abstraction, the
effects of ask and tell are no different than the ef-
fect produced by reading a piece of paper to come
to know a telephone number in our earlier example.
This PKS-style use of knowledge fluents also opens
up the possibility of constructing conditional plans
and, ultimately, planning with PKS itself.

4.6 On So-called Conversational Implicature

The fact that we distinguish speaker suppositions
about common ground from the hearer suppositions
themselves means that we can include the following
rules parallel to (11) and (12) without inconsistency:

(30) a. “X can always say p to Y”
b. ⇒ affords(say(X,Y, p))

(31) a. “If X says p to Y, and Y supposes ¬p, then
Y continues to suppose ¬p, and supposes
that ¬p is not common ground.”

b. {affords(say(X,Y, p))} ∧ [Y]¬p
( [say(X,Y, p)][Y]¬p ∧ [Y]¬ [C]¬p

Speakers’ calculations about what will follow from
making claims about hearers’ knowledge states ex-
tend to what will follow from making false utter-
ances. To take a famous example from Grice, sup-
pose that we both know that you have done me an
unfriendly turn:

(32) a. “I know that you are not a good friend”
b. [S]¬friendship(h) = good

(33) a. “You know that you are not a good friend”
b. [H]¬friendship(h) = good

After applying say(S,H, friendship(h) = good), say
by uttering the following:

(34) You’re a fine friend!

the following holds:

(35) ⇒ [H]¬friendship(h) = good
∧ [H]¬ [C]¬friendship(h) = good

(32); (33); (31b)
One might not think that getting the hearer to

infer something they already know is very useful.
However, if we assume a mechanism of attention,
whereby things that are inferred become salient,
then we have drawn their attention to their tres-
pass. Moreover, the information state that we have
brought them to is one that would normally suggest,
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via rules like (11) and (12), that the hearer should tell
the original speaker that they are not a fine friend.
Of course, further reflection (via similar rules we
pass over here) is likely to make the hearer unwilling
to do so, leaving them few conversational gambits
other than to slink silently and guiltily away. This of
course is what the original speaker really intended.

4.7 A Prediction of the Theory
This theory explains, as Grice did not, why this trope
is asymmetrical: the following is predicted to be an
ineffectual way to make a hearer pleasantly aware
that they have acted as a good friend:

(36) #You’re a lousy friend!

It is counterproductive to make the hearer think of
the key fact for themselves. Moreover, there is no
reason for them not to respond to the contradiction.
Unlike (34), this utterance is likely to evoke a vocif-
erous correction to the common ground, rather than
smug acquiescence to the contrary, parallel to the
sheepish response evoked by (34).

5 Discussion

We have presented a number of toy examples in this
paper for purposes of exposition: scaling to realistic
domains will raise all the usual problems of knowl-
edge representation that AI is heir to. However, the
update effects (and side-effects) of discourse plan-
ning that we describe are general-purpose. They
are entirely driven by the knowledge state, without
recourse to specifically conversational rules, other
than some very general rules of consistency main-
tenance in common ground. There is therefore some
hope that conversational planning itself is of low
complexity, and that any domain we can actually
plan in, we can also plan conversations about.

According to this theory, illocutionary acts such
as questioning and requesting are discourse sub-
plans that are emergent from the general rules for
maintaining consistency in the common ground and
for manipulating knowledge-level information, such
as the Kv formulae in our examples. Of course,
for practical applications that require efficient exe-
cution, we can always memoize the proofs of such
frequently-used sub-plans in the way that is standard
in Explanation-Based Learning (EBL). For instance,
by treating action sequences as “compound” actions

in the planning process, we would be in effect com-
piling them into a model of dialog state-change of
the kind that is common in practical dialog manage-
ment. More importantly, the present work offers a
way to derive such models automatically from first
principles, rather than laboriously constructing them
by hand.

In contrast to approaches that reject the planning
model on complexity grounds, e.g., (Beun, 2001),
our choice of a planner with limited reasoning capa-
bilities and knowledge resources—conditions often
cited as underlying human planning and dialog—
aims to address such concerns directly. Furthermore,
the specialized rules governing speech act selection
in alternate approaches can always be adopted as
planning heuristics guiding action choice, if existing
planning algorithms fail to produce sufficient plans.

We have also argued that LDEC, extended with
PKS-style knowledge primitives, is sufficient for
planning dialog actions. Although we have moti-
vated a correspondence between LDEC and PKS,
we have not described how PKS planning domains
can be formed from LDEC axioms. While some
of the mechanisms needed to support a translation
already exist—the compilation of LDEC rules into
PKS queries and database updates is straightforward
and syntactic—we have yet to extend PKS’s infer-
ence rules to encompass speaker/hearer modalities,
and formally prove the soundness of our transla-
tion. We are also exploring the use of PKS’s LCW
database to manage common ground as a form of
closed world information. (For example, if a partici-
pant X cannot establish p as common ground then
X should assume p is not common ground.) Fi-
nally, we require a comprehensive evaluation of our
approach to assess its feasibility and scalability to
more complex dialog scenarios. Overall, we are op-
timistic about our prospects for adapting PKS to the
problem of planning dialog acts.
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Abstract

Recent work in the area of probabilistic user sim-
ulation for training statistical dialogue managers
has investigated a newagenda-based user model
and presented preliminary experiments with a
handcrafted model parameter set. Training the
model on dialogue data is an important next step,
but non-trivial since the user agenda states are
not observable in data and the space of possible
states and state transitions is intractably large.
This paper presents a summary-space mapping
which greatly reduces the number of state tran-
sitions and introduces a tree-based method for
representing the space of possible agenda state
sequences. Treating the user agenda as a hid-
den variable, the forward/backward algorithm
can then be successfully applied to iteratively es-
timate the model parameters on dialogue data.

1 Introduction

1.1 Statistical user simulation

A key advantage of taking a statistical approach to dia-
logue manager (DM) design is the ability to formalise de-
sign criteria as objective reward functions and to learn an
optimal dialogue policy from human-computer dialogue
data (Young, 2002). The amount of suitably annotated
in-domain data required for training a statistical system,
however, typically exceeds the size of available dialogue
corpora by several orders of magnitude and it is thus
common practise to use a two-phased simulation-based
approach. First, a statistical model of user behaviour
is trained on the limited amount of available data. The
trained model is then used to simulate any number of di-
alogues with the interactively learning dialogue manager
(Levin et al., 2000; Scheffler and Young, 2002; Pietquin,
2004; Georgila et al., 2005; Lemon et al., 2006; Rieser
and Lemon, 2006; Schatzmann et al., 2006).

1.2 Agenda-based user modelling

Recent work by Schatzmann et al. (2007) has presented a
new technique for user simulation based on explicit rep-
resentations of theuser goaland theuser agenda, which
provide compact models of the dialogue context and the
user’s “state of mind” and are dynamically updated dur-
ing the dialogue. Experimental results with the statis-
tical POMDP-based Hidden Information State dialogue
system (Young et al., 2007; Thomson et al., 2007) show
that a competitive dialogue policy can be learnt even with
handcrafted user model parameters.

1.3 Training on real data

While this result is useful for bootstrapping a prototype
DM when no access to dialogue data is available, train-
ing the agenda-model on real human-computer dialogue
data is an important next step. Training avoids the ef-
fort and expertise needed to manually set the model pa-
rameters and ensures that the learned system policy is
optimized for human dialogue behaviour rather than the
handcrafted simulator. The implementation of a suitable
training algorithm for the agenda-based user model, how-
ever, is non-trivial since the user agenda and goal states
are not observable in data. Moreover, the space of possi-
ble states and state transitions is intractably large.

1.4 Paper overview

This paper reviews the agenda-based user model (Sec-
tion 2) and presents an Expectation-Maximization (EM)-
based training method (Section 3) which models the ob-
servable dialogue data in terms of a sequence of hidden
user states. Section 4 discusses the tractability prob-
lems associated with the vast state space and suggests
a summary-space mapping for state transitions. Using
an efficient tree-based method for generating state se-
quences on-the-fly, the forward/backward algorithm can
then be applied to iteratively estimate the model parame-
ters on data. Section 5 concludes with a brief evalution.
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2 Agenda-based user simulation

2.1 User simulation at a semantic level

The agenda-based model introduced by Schatzmann et al.
(2007) formalises human-machine dialogue at a semantic
level as a sequence of states and dialogue acts1. At any
time t, the user is in a stateS, takes actionau, transi-
tions into the intermediate stateS′, receives machine ac-
tion am, and transitions into the next stateS′′ where the
cycle restarts.

S → au → S′ → am → S′′ → · · · (1)

Assuming a Markovian state representation, user be-
haviour can be decomposed into three models:P (au|S)
for action selection,P (S′|au, S) for the state transition
into S′, and P (S′′|am, S′) for the transition intoS′′.
Dialogue acts are assumed to be of the formact(a=x,
b=y,...), whereact denotes the type of action (such as
hello, inform or request) and act itemsa=x andb=y de-
note slot-value pairs, such asfood=Chineseor stars=5as
described in (Young et al., 2005).

2.2 State decomposition into goal and agenda

Inspired by agenda-based approaches to dialogue man-
agement (Wei and Rudnicky, 1999; Lemon et al., 2001;
Bohus and Rudnicky, 2003) the user state is factored into
an agendaA and a goalG.

S = (A, G) and G = (C,R) (2)

During the course of the dialogue, the goalG ensures that
the user behaves in a consistent, goal-directed manner.
G consists of constraintsC which specify the required
venue, eg. “a centrally located bar serving beer”, and re-
questsR which specify the desired pieces of information,
eg. “the name, address and phone number of the venue”.

The user agendaA is a stack-like structure containing
the pending user dialogue acts that are needed to elicit
the information specified in the goal. At the start of the
dialogue a new goal is randomly generated using the sys-
tem database and the agenda is populated by converting
all goal constraints intoinform acts and all goal requests
into requestacts. Abyeact is added at the bottom of the
agenda to close the dialogue (cf. Fig. 5 in the Appendix.).

