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Preface 

IWPT'97 is the fifth in a very successful series of workshops, which have become the major forum 
for specialists in parsing to meet and discuss the advances in the field. In 1989, Masaru Tomita 
organized the International Workshop on Parsing Technology with an original formula: the first 
part of the workshop took place at CMU, Pittsburgh; the second part at a secluded conference 
resort (Hidden Valley). This workshop was considered highly successful, and resulted in the book Current Issues in Parsing Technologies (Kluwer, Boston 1991). 

Inspired by this experience, Masaru Tomita organized the Second International Workshop on 
Parsing Technology IWPT'91, in Cancun, Mexico, which was successful as well, though it suffered 
a lit.tle from travel restrictions caused by the Gulf War. By then, it seemed clear that these 
workshops could form an attractive biannual event, and Masaru Tomita and I together organized 
the third IWPT in 1993, reusing the original '89 formula by having the first part of the workshop 
at university premises (Tilburg University, the Netherlands), and the second part in a conference 
resort, in the Belgian Ardennes. IWPT'93 has lead to the follow-up volume Recent Advances in Parsing Technology, Harry Bunt and Masaru Tomita, eds., published by Kluwer in 1996. · 

In 1994, Masaru Tomita left the arena of natural language processing and moved into bio
genetical engineering, applying and extending NL parsing techniques to DNA structures. By that 
time, the Special Interest Group on Parsing (SIGPARSE) had been set up within the Association 
for Computational Linguistics, with the primary aim to give continuity to the IWPT series. 

Under the auspices of SIGPARSE, Eva Hajicova and I organized IWPT'95 in the Czech Re
public, with a part at the historical site of Charles University in Prague, and a part in a conference 
hotel in the thermal resort of Karlovy Vary (Karlsbad). Moving back to the New World, IWPT'97 
takes place at one of the world's centers of research in technology: at MIT in Boston. 

I would like to use this occasion to thank the people primarily responsible for realizing IWPT'97. 
Thanks go to the members of the Program Committee, and in particular to chairman Anton Nijholt, 
for the careful work in reviewing submitted papers and designing the workshop program. Thanks 
also to Anton Nijholt and his associates at the University of Twente (the Netherlands) for produc
ing the workshop proceedings manuscript. Bob Berwick and his associates at MIT deserve all the 
credit for taking care of the necessary local arrangements to make IWPT'97 physically possible. 

Harry Bunt 
SIGPARSE Officer and IWPT'97 General Chair 

V 



vi 



Contents 

Organization Preface Contents Author Index Invited Talks 
The Computation of Movement Sandiway Fong .................... . 
Parsing Technology and RNA Folding: a Promising Start Fabrice Lefebvre ................... . 
Intelligent Multimedia Information Access Mark T. Maybury ......... . 
Making Use of Intonation in Interactive Dialogue Mark Steedman . . . . . . . . . . . . . . . . Translation Papers 
Disambigua_ting with Controlled Disjunctions Philippe Blache . . . . . . . . . . . . . . 
Encoding Frequency Information in Lexicalized Grammars John Carroll, David Weir ............... . 
Towards a Reduced Commitment, D-Theory Style TAG Parser John Chen, K. Vijay-Shanker ............................. . 
Controlling Bottom- Up Chart Parsers through Text Chunking Fabio Ciravegna, Alberto Lavelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Pruning Search Space for Parsing Free Coordination in Categorial Grammar Crit Cremers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bilexical Grammars and a Cubic-time Probabilistic Parser Jason Eisner . . . . . . . . . . . . . . . . . . . 
Automaton-based Parsing for Lexicalised Grammars Roger Evans, David Weir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
From Part of Speech Tagging to Memory-based Deep Syntactic Analysis Emmanuel Giguet, Jacques Vergne .......................... . 
Probabilistic Feature Grammars Joshua Goodman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message-passing Protocols for Real-world Parsing - An Object-oriented Model and its 

Preliminary Evaluation Udo Hahn, Peter Neuhaus, Norbert Broeker ..................... . 
Probabilistic Parse Selection based on Semantic Cooccurrences Eirik Hektoen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

iii 

V 

vii ix xi xiii xv xvii xix 1 1 
8 18 

30 

42 

54 

66 

77 

89 

101 113 



A New F�rmalization of Probabilistic GLR Parsing Kentaro Inui, Virach Sornlertlamvanich, Hozumi Tanaka, Takenobu, Tokunaga Efficient ,Parsing for CCGs with Generalized Type-raised Categories Nobo Komagata .................................... . Probab�listic Parsing using Left Corner Language Models Christopher Manning, Bob Carpenter ........................ . Regular Approximations of CFLs: A Grammatical View Mark-Jan Nederhof ................................... . A Left-to-right Tagger for Word Graphs Christer Samuelsson . . . . . . . Parsing by Successive Approximation Helmut Schmid . . . . . . . . . . Performance Evaluation of Supertagging for Partial Parsing B. Srinivas ...................................... . An Earley Algorithm for Generic Attribute Augmented Grammars and Applications Frederic Tendeau .................................. . A Case Study in Optimizing Parsing Schemata by Disambiguation Filters Eelco Visser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . New Parsing Method using Global Association Table Juntae Yoon, Seonho Kim, Mansuk Song . 
Posters Constraint-driven Concurrent Parsing Applied to Romanian VP Liviu Ciortuz ...................... . Robustness and Efficiency in AGFL Caspar Derksen, Cornelis H.A. Koster, Erik Oltmans . Language Analysis in SCHISMA Danny Lie, Joris Hulstijn, Hugo ter Doest, Anton Nijholt Reducing the Complexity of Parsing by a Method of Decomposition Caroline Lyon, Bob Dickerson . . . . . . . . . . . . . . . . . . . Formal Tools for Separating Syntactically Correct and Incorrect Structures Martin Platek, Vladislav Kubon, Tomas Holan ................... . Parsers Optimization for Wide-coverage Unification-based Grammars using the Restric

tion Technique Nora La Serna, Arantxa Diaz, Horacio Rodriguez . . . . . . . . . . . . . . . . . . . 
Previous Workshops IWPT'89 IWPT'91 IWPT'93 IWPT'95 

viii 

123 135 147 159 171 177 187 199 210 225 237 239 241 243 245 247 
249 251 253 255 256 257 



Index of Authors 

Blache, Philippe 1 Broeker, Norbert* 101 Carroll, John* .. 8 Carpenter, Bob* 147 Chen, John* .... 18 Ciravegna, Fabio* 30 Ciortuz, Liviu . 239 Cremers, Crit . . 42 Diaz, Arantxa * 249 Derksen, Capar* 241 Dickerson, Bob* 245 Doest, Hugo ter* 243 Eisner, Jason . .  54 Evans, Roger* .. 66 Fong, Sandiway . xiii Giguet, Emmanuel* 77 Goodman, Joshua 89 Hahn, Udo* .. 101 Hektoen, Eirik 113 Holan, Tomas* 247 Hulstijn, Joris* 243 
Inui, Kentaro* 123 Kim, Seonho* . 225 Komagata, Nobo 135 Koster, Cornelis* 241 Kuboii, Vladislav* 247 Lavelli, Alberto* 30 Lefebvre, Fabrice xv Lie, Danny* . . . 243 Lyon, Caroline* . 245 Manning, Christopher* . 147 Maybury, Mark T. xvii Nederhof, Mark-Jan 159 Neuhaus, Peter* 101 Nijholt, Anton* 243 Oltmans, Erik* 241 Platek, Martin* . 247 Samuelsson, Christer 171 Schmid, Helmut . 177 La Serna, Nora* 249 Song, Mansuk* 225 Sornlertlamvanich, Virach * 123 Srinivas, B. . . . . . . . . .  187 

