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Résumé

Jusqu’à présent, la question de la reconnaissance automatique de métonymies a souvent été abordée avec des
approches supervisées. Toutefois, ces approches nécessitent l’annotation d’un nombre important d’occurrences
d’apprentissage et, dès lors, elles empêchent le développement d’un système de reconnaissance de métonymies à
grande échelle. Cet article étudie la possibilité de résoudre ce problème du goulot d’étranglement de l’acquisition
des connaissances en recourant à des techniques d’apprentissages non supervisées. Bien que la technique en ques-
tion, l’algorithme de Schütze (1998), soit souvent appliquée en désambiguïsation sémantique, je montrerai qu’elle
s’avère trop peu solide pour le cas spécifique de la reconnaissance de métonymies. À cet effet, je propose d’étudier
l’influence de quatre variables sur les performances de la technique non supervisée, à savoir le type de données,
la taille de la fenêtre d’observation, l’application de la décomposition en valeurs singulières (SVD) et le type de
sélection de propriétés.

Mots-clés: reconnaissance de métonymies, désambiguïsation sémantique, apprentissage par machine non super-
visé.

Abstract

To this day, the automatic recognition of metonymies has generally been addressed with supervised approaches.
However, these require the annotation of a large number of training instances and hence, hinder the development
of a wide-scale metonymy recognition system. This paper investigates if this knowledge acquisition bottleneck
in metonymy recognition can be resolved by the application of unsupervised learning. Although the investigated
technique, Schütze’s (1998) algorithm, enjoys considerable popularity in Word Sense Disambiguation, I will show
that it is not yet robust enough to tackle the specific case of metonymy recognition. In particular, I will study the
influence on its performance of four variables — the type of data set, the size of the context window, the application
of SVD and the type of feature selection.

Keywords: metonymy recognition, word sense disambiguation, unsupervised machine learning.

1. Introduction

Metonymy is traditionally defined as a figure of speech that uses “one entity to refer to an-
other that is related to it” (Lakoff and Johnson, 1980, p.35). In example (1), for instance,West
Germanystands for the government of that country :

(1) This morning in Bonn, Dr Kohl will preside at an emergency cabinet meeting to
discuss howWest Germanyshould respond to the events of recent days. (BNC)

These days, metonymy is a hot topic in theoretical linguistics as well as in Natural Language
Processing (NLP). Throughout the whole spectrum of linguistic disciplines, researchers seem to
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have realized that this figure of speech is ubiquitous in everyday language. As a result, a wide
variety of applications inNLP need to be able to recognize and interpret metonymical words.

This automatic recognition and interpretation of metonymical words is generally referred to
as the task of metonymy resolution (Fass, 1997). Originally, it was thought that metonymies
could be recognized almost trivially, as words that violated selectional restrictions (Pustejovsky,
1995).West Germanyabove, for instance, violates the restriction thatrespondrequires a human
subject. Therefore any algorithm that has access to a database of selectional restrictions should
have no problem identifying it as metonymical.

It was soon realized, however, that such algorithms would fail to deal appropriately with the
freedom with which metonymies occur. For instance, there are metonymies that do respect the
selectional restrictions of their head verb :Nixon in example (2) does not violate the selectional
restrictions of the verbto bomb, and yet, it metonymically refers to the army under Nixon’s
command. In addition, some verbs have very weak selectional restrictions : in example (3) it
is world knowledge rather than linguistic knowledge that makes us interpretShakespearein a
metonymical way.

(2) Nixonbombed Hanoi.

(3) Daniel likesShakespeare.

Examples like these demonstrate that metonymy recognition should not consist of the applica-
tion of rigid rules. Rather, it should take into account statistical information about the semantic
and grammatical context in which the target word occurs.

The existing statistical metonymy recognition algorithms are mainly supervised (see section 2).
This means that they need a large number of training instances that are annotated with sense
labels. This data is used to learn the correlation between the sense labels and the observed
values of the semantic or grammatical features. On the basis of these relations, the classifiers
then build a model for an entire semantic class of possibly metonymical words. Their need for
a large number of annotated training data, however, hinders the development of a wide-scale
metonymy recognition system, since each extension to a new class requires the labelling of a
large training corpus.