As the dialogue progresses the agenda is dynamically
updated and acts are selected from the top of the agenda
to form user actsau. In response to incoming machine
actsam, new user acts are pushed onto the agenda and no
longer relevant ones are removed. The agenda thus serves
as a convenient way of tracking the progress of the dia-
logue as well as encoding the relevant dialogue history.

1The termsdialogue actanddialogue actionare used inter-
changeably here.

Dialogue acts can also be temporarily stored when ac-
tions of higher priority need to be issued first, hence pro-
viding the simulator with a simple model of user memory
(see Fig. 5 for an illustration). When using ann-gram
based approach, by comparison, such long-distance de-
pendencies between dialogue turns are neglected unless
n is set to a large value, which in turn often leads to poor
model parameters estimates.

Another, perhaps less obvious, advantage of the
agenda-based approach is that it enables the simulated
user to take the initiative when the dialogue is corrupted
by recognition errors or when the incoming system ac-
tion is not relevant to the current task. The latter point
is critical for training statistical dialogue managers be-
cause policies are typically learned from a random start.
The “dialogue history” during the early training phase is
thus often a sequence of random dialogue acts or dia-
logue states that has never been seen in the training data.
The stack of dialogue acts on the agenda enables the user
model to take the initiative in such cases and behave in a
goal-directed manner even if the system is not.

2.3 Action selection and state transition models

As explained in detail in (Schatzmann et al., 2007), the
decomposition of the user stateS into a goalG and an
agendaA simplifies the models for action selection and
state transition. Since the agenda (of lengthN ) is or-
dered according to priority, withA[N ] denoting the top
and A[1] denoting the bottom item, forming a user re-
sponse is equivalent to poppingn items of the top of the
stack. UsingA[N−n+ 1..N ] as a Matlab-like shorthand
notation for the topn items onA, the action selection
model can be expressed as

P (au|S) = δ(au, A[N− n + 1..N ])P (n|A,G) (3)

whereδ(p, q) is 1 iff p = q and zero otherwise.
The state transition modelsP (S′|au, S) and

P (S′′|am, S′) are rewritten as follows. LettingA′

denote the agenda after popping offau and using
N ′ = N − n to denote the size ofA′, we have

A′[i] := A[i] ∀i ∈ [1..N ′]. (4)

Using this definition ofA′ and assuming that the goal
remains constant when the user executesau, the first state
transition depending onau is entirely deterministic:

P (S′|au, S) = P (A′, G′|au, A,G)
= δ(A′, A[1..N ′])δ(G′, G). (5)

The second state transition based onam can be decom-
posed intogoal updateandagenda updatemodules:

P (S′′|am, S′)
= P (A′′|am, A′, G′′)︸ ︷︷ ︸

agenda update

P (G′′|am, G′)︸ ︷︷ ︸
goal update

. (6)
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3 Model Parameter Estimation

3.1 The user state as a hidden variable

Estimating the parameters of the action selection and
state transition models is non-trivial, since the goal and
agenda states are not observable in training data.

Previous work on the state-based approach to statistical
user simulation (Georgila et al., 2005; Lemon et al., 2006;
Rieser and Lemon, 2006) has circumvented this problem
by annotating training data with dialogue state informa-
tion and conditioning user output on the observable dia-
logue state rather than the unobservable user state. While
this simplifies the training process, providing the neces-
sary annotation requires a considerable effort. If done
manually, the process is often expensive and it can be
difficult to ensure inter-annotator agreement. Using an
automatic tool for dialogue state annotation (Georgila et
al., 2005) can improve efficiency, but the development of
the tool itself is a time-consuming process.

The parameter estimation approach presented here
avoids the need for dialogue state annotation by mod-
elling the observable user and machine dialogue acts in
terms of ahidden sequence of agendas and user goal
states. More formally, the dialogue dataD containing
dialogue turns1 to T

D = {au,am} = {am,1, au,1..., am,T , au,T } (7)

is modelled in terms of latent variables

X = {A,G} (8)

where

A = {A1, A
′
1, ..., AT , A′T } (9)

G = {G1, G
′
1, ..., GT , G′T }. (10)

Collecting the results from Section 2, and noting that
from (5) the choice ofn deterministically fixesA′, the
joint probability can hence be expressed as

P (X,D) = P (A,G,au,am) =

T∏
t=1

P (nt|At, Gt)P (A′′t |am,t, A
′
t, G

′′
t )P (G′′t |am,t, G

′
t).

(11)
The goal is to learn maximum likelihood (ML) values

for the model parameter setθ such that the log likelihood

L(θ) = log P (D|θ) = log
∑

X

P (X,D|θ) (12)

is maximized

θML = arg max
θ
L(θ). (13)

3.2 An EM-based approach

The direct optimization ofL(θ) is not possible, how-
ever, an iterative Expectation-Maximization (EM)-based
approach (Dempster et al., 1977) can be used to find a
(local) maximum of the latent variable model likelihood.
Using Jensen’s inequality, any distributionq(X) can be
used to obtain a lower bound onL(θ)

L(θ) =

log
∑

X

q(X)
P (X,D|θ)

q(X)
≥

∑

X

q(X) log
P (X,D|θ)

q(X)

def= F(q(X), θ). (14)

SinceL(θ) is always greater or equal to the “negative free
energy”F(q(X), θ) the problem of maximizingL(θ) is
equivalent to maximizingF(q(X), θ). Starting from ar-
bitrarily selected model parameters, EM iterates by alter-
nating an E-step and an M-step.

During the E-step, the distributionq(k)(X) over the
latent variables is estimated for fixed model parameters
θ(k−1)

q(k)(X) := arg max
q(X)

F(q(X), θ(k−1)). (15)

It can be shown that this is achieved by setting

q(k)(X) = P (X|D, θ(k−1)). (16)

Using Bayes rule and the law of total probability the RHS
of Eq. 16 can be expressed as

P (X|D, θ(k−1))

=
P (D|X, θ(k−1))P (X|θ(k−1))∑
X P (D|X, θ(k−1))P (X|θ(k−1))

. (17)

Resubstituting (7) and (8) into (17) completes the E-step:

q(k)(A,G)

=
P (au,am|A,G, θ(k−1))P (A,G|θ(k−1))∑

A,G P (au,am|A,G, θ(k−1))P (A,G|θ(k−1))
.

(18)

The M-step now optimizesF(q(X), θ) with respect to
θ whilst holdingq(k)(X) fixed

θ(t) := arg max
θ
F(q(k)(X), θ). (19)

This is achieved by maximizing the auxiliary function

Q(θ, θ(k−1))=
∑

X

P (X,D|θ(k−1)) log P (X,D|θ).
(20)

Substituting Eq. 11 into the above, differentiating with
respect toθ and setting the result to zero, one arrives at
the parameter reestimation formulae shown in Eqs. 21-23
in Fig. 1.
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P̂ (n|A,G) =
∑

t P (At = A,Gt = G|au,am, θ(k−1))δ(nt, n)∑
t P (At = A,Gt = G|au,am, θ(k−1))

(21)

P̂ (A′′|am, A′, G′′) =
∑

t P (A′′t = A′′, A′t = A′, G′′t = G′′|au,am, θ(k−1))δ(am,t, am)∑
t P (A′t = A′, G′′t = G′′|au,am, θ(k−1))δ(am,t, am)

(22)

P̂ (G′′|am, G′) =
∑

t P (G′′t = G′′, G′t = G′|au,am, θ(k−1))δ(am,t, am)∑
t P (G′t = G′|au,am, θ(k−1))δ(am,t, am)

(23)

Figure 1: Model parameter update equations for the action selection and agenda and goal state transition models. Note
thatδ(nt, n) is one iffnt = n and zero otherwise. Similarly,δ(am,t, am) is one iffam,t = am and zero otherwise.

4 Implementation

4.1 Tractability considerations

In the Hidden Information State (HIS) Dialogue System
(Young et al., 2007) used for the experiments presented
in this paper, the size of the user and machine dialogue
action setsU andM is

|U| ≈ 103 and |M| ≈ 103. (24)

Goals are composed ofNC constraints taken from the
set of constraintsC, andNR requests taken from the set
of requestsR. Note that the ordering of constraints and
requests does not matter, and there are no duplicate con-
straints or requests. Using typical values for goal specifi-
cations during previous HIS Dialogue System user trials
(Thomson et al., 2007) the size of the goal state space can
be estimated as

|G| =
( |C|

NC

)(|R|
NR

)
=

(
50
4

)(
8
3

)
≈ 107. (25)

The size of the agenda state spaceA depends on the
number of unique user dialogue acts|U| as defined above
and the maximum numberNA of user dialogue acts on
the agenda. The maximum length of the agenda is a
design choice, but it is difficult to simulate realistic di-
alogues unless it is set to at leastNA = 8. If fully popu-
lated,A therefore comprises the vast number of

|A| = |U|!
(|U| −NA)!

≈ 1020. (26)

potential agenda states2 and the number of parameters
needed to modelP (A′′|am, A′, G′′) is of the order

|A ×M×A× G| ≈ 1050. (27)

2Note that the order of agenda items matters and that there
are no duplicate items.

4.2 Agenda updates as a sequence of push actions

The estimates show that when no restrictions are placed
on A′′, the space of possible state transitions is vast. It
can however be assumed thatA′′ is derived fromA′ and
that each transition entails only a limited number of well-
defined atomic operations (Schatzmann et al., 2007).