* 
co-authors ix 

Steedman, Mark Tanaka, Hozumi * . Tendeau, Frederic . Tokunaga, Takenobu* Vergne, Jacques* Vijay-Shanker, K. * Visser, Eelco Weir, David* Yoon, Juntae* . 

xix 123 199 123 77 18 210 8 ,66  225 



X 



Invited Talks 

xi 





Abstract 

The Computation of Movement 
Sandiway Fong* 

NEC Research Institute, Inc. 
4 Independence Way, Princeton NJ 08540. USA 

sandi�ay©research.nj.nec.com 

A central goal of parsing is to recover linguistic structure for interpretation. One property of 
language that seems to be prevalent is the so-called displacement property. That is, syntactic 
items commonly appear in places other than where we would normally expect for interpretation. 
Some examples of phenomena involving displacement include Wh-movement, raising, passivization, 
scrambling, topicalization and focus. As Chomsky (1995) points out, displacement is an irreducible 
fact about human language that every contemporary theory of language has to address. In the 
principles-and-parameters framework, it is customary to posit a general movement operation, 
Move-a, that in concert with conditions on its application serve to link displaced elements with 
their base positions. In terms of parsing, the task is to decode or unravel the effects of Move-a 
from the surface order. More specifically, for each element, we have to determine whether that 
element has been displaced or not, and, if so, determine the original position it was displaced 
from and reconstruct the path it took - including any intermediate positions or landing sites. 
In general, each displaced element is said to head a (non-trivial) chain with one or more empty 
categories known as traces occupying the positions that it passed through. Note that in such 
theories, empty categories are not just simple placeholders, but elements with much of the same 
type and range of syntactic properties displayed by their overt counterparts. For example, empty 
categories in argument positions, like anaphors and pronouns, participate in binding theory and 
theta role discharge. Hence, the well-formedness of a given sentence will depend, in general, in 
recovering both the visible and non-visible parts of syntactic structure. 

In this talk, we will describe how PAPPI, a multi-lingual parser for theories in the principles
and-parameters frameworks, deals with the computation of movement chains and empty categories 
in general. Drawing from implemented examples across a variety of languages, we will discuss 
the mechanism used to handle standard cases of phrasal movement commonly discussed in the 
literature such as Wh-movement, passivization, raising and verb second (V2) phemomena. We 
will also describe how this mechanism is adapted to handle instances of argument scrambling in 
languages like Korean and Japanese. We will also focus our attention on head movement. Here, 
following Pollock (1989), we will discuss the mechanism used to handle the surface differences in 
the behaviour of verbal inflection in English and French. Following Pesetsky (1995), we will also 
discuss the implementation of a theory of double object constructions involving the incorporation 
of both overt and non-overt prepositions into verbal heads. 

Finally, we will describe two recent additions to the movement mechanism in the PAPPI 
system. Moving towards a theory of goal-driven movement - as opposed to the free movement 
system implied by Move-a, we will discuss an implementation of Case-driven movement within 
the VP-shell to handle examples involving focus, backgrounding and topicalization in Turkish. 
Finally, using examples from English and Turkish, we will discuss the necessity of a mechanism 
of reconstruction that optionally "undoes" or reverses the effects of movement to handle facts 
involving binding and scope. 

References 
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Parsing Technology and RN A Folding: 
a Promising Start 

Abstract 

Fabrice Lefebvre 
LIX, Ecole Polytechnique 

91128 Palaiseau Cedex, FRANCE 
lefebvre©lix.polytechnique.fr 

The determinatio� of the secondary structure of RNAs is a problem which has been tackled by 
distantly related methods ranging from comparative analysis to thermodynamic energy optimiza
tion or stochastic context-free grammars (SCFGs). Because of its very nature (properly nested 
pairs of bases of a single stranded sequence) the secondary structure of RN As is well modeled 
by context-free grammars ( CFGs). This fact has been recognized several years ago by people 
who used context-free grammars as a tool to discover some combinatorial properties of secondary 
structures. More recently SCFGs were used by several teams ( esp. David Haussler's team at UC 
Santa Cruz) as an effective tool to fold RNAs through Cocke-Younger-Kasami-like parsers. Until 
1996, and in the context of RNA folding, CFGs and their derivatives where still considered the
oretical tools, barely usable outside the computer scientist lab. The exception of SCFGs seemed 
promising, with all the hype around Hidden Markov Models and other stochastic methods, but it 
remained to be confirmed for RNAs longer than 200 bases. 

The main obstacle to the use of context-free grammars and parsing technology for RNA folding 
and other closely related problems is the following: suitable grammars are exponentially ambigu
ous, and sentences to parse (i.e. RNA or DNA sequences) typically have more than 200 words, 
and sometimes more than 4000 words. These figures are rather unusual for ordinary parsers or 
parser generators, because they are mostly used in the context of natural language parsing, and 
thus do not have to face the same computation problems. Fact is, most people dealing with RN A 
folding problems were manually writing dynamic programming based tools. This was the case for 
folding models popularized by Michael Zuker, and based on free energy minimization. This was 
also the case for folding models based on SCFGs. This was in effect the case for just about every 
computer method available to fold or align sequences. Parsing sequences was not an issue because 
it simply seemed too slow, too memory hungry and even unrelated. 

In 1995, I showed that S-attribute grammars were perfectly able to handle both the thermo
dynamic model and the stochastic model of RN A folding. I then introduced a parser generator 
which was able, given a proper S-attribute grammar, to automatically write an efficient parser 
based on suitable optimizations of Earley's parsing algorithm. All generated parsers turned out 
to be faster and less memory hungry than other available parsers for the same exponentially am
biguous grammars and the same sequences. More surprisingly, these parsers also turned out to be 
faster than hand-written programs based on dynamic programming equations. This was the first 
proof that improvements in parsing technology may certainly be put to good use in biocomputing 
problems, and that they shall lead to better algorithms and tools. 

While trying to overcome some limitations of SCFGs, I generalized S-attribute grammars to 
multi-tape S-attribute grammars (MTSAGs). The automata theory counterpart of a MTSAG 
would be a non-deterministic push-down automaton with several one-way reading heads, instead 
of a single one-way _reading head as it is the case for CFG. Given these MTSAGs, a generalization 
of the previous single-tape parser generator was the obvious way forward. 

Thanks to this new parser generator, I was able to show that most biocomputing models 
previously based on dynamic programming equations were unified by MTSAGs, and that they 
were better handled by automatically generated parsers than by handwritten programs. It did 
not matter whether these models were trying to align sequences, fold RNAs, align folded RNAs, 
align folded and unfolded RN As, simultaneously align and fold RN As, etc. It also turned out that 
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the way SCFGs and HMMs are currently used may be better pictured, thanks to 2-tape MTSAGs, 
as the simultaneous alignment and folding of a first special tape, representing the target model, 
against a second tape, containing the actual sequence. This representation may lead to algorithms 
which will efficiently learn SCFGs from initially unaligned sequences. 

While the current parser generator for MTSAGs-is a usable proof of concept, which nevertheless 
required several months of work, I am quite convinced that there should be better ways than the 
current algorithm to parse several tapes. There should also exist other generalizations of CFGs 
which may reveal themselves fruitful. Current results are only promising starting points. 