This paper will therefore investigate if this so-called ‘knowledge acquisition bottleneck’ can be
tackled by the application of Schütze’s (1998) unsupervised word sense discrimination algo-
rithm, an approach that does not need a single annotated example. In section 2, I will discuss
the most important literature on corpus-based metonymy recognition, and introduce the notion
of unsupervised learning. In section 3, I will highlight the research questions behind my ex-
periments. Section 4 will present the experimental results, while section 5 wraps up with the
conclusions of this study.

2. Previous work

2.1. Metonymy recognition

Markert and Nissim (2002a) were the first to notice that metonymy recognition can be seen as
a special case of Word Sense Disambiguation (WSD). Since possibly metonymical words are
polysemous, the recognition of a metonymy boils down to the automatic assignment of a sense
label to a polysemous word. Neither of the differences between metonymy andWSD pose a
threat to such an approach. First, although the number of possible metonymical readings of a
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word is in theory unlimited, a quick glance at Markert and Nissim’s (2002b) corpus data shows
that in practice, almost all observed metonymies belong to a small number of metonymical
patterns that can be identified a priori. Second, while classicWSD builds a separate model for
each polysemous word, metonymy recognition algorithms can be applied to an entire semantic
class of words. After all, all words in the same class may undergo the same metonymical shifts.

Markert and Nissim focused their investigation on two such semantic classes: country names
(Markert and Nissim, 2002b) and organization names (Nissim and Markert, 2005). For each
of these classes, they extracted a set of occurrences from the British National Corpus (BNC).
This paper will use their corpora of country names — one with about 1,000 instances of the
nameHungaryand one with 1,000 mixed country names.1 In the annotation of these corpora,
Markert and Nissim made a distinction between the metonymical patternsplace-for-people,
place-for-eventandplace-for-product. In addition, they used the labelmixedfor examples with
more than one reading, andothermetfor instances that did not belong to any of the pre-defined
metonymical patterns.

Nissim and Markert’s (2003; 2005) algorithms were evaluated on the basis of their accuracy —
the number of instances that they classified correctly divided by the total number of instances —
and the F-score on the metonymical class — the harmonic mean between precision and recall
on that class. The best-performing algorithm for the mixed country data, for instance, obtained
an accuracy of 87 % and an F-score of 62.7 %. The results for theHungarydata set were similar.

Promising though these results may be, the algorithms have their disadvantages. First, they
are rather complex: Nissim and Markert’s (2003) most successful algorithm involves smoothed
probabilities and iterative searches through Dekang Lin’s (1998) thesaurus of semantically sim-
ilar words, for instance. Second, and most importantly, they rely on the annotation of a large
number of training instances.

In an earlier paper, I addressed both these problems with a combination of example-based learn-
ing (which reduces complexity) and active learning (which reduces the number of labelled train-
ing examples) (Peirsman, forthc). My experiments showed thatTiMBL , an example-based clas-
sifier, achieved similar performance to Nissim and Markert’s (2003) algorithm, even without
semantic information. Table 1 gives its results for the country andHungarydata, which were
reached on the basis of grammatical information only (i.e., the grammatical function(s) and
head(s) of the target word). In addition,TiMBL benefited clearly from the application of active
learning, a type of learning where the algorithms automatically choose the training examples
that should be annotated. A few simple distance-based algorithms, which selected those train-
ing examples that were most representative of the data and most informative to the classifier,
proved able to reduce the number of labelled training instances drastically.

In the present paper, I will again address the knowledge acquisition bottleneck in metonymy
recognition. This time, however, I will take a more radical approach. I will test if the automatic
recognition of metonymical words can proceed on the basis of an unsupervisedWSD algorithm
that does not need any annotated training examples.