More specifically, the agenda transition fromA′ to A′′

can be viewed as a sequence of push-operations in which
dialogue acts are added to the top of the agenda. In a
second ”clean-up” step, duplicate dialogue acts, “empty”
acts, and unnecessaryrequest()acts for already filled goal
request slots must be removed but this is a determinis-
tic procedure so that it can be excluded in the follow-
ing derivation for simplicity. Considering only the push-
operations, the items1 to N ′ at the bottom of the agenda
remain fixed and the update model is rewritten as follows:

P (A′′|am, A′, G′′)
= P (A′′[1..N ′], A′′[N ′+1..N ′′]|am, A′[1..N ′], G′′)
= δ(A′′[1..N ′], A′[1..N ′])

· P (A′′[N ′+1..N ′′]|am, G′′). (28)

The second term on the RHS of Eq. 28 can now be fur-
ther simplified by assuming that every dialogue act item
(slot-value pair) inam triggers one push-operation. This
assumption can be made without loss of generality, be-
cause it is possible to push an “empty” act (which is later
removed) or to push an act with more than one item. The
advantage of this assumption is that the known number
M of items inam now determines the number of push-
operations. HenceN ′′ = N ′ + M and

P (A′′[N ′+1..N ′′]|am, G′′)
= P (A′′[N ′+1..N ′+M ]|am[1..M ], G′′) (29)

=
M∏

i=1

P (A′′[N ′+i]︸ ︷︷ ︸
apush

| am[i]︸ ︷︷ ︸
acond

, G′′) (30)

The expression in Eq. 30 shows that each itemam[i] in
the system act triggers one push operation, and that this
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operation is conditioned on the goal. For example, given
that the itemx=y in am[i] violates the constraints inG′′,
one of the following might be pushed ontoA′′: negate(),
inform(x=z), deny(x=y, x=z), etc.

Let apush ∈ U denote the pushed actA′′[N ′+ i] and
acond ∈ M denote the conditioning dialogue act con-
taining the single dialogue act itemam[i]. Omitting the
Dirac delta function in Eq. 28, the agenda update step
then reduces to the repeated application of apush transi-
tion modelP (apush|acond, G

′′). The number of parame-
ters needed to modelP (apush|acond, G

′′) is of the order

|U ×M× G| ≈ 1013. (31)

While still large, this number is significantly smaller then
the number of parameters needed to model unrestricted
transitions fromA′ to A′′ (cf. Eq. 27).

4.3 A summary space model for push transitions

To further reduce the size of the model parameter set and
make the estimation ofP (apush|acond, G

′′) tractable, it
is useful to introduce the concept of a “summary space”,
as has been previously done in the context of dialogue
management (Williams and Young, 2005). First, a func-
tion φ is defined for mapping the machine dialogue act
acond ∈ M and the goal stateG′′ ∈ G from the space of
machine actsM and goal statesG to a smaller summary
spaceZcond of “summary conditions”

φ : M×G 7→ Zcond with |M×G| À |Zcond|. (32)

Secondly, a “summary push action” spaceZpush is de-
fined, which groups real user dialogue acts into a smaller
set of equivalence classes. Using a functionω, summary
push actions are mapped back to “real” dialogue acts

ω : Zpush 7→ U with |Zpush| ¿ |U|. (33)

Agenda state transitions can now be modelled in sum-
mary space using

P (apush|acond, G
′′) ≈ P (zpush|zcond) (34)

wherezpush ∈ Zpush andzcond ∈ Zcond and

zcond = φ(acond, G
′′) (35)

apush = ω(zpush). (36)

For the experiments presented in this paper, 20 sum-
mary conditions and 20 summary push actions were de-
fined, with examples shown in Fig 6. The total number of
parameters needed to modelP (zpush|zcond) is therefore

|Zcond × Zpush| = 400. (37)

The parameter set needed to model agenda transitions is
now small enough to be estimated on real dialogue data.

4.4 Representing agenda state sequences

Given our estimate of|A| ≈ 1020 for the size of the
agenda state space, the direct enumeration of all states
in advance is clearly intractable. The actual number of
states needed to model a particular dialogue act sequence,
however, is much smaller, since agenda transitions are
restricted to push/pop operations and conditioned on dia-
logue context. The training algorithm can exploit this by
generating state-sequences on-the-fly, and discarding any
state sequenceX for whichP (X,D|θ) = 0.

A suitable implementation for this is found in the
form of a dynamically growing agenda-tree, which allows
agenda-states to be represented as tree-nodes and state
transitions as branches. The tree is initialised by creating
a root node containing an empty agenda and then popu-
lating the agenda according to the goal specification as
explained in Sect. 2. However, since the initial ordering
of dialogue acts on the agenda is unknown, all possible
permutations of constraints and requests must be created,
resulting in a row ofNC ! ·NR! initial agendas (cf. Fig. 2).

Update leaf nodes
based on am (push 
items onto agenda)

Pop au where possible

Prune tree and join 
identical nodes

Generate all possible
initial agendas

Create a root node with 
an empty agenda

. . . . . . . . . . 

. . . . . . . . . 

Figure 2: Tree-based method for representing state se-
quences.

4.4.1 Updating the tree based onam

The dialogue is now “parsed” by growing the tree and
creating branches for all possible state sequences. Up-
dates based on a machine dialogue actam involve map-
ping each item inam to its corresponding summary con-
dition zcond using the functionφ. For eachzcond a list
of summary push actionszpush is generated, discarding
cases whereP (zpush|zcond) = 0. The summary push
actions are then mapped back to real push actions using
ω and used to create new agendas which are attached to
the tree as new branches. The probability of the transi-
tion/branch is computed as the product of the probabili-
ties of the real push actions. (See Fig. 6 in the appendix
for a detailed illustration.)

The leaf nodes are now cleaned up in a deterministic
procedure to remove empty and duplicate dialogue acts,
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to delete all dialogue acts below abye()act, and to re-
move all requests for items that have already been filled
in the user goal. (An exception to the latter is made for
requests that have just been added to the agenda, such that
the simulated user can re-request filled items.)

4.4.2 Updating the tree based onau

In the next step, the tree is updated based on the ob-
served user actau. This part simplifies to poppingau

from the top of the agenda wherever this is possible.
Agendas which do not allowau to be popped off rep-
resent states with zero probability and can be discarded.
In all other cases, a new node with the updated agenda
is attached to the tree. The branch is marked as a pop-
transition and its probability is computed based on the
number of items popped.

4.4.3 Pruning the tree and joining identical nodes
Once the update based onau is completed, the tree

is pruned to reduce the number of nodes and branches.
First, all branches which were not extended during the di-
alogue turn, i.e. branches whereau could not be popped
off the leaf node agenda, are removed. All remaining
branches represent possible sequences of agenda states
with non-zero probability for the dialogue acts seen so
far. In a second step, a more aggressive type of pruning
can be carried out by removing all branches which do not
have a given minimum leaf node probability. After prun-
ing, the size of the tree is further reduced by joining nodes
with identical agendas.

4.5 Action selection and goal update model

The action selection and goal update models experience
similar tractability problems as the agenda update model,
but in both cases a straightforward solution was found to
produce satisfactory results. To simplify the action se-
lection modelP (n|A,G), the random variablen can be
assumed independent ofA andG. The probability dis-
tribution P (n) over small integer values forn (typically
in the range from 0 to 6) can then be estimated directly
from dialogue data by obtaining frequency counts of the
number of dialogue act items in every user act.

The goal update modelP (G′′|am, G′) is decomposed
into separate update steps for the constraints and requests.
Assuming thatR′′ is conditionally independent ofC ′

givenC ′′ it is easy to show that

P (G′′|am, G′)
= P (R′′|am, R′, C ′′)P (C ′′|am, R′, C ′). (38)

The two update steps can be treated separately and imple-
mented deterministically using two rules: 1) IfR′ con-
tains an empty slotu andam is a dialogue act of the form
inform(u=v,r=s,...), thenR′′ is derived fromR′ by setting
u=v given that no other information inam violates any

constraints inC ′′. 2) If am contains a request for the slot
x, a new constraintx=y is added toC ′ to form C ′′. The
latter does not imply that the user necessarily responds to
a system request for any slotx, since the agenda update
model does not enforce a corresponding user dialogue act
to be issued.

4.6 Applying the forward/backward algorithm

Using the summary space mapping for agenda transitions
and simplifying assumptions for the goal update and ac-
tion selection model, the parameter update equation set
reduces to a single equation:

P̂ (zpush|zcond) =∑
k P (zpush,k = zpush, zcond,k = zcond|au,am, θ)∑

k P (zcond,k = zcond|au,am, θ)
(39)

Note thatk is used here rather thant, since every dialogue
turn t involves two state transitions, and there are hence
K = 2T observations and update steps.

The parameter update equation can now be efficiently
implemented by applying the forward/backward algo-
rithm. Letαi(k) denote the forward probability of being
in statei after seeing the observations from1 to k, and
let βi(k) denote the backward probability of seeing the
observations fromk + 1 to K, given that we are in statei
after update stepk:

αi(k) = P (o1, o2, . . . , ok, xk = i|θ) (40)

βi(k) = P (ok+1, ok+2, . . . , oK |xk = i, θ) (41)

Based on the observations, a tree of agendas is con-
structed as described in Section 4.4. After the last obser-
vationK, all agenda items have been popped, so that the
leaf node agendas are empty and can be merged to form a
single end node. The forward/backward probabilities are
now initialised using

αi(1) =
1

NC !NR!
, 1≤ i ≤ NC !NR! (42)

βend(K) = 1 (43)

and then recursively defined for the update steps from
k = 2 to k = K − 1 using

αj(k) =
∑

i

αi(k − 1)aij (44)

βi(k) =
∑

j

aijβj(k + 1) (45)

where the transition probabilityaij of transitioning from
statei to j depends on whether it is a push or a pop tran-
sition. When the transition involves poppingn items off
the agenda,aij equalsP (n). If the transition involves a
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sequence of push actions, thenaij is defined as the prod-
uct of the probability of the associated real push actions
(see Fig. 6 in the appendix for an illustration).