The irony of the story is that HMMs and SCFGs were borrowed by biocomputing people from 
other fields such as signal or speech analysis. It may very well be the time for these fields to 
retrofit their own models with current advances in biocomputing such as MTSAGs. 
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Intelligent Multimedia Information Access 

Mark T. Maybury 

Abstract 

Advanced Information Systems Center 
The MITRE Corporation 

202 Burlington Road 
Bedford, MA 01730, USA 

maybury©mitre.org 

http://www.mitre.org/resources/centers/advanced_info/ 

The expansion of the information highway has generated requirements for more effective access 
to global and corporate information repositories. These repositories are increasingly multimedia, 
including text, audio (e.g., spoken language, music), graphics, imagery, and video. The advent 
of large, multimedia digital libraries has turned attention toward the problem of processing and 
managing multiple and heterogeneous media in a principled manner, including their creation, 
storage, indexing, browsing, search, visualization, and summarization. 

Intelligent multimedia information access is a multidisciplinary area that lies at the intersec
tion of artificial intelligence, information retrieval, human computer interaction, and multimedia 
computing. Intelligent multimedia information access includes those systems which go beyond 
traditional hypermedia or hypertext environments and analyze media, generate media, or support 
intelligent interaction with or via multiple media using knowledge of the user, discourse, domain, 
world, or the media itself. 

Providing machines with the ability to interpret, generate, and support interaction with multi
media artifacts ( e.g., documents, broadcasts, hypermedia) will be a valuable facility for a number 
of key applications such as videoteleconference archiving, custom on-line news, and briefing as
sistants. These media facilities, in turn, may support a variety of tasks ranging from training to 
information analysis to decision support. 

In this talk I will describe our group's efforts to provide content based access to broadcast 
news sources, including our use of corpus-based processing techniques to the problems of video 
indexing, segmentation, and summarization. In addition to better access to content, we also 
need to concern ourselves with enabling more effective, efficient and natural human computer or 
computer mediated human-human interaction. This will require automated understanding and 
generation of multimedia and demand explicit representation of and reasoning about the user, 
discourse, task and context (Maybury 1993). To this end, I will describe our work in progress that 
aims to fully instrument the interface and build ( automatically and semi-automatically) annotated 
corpora of human-machine interaction. We believe this will yield deeper and more comprehensive 
models of interaction which should ultimately enable more principled interface design. 

References 
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Abstract 

Making Use of Intonation in 
Interactive Dialogue Translation 

Mark Steedman 
University of Pennsylvania, USA 

steedman©linc.cis.upenn.edu 

Intonational information is frequently discarded in speech recognition, and assigned by default 
heuristics in text-to-speech generation. However, in many applications involving dialogue and 
interactive discourse, intonation conveys significant information, and we ignore it at our peril. 
Translating telephones and personal assistants are an interesting test case, in which the salience 
of rapidly shifting discourse topics and the fact that sentences are machine-generated, rather than 
written by humans, combine to make the application particularly vulnerable to our poor theoretical 
grasp of intonation and its functions. I will discuss a number of approaches to the problem for such 
applications, ranging from cheap tricks to a combinatory grammar-based theory of the semantics 
involved and a syntax-phonology interface for building and generating from interpretations. 
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Disambiguating with Controlled Disjunctions 

Philippe Blache 
2LC - CNRS 

1361 route des Lucioles 

F-06560 Sophia Antipolis 

pb©llaor . unice . fr 

Abstract In this paper, we propose a disambiguating technique called controlled disjunctions. This extension of the socalled named disjunctions relies on the relations existing between feature values (covariation, control, etc. ) .  We show that controlled disjunctions can implement different kind of ambiguities in a consistent and homogeneous way. We describe the integration of controlled disjunctions into a HPSG feature structure representation. Finally, we present a direct implementation by means of delayed evaluation and we develop an example within the functionnal programming paradigm. 
1 Introduction 

Ambiguity can affect natural language processing at very different levels: it can be very local ( e.g. limited to a 
feature value) or conversely affect entire syntactic structures. But the general disambiguating process remains 
the same and rely in particular on contextual information. Unfortunately, there exists very few solutions 
providing a general account of such a process with a direct and efficient implementation. 

In this paper, we propose an approach allowing a general and homogeneous representation of ambiguity and 
disambiguation relations. This approach constitutes an extension of named d isjunctions ( cf. [Dorre90] ) and 
allows a direct implementation of relations controlling the disambiguation. 

This paper is threefold. In the first part , we approach the question of the representation and we situate our 
method among the most representative ones. We describe in particular the advantages and drawbacks of named 
disjunctions and show how different phenomena can be described within such a paradigm. In the second part , 
we propose an analysis of the disambiguating process itself and describe some of the control relations existing 
between the different parts of the linguistic structure. We integrate the representation of such relations to the 
named disjunction approach: we call this new technique controll ed disjunct io n. The last section presents the 
implementation of controlled disjunction which uses different delayed evaluation techniques such as coroutining, 
constraint propagation or residuation. 

2 Representing Ambiguity 

Ambiguity is generally a problem for NLP, but it can also be conceived as a useful device for the representation 
of particular linguistic information such as homonymy, valency variations, lexical rules, etc. In this perspective, 
a general representation is very useful. 

2 .1  Different needs for representing ambiguity 

Ambiguity can be more or less complex according to its scope and there is a general distinction between 
global and local ambiguities. We can also observe such a difference from a strictly structural point of view: 
ambiguity can affect the subcomponents of linguistic objects as well as entire structures (or, in a feature structure 
perspective, atomic as well as complex feature values) . This is the reason why we distinguish two fundamental 
properties: ( i) the interconnection between different subcomponents of an ambiguous structure and ( ii) the 
redundancy of such structures. 

1 



Unit Language 
( La) les French 

(Lb) walks English 

(Le) mobile French 

(Ld) die German 

( Le) den German 

( l .f) suffix _st German 

Ambiguity det V pro plur masc V fem [ noun] V sing plur 3rd 
r] [ ::.:] V ��,c V fem] sing sing [det ] nom V ace 

[fem l plu V sing 
["(::+ [:�:i] sing 
[3:d ] V [2nd] sing plu 

Relations between values 
None 

Category and number 

Category and number 

Gender and number 

Case, gender, number 

Person and number Figure 1 :  Examples of interconnection between feature values 
Moreover, we can introduce a certain kind of dynamicity: ambiguity affects t he objects differently depending on whether it is related to external values or not '.  More precisely, certain ambiguities have only a minimal effect on the structure t o  which they belong whereas some others can deeply affect it . A value can be poorly or strongly related to the context and the ambiguities are more or less dynamic according to the density of the entailed relations. Figure (2 . 1 )  shows several ambiguities involving different kind of relations between feature values. In these examples, some ambiguities ( e.g. ( La)) have no effect on t he other features whereas some features are strongly interconnected as in (Le) . Let us remark that the feature type has no consequence on such relations (see for example (Ld) and ( L e) ) .  The second problem concerns redundancy: when an ambiguity affects major feature values such a s  category, the result is a set of structures as for (Lb) :  the ambiguity between the verb and the noun involves in this example two completely different linguistic structures. But there are also ambiguities less interconnected with  other parts  of t he structure (e.g. ( Ld) ) .  In these cases, a common subpart of t he structure can be  factorised. This is particularly useful for the representation and the implementation of some descriptive tools such as lexical rules (see [Bredekamp96] ) .  A n  efficient ambiguity representation must take into account the interconnection between the different subparts  of the structure and allow a factorisation avoiding redundancy. 