1 The data from this study is publicly available and can be downloaded from
http://homepages.inf.ed.ac.uk/mnissim/mascara.
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Acc P R F
mixed 86.59% 80.17% 49.47% 61.18%
Hungary 84.74% 80.39% 51.90% 63.08%

Table 1.TiMBL ’s results for the country andHungarydata

word Acc baseline word Acc baseline
capital 94% 64% space 76% 56%
interest 93% 58% suit 95% 57%
motion 87% 55% tank 92% 90%
plant 70% 54% train 74% 74%
ruling 91% 60% vessel 98% 69%

Table 2. The results of Schütze’s (1998) Word Sense Discrimination

2.2. Unsupervised learning

The unsupervised algorithm that I will use was first applied to the automatic discrimination of
word senses by Schütze (1998). Following Miller and Charles’ (1991) observation that humans
rely on contextual similarity in order to determine semantic similarity, Schütze (1998) hypothe-
sized that there must be a correlation between contextual similarity and word meaning as well:
“a sense is a group of contextually similar occurrences of a word” (Schütze, 1998, p.99).

The resulting algorithm takes a number of steps:

1. First, all words in the training corpus are mapped onto so-calledword vectors. These
contain the frequencies of all observed co-occurrents of the word.

2. Then the algorithm focuses on the target word, as it builds a vector representation for each
of its contexts. This is done by adding up the word vectors of all its co-occurrents in that
context.

3. Next, the dimensionality of the vector space may be reduced with a technique such as
Singular Value Decomposition (Golub and Van Loan, 1989).

4. As a final step in the learning stage, the context vectors are grouped into a pre-defined
number of clusters. Each of these clusters is assumed to represent one of the senses of the
target, and therefore their centroids are calledsense vectors.

5. Finally, the classification of a test word proceeds by assigning it to the sense vector that
lies nearest to its context vector.

Table 2 shows that, with about 8,000 training instances on average, this algorithm obtains
promising results, compared to a baseline system that automatically assigns the most frequent
sense label.

Schütze’s (1998) approach is implemented in SenseClusters (Purandare and Pedersen, 2004),
a software package that also incorporates some interesting variations on and extensions to the
algorithm. Two of these will be used in this paper. First, like Purandare and Pedersen (2004),
I will use bigrams instead of simple co-occurrences in order to construct the context vectors.
Bigrams are “ordered pairs of words that co-occur within five positions of each other” (Pu-
randare and Pedersen, 2004, p.2). Second, I will apply the clustering algorithm of Repeated
Bisections, since this was found to perform particularly well with small data sets, like Markert
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and Nissim’s (2002b). A final mention should go to the evaluation procedure. A word sense
discrimination technique only outputs a number of clusters, and does not tell us which cluster
corresponds to which meaning. Therefore the best match between clusters and meanings is the
one which leads to the fewest misclassifications — the confusion matrix that maximizes the
diagonal sum.

3. Research questions

The combination of metonymy recognition with unsupervised learning algorithms brings with
it a number of questions, which the experiments in the next section are meant to answer.

– Can unsupervised algorithms deal with a set of mixed target words as well as with a
single word ?
Markert and Nissim’s (2002b) corpora contain one set with the nameHungaryonly and one
with a variety of country names. To my knowledge, the investigated unsupervised algorithm
has not yet been applied to such a set of mixed target words. After all, a set of mixed target
words will normally have more different co-occurrences, so that the resulting models might
be less robust. By applying the same algorithms to both data sets, the experiments in the next
section will help investigate if this hypothesis is correct.

– Are smaller context windows better than large ones ?
In metonymy recognition, preference is generally given to smaller context windows. When
using co-occurrence features, Markert and Nissim (2002a) observed that precision as well as
recall increased considerably when the window around the target word was reduced from ten
words on either side to about three. Unsupervised clustering, in contrast, generally proceeds
with large context windows. Schütze’s (1998) results above were reached with 25 words on
either side of the target, for instance.
Underlying this question is a crucial difference between metonymy recognition and the sense
discrimination problems to which unsupervised clustering is normally applied. With its large
context windows, Schütze’s (1998) method is particularly well-suited for the discrimination
of meanings that depend on the topic of a text. Whenplant occurs in a text about botany,
for instance, it will usually refer to the biological organism ; when the text is about economy,
pollution, or the like,plant will generally have its industrial sense. However, this observation
does not hold for metonymies. In a text about politics, say,Brusselsmay have either its literal
or a metonymical sense. As Markert and Nissim (2002a) argued, the reading of a possibly
metonymical word depends more on words in its immediate vicinity than on the topic of the
text. Therefore smaller context windows can be expected to lead to better results.