Using the forward/backward probabilities, one can
now compute the probabilityτk(i, j) of transitioning
from statei to statej at update stepk as

τk(i, j) =
αi(k)aijβj(k + 1)

αend(K)
. (46)

Finally, the push transition model parameters are up-
dated using

P̂ (zpush|zcond) =

∑
{k,i,j|SPA=zpush,SC=zcond} τk(i, j)∑

{k,i,j|SC=zcond} τt(i, j)
(47)

where the summation subscripts indicate if the summary
push action (SPA)zpush and summary condition (SC)
zcond were used to transition fromi to j at stepk.

5 Evaluation

5.1 Dialogue training data

The parameter estimation approach presented in this pa-
per was tested using a small corpus collected with the
HIS Dialogue System (Young et al., 2007; Thomson et
al., 2007; Schatzmann et al., 2007). The dataset consists
of 160 dialogues from the tourist information domain,
recorded with 40 different speakers, each of whom com-
pleted 4 dialogues. In total, the corpus contains 6452 di-
alogue turns and 21667 words. All utterances were man-
ually transcribed and annotated using the set of dialogue
act definitions described in Section 2.1. No dialogue state
or user state annotation was needed.

5.2 Training results

The user model was trained on the dialogue corpus de-
scribed above and Fig. 3 shows the number of agenda tree
leaf nodes during a typical training episode on a sample
dialogue. For each machine dialogue act, the tree is ex-
tended and 1 or more new nodes are attached to each tree
branch, so that the number of leaf nodes stays constant or
increases. Pop operations are then performed where pos-
sible, the tree is pruned and identical nodes are joined so
that the number stays constant or decreases. At the end
of the dialogue, only a single leaf node with an empty
agenda remains.

When plotting the log probability of the data (Fig. 4),
it can be seen that the EM-based algorithm produces a
monotonically increasing curve (as expected). The algo-
rithm quickly converges to a (local) optimum, so that in
practise only a few iterations are needed. For illustration
purposes, the training run in Fig. 4 was performed on two
dialogues. As can be seen the log prob of the individual
dialogues increases (top two lines), just as the log prob of
the complete dataset (bottom line).
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Figure 3: Graph showing the number of agenda tree leaf
nodes after each observation during a training run per-
formed on a single dialogue.
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Figure 4: Graph showing a monotonous increase in log
probabilityL(θ) after each iteration of the EM algorithm.

5.3 Comparison of real and simulated data

An initial evaluation of the simulation quality has been
performed by testing the similarity between real and sim-
ulated data. Table 1 shows basic statistical properties
of dialogues collected with 1) real users, 2) the trained
agenda model and 3) the handcrafted baseline simulator
used by Schatzmann et al. (2007). All results were ob-
tained with the same trained dialogue manager and the
same set of user goal specifications. Since the model aims
to reproduce user behaviour but not recognition errors,
only the subset of 84 dialogues with a semantic accu-
racy above 90% was used from the real dialogue corpus3.
The results show that the trained simulator performs bet-
ter than the handcrafted baseline. The difference between
the statistical properties of dialogues generated with the
trained user model and those collected with real users is
not statistically significant with confidence of more than
95%. Hence, based on these metrics, the trained agenda
model appears to more closely match real human dia-
logue behaviour. One may expect that a dialogue system
trained on this model is likely to perform better on real
users than a system trained with the handcrafted simula-
tor, but this is still an open research question.

3Semantic accuracy was measured in terms of substitution,
insertion and deletion errors as defined by Boros et al. (1996).
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Real Users Tr. Sim Hdc. Sim
Sample size 84 1000 1000
Dial. length 3.30±0.53 3.38±0.07 4.04±0.19
Compl. rate 0.98±0.03 0.94±0.02 0.93±0.02
Performance 16.23±1.01 15.32±0.34 14.65±0.50

Table 1: Comparison of basic statistical properties of
real and simulated dialogue data (mean±95% confidence
thresholds). Dialogue length is measured in turns, task
completion rate is based on the recommendation of a cor-
rect venue, and dialogue performance is computed by as-
signing a 20 point reward for a successful recommenda-
tion (0 otherwise) and subtracting 1 point for every turn.

6 Summary

This paper has extended recent work on an agenda-based
user model for training statistical dialogue managers and
presented a method for estimating the model parameters
on human-computer dialogue data. The approach mod-
els the observable dialogue acts in terms of a sequence
of hidden user states and uses an EM-based algorithm to
iteratively estimate (locally) optimal parameter values.

In order to make estimation tractable, the training al-
gorithm is implemented using a summary-space mapping
for state transitions. Agenda state sequences are repre-
sented using tree structures, which are generated on-the-
fly for each dialogue in the training corpus. Experimental
results show that the forward/backward algorithm can be
successfully applied to recompute the model parameters.

A comparison of real and simulated dialogue data has
shown that the trained user model outperforms a hand-
crafted simulator and produces dialogues that closely
match statistical properties of real data. While these ini-
tial results are promising, further work is needed to re-
fine the summary state mapping and to fully evaluate the
trained model. We look forward to reporting these results
in a future paper.
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7 Appendix

7.1 Sample dialogue and user state sequence

Initialisation (Generate goal constraints and requests and populate the agenda)

C0 =

[
type = bar
drinks = beer
area = central

]
R0 =

[
name =
addr =
phone =

]
A0 =




inform(type = bar)
inform(drinks = beer)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()




Sys 0 Hello, how may I help you?(Push 0 items onto the agenda)
Usr 1 I’m looking for a nice bar serving beer.(Pop 2 items off the agenda)

C′1 =

[
type = bar
drinks = beer
area = central

]
R′1 =

[
name =
addr =
phone =

]
A′1 =




inform(area = central)
request(name)
request(addr)
request(phone)
bye()




Sys 1 Ok, a wine bar. What price range?(Add 1 constraint, push 2 items onto the agenda)

C2 =




type = bar
drinks = beer
area = central
prange = cheap


 R2 =

[
name =
addr =
phone =

]
A2 =




negate(drinks = beer)
inform(prange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()




Usr 2 No, beer please!(Pop 1 item off the agenda)
Sys 2 A bar serving beer, correct?(Push 1 item onto the agenda)

C3 =




type = bar
drinks = beer
area = central
prange = cheap


 R3 =

[
name =
addr =
phone =

]
A3 =




affirm()
inform(prange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()




Usr 3 Yeah something cheap in the town centre.(Pop 3 items off the agenda)

C′3 =




type = bar
drinks = beer
area = central
prange = cheap


 R′3 =

[
name =
addr =
phone =

]
A′3 =




request(name)
request(addr)
request(phone)
bye()




Sys 3 Murphy’s on Main Sq. serves cheap beer.(Fill 2 requests, delete agenda requests for filled slots)

C4 =




type = bar
drinks = beer
area = central
prange = cheap


 R4 =

[
name = Murphy′s
addr = Main Sq
phone =

]
A4 =

[
request(phone)
bye()

]

Usr 4 And what’s the phone number?(Pop 1 item off the agenda)
Sys 4 The number is 796 69 94.(Fill 1 request)

C5 =




type = bar
drinks = beer
area = central
prange = cheap


 R5 =

[
name = Murphy′s
addr = Main Sq
phone = 7966994

]
A5 =

[
bye()

]

Usr 5 Thanks, goodbye! (Pop 1 item off the agenda)

Figure 5: Sample dialogue showing the state of the user goal and agenda. Note that system turn 1“What price range?”
triggers the user actinform(prange=cheap)to be pushed onto the agenda but it is not executed until turn 3 because
negate(drinks=beer)is issued first.
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7.2 Sample agenda update transition using the summary-space mapping

am = confreq(p=q,r)

1. ReceiveConfirmAXok [p=q]
2. ReceiveRequestA [r]

1. PushAffirm {0.3}
PushAffirmAX {0.4}
PushNothing {0.3}

2. PushInformAX {0.5}
PushInformBY {0.4}
PushNull {0.1}

Map dialogue act to
M summary conditions   

Generate list of 
summary push actions    
with non-zero probability

1. affirm() {0.3}
affirm(p=q) {0.4}
--- {0.3}

2. inform(r=x) {0.5}
inform(s=y) {0.2}
inform(t=z) {0.2}
null() {0.1}

Map summary push
actions to real 

push actions

Receive machine act 
with M dia act items

a) affirm()        {0.3}
inform(r=x)  {0.5}

b) affirm() {0.3}
inform(s=y) {0.2}

c) affirm() {0.3}
inform(t=z) {0.2}

d) affirm() {0.3}
null() {0.1}

e) affirm(p=q) {0.4}
inform(r=x) {0.5}

Generate all 
combinations of      

real push actions           

Execute push actions to 
form new agenda nodes

Agenda A
…

a)

b)

c)

…

{0.15}

{0.06}

{0.06}

Figure 6: Simplified example illustrating the summary space technique for agenda updates.

The incoming machine act in this example is assumed to beam =confreq(p=q,r), i.e. an implicit confirmation of
the slot-value pairp=q and a request for the slotr. The update step proceeds as follows:

1. Based on the current state of the goal (not shown here), the first step is to map each dialogue act item (slot-
value pair) to a summary conditionzcond. Given that the confirmationp=q in the example does not violate any
of the constraints in the user goal, it is mapped toReceiveConfirmAXok[p=q]. The request forr is mapped to
ReceiveRequestA[r].

2. A list of summary push actionszpush, each with probabilityP (zpush|zcond), is now generated for each summary
conditionzcond. A (shortened) list of examples is shown in the figure. The summary push actionPushInformAX,
for instance, implies that aninform act with the requested slot (in this caser) is pushed onto the agenda. Note
that summary push actions with zero probability can be discarded at this point.