2.2  Different Representations The disjunctive representation of ambiguity remains the most natural ( see [Karttunen984] ,  [Kay85] or [Kasper90]). However, t his  approach has several drawbacks. First of all, if an ambiguity affects more than one atomic value, t hen a classical disjunction can only represent variation between complete structures. In other words, such a representation doesn't allow the description of the relations existing between t he features. In t he same way, several approaches ( see [Maxwell91] [Nakazawa88] ,  [Ramsay90] , [Dawar90] or [Johnson90]) propose to rewrite disjunctions as conjunctions ( and negations). This  method, in spite of the fact t hat it can allow efficient implementations of some ambiguities, presents the same drawback. A partial solution ,  concerning in particular the redundancy problem, can be proposed wit h  the use of named disjunctions (not ed hereafter ND; also called distributed disjunctions) . This  approach has been described by [D6rre90] and used in several works (see [Krieger93] , [Gerdemann95] or [Blache96] ) .  The disjunction here only concerns the variable part of a structure (this allows t he information factorisation) . A ND binds several disjunctive formulae with an index (the name of the disjunction) . These formulae are ordered and have the same arity. The variation is controlled by a covariancy mechanism enforcing the 
2 



simultaneous variation of the ND values : when one disjunct in a ND is chosen (i . e. interpreted to true), all the disjuncts occurring at the same rank into the other ND formulae also have to be true. Several NDs can occur in the same structure. Figure (2) presents the lexical entry corresponding to example ( 1 .d). In the following, the shaded indices represent the names of the disjunctions .  
(2) den = SPEC 

CASE { ace dat } 
INDEX [

GEN { masc 
NUM { sing -} ] plu} This example shows a particular case of subvariation.  Indeed, the plural dative determiner stipulates no constraints on the gender.  We note  this subvariation with an anonymous variable. However, the ND technique also presents some drawbacks . In particular, covariancy, which allows a local representation of ambiguity, is the only way to represent relations between features .  Such structures need redundant information as shown in example ( 3) (cf. [Krieger93]). Moreover, the semantic of the disjunction is lost :  this is no longer a representation of a variation between values, but between different set of values. 

(3) 

MORPH [

STEMM 

ENDING { e st 
[PER { 1 2 

SYNSEM . . .  INDEX 

{ 
. 

NUM sing sing { sing 

{ l  3 }} 
l plu } In the same perspective, covariancy forces a symmetrical relation between two feature values . In fact , there are relations expressing finer selection relations. This is the case in (Le) in which no covariancy between the part-of-speech and gender features occurs: an adjective is either masculine or feminine whereas a noun is always masculine. A classical ND representation as in example ( 3) doesn't account for the fact that the noun selects a masculine value for the gender feature, but the reverse is not true. 

3 Disambiguating Generally, disjunctions are expanded into a disjunctive normal form and the disambiguation comes to a wellformedness verification. In case of incoherence, backtracking is applied and another model is elaborated (i.e. another value is choosen). This method can be improved by some techniques (cf. [Maxwell91]), but the basic mechanism remains a kind of generate-and-test device: the first feature instantiation leads to the choice of an entire structure which has to  be validated during the parse. 
3 .1  Fundamental Needs A natural solution consists in delaying the evaluation of the structure consistency. We highlight here two techniques used in our approach: selection constraints ( cf. [Pulman96]) and coroutining ( cf. [van Noord94] , [Blache96]). [Pulman96] represents ambiguities with fixed-arity lists. They are controlled by an agreement-like device between two categories ,  one being controlled by the other. These lists can be interpreted as disjunctions (not expanded into  a normal form) and their evaluation requires contextual information. The problem is that this mechanism can only be represented by a phrase-structure rules, and not at a general level. This is problematic in two respects :  it is a context-sensitive mechanism and it only works for formalisms using phrase-structure rules (unlike HPSG for example) . Moreover, this approach involves the definition of a new kind of categorial relations (cf. in Pulman's paper the relation between prepositions and nouns) which have no linguistic motivation. Finally, the design of several control relations can rapidly become an exhaustive description of all the dependencies .  A coroutining approach applied to named disjunctions i s  described in  [Blache96] . The idea i s  to propose the on-line use of NDs relying on (actual) delayed evaluation. The advantage is a direct interpretation of NDs: this representation of ambiguity doesn't use any pre-computation,  there are no normal form expansion and the 
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same mechanism is reused for all kind of ambiguities. In this approach, NDs are no longer simple "macros" as described in [Bredekamp96] : there is no interpretation of this formalisation into another one and the evaluation is direct. This is possible because the factorisation allows the construction of an underspecified structure which can be used during the parse. The problem however concerns the disambiguation propagation. More precisely, the only control is that of the covariancy which doesn't adress the problem of embedded NDs. An efficient treatment of ambiguity would need a factorised representation allowing the use of underspecification together with a fine specification of disambiguating relations. These characteristics are fundamental for an implementation avoiding DNF expansion and delaying disambiguation as much as possible. 
3 . 2  Controlled D isj unctions The main interest with NDs is the relation between different disjunctive formulae implementing the disambiguation propagation. This propagation supposes an equivalence relation in the sense that any value belonging to a ND can be instantiated and propagates the information to the rest of the ND. But this cannot tackle the problem of directed disambiguation relations as shown in example (4). In this example, we can say that (i) if the word is a noun, then the gender is masculine and ( ii) if the word is feminine, then it is an adjective. But the reverse is not true: we cannot deduce anything if the masculine value is instantiated. 
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We propose in the following the introduction of the notion of controlled disjunctions. They allow an integration of all the control relations relying on the distinction between controlling and controlled values within the ND framework. The first problem being that of covariancy, we identify two kind of disjunctions: • Simple disjunctions: their values can be controlling, controlled or both. They don't belong to a set of disjunctive formulae as for classical NDs but are represented in a separate ND which has its own name and contains this unique formula. This is the example case with the gender value of examples (Le) or (L e). • Covariant disjunctions: their values are necessarily both controlling and controlled. These formulae are equivalent to classical NDs. Insofar as covariancy is not the only relation between features, the second problem is the representation of control relations. In a covariant relation, all values occuring at the same rank of a formula are both controlling and controlled. Conversely, the description of non-covariant relations (involving simple disjunctions) relies on the distinction between controlling and controlled values. In example (Le), the noun value controls (at least) the masculine, and the feminine controls the adjective. A general solution consists of specifying explicitly all the non-covariant control relations. As said before, 
controlled disjunctions (hereafter CD) are a ND extension in the sense that they are named and their formulae are ordered. So, any value can be referenced by the name of the disjunction and its rank in the formula. In the case of a simple CD, these references specify a unique value whereas for a covariant CD, they specify a set of covariant values. We note this control relation as: value(i ,j) where value is the name of the controlling value, i is the name of the CD and j is the rank of the controlled value in the formula. Figure (5) is a representation in an HPSG notation of the example (Le). 
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This structure contains two controlled disjunctions indexed by and Disjunction is covariant and the instantiation of one of its value entails that of the other values of the same rank belonging to the same CD. Disjunction is simple and specifies two possible values. The control relations are specified by the controlling values. These values can either belong to a covariant or a simple disjunction. In this e:x;ample, the controlling values are and f em dl!l,2) , they control respectively the 1st value of the 2nd disjunction (i .e .  masc) and the 2nd value of the 1st disT{:mction (i .e .  adj and all its covariant values) . \Ve can remark that, in the case of typed structures, the elements belonging to a control relation can either be feature values or types: this is the case of the first disju'nction which concerns the head types noun and adj .  This property can be  very useful for the expression of high-level ambiguities. The example of figure (6) shows a more complex case with embedded controlled disjunction. But we can observe that the mechanism is the same. 
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!!�{ In another way, simple disjunctions, in addition to their controlling capacities, can be assimilate to finite domains contraints (in the constraint programming sense) . Such constraint are very useful for several reasons: they constitute an efficient control on the unification process. Moreover, if no disambiguation can be applied, they propose an approximation of the solution. 
4 Delayed Evaluation Delayed evaluation techniques allow us to maintain the disjunctive structure until disambiguating information is found .  This has several advantages. First of all, there are no arbitrary choices as with classical disjunctive approaches relying on normal forms: all instantiations are guided by contextual informations. Moreover,  the disambiguation propagation of CD allows us to trigger the process at any level: in the case of HPSG, the disambiguation can come from principles, schemas or even at the lexical level with structure sharing. We propose in this paper an approach using L IFE ,  a multi-paradigm programming language (cf. (Ai:t-Kaci94] )  integrating in particular functionnal facilities to a logic programming framework. A direct implementation of the CD presents two problems:  the different kind of relations ( covariancy and control) and the control of delaying devices . We propose here a method relying on functions which residuate if their arguments are insufficiently specified. As soon as these arguments are instantiated, their evaluation is fired. This mechanism is very similar to the delayed ones in Prolog (freeze , block, etc . )  and correspond in some way to a constraint programming approach. We distinguish for the implementation three kind of relations implemented by three different functions . These functions are associated with the values involved in the CD. Two functions implements the controlling and controlled relations and one describes the directed (non-covariant) selection. The representation used for this relies on the following points: • disjunctive formulae are represented with lists, • the name of the CD is represented by an integer variable I, • I also represents the rank of the instantiated disjunct in the list. The residuation depends on ( i) the feature value or ( ii) the rank of the choosen value in the list. When a feature value can be disambiguated, its instantiation in the list entails the instantiation of its rank. The other values controlled by the same name (i .e .  belonging to the same CD) are controlled by a function residuating on the integer variable representing this rank. So, when a value is choosen, all the values of the same rank in the disjunction are also instantiated. The mechanism is the same with directed selections . In this case, we 
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need a particular function binding two specific values which don't belong to the same CD. These relations are 
expressed again with the integer variable. To summarize ( i) if a value belonging to a CD is instantiated, then 
its rank become known and ( ii ) if the rank is known, then the value can be instantiated. Let us describe more 
precisely these functions. In the following, the function cond ( a ,  b ,  c) means that if a is true, then b, otherwise 
c. 