– Does Singular Value Decomposition result in better performance ?
Schütze (1998) found that his algorithm clearly performs better withSVD than without. Still,
there are reasons for investigating if this is also the case with metonymies.SVD is a technique
that reduces the dimensionality of the vector space, and is therefore very useful in cases of
data sparseness. Moreover,SVD helps tackle vocabulary issues such as synonymy (where
two dimensions represent the same concept) and polysemy (where one dimension incorpo-
rates several concepts). It is said to abstract away from word dimensions, and to discover
topical dimensions instead. However, as I observed above, text topics may not be very rele-
vant to metonymy recognition. I therefore hypothesize that metonymy recognition will work
better in word dimensions than in topical ones.
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+LL , +SVD +LL , -SVD -LL , +SVD -LL , -SVD

Acc F Acc F Acc F Acc F
15 55.73 37.74*** 63.16 30.14 58.93 33.22* 59.86 31.63
12 56.45 37.39*** 57.89 32.23 58.41 36.13** 57.69 31.67
10 58.31 37.07*** 58.72 35.28** 56.45 34.06* 58.20 34.57*
7 55.01 37.89*** 55.01 36.44** 56.35 37.70*** 64.50 34.85***
5 55.01 26.85 55.62 23.49 63.78 36.30*** 65.12 33.98**(*)

Table 3. Results of the unsupervised algorithm on the Hungary data

+LL : statistical feature selection
-LL : frequency-based feature selection
+SVD : dimensionality reduction with SVD

-SVD : no dimensionality reduction
* : indicates if the clusters differ significantly from the random baseline

* : p < 0.05, ** : p < 0.01, *** : p < 0.001

– Should features be selected on the basis of a statistical test ?
This question is of a less theoretical nature than the ones above. It simply asks whether fea-
tures (i.e., bigrams) should be selected on the basis of their frequency, or on the basis of their
statistical relation to the target word. Schütze (1998, p.102) hypothesized that “candidate
words whose occurrence depends on whether the ambiguous word occurs will be indicative
of one of the senses of the ambiguous word and hence useful for disambiguation”. He also ob-
served, however, that statistical selection is outperformed by frequency-based selection when
SVD is not used. The experiments in the next section will investigate if this is also the case
with metonymy recognition.

4. Experiments

I will try to answer the research questions above by an application of unsupervised word sense
discrimination to Markert and Nissim’s (2002b)Hungary and mixed country data. Here are
some specifics of the experimental setup:

– The number of pre-defined clusters was set to two.
– SVD, when used, reduced the number of dimensions to 300.
– Statistical feature selection, when used, selected only those bigrams with a log-likelihood

score of 3.841 or more (following Purandare and Pedersen 2004).
– Initial experiments on the mixed country data indicated that a stoplist (a list of frequent words

that are automatically excluded from feature selection) decreased performance, so it was left
out.

– All metonymical labels were collapsed into one category, andmixedinstances were ignored.
– All algorithms were evaluated with ten-fold cross-validation.

4.1. Hungary data

In the first round of experiments, I applied Purandare and Pedersen’s (2004) algorithm to Mark-
ert and Nissim’s (2002b)Hungarydata, the set that I anticipated to be easier. 76.99% of the
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cluster 1 cluster 2
literal 518 228
metonymical 123 100

Table 4. Confusion matrix of the (-LL ,+SVD) algorithm with a context size of five words

instances in this set are literal, which means that a majority baseline system that assigns all in-
stances to the literal class will achieve an accuracy of 76.99%. From table 3, it is immediately
clear that none of the investigated algorithms beats this baseline. Moreover, the results of the
unsupervised approach are also much lower than those of its supervised competitors. Accuracy,
for instance, lies more than 20 % below the accuracy reached byTiMBL .