3. The summary push actions are now mapped to real push actions. This is a 1-to-1 mapping for most summary
push actions, but some summary push actions can map to several real push actions. This is illustrated in the figure
by the summary push actionPushInformBY, which implies that the corresponding real push action is aninform
dialogue act containing some slot-value pairB=Y other than the requested slot, in this cases=y or t=z. In such
cases, the probability mass is split evenly between the real push actions for a summary push action, as shown in
the figure.

4. Using one real push action from each summary condition, a list of all possible combinations of push actions is
now generated. Each combination represents a series of dialogue acts to be pushed onto the agenda. As shown in
the figure, each combination is used to create a new agenda. The transition probability is computed as the product
of the real push actions that were used to make the transition.

Note that the set of summary conditions and summary actions is independent of the number of concepts and database
entries, allowing the method to scale to more complex problem domains and larger databases.
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Abstract

In this paper we present a simple, empirically
grounded computational model of grounding in dia-
logue. Grounding is shown to occur as a result of the
dynamics of the information states of dialogue partic-
ipants. A step-by-step analysis and representation of
how information states develop through dialogue ut-
terance processing illustrates exactly how this works.

1 Introduction

In an information-state update (ISU) approach, a di-
alogue is viewed as a sequential structure consisting
of communicative acts that the participants perform
in order to change each other’s information state.
For example, consider the following dialogue at a
railway station between traveler A and employee B

of the railway company:

(1) 1. A: Excuse me, can you tell me what time
the next train to Amsterdam leaves?
2. B: Yes, that’s at 9:17.
3. A: And at which platform is that?
4. B: That’s at platform 5.
5. A: Thanks a lot.
6. B: You’re welcome.

The second utterance tells A, among other things,
that B believes that the next train to Amsterdam
leaves at 9:17. Let us call this information p. As-
suming that employees of the railway company pro-
vide correct information about train departure times,
A will adopt the belief that p. So both participants
now believe that p, and A also believes that B be-
lieves that p. After utterance 3, B will moreover
believe that A has come to believe that p, although
nothing is said about that. The dialogue continues on
the topic of departure platform, which would seem

not to inf uence A’s and B’s beliefs relating to p.
So at the end of the dialogue we have the following
situation with respect to the information p:

(2) a. A believes that p; B believes that p;
b. A believes that B believes that p; B believes that A

believes that p.

In a shallow sense, p has become a shared belief:
both participants have this belief and they both be-
lieve that the other has that belief. But studies of
the logical foundations of communication tell us that
participants in a dialogue should establish a com-
mon ground in a deeper sense. In their ground-
breaking studies of common ground, Stalnaker and
Lewis, among others, have suggested to def ne com-
mon ground in terms of mutual beliefs, explained as
follows:

(3) p is a mutual belief of A and B iff:
- A and B believe that p;
- A and B believe that A and B believe that p;
- A and B believe that A and B believe that A
and B believe that p;
and so on ad inf nitum.

Clearly, the situation represented in (2) is a very poor
approximation of this notion of common ground.
Yet, intuitively, at the end of dialogue (1) the infor-
mation that the next train to Amsterdam leaves at
9:17 seems to be grounded, i.e. to have been added
to the common ground of A and B.
A technical problem presents itself here: the com-

municative acts expressed by the dialogue utterances
create only f nite iterations of belief of one dialogue
participant about the beliefs of the other participant,
as illustrated by (2); the full recursive nature of mu-
tual beliefs cannot be achieved in this way in a dia-
logue of f nite length.
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In this paper we will describe a computational
model of grounding where the establishment of
common ground comes out as a consequence of suc-
cessful communication, def ned as the recognition
of each other’s intentions, plus two pragmatic prin-
ciples, one concerning the way in which dialogue
participants deal with expectations of being under-
stood and believed; and one about the cumulative
effects of feedback. The model, which does not re-
quire any specif c grounding acts, is backed up by
empirical observations from corpora of information-
seeking and assistance dialogues.
This paper is organised as follows. Section 2 sum-

marizes some existing views on grounding. Sec-
tion 3 presents the conceptual model of grounding,
based on dialogue analysis according to the frame-
work of Dynamic Interpretation Theory (DIT, (Bunt,
2000)); section 4 presents our computational model
of grounding, and Section 5 ends with concluding
remarks.

2 Common Ground and Grounding

In Clark and Schaefer’s model of grounding (Clark
and Schaefer, 1989), participants in a dialogue try to
establish for each utterance the mutual belief that the
addressees have understood what the speaker meant.
This is accomplished by the use of units called con-
tributions. Contributions are divided into an accep-
tance and a presentation phase, so that every con-
tribution, except for those that express negative ev-
idence, has the role of accepting the previous con-
tribution. A diff culty with this model is that its
grounding criterion says that “the contributor and
the partners mutually believe that the partners have
understood what the contributor meant”. So the
grounding process is conceived in terms of mutual
beliefs. However, the central problem of ground-
ing is precisely how mutual beliefs are established.
Work based on this model includes its extension to
human–computer interaction by Brennan and col-
laborators (Brennan, 1998; Cahn and S. E. Brennan,
1999), Li et al.’s model for multimodal grounding
(Li et al., 2006), and Paek and Horvitz’s formal the-
ory of grounding (Paek and Horvitz, 2000).
In his inf uential computational model of ground-

ing, Traum (1994) has introduced separate ground-
ing acts which are used to provide communicative
feedback and thereby create mutual beliefs. For

this approach to work, Traum assumes that feedback
acts are always correctly perceived and understood,
therefore a dialogue participant does not need feed-
back about his feedback acts. This is an unwarranted
assumption, however. Like any dialogue utterance,
an utterance which expresses feedback can suffer
from the addressee temporarily being disturbed by
the phone, or by an aircraft f ying over, or by noise
on a communication channel; hence a speaker who
performs a grounding act can never be sure that his
act was performed successfully until he has received
some form of feedback. A limitation and somewhat
confusing aspect of this model is that it discusses
the grounding of utterances, rather than the ground-
ing of information conveyed by utterances through
their semantic content.
(Matheson et al., 2000) use elements of Traum’s

model in their treatment of grounding from the In-
formation State Update perspective. They repre-
sent grounded and ungrounded discourse units in
the information state, and change their status from
ungrounded to grounded through grounding acts.
The dialogue act Acknowledgement is the only
grounding act implemented; its main effect is to
merge the information in the acknowledged dis-
course unit into the grounded information. They do
not deal with cases of misunderstandings or cases
where the user asks for acknowledgement. The
model keeps only the last two utterances in the in-
formation state, so it is not clear what would happen
if the utterance to be grounded is more than two ut-
terances back – which we will argue to be the rule
rather than the exception.

3 Grounding and Belief Strengthening
The addition of something to a common ground re-
lies on evidence that the belief in question is mu-
tually believed. The nature of such evidence de-
pends on the communicative situation, for instance
on whether the participants can see each other,
and on whether they are talking about something
they (both know that they) can both see. We re-
strict ourselves here to situations where grounding
is achieved through verbal communication only, as
in the case of telephone conversations, email chats,
or spoken human-computer dialogue.
In the DIT framework, information can pass from

one dialogue participant to another through mech-
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anisms linked to understanding and believing each
other. The f rst of these consists of the informa-
tion state of the addressee of a dialogue act undergo-
ing certain changes when he understands the corre-
sponding dialogue behaviour. Understanding com-
municative behaviour is modeled as the addressee
coming to believe that the preconditions hold which
are characteristic for the dialogue acts that are ex-
pressed by that behaviour. For example, if A asks
B a Yes/No-Question about a proposition p, then as
a result of understanding this, B will know that A

wants to know whether p, and that A thinks that B

knows whether p. The second mechanism is that of
belief adoption (a.k.a. ‘belief transfer’, Allen and
Perrault, 1980). When A has asked B whether p,
and B answers “Yes”, then upon understanding this
A will assume that B believes that p. In such a sit-
uation, A may be expected to believe B, so A also
believes that p: he has adopted p.
To be sure that information is indeed transferred

through the mechanisms of understanding and/or
adoption, a speaker needs evidence of correct un-
derstanding of his communicative behaviour and of
being believed. Feedback, positive or negative, pro-
vides information about an addressee’s understand-
ing and adoption of information.
Let us consider the transfer of information

through understanding and adoption in some more
detail, to see its contribution to grounding processes.
In the following dialogue fragment, A initially con-
tributes utterance du1 which expresses an Inform
act; let c1 be the precondition that A believes that
p, with p the propositional content of the act (the
information that the next train is at 11:02). Success-
ful communication should lead to c1 as well as p at
some point being in A’s and B’s common ground.
(4) du1. A: The next train is at 11:02.

du2. B: At 11:02.
du3. A: That’s correct.
du4. B: Okay thanks.