• Function controlling : controlling ( I , A , L) ----+ 
controlling_followed ( 1 , I , A , L) . 

controlling_followed( J , I , A , [X I L] )  ----+ 
cond (A : ==X , A I I=J , controlling_followed ( J+1 , I , A , L) ) . 

I is an integer representing the rank, A the feature value to be instantiated and L the list of possible values. 
This function residuates on A. If A is known, its evaluation is fired, the function calculates the position of the 
corresponding value in the list L and returns the value itself. 

• Function controlled : controlled( ! ,  [X I L] ) ----+ 
cond ( I>O , 

cond ( I= : =1 , X , controlled ( I-1 , L) ) ,  
false) . 

The two arguments are the rank (variable I )  and the list of values ( [X I L] ). The function residuates on I. 
When I is known, then the function returns the value corresponding to this position in the list. 

• Function selection : selection ( I  , x ,  Y) ----+ 
cond ( I>O , 

cond ( I= : =X , Y , true) , 
false) . 

I represents the position of a controlling value ( and the name of the corresponding CD) , X represents the 
value that I must have to select the controlled value and Y represents the rank of the controlled value to 
be instantiated. This function residuates on I. It returns the position of the controlled value in case the 
controlling one has the right value. 

Let us present now the implementation of the lexical entry of the figure ( 5 ) .  
word (mobile , A ) : 

A . phon=mobile , 
A .  synsem . loc . cat . head=�)�! , _;;;7/ Lists 
A . synsem . loc . cat . vale��; . spr=ltll , 

_f ;i@ / 
A .  synsem . loc . content . index . gender-we& , 
H=controlling ( I , H , [adj , �i!;g}ffijJ ) ,  

� (7) S=controlling ( I , S , [ [] , [Det] ] ) ,  
G=controlling (J  , G ,  [masc ,  ] ) , Control features 
H=controlled ( I , [adj , noun] ) ,  
S=controlled ( I , [ [] , [Det] J ) ,  Disjunction G=controlled( J ,  [masc , fem] ) , names � ,1,1:

frselect�on(J , 2 ,  1 ) , 
;gg=select ion ( I ,  1 ,  2) 

This lexical entry bears two CDs: a covariant one controlled by I and a simple one controlled by J. In this 
example, all the disjunctive formulae contain values which can be controlled or controlling (this is necessarily 
the case for covariant CD, but not for the simple ones). So the three corresponding lists are in the scope of 
both the controlling and controlled funtions. Moreover, the particular directed relations between noun/masc 
and fem/adj are implemented by the selection function which indicates for example in its first occurrence that 
if the second value of the CD J is instantiated, then the CD I must instantiate the first value (i.e. if J=2 , then 
I= 1). 

5 Conclusion 
The controlled disjunction technique presented in this paper allows a concise representation of disjunctive 
information, the description of precise variation phenomena (not only covariancy as with ND) together with 
an efficient implementation relying on underspecification and delayed evaluation. It consitutes an important 
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extension of the named disjunction device: its representation of control phenoma between disjunctive values 
allow the implementation of all kind of ambiguities. 

This approach can be improved in several respects and in particular with consistency tests : verification that 
disjunctions are exclusive, no cycles in the dependency net of relations between disjunctive values , etc. 

The implementation of controlled disjunctions is direct using classical delayed evaluation techniques. The 
example proposed in this paper relies on functional programming, but other logic programming techniques can 
also be used. 
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Abstract 

We address the issue of how to associate frequency information with lexicalized grammar formalisms, using 
Lexicalized Tree Adjoining Grammar as a representative framework. We consider systematically a number of 
alternative probabilistic frameworks, evaluating their adequacy from both a theoretical and empirical perspective 
using data from existing large treebanks. We also propose three orthogonal approaches for backing off probability 
estimates to cope with the large number of parameters involved. 