However, these low accuracy values do not necessarily mean that the unsupervised clustering
algorithm is completely insensitive to the meaning distinctions studied here. Consider the con-
fusion matrix in table 4 as an example. This matrix represents the results of the (-LL ,+SVD)
algorithm with a context size of five words on either side of the target. Although the accuracy
of this particular algorithm (63.77 %) does not beat the majority baseline, it is clear that the
system is not entirely unsuccessful at distinguishing metonymical from literal meanings. The
proportion of metonymical meanings in cluster 2 (30.49 %) is much higher than that in cluster
1 (19.19 %).

Therefore, we can compare the output of the algorithms with another baseline — one that di-
vides the test instances among its two clusters randomly. Such a random baseline would have
the same proportion of metonymies in both clusters. What we want to investigate is thus if the
proportion of metonymies is higher in the smaller cluster, or, in other words, if there exists a
correlation between the cluster of a test instance and its label. To this goal, we can make use of
a t-test or aχ2-test. In all but one case, these give the same broad level of significance for the
results, as indicated in table 3.2 In the example above, for instance, a Welch two-sample t-test
indeed confirms that the proportion of metonymies in the second cluster is significantly different
(in this case, higher) than that in the first cluster (t = −3.7866, df = 576.065, p = 0.0001687).
The results of this test are therefore much more useful than the accuracy values for an evaluation
of the different algorithms in the light of the experimental questions.

Since the first question (concerning mixed data sets) cannot yet be answered, I will start with the
second one: should context windows be small or large ? The results of my experiments confirm
Markert and Nissim’s (2002a) claim that an approach based on co-occurrences (or bigrams)
gives the best results with smaller context windows. Nevertheless, these context windows should
not be too small, either, since they have to allow the algorithm to find sufficient useful features.
In my experiments on theHungarydata, a window size of seven words on either side of the
target led to the best results.

The next question concerned the use of Singular Value Decomposition. I hypothesized that
metonymy recognition works best in word dimensions, and thatSVD can therefore be skipped.
This hypothesis is contradicted by the experimental results. In fact, in nine out of ten cases, the
algorithms withoutSVD gave a lower F-score than those withSVD. Apparently, the disadvantage
of trading word dimensions for more topical dimensions is outweighed by the advantage of
SVD’s ability to deal with data sparseness.

2 For the (-LL ,-SVD) algorithm, p < 0.001 according to theχ2-test and p < 0.01 according to the t-test. The same
is true for the mixed country data below.
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+LL , +SVD +LL , -SVD -LL , +SVD -LL , -SVD

Acc F Acc F Acc F Acc F
15 57.47 29.76 58.35 24.35 58.79 24.55 60.00 23.21
12 59.23 33.63*** 58.68 33.57*** 64.95 24.23 63.74 21.43
10 55.71 32.04* 59.34 38.33*** 62.31 20.79 66.70 18.77
7 58.90 35.74*** 62.75 35.43*** 61.32 25.42 67.69 26.13
5 60.55 32.90*** 67.14 36.25*** 62.31 31.26** 68.46 30.51**(*)

Table 5. Results of the unsupervised algorithm on the mixed country data.

Finally, I wanted to investigate if features should be selected on the basis of a statistical test or
not. If we look at the results of the algorithms withSVD, the usefulness of statistical selection
seems to depend on context size. Large contexts, and the resulting high number of possible
features, clearly benefit from statistical feature selection. However, when the context is small
and does not contain too many possibly features, the log-likelihood test is best dropped in favour
of frequency-based selection.

In summary, on the basis of this first round of experiments, we have already been able to answer
most of the experimental questions above. Although it was shown that unsupervised algorithms
do not make for robust metonymy recognition systems, they are often able to identify two clus-
ters that correlate with the literal and metonymical senses of the target word. In general, smaller
context sizes proved more successful in this respect than larger ones, and systems withSVD

scored better than those without. Statistical feature selection, finally, is best used in combina-
tion with large context windows.