How could A for example come to believe that p is
mutually believed? First, he should have evidence
that B understands his utterance du1 and believes
its content p. B’s utterance du2 can be taken to pro-
vide such evidence. So after du2, A believes that B
believes that p, and that B believes that A believes
that p. However, A cannot be certain that B indeed
believes that p, since in du2 he also seems to offer

that belief for conf rmation. A’s response du3 gives
that conf rmation. At this point A does not yet know
whether his utterance has reached B and was well
understood. B’s next contribution du4 provides ev-
idence for that; upon understanding du4, A has ac-
cumulated the following beliefs:

(5) A believes that p
A believes that B believes that p
A believes that B believes that A believes that p
A believes that B believes that A believes that B believes
that p
A believes that B believes that A believes that B believes
that A believes that p

Although we see nested beliefs of some depth
emerging, A is still a long way from believing that
p is mutually believed – an inf nitely long way, in
fact. Clearly, continuing along this line could not
lead to mutual beliefs in a f nite amount of time. We
therefore want to suggest a different explanation.
In natural face-to-face dialogue, speakers receive

feedback while they are speaking as the participants
give explicit and implicit feedback about their un-
derstanding of what is being said by means of fa-
cial expressions, head movements, direction of gaze,
and verbal elements. In situations without visual
contact, such as telephone dialogues or computer-
mediated chatting, or in human-computer dialogue,
a speaker often receives no feedback while speaking
(or typing). This has the effect that, when a speaker
has f nished a turn, he does not know whether his
contribution has been perceived, understood, and ac-
cepted. In a situation where “normal input-output”
conditions hold (Searle, 1969), i.e. where partici-
pants speak the same language, have no hearing or
speaking impairments, use communication channels
without severe distortions, and so on, a speaker nor-
mally expects that the addressee perceives, under-
stands and believes what is being said. We model
this by the speaker having a doxastic attitude that
we call weak belief that the addressee of his dialogue
acts believes the preconditions and the content of the
dialogue act to be true.1 So after contributing an ut-
terance that expresses a dialogue act with precondi-
tion c1, the speaker A has the weak belief that B be-

1A weak belief is characteristically distinguished from a
f rm belief in that it is not inconsistent to weakly believe that
p while at the same time having the goal to know whether p. In
fact, the combination of such a goal and weak belief forms the
preconditions of a CHECKQUESTION.
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lieves that c1. And similarly, in information-seeking
dialogues, assistance dialogues, and other types of
cooperative dialogue where the participants are ex-
pected to only provide correct information about the
task at hand, if the utterance offers the information p

about the task, then the speaker A also has the weak
belief that B believes that c1.
Of course, the assumptions of being understood

and believed are not idiosyncratic for a particular
speaker, but are commonly made by dialogue par-
ticipants in cooperative dialogue in normal input-
output conditions. B will therefore believe that A

makes this assumption, so:

(6) B believes thatA weakly believes thatB believes that c1.
B believes that A weakly believes that B believes that p.

By the same token, A believes this to happen, hence:

(7) A believes that B believes that A weakly believes that B
believes that c1 and that p.

This line of reasoning can in principle be continued
ad inf nitum, leading to the conclusion that:

(8) Both A and B believe that it is mutually be-
lieved that A weakly believes that B believes
that c1 and that p.

In the example dialogue, this means in particular
that, after contributing utterance du1, A will among
other things believe the following ‘weak mutual be-
liefs’ to have been established, ‘weak’ in the sense
that the mutual belief contains a weak belief link:

(9) a. A believes that it is mutually believed that A weakly
believes that B believes that c1.

b. A believes that it is mutually believed that A weakly
believes that B believes that p.

The f rst of these weak mutual beliefs comes from
the expected understanding of du1, the second from
the expected adoption of the information that du1

offered.
More generally, what we see happening with re-

spect to grounding, is that for an agent to ground a
belief, what he has to do is not so much extend a f -
nite set of nested beliefs like (5) to an inf nite set of
nested beliefs of any depth, but to replace the weak
belief link in believed mutual beliefs of the form

(10) A believes that it is mutually believed that A weakly be-
lieves that B believes that q

by an ordinary belief link, turning it into

(11) A believes that it is mutually believed thatA believes that
B believes that q

which is equivalent2 to:

(12) A believes that it is mutually believed that q

So the question is what evidence is necessary and
suff cient to strengthen the weakest link in certain
‘weak mutual beliefs’.
We have suggested above that the evidence behind

nested beliefs of the complexity of (5) is necessary
but not suff cient. That it is indeed necessary can be
seen from the following example.

(13) 1. A: Where should I insert the paper?
2. B: In the paper feeder.
3. A: The paper to be faxed.
4. B: What did you say?

This example illustrates the above remark that utter-
ances which provide feedback on a previous utter-
ance are themselves also in need of feedback in or-
der to make sure that they contribute to the ground-
ing process. With utterance 3, A explains what
he meant by the paper in his previous utterance,
thereby indicating that he’s not sure that his ques-
tion was correctly understood. In other words, ut-
terance 2 apparently did not provide A with positive
feedback relating to being understood. A would cer-
tainly not be allowed to ground, having insuff cient
evidence about the feedback that B has received up
to this point in the dialogue. Hence at this point the
process does not move into the direction of estab-
lishing a mutual belief about the preconditions of the
question, let alone of the answer.
The issue of evidence being necessary and/or suf-

f cient for strengthening the weakest link in a weak
mutual belief is an empirical one. The case of (13)
represents empirical evidence for the necessity of
the evidence behind (5). Contrary to what we sug-
gested above, empirical evidence in fact seems to

2This equivalence depends on the assumption that is known
in epistemic logic as the Introspection axiom. According to this
assumption, an agent believes his own beliefs, and in this case
an agent also believes that he has a certain goal when he in fact
has that goal. A precondition q of a dialogue act performed
by a speaker A is always a property of A’s state of beliefs and
goals, hence A believes that q is equivalent to q. Moreover,
all dialogue participants may be assumed to operate according
to this assumption, hence B believes that A believes that q is
equivalent to B believes that q.
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show that the evidence of correct understanding that
supports the beliefs represented in (5) is also suff -
cient for strengthening the weak mutual belief in (8).
We express this observation as a pragmatic principle
for the strengthening of the weakest link in a ‘weak
mutual belief’. The principle says that:

(14) a. A dialogue participant strengthens the
weak belief link in a ‘weak mutual mutual
belief’ concerning a precondition of a dia-
logue act that he has performed, when (1)
he believes that the corresponding utterance
was correctly understood; (2) he has evi-
dence that: (2a) the other dialogue partner
also believes that; and (2b) they both have
evidence that they both have evidence that
(1) and (2a) are the casse.

b. Like clause a., replacing “precondition of”
by “task-related information, offered by”,
and replacing “correctly understood” by
“believed”.

We call (14) the Strengthening Principle (SP).
The SP may not seem very transparent at f rst; we
will show its effect below, where we will see that
it in fact comes down to a dialogue participant be-
ing able to ground preconditions or contents of a
dialogue act when he has twice received positive
feedback, namely positive feedback (possibly im-
plicitly only) on the original utterance and posi-
tive feedback (again, possibly implicitly) on his re-
sponse to that feedback act. In Morante (2007) and
(Morante, forthcoming 2007) we provide ample em-
pirical evidence for this principle, using corpora of
both human-human and spoken human-computer di-
alogues; here we give just one example.
In dialogue (15), the SP predicts that B grounds

the content of the f rst utterance when he success-
fully processes utterance 5 (second case of positive
feedback). Indeed, it seems impossible forB to con-
tinue with utterance 6, expressing doubts about the
grounded belief. By contrast, B could very well ex-
press such doubts in his previous turn, as (16) illus-
trates.

(15) 1. A: The next train is at 11:02.
2. B: At 11:02.
3. A: That’s correct.
4. B: Okay thanks.

5. A: You’re welcome.
6. B: ∗I thought it would be at 11:08.

(16) 1. A: The next train is at 11:02.
2. B: At 11:02.
3. A: That’s correct.
4. B: I thought it would be at 11:08.

Since the only difference between (15) and (16) is
the feedback that has been given by utterances 4 and
5, it must be the case that the evidence of correct
understanding provided by these utterances makes
the difference for grounding.
Limitations of space prevent us from going into

the ways in which the various types of dialogue acts
facilitate, speed up, or delay grounding in dialogue.
See (Morante, forthcoming 2007) for a systematic
discussion.

4 The DIT computational model of
grounding

Our computational modeling of grounding, based on
the strengthening of weak belief links in mutual be-
liefs, exploits the DIT structured context model and
detailed analysis of feedback. The context model
consists of several components, each representing
a different type of information. The most relevant
components to consider here are the Linguistic Con-
text, the Cognitive Context, and the Semantic Con-
text, which are def ned as follows:

• Linguistic Context: a record of the dialogue
up to this point, including verbatim represen-
tations of utterances as well as aspects of their
syntactic, semantic and pragmatic analysis;

• Cognitive Context: information about the pro-
cessing of utterances, notably about any prob-
lems in their interpretation or application;

• Semantic Context: information about the task,
including nested beliefs about the dialogue
partner’s semantic context.

Evidence of correct understanding and of be-
ing believed, which triggers the application of the
Strengthening Principle, is represented in the Cog-
nitive Context. In order to see how the context up-
dates, corresponding to understanding and believing
each other, lead to the grounding of information,
consider how the content of utterance 2 in the dia-
logue (17), In the feeder, is grounded.
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(17) du1. U: Where should I insert the paper?
du2. S: In the feeder.
du3. U: Should I put it in the bottom front tray?
du4. S: No, in the open tray on top.
du5. U: OK thanks .
du6. S: You’re welcome.
du7. U: Goodbye.

We will represent the information that an utter-
ance u was successfully processed (at all levels3) by
agent Y as Y +(u), and the fact that agent X has
evidence that agent Y succesfully processed that ut-
terance as: X : Y +(u).4

Utterance du3 in (17) shows a problem in under-
standing du2 (represented by U−(du2)) in the form
of a clarif cation question. As a result of recognizing
this, S cancels the beliefs which ref ected his expec-
tation that du2 would be understood without prob-
lems (the beliefs labeled ssc4 and ssc5 in Table 1).
Utterance du5 provides evidence for U ’s under-

standing the answer du4 as well as believing it, so
successful processing of du5 introduces the element
S : U+(du4) into S’s cognitive context. Utterance
du6 likewise can be taken to provide evidence that
the preceding utterance was well understood, so that
leads to U ’s cognitive context containing the ele-
ment U : S+(du5). And similarly du7 leads to S’s
cognitive context containing S : U+(du6).
Due to the local nature that feedback usually

has, especially positive feedback (and even more
strongly implicit positive feedback), this process
however does not build up the nested evidence of
understanding and believing du2 that we need for its
content to be grounded via the Strenghtening Princi-
ple. The key to solving this problem can be found in
the observation that, when you get positive feedback
on your last contribution to the dialogue, then that
is evidence for you that the speaker thinks that you
successfully processed his preceding contribution.