1 Introduction When performing a derivation with a grammar it is usually the case that ,  at certain points in the derivation process , the grammar licenses several alternative ways of continuing with the derivation . In the case of contextfree grammar ( CFG ) such non determinism arises when there are several productions for the non terminal that is being rewritten . Frequency information associated with the grammar may be used to assign a probability to each of the alternatives . In general , it must always be the case that at every point where a choice is available the probabilities of all the alternatives sum to 1. This frequency information provides a parser with a way of dealing with the problem of ambiguity : the parser can use the information either to preferentially explore possibilit ies that a.re more l ikely, or to assign probabilities to the alternative parses . There can be many ways of associating frequency information with the components making up a grammar formalism. For example , j ust two of the options in the case of CFG are : ( 1 )  associating a single probabil ity with each production that determines the probability of its use wherever it is applicable ( i .e .  Stochastic CFG ; SCFG ( Booth and Thompson , 1 973 ) ) ;  or ( 2 )  associating different probabilities with a production depending on the particular nonterminal occurrence (on the RHS of a production ) that is being rewritten ( Chitrao and Grishman , 1990 ) .  In the latter case probabilities depend on the context ( within a production ) of the nonterminal being rewritten . In general , while there may be alternative ways of associating frequency information with grammars , the aim is always to provide a way of associating probabilities with alternatives that arise during derivations. This pa.per is concerned with how the kind of frequency information that would be useful to a parser can be associated with lexicalized grammar formalisms. To properly ground the discussion we will use Lexica.lized Tree Adjoining Grammar ( LTAG ) as a representative framework ,  alt hough our remarks can be applied to lexica.lized grammar formalisms more generally. We begin by considering the derivation process , and,  in particular , the nature of derivation steps .  At the heart of a TAG is a finite set of trees ( the elementary trees of the grammar) . In an LTAG these trees are 'anchored ' with lexical i tems and the tree gives a possible context for its anchor by providing a structure into which its complements and modifiers can be attached. For example, F igure 1 shows four elementary trees-one auxiliary tree J3 and three initial trees a 1 , a2  and a3 . Nodes marked with asterisks and downarrows a.re foot and substitution nodes , respectively. In a derivation these trees a.re combined using the operations of substitution and adjunct. ion to produce a derived tree for a complete sentence. Figure 2 shows a single derivation step in which a2 and a3 are substituted at frontier nodes ( with addresses 1 and 2 • 2 ,  respectively )  o f  0' 1 and /3 i s  adjoined at an internal node o f  0' 1 ( with address 2 ) 1 . 

1 The root of a tree has the address c The ith daughter { where siblings are ordered from left to right ) of a node with address a 
has address a •  i 
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Figure 2 :  A Derivation Step When formal izing LTAG derivations, a distinction must be made between the ( object-level ) trees that are derived in a derivation and the ( meta-level ) trees that are used to fully encode what happens in derivations . These trees are referred to as derived and derivation trees , respectively. A scheme for encoding TAG derivations was proposed by Vija.y-Shanker ( 1 987 )  and later modified by Schabes and Shieber ( 1994 ) .  Derivation trees show , in a very direct way, how the elementary trees are combined in derivations . Nodes of the derivation trees are labeled by the names of elementary trees , and edge labels identify tree addresses ( i .e .  node locations ) in elementary trees . F igure :3 shows the derivation tree resulting from the derivation step in Figure 2. The nodes identified in the derivation tree encode that ·when the elementary tree a1 was used,  the elementary trees /3, a2 , a3 were chosen to fit into the various complement and modifier positions . These positions are identified by the tree addresses i1 , i2 , i3 labeling the respective edges , where in this example i1  = 2, i2 = 1 and i3 = 2 · 22 . In other words , this  derivation tree indicates which choice was made as to how the node a 1 should be expanded. In general , there may have been many alternatives since modification is usually optional and different complements can be selected . By identifying the nature of nondeterminism in LTAG derivations we have determined the role that frequency information plays. For each elementary tree of the grammar ,  frequency information must somehow determine how the probability mass is to be distributed among all the alternative ways of expanding that tree . In/section 2 we consider a number of ways in which this frequency information can be associated with a grammar . VVe then go on to evaluate the degree to which each scheme can ,  in principle, distinguish the probability of certain kinds of derivational phenomena, using data from existing large tree banks (section 3 ) .  \Ve discuss in section 4 how 
2 As Schabes and Shieber ( 1 994 ) point out matters are somewhat more complex that this. ·what we describe here more closely 

follows the approach taken by Rambow,  Vijay-Shanker, and Weir ( 1 995) in connection with D-Tree Grammar. 
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Figure :3 : A Deri va.tion Tree to estimate the large number of probabilistic parameters involved , and propose three orthogonal approaches for smoothing the probability estimates obtained. The paper concludes ( section 5 )  with comparisons with other related work . 
2 Frequency Infor111ation in Lexicalized Granuuars In this section we consider four ways of associating frequency information with lexicalized grammars. Using the LTAG framework outlined in section 1 as a basis we define four Stochastic Lexicalized Grammar formalisms which we will refer to as SLG ( l ) ,  SLG( 2 ) ,  SLG ( 3 )  and SLG( 4 ) .  The differences between them l ie in how finegrained the frequency information i s, which in turn determines the extent to which the resulting probabilities can be dependent on deriva.tional context . 
2 . 1  Context-Free Frequencies The first approach we consider is the simplest and will be referred to as SLG ( l ) .  A single probability is associated with ea.eh elementary tree . This i s  the probability that that tree i s  used in a derivation in preference to another tree ,vith the same nonterminal at its root . A grammar is  therefore well-formed if ,  for each nontermina.l symbol that can be at the root of a substitutable ( adjoina.ble ) tree , the sum of probabilities associated with all substitutable ( adjoina.ble ) trees with the same root non terminal i s  1 .  \Vhen non determinism arises in a derivation nothing about the derivational context can influence the way that a tree i s  expanded , since the probability that the various possible trees are adjoined or substituted at each node depends only on the identity of the nonterminal at that node. As a result we say the frequency information in an SLG( 1 )  is context-free .  

2.2 Node-Dependent Frequencies The second approach considered here , which we wil l  cal l  SLG ( 2 ) ,  has been described before by both Schabes ( 1992 )  and Resnik ( 1992 ) .  We describe the scheme of Schabes here , though the approach taken by Resnik is equivalent . In defining his scheme Schabes uses a stochastic version of a context-free-like grammar formalism called Linear Indexed Grammar (LIG) .  Based on the construction used to show the weak equivalence of TAG and LIG (Vij a.y-Shanker and Weir ,  1994 ) , a LIG is constructed from a given LTAG such that derivation trees of the LIG encode the derived trees of the associated LTAG . Compiling LTAG to LIG involves decomposing the elementary trees into single-level trees and introducing additional productions explicitly encoding every possible adj unction and substitution possibility3 . It is the LIG productions encoding adj unct.ion and substitution possibilities that are assigned probabilities4 . The probabilities associated with all the productions that encode possible adj unct. ions ( substitutions) at a node must sum to 1 .  The key feature of these probability-bearing LIG productions, in the context of the current discussion , is that they encode the adjunct.ion or substitution of a specific elementary tree at a specific place in another elementary tree . This means that the frequency 
3 This scheme has proved useful in the study of LTAG parsing ( Schabes, 1 990; Vijay-Shanker and Weir, 1 993; Boullier, 1 996 ) 