4.2. Mixed country data

In the second round of experiments, I applied the algorithms to Markert and Nissim’s (2002b)
mixed country data. Although the majority baseline for this mixed data set lies even higher than
that above, at an accuracy of 80.99 %, neither Nissim and Markert’s (2003) classifier norTiMBL

(Peirsman, forthc) had any problem dealing with it. However, I anticipated that the results of the
unsupervised algorithms would be lower than those on theHungarydata set, because a mixed
set of target words brings with it a larger number of different co-occurrences or bigrams.

The actual results in table 5 do not fully bear out this expectation. There may be fewer F-
scores that beat the random baseline than with theHungarydata, but the results are surprisingly
consistent. As a rule of thumb, any algorithm with statistical feature selection and a window
size smaller than fifteen words is able to identify two clusters that correlate significantly with
the two senses of the target words.

With respect to the second research question, it is again smaller context windows that are most
successful. This time five words seems to be the ideal window size overall, but when statisti-
cal feature selection is applied, the algorithms can deal with larger context sizes as well. This
observation, then, confirms the above conclusion that larger contexts are best used in combi-
nation with statistical feature selection. With frequency-based feature selection, in contrast, the
F-scores on this mixed data set are dramatically lower than those on the single-word set above.
This can be explained by the larger number of bigrams in the mixed data set: statistical selection
can help the algorithm distinguish informative features from uninformative ones.

The only conclusion from the previous section that is not corroborated by the present results is
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the usefulness ofSVD. In fact, the algorithms seem rather insensitive to the presence or absence
of the dimensionality reduction stage. As long as statistical feature selection is performed and
the context size is not too large, the algorithms are guaranteed to beat the random baseline.

In short, even though the results of the unsupervised approach again lie much lower than the
majority baseline, they are on a par with those on theHungarydata. This is promising, since
it indicates that mixed data sets are not necessarily more difficult for unsupervised clustering
than single-word sets. In order to deal with the larger number of possible features, however, the
features should be selected on the basis of a statistical test and the context should not be too
large.

5. Conclusions

This paper has investigated if the knowledge acquisition bottleneck in metonymy recognition
can be solved by an application of Schütze’s (1998) and Purandare and Pedersen’s (2004) unsu-
pervisedWSD algorithm. The experimental results proved that this was not yet the case. None of
the investigated variations on the original algorithm was able to beat the accuracy of a baseline
algorithm that classifies all instances as literal. Nevertheless, the clusters that were identified
did often correlate with the literal and metonymical senses of the target word. In 32 out of 40
experiments (80 %), the smaller cluster indeed contained a larger proportion of metonymical
examples. In 24 cases (60 %), this difference was significant.

The algorithm was able to output such clusters that significantly correlated with the target read-
ings for both the single-word data set and the mixed data set. A few variables influenced its
rate of success. First of all, small contexts were generally more successful than larger ones.
Large contexts contain a wide variety of possible features, and are best used in combination
with statistical feature selection, the second variable. For the mixed data set, this statistical fea-
ture selection seems almost a necessary condition to reach good results. Finally, the role ofSVD

was less easy to determine. For the single-word set I concluded that the classifier worked best
in word dimensions, but it appeared insensitive to the type of dimensions (word or topic) with
the mixed data set.

The failure of the investigated unsupervised learning algorithm to beat the majority baseline can
be attributed to a few factors. First, unsupervised machine learning is generally outperformed
by supervised algorithms, so the lower results should come as no surprise. Second, the studied
algorithm takes a bag-of-words approach to the data, and is therefore blind to all structural or
syntactic information. This syntactic information, however, is extremely important in metonymy
recognition, where the interpretation of a target word often depends on its head (Markert and
Nissim, 2002a). Without this information, any metonymy recognition algorithm is necessarily
handicapped.

From these findings, it is clear what directions future research should take. First, it is impor-
tant to determine if the classifier benefits from a larger training corpus. Even though the aver-
age number of training instances used here is already larger than that in Purandare and Ped-
ersen (2004), using more data from theBNC will probably make the context and sense vectors
more robust. Yet, as I pointed out above, it is unlikely that the resulting classifiers will already be
able to compete with state-of-the-art metonymy recognition systems. Before this is conceivable,
research should focus on how syntactic information can be taken up into the feature vectors.
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