3DIT distinguishes several levels of feedback, namely those
of paying attention, perception, understanding, evaluation, and
application. The Feedback Chaining principle presented below
is a simplif cation; in full it takes the various levels of feedback
into account.

4Everywhere in this paper when we speak of ‘feedback’ we
mean what in DIT is called auto-feedback, as opposed to allo-
feedback. The former is concerned with information about the
speaker’s processing of dialogue utterances; the latter with the
speaker’s beliefs about the addressee’s processing. For allo-
feedback a similar chaining principle applies as the one de-
scribed below for auto-feedback.

For example, when you have been asked a ques-
tion, then positive feedback on the answer that you
give constitutes evidence that you had understood
the question well. We call this phenomenon Feed-
back Chaining. It can be represented formally as:

(18) S+(dui) ⇒ S : A+(dui−1)

(with S indicating Speaker and A Addressee). Neg-
ative feedback is of course a different story: under-
standing of a negative feedback act means for the
addressee that he has to address the utterance that
caused the negative feedback. In the example of (17)
we see that S recognizes that du3 signaled a problem
with du2 (item S+(du−2

3 ) in S’s Cognitive Context).
Note that Feedback Chaining is something that all

participants in a dialogue do and assume all partici-
pants to do. Utterance du5 in the example dialogue
therefore not only leads to the element S : U+(du4)
in S’s cognitive context, saying that S has evidence
that U successfully processed utterance du4, but
from applying Feedback Chaining to the new ele-
ment in his cognitive context also to inferring that U
has evidence that S successfully processed the utter-
ance preceding du4, hence that S : U : S+(du3).
Table 1 shows some of the information in the lin-

guistic context of the participant who has the speaker
turn, and of the effects of what is said on the par-
ticipants’ cognitive and semantic contexts. Of the
linguistic context it shows: (1) the verbatim form
of each turn; (2) the speaker of that turn: (3) the
chronological location of the turn; (4) the commu-
nicative functions of the dialogue acts performed
in that turn, where for simplicity we only show
the communicative functions that are relevant to the
present discussion.
Feedback Chaining has the effect that dialogue

acts that provide feedback, either explicitly or im-
plicitly, have a non-local effect and allow dialogue
participants to build up evidence about each other’s
evidence concerning the processing of utterances
earlier in the dialogue, and at some stage this nested
evidence meets the requirements of the Strength-
ening Principle. In the example dialogue, U can
ground the preconditions of his question du3 after
utterance du6 since he has evidence that du3 was
well understood (element ucc3 of his cognitive con-
text), and that S has evidence that this is the case (el-
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Table 1: Linguistic, Cognitive and Semantic contexts (slightly simplif ed) for dialogue (17)
LC = Linguistic Context; CC = Cognitive Context; SC = Semantic Context. cki stands for the preconditions of duk; ck for the
semantic content of duk. ‘und’ = understanding of previous utterance; ‘exp’ = expected; ‘ad’ = adoption; FC = Feedback Chaining;
SP = Strengthening Principle. ‘bel’ = belief; ‘wbel’ = weak belief; ‘mbel’ - mutual belief.

num source S’s context num source U’s context
SC usc1 prec c1i

LC du1 U Where should I insert the paper?
WH–QUESTION

CC scc1 und S+(du1)
SC ssc1 und bel(S, c1i)

ssc2 exp und bel(S, mbel(S, U, wbel(U, bel(S, c1i)))) usc2 exp und bel(U, mbel(S, U, wbel(U, bel(S, c1i))))
ssc3 prec bel(S, c2)

LC du2 S In the feeder.
WH–ANSWER(du1)

CC ucc1 und U−(du2)
SC ssc4 exp und bel(S, mbel(S, U, wbel(S, bel(U, c2i)))) usc2 exp und bel(U, mbel(S, U, wbel(S, bel(U, c2i))))

ssc5 exp ad bel(S, mbel(S, U, wbel(S, bel(U, c2)))) usc3 exp ad bel(U, mbel(S, U, wbel(S, bel(U, c2))))

LC du3 U Should I put it in the bottom front tray?
NEG. FEEDBACK YN-QUESTION(du2)

CC scc2 und S+(du−2

3 )
scc3 FC S : U−(du2)

SC cancellation of ssc4, ssc5
ssc6 und bel(S, c3i)
ssc7 exp und bel(S, mbel(S, U, wbel(U, bel(S, c3i)))) usc4 exp und bel(U, mbel(S, U, wbel(U, bel(S, c3i))))
ssc8 prec bel(S, c4)

LC du4 S No, in the open tray on top.
YN–ANSWER(du3)

CC ucc2 und U+(du4)
ucc3 FC U : S+(du3)

SC cancellation of usc2, usc3
usc5 ad bel(U, c4)

ssc9 exp und bel(S, mbel(S, U, wbel(S, bel(U, c4i)))) usc6 exp und bel(U, mbel(S, U, wbel(S, bel(U, c4i))))
ssc10 exp ad bel(S, mbel(S, U, wbel(S, bel(U, c4)))) usc7 exp ad bel(U, mbel(S, U, wbel(S, bel(U, c4))))

LC du5 U OK thanks.
POSITIVE FEEDBACK(du4)

CC scc4 und S+(du5)
scc5 FC S : U+(du4)
scc6 FC S : U : S+(du3)

LC du6 S You’e welcome
POSITIVE FEEDBACK(du5)

CC ucc4 und U+(du6)
ucc5 FC U : S+(du5)
ucc6 FC U : S : U+(du4)
ucc7 FC U : S : U : S+(du3)

SC usc6 SP bel(S, mbel(S, U, c3i))

LC du7 U Goodbye
POSITIVE FEEDBACK(du6)

CC scc7 und S+(du7)
scc8 FC S : U+(du6)
scc9 FC S : U : S+(du5)
scc10 FC S : U : S : U+(du4)
scc11 FC S : U : S : U : S+(du3)

SC ssc7 SP bel(S, mbel(S, U, c4))
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ement ucc7).5 This is what we may call the ground-
ing of the utterance by U .
From an intuitive point of view, S should perhaps

also be able to ground utterance du4. But does he in
fact have evidence that U correctly understood that
utterance? All that S has to go by is U ’s thanking
and goodbye acts, taken to also signal that U be-
lieves to have understood S’s answer du4 success-
fully, but of course U may be wrong; U ’s belief can-
not constitute solid evidence for S. If indeed we
want utterances to be grounded in such situations,
then we need an additional pragmatic principle say-
ing that, when a dialogue participant expresses that
he has successfully processed a dialogue utterance,
then this will be believed unless there is evidence to
the contrary. Since utterance du7 provides no such
counter-evidence, S may at this point indeed assume
that U processed du4 successfully.
Note that our model of grounding says that the

content of du4 is not grounded for U at the end of
this dialogue. Doesn’t that make it unsatisfactory
for U to end the dialogue? We believe not: we have
here an information-seeking dialogue, with U as the
information seeking participant. As far as U is con-
cerned, the dialogue may end as soon as he believes
that his question (du3), replacing his original ques-
tion du1 was well understood and has received an
answer (du4) that he believes. What more could an
information-seeking agent want?

5 Concluding Remarks

We have presented a simple, empirically based com-
putational model of grounding in dialogue as the
result of the strengthening of weak mutual beliefs.
These weak beliefs are created through the assump-
tions that participants in dialogue make about the un-
derstanding and acceptance of what they say when
normal input-ouput conditions hold. A crucial role
in this model is played by the Strengthening Prin-
ciple, which says that a dialogue participant can
strengthen a weak mutual belief when he has suf-
f cient evidence about both participants’ belief that
the utterance, which caused the weak belief was un-
derstood and accepted by the other participant.

5The other SP conditions are also satisf ed since we assume
that the attitude ‘has evidence that’, like the other doxastic at-
titudes that we use, is logically introspective (cf. footnote 2).
Therefore S+(du3)⇒ S : S+(du3).

A proof of concept implementation of the ground-
ing model, outlined here, has been integrated as
part of the Dialogue Manager module in a speech-
based information-extraction system (see (Keizer
and Morante, 2007)). This implementation proves
the technical validity of the grounding model, and
forms a platform for experimenting for example
with different forms of the Strenghtening Principle
for different types of dialogue.
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Abstract 

Automatic evaluation of spoken dialog sys-
tems has gained interest among researchers 
in the past years. In the PARADISE 
framework (Walker et al. 1997), a linear 
regression function is trained on a dialog 
corpus to predict user ratings of satisfaction 
from interaction parameters. The accuracy 
of such predictions is generally measured 
with R2, which usually is rather low. In this 
paper, it is shown that predictions accord-
ing to PARADISE can lead to accurate test 
results despite the low R2.   

1 Introduction 

Automatic usability testing of spoken dialog sys-
tems (SDSs) has gained interest among researchers 
in the past years. According to ISO 9241-11 
(1998), usability of a system is compound of its 
effectiveness in doing typical tasks, the efficiency 
with which the task can be done and the satisfac-
tion of the user with the system. Because user sat-
isfaction is a subjective issue, usability testing in-
volves humans who conduct typical tasks with the 
system and state their satisfaction with it after-
wards. A key issue in automatic usability testing is 
the estimation of the expected user satisfaction 
without human involvement. 

In the PARADISE framework (Walker et al. 
1997) it is proposed to predict user satisfaction on 
the basis of interaction parameters captured in sys-
tem log files. A linear regression (LR) model is 
trained on the parameters as predictors of user 
judgments of the corresponding dialogs as target.  

The percentage of the variance of the target that 
can be explained by the model is measured with R2, 
which is based on the comparison of predicted and 
measured values for each dialog. When applying 
PARADISE, R2 usually is below 0.6 for the predic-
tion of the training data themselves (e.g. Walker et 
al. 2000), while the prediction of independent data 
is a stronger criterion and typically results in an 
even lower R2. 