since this pre-compilation process alleviates the need to do what amounts to the same decomposition process during parsing. 
4 The other productions ( that decompose the tree structure ) are assigned a probability of 1 since they are deterministic. 
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information can to some extent be dependent on context . In particular , when faced with nondeterminism in the way that some elementary tree is expanded during a derivation , the probability distribution associated with the . alternative adjunct.ions or substitutions at a given node can depend on which elementary tree that node comes from . As a result we call the frequency information in SLG ( 2 )  node-dependent . This makes SLG( 2 )  more expressive than SLG( l ) .  As both Schabes and Resnik point out , by leveraging LTAG 's extended domain of locality this approach allows probabilities to model both lexical and structural co-occurrence preferences . The head automata of Alshawi ( 1996 ) also fit into the SLG( 2 )  formalism since they involve a dependency parameter which gives the probability that a head has a given word as a particular dependent . 
2 . 3  Locally-Dependent Frequencies The third approach is SLG ( 3) which falls out quite naturally from consideration of the TAG derivation process . As we discussed in the introduction , LTAG derivations can be encoded with derivation trees in which nodes are labeled by the names of elementary trees and edges labeled by the addresses of substitution and adjunct.ion nodes . The tree addresses can be omitted from derivation trees if a fixed linear order is established on all of the adjunct.ion and substitution nodes in ea.eh elementary tree and this ordering is used to order siblings in the derivation tree . Given this possibility, Vijay-Shanker , Weir ,  and .Joshi ( 1 987 ) have shown that the set of derivation trees associated with a TAG forms a local set and can therefore be generated by a context-free grammar ( CFG)5 . The productions of this meta-grammar encode possible derivation steps of the grammar .  In other words , each meta-production encodes one way of  ( fully ) expanding an  elementary tree6 . In  SLG(3 )  a probability is associated with each of these meta-productions . A SLG( 3 )  is well-formed if for each elementary tree the sum of the probabilities associated with the meta-productions for that tree is 1 .  In contrast to SLG( 2 )-which is limited t o  giving the probability that a tree anchored with a given lexical item is substituted or adjoined into a tree anchored with a second lexical item-SLG( 3 )  specifies the probability that a particular se t  of lexical items is combined in a derivation step . It is the elementary trees of the underlying LTAG that determine the ( extended local ) domains over which these dependencies can be expressed since it is the structure of an elementary tree that determines the possible daughters in a meta-production . Although the types of elementary tree structures licensed a.re specific to a particular LTAG , it might be expected that a SLG ( 3 )  meta-grammar , for example, could encode the probability that a given verb takes a particular ( type of) subject and combination of complements, including cases where the complements had been moved from their canonical positions , for example by extraction . A meta-grammar would also be likely to be able to differentiate the probabilities of particular co-occurrences of adverbial and prepositional phrase modifiers , and would moreover be able to distinguish between different orderings of the modifiers . Tlie approach described by Lafferty, Sleator , and Temperley ( 1992 ) of associating probabilities with Link Grammars-taken to its logical conclusion-corresponds to SLG(3 ) ,  since in that approach separate probabilities a.re associated with ea.eh way of linking a word up with a combination of other words7 . 

2 . 4  Globally-Dependent Frequencies The fourth and final approach we consider is Bod 's Data-Oriented Parsing ( DOP ) framework ( Bod,  1 995 ) .  In this paper w e  call i t  SLG(  4 )  fo r  uniformity and ease of reference. Bod formalizes D O P  i n  terms of a 
stochastic tree- substitut ion grammar, which consists of a finite set of elementary trees , each with an associated probability such that the probabilities of all the trees with the same non-terminal symbol sum to 1 ,  with an operation of substitution to combine the trees . In DOP, or SLG( 4 ) ,  the elementary trees a.re arbitrarily large subtrees anchored at terminal nodes by words/part-of-speech labels , and acquired automatically from pre-parsed training data. This is in contrast to SLG (3 ) ,  in which the size of individual meta-productions is bounded , since the structure of the meta-productions is wholly determined by the form of the elementary trees in the grammar. 

5 In such context-free grammars, the terminal and nonterminal alphabets are not necessarily disjoint , and only the trees generated 
by the grammar (not their frontier strings) are of any interest .  

6 In the formulation o f  TAG derivations given b y  Schabes and Shieber ( 1994 ) a n  arbitrary number o f  modifications can take 
place at a single node. This means that there are an infinite number of productions in the meta-grammar, i .e . ,  an infinite number 
of ways of expanding trees . This means that a pure version of SLG ( 3 )  is not possible. See Section 4 .2  for ways to deal with this 
issue. 

' Lafferty, Sleator, and Temperley ( 1992 )  appear to consider only cases where a word has at most one right and one left link, 
i .e . ,  probabilities are associated with at most triples. However, the formalism as defined by Sleator and Temperley ( 1 993) allows a 
more general case with multiple links in each direction, as would be required to deal with, for example, modifiers. 
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3 E111pirical Evaluation 

\t\Te have described four wa.ys in which frequency information can be associated with a. lexica.lized grammar. Directly comparing the performance of the alternative schemes by training a. wide-coverage grammar on an appropriate annotated corpus and then parsing further , unseen data. using each scheme in turn would be a. large undertaking outside the scope of this paper. However , ea.eh scheme varies in terms of the degree to which it can , in principle, distinguish the probability of certain kinds of derivational phenomena.. This can be tested without the need to develop and run a parsing system, since ea.eh scheme can be seen as making verifiable predictions about the absence of certain dependencies in derivations of sentences in corpus data.. SLG ( l ) ,  with only context-free frequency information , predicts that the relative frequency of use of the trees for a given nonterminal is not sensitive to where the trees are used in a derivation . For example, there should be no significant difference between the likelihood that a. given NP tree is chosen for substitution at the subject position and the likelihood that it is chosen for the object position . SLG ( 2) ( using so-called node-dependent frequency information ) is able to cater for such differences but predicts that the likelihood of substituting or adjoining a tree at a. given node in another tree is not dependent on what else is adjoined or substituted into that tree . With SLG ( 3 )  ( which uses what we call locally-dependent frequency information) it is possible to encode such sensitivity, but more complex contextual dependencies cannot be expressed :  for example, it is not possib le for the probability associated with the substitution or adj unction of a tree I into another tree ,' to be sensitive to where the tree -/ itself is adjoined or substituted . Only SLG(  4) ( in which frequency information can be globally-dependent ) can do this. In the remainder of this section we present a. number of empirical phenomena. that support or refute predictions made by each of the versions of SLG . 
3 . 1  SLG ( l )  vs . SLG ( 2-4) Magerman and Marcus ( 199 1 ) report that , empirically, a. noun phrase is more likely to be realized a.s a pronoun in subject position than elsewhere . To capture this fact it is necessary to have two different sets of probabilities associated with the different possible NP trees : one for substitution in subject position , and another for substitution in other positions . This cannot be done in SLG( 1 )  since frequency information in SLG(  1 )  is context-free. This phenomenon therefore violates the predictions of SLG( 1 ) ,  but it can be captured by the other SLG models. Individual lexemes also exhibit these types of distributional irregularities . For example , in the Wall Street .Journal CWSJ ) portion of the Penn Treebank 2 ( Marcus et a.I . ,  1 9�)4 ) ,  a.round 38% of subjects of verbs used intransitively ( i .e . , without an object NP )  in active , ungapped constructions are either pronouns or proper name phrases8

. However , for the verbs bel-ieve ,  agree ,  and mulerstand, there is a. significantly higher proportion ( in statistical terms) of proper name/pronoun subjects ( in the case of l>elie ·ve .57%;  x2 , 40 .53 ,  1 elf, p < 0 .00 1 )  9 . This bias would , in semantic terms, be accounted for by a. preference for subject types that can be coerced to human.  SLG( 2-4 ) can capture this distinction whereas SLG ( l )  cannot since it is not sensitive to where a given tree is used . 
3 .2  SLG(2)  vs.  SLG(3-4) The Penn Treebank can also allow us to probe the differences between the predictions ma.de by SLG ( 2 )  and SLG ( 3-4 ) .  From an analysis of verb phrases in active , ungapped constructions with only pronominal and/or proper name subjects and NP direct objects, it is the case that there is a ( statistically)  highly significant dependency between the type of the subject and the type of the object ( x 2 , 29 .79 ,  1 df, p < 0 .001 ) ,  the bias being towards the subject and direct object being either ( a) both pronouns, or ( b )  both proper names . Thus the choice of which type of N P  tree to fill subject position in a verbal tree can be dependent on the choice of NP type for object position. Assuming that the subject and object a.re substituted/adjoined into trees anchored by the verbs ,  this phenomenon violates the predictions of SLG( 2 )-hence also SLG( 1 )-but can stil l  be modeled by SLG ( 3-4 ) .  