Various steps have been taken to improve the 
predictive power of such equations. On the one 
hand, more and better predictor parameters have 
been searched for (Möller, 2005; Oulasvirta et al. 
2006, Hastie et al. 2002), on the other hand, other 
prediction algorithms, e.g. classification and re-
gression trees (CARTs) have been explored (Com-
pagnoni 2006). However, R2 values obtained re-
main unsatisfactory low. 

While the standard accuracy measure for LR 
models, R2, is based on a comparison of pairs of 
predicted and measured values for each dialog, in 
subjective measurement usually single ratings are 
not looked at. Instead, the researcher examines the 
overall distribution of all judgments for each ques-
tionnaire item. In fact, the very nature of subjective 
measurement involves joining ratings by multiple 
test subjects in order to minimize effects of inter-
subject rating differences and by this maximizing 
the reproducibility of the findings. In other words, 
single ratings are tainted with different kinds of 
measurement errors (Annett, 2002). Consequently, 
an accurate prediction of single judgments is a 
Sisyphus task: it involves the difficult task to esti-
mate the measurement errors, while at the same 
time the level of detail achieved by this is undesir-
able for the test result. 
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In the best case, the detail lost in LR predictions 
would be congruent with the detail deliberately 
eliminated during test evaluation. If this was true, 
the pragmatic value of PARADISE models would 
be higher than the R2 values suggest. This paper 
discusses the application of PARADISE predic-
tions in a pragmatic context, in order to estimate 
the severity of loss of detail in PARADISE predic-
tions for their practical application. 

Corpora of two different experiments serving 
the evaluation of spoken dialog systems have been 
analyzed with respect to how well test results can 
be reproduced by predictions with LR equations. In 
the following section, the databases used will be 
described. In Section 3, the application of the 
PARADISE approach to the data is explained, and 
in Section 4 examples are given to illustrate how 
prediction results can be used to reconstruct spe-
cific test results. 

2 Data 

Experiment 1 has been carried out during the 
EU-funded INSPIRE project (IST 2001-32746). 
The SDS tested in the experiment is capable of 
controlling domestic devices such as lamps and a 
video recorder, leading a mixed-initiative dialog 
with the user. For the experiment, the speech rec-
ognition (ASR) was replaced by a Wizard-of-Oz, 
transcribing the users’ utterances. The aim of the 
experiment was to test the impact of ASR accuracy 
on user satisfaction by adding different degrees of 
word substitutions, deletions and insertions to the 
wizard’s transcription. 28 users took part in the 
experiment. Test participants were required to 
carry out three scenarios, each with 9-11 tasks and 
covering all devices which can be operated with 
the system. This results in 84 dialogs in this data-
base. Further details can be found in (Möller et al. 
2007). 

In experiment 2, the BoRIS restaurant informa-
tion system (Möller 2005; see this also for a de-
tailed description of the experiment) was tested, 
which allows the user to search for a restaurant in 
Bochum, Germany, by specifying constraints for 
type of food, restaurant location etc. In the experi-
ment, ten system configurations have been com-
pared which differed with respect to the prompt 
quality (TTS or recorded natural language), the 
confirmation strategy (explicit or implicit) and the 
ASR performance, modeled in a similar way as in 

experiment 1. Each of the 40 participants did five 
telephone calls to the system, following instructive 
scenarios. 197 dialogs are available in this database. 

Both experiments were executed in test labs. 
From the system log files, a vast number of inter-
action parameters was computed, including effi-
ciency measures (such as dialog duration), qualita-
tive measures (such as contextual appropriateness) 
and a classification of user errors (Oulasvirta et al. 
2006). A complete list of the qualitative and effi-
ciency measures can be found in (Möller 2005). 

After each interaction, the participants filled out 
a questionnaire designed according to ITU-T Rec. 
P.851 (2003). The first rating of the questionnaire 
is on the systems overall quality (OQ), which was 
collected on a continuous scale with five equidis-
tant and labeled points. The scale margins were 
extended to encourage the use of the full scale. 

3 Prediction of subjective ratings 

LR models were calculated with the interaction 
parameters as predictor variables and OQ as target 
variable. From the equations found, predictions of 
the respective ratings were made and compared to 
the true ratings. Two methods have been applied 
for the prediction: in the useall method, the 
whole database is used for training and prediction, 
while in the leave-one-out (l1o) method, 
successively each user is predicted from the func-
tion trained on the other users. While the useall 
method indicates how well the data can be de-
scribed with such a function, the l1o method 
gives a more reliable estimation of the predictive 
power of the model. 

Exp. R2 useall R2 l1o 
1 0,580 0,202 
2 0,466 0,235 

Table 1. R2 for predictions of Overall Quality ratings 
in exp. 1 and 2.  

In both cases, in opposition to what is foreseen 
in the PARADISE approach, the variables have not 
been z-transformed before the training. In PARA-
DISE, standardization of predictors and targets 
allows to read the importance of the predictors for 
the prediction from the coefficients of the equation, 
which, however, is not relevant for this study. In-
stead, the mean and STD values should be pre-
served here to allow an estimation of how well 
they can be predicted with the function obtained 
from the training. 

292



Table 1 shows the R2 values of the prediction 
models for the two databases. While the values are 
generally low, R2 is considerably lower for the 
l1o predictions than for the useall predictions. 
The numbers reported here for the useall 
method lie in the range of those observed by other 
researchers for other systems, while Walker et al. 
(2000) achieved better results for tests on inde-
pendent test data than those reported here for the 
l1o method. 

4 Predicting test results 

As stated above, we suspected that the R2 values 
are not a good indicator of the usefulness of the 
predictions in a practical context. We therefore 
applied the same type of analysis to the predictions 
as has been applied to the real data in the studies 
the data stem from. In the following, four examples 
of this are given. 

Exp. 1 aimed at detecting the level of ASR per-
formance necessary for system acceptance by 
simulating four different target word accuracy 
(WA) rates (60, 73, 86, 100%). The means for each 
configuration were plotted and connected by 
straight lines. Then, the threshold of the positive 
user judgment was located. 
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Figure 1. Overall Quality ratings for different WA in 
exp. 1; the solid line represents true ratings, the 
dashed line the useall predictions and the dotted 
one the l1o predictions.  
Figure 1 shows how the results can be reproduced 
with data gained from predictions made with the 
LR equation. Displayed are the mean values of 
measured and predicted ratings for the four WA 
rates. While the predicted and measured means do 
not exactly agree with respect to the minimum WA 
leading to a positive judgment, the relation be-
tween WA and ratings is well reproduced by the 

prediction. The common conclusion that could be 
drawn from the predicted results as well as the true 
ratings would be that the WA should not fall below 
73%, because from there on judgments decrease 
rapidly. Above 73%, the effect of WA is less dras-
tic than below this value. 

Similarly, results from experiment 2 can be pre-
dicted with the l1o and the useall method. In 
this experiment, again the users’ judgment of the 
system for different target WA rates was tested. 
Figure 2 shows the means of measured and pre-
dicted values. Although the predicted values are 
slightly higher than the measured ones, the overall 
picture looks similar for the prediction and the ac-
tual measurement. The conclusion that can be 
drawn from both is the same: for recognition rates 
above 80 percent, an improvement of the target 
recognition rate is not reflected in improved ratings 
anymore, while for less than 80 percent, ratings 
drop to a lower range quickly. 
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Figure 2. Overall Quality ratings for different target 
recognition rates in exp. 2; the solid line represents 
true ratings, the dashed line the useall predictions 
and the dotted one the l1o predictions.  
In this experiment, also the impact of different sys-
tem voices on the user judgment was tested. Figure 
3 shows that both prediction methods reproduce 
the dramatic fall of ratings for the synthesized 
voice as compared to prerecorded human voices, 
however, the difference among the human speakers 
would not be detected with the prediction. Re-
markably, useall and l1o method are compara-
bly accurate despite the difference in their R2’s. 

Finally, the impact of the confirmation strategy 
on the judgments was tested with an ANOVA 
analysis (Table 2). While there is a bigger differ-
ence between the two confirmation strategies pre-
dicted with the LR equations than was actually 
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measured in the experiment, in all cases the differ-
ence is not significant (p>0.05, although F in-
creases for the predicted values). Thus, the predic-
tion leads to the same conclusion as the subjective 
ratings, namely that the confirmation strategy does 
not matter for the users’ satisfaction with the Bo-
RIS system.  
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Figure 3. Overall Quality ratings for different Voices 
in exp. 2; the checkered bar represents true ratings, 
the shaded bar the useall predictions and the 
white one the l1o predictions. 

Confirmation Strategy (explicit/implicit) 
 measured Useall l1o 
F (1,193) 0.02 (1,195) 2.88 (1,195) 3.10 
p 0.89  0.09 0.08 

Table 2. ANOVA results for explicit and implicit 
confirmation strategies. Differences in ratings for 
both strategies are not significant (p>0.05), neither in 
the measurement nor in the predictions. 

5 Conclusion 

In this paper, it was proposed to compare the mean 
values of predicted and true ratings rather than val-
ues for single dialogs. It was shown how LR mod-
els can be utilized for the automatic prediction of 
experimental results based on the observation of 
mean values. Although the predictions still lack 
some accuracy, the prediction models are more 
valuable in practical applications than their R2 val-
ues suggest. In particular, the prediction of unseen 
data does not cause a dramatic drop of the model 
accuracy, as was indicated by the R2 values. This is 
a particularly valuable finding since most applica-
tions intended for PARADISE involve the predic-
tion of unseen data. 

A further implication of the findings is that the 
improvement of usability prediction models on the 

basis of LR should not be based on changes in R2 
alone. While better methods for the evaluation of 
the models still have to be found, they might lead 
to significant progress in the models’ development. 
This includes selection of appropriate modeling 
techniques (CARTs, Neural Networks etc.) and 
training methods for the algorithm, as well as the 
estimation of the usefulness of interaction or sys-
tem parameters as usability predictors. 
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