8 Subjects were identified as the NP-SBJ immediately preceding a VP bracketing introduced by a verb labeled VBD /VBP /VBZ; 
pronouns, words labeled PRP /PRP$;  and proper noun phrases, sequences of words all labeled NNP /NNP S .  

9 A value for p o f  .5 corresponds to statistical significance a t  the standard 9 .5 %  confidence level; smaller values o f  p indicate higher 
confidence. 1 2  



A similar sort of asymmetry occurs when considering the distribution of pronoun and proper name phrases against other NP types in subject and direct object positions . There is again a significant bias towards the subject and object either both being a pronoun/proper . name phrase , or neither being of this type ( x2 , 8 .77 ,  1 elf, JJ = 0 . 3 ) .  This again violates the predictions of  SLG ( 2 ) ,  but not SLG ( 3-4 ) .  Moving o n  now t o  modifiers , specifically prepositional phrase (PP )  modifiers i n  verb phrases , the Penn Treeba.nk distinguishes several kinds including PPs expressing manner ( PP-MNR) ,  time ( PP-TMP ) ,  and purpose ( PP-PRP ) .  Where these occur in combination there is a. significant ordering effect : PP-MNR modifiers tend to precede PP-TMP ( :y 2 , 4 . 1 2 ,  1 elf, JJ = 4 . 2 ) ,  and PP-TMP modifiers in their turn have a very strong tendency to precede PP-PRP (JJ < 0 . 00 1 ) .  Adopting Schabes and Shieber 's ( 1 994 ) formulation of the a.dj unction operation in TAG , multiple PP modifier trees would be adjoined independently at the same node in the parent VP tree, their surface order being reflected by their ordering in the derivation tree . Therefore, in SLG( 3 ) multiple modifying PPs would appear within a single meta-production in the order in which they occurred , and the particular ordering would be assigned an appropriate probability by virtue of this . In contrast , SLG ( 2 )  treats multiple adjunct.ions separately and so would not be able to model the ordering preference . Significant effects involving multiple modification of particular lexical items are also evident in the treebank . For example, the verb rise occurs 83 times with a single PP-TMP modifier-e.g.  ( l a. )-and 1 2  times with two ( lb ) ,  accounting in total for 6% of all PPs annotated in this way as temporal . ( 1 )  a. Payo'ltts on the S[c{p 500 stocks rose 1 0  % [PP- TMP in 1 988} 1 according to Standard c{ Poor ·s Corp . . . .  b It rose large ly [PP- TM P thro'llghout the session} [P P- TJlf P after  posting a n  intraday 
low of 21 1,1 .  7 in the first 40  minutes of trading} . The proportion of instances of two PP-TMP modifiers with rise is significantly more than would be expected given the total number of instances occurring in the tree bank ( x 2 , 25 .99 ,  1 df, JJ < 0 .00 1 ) .  The verb j'llmp follows the same pattern (JJ = 1 . 0 ) ,  but other synonyms and antonyms of rise ( e .g .  fall) do not . This idiosyncratic behavior of rise and j'llmp cannot be captured by SLG ( 2 ) ,  since ea.eh adjunction is effectively considered to be a separate independent event . In SLG( 3 ) ,  though , the two-adjunction case would appear in a single meta.production associated with rise/jump and be accorded a. higher probability than similar meta-productions associated with other lexical items. There is another, more direct but somewhat less extensive , source of evidence that we can use to investigate the differences between SLG( 2 )  and ( 3-4 ) .  B. Srinivas at the University of Pennsylvania. has recently created a substantial parsed corpus1 0  by analyzing text from the Penn Treebank using the XTAG system ( Group , 1 995 ) .  Some of the text has been manually disambiguated , although we focus here on the most substantial set-of some 9900 sentences from the '1VS.J portion-which has not been disambiguated , as yet . For each sentence we extracted the set of meta-level productions that would generate the XTAG derivation: .  To obtain reliable data from ambiguous sentences , we retained only the ( approximately 37500 ) productions that were common across all derivations . In this set of product. ions ,ve have found that with the elementary tree licensing subject.-transitiveverb-object constructions,  the likelihood tha.t the object NP is expanded with a. tree anchored in shares is much higher if the subject is expanded with with a tree anchored in volume ,  corresponding to sentences such as ( 2a )  and ( 2b ) .  ( 2 )  a l/olmne totaled 14 , 890, ODO shares . b Overall  Nasdaq volmne was 151 , 1 97, 400 shares  . Indeed , in all 1 1  cases where volume  is the anchor of the subject , an NP anchored in shares  is analyzed as the object , whereas more generally shares is object in only 18 of the 1 079 applications of the tree . This difference in proportions is statistically highly significant (p < 0 .00 1 ) .  Correlation between each of volmne and shares and the verbs that appear is much weaker . There is of course potential for bias in the frequencies since this data is based purely on unambiguous productions . V•/e therefore computed the same proportions from productions derived from all sentences in the XTAG WS.J data; this also resulted in a highly significant difference. SLG ( 2 )  models the substitution of the subject and of the object as two independent events ,  whereas the data show that they can exhibit a strong inter-dependency. 

10 \Ve wish to thank B .  Srinivas for giving us access to this resource. 13  



3.3 SLG(3) vs . SLG( 4) Bod ( 1 995 )  observes that there can be significant inter-dependencies between two or  more linguistic units, for example words or phrases , that cut across the standard structural organization of a. grammar .  For example, in the Air Travel Information System (ATIS ) corpus ( Hemphill , Godfrey, and Doddington , 1 990 )  the generic noun phrase ( N P )  .fl:ights from X to Y ( a.s in sentences like Show me flights from Dallas to Atlanta )  occurs very frequently. In this domain the dependencies between the words in the NP-but without X and Y filled in-a.re so strong that in ambiguity resolution it should arguably form a. single statistical unit . Bod argues that Resnik and Schabes ' schemes ( i .e .  SLG( 2 ) )  cannot model this ; however it appears that SLG ( 3 )  can since the NP would give rise to a .  single meta-production ( under the reasonable assumption that the from and to  PPs would be adjoined into the NP tree anchored by fl:ights ) .  An example given by  Bod that does demonstrate the difference between SLG( 3 )  and SLG ( 4 )  concerns sentences like the emaciated nwn starved. Bod argues that there is a. strong ( semantic) dependence between emaciated and starved, which would be captured in DOP-or SLG( 4 )-in the form of a. single elementary tree in which emaciated and stan1ed were the only lexical items . This dependence cannot be captured by SLG ( 3 )  since emaciated and sta rved would anchor separate elementary trees , and the associations made would merely be bet,veen (1 ) the S tree anchored by stan1ed and the substitution of the NP anchored by man in subject position , and ( 2 )  the modification of man by emaciated. 
3.4  Discussion The empirical phenomena discussed above mainly concern interdependencies within specific constructions between the types or heads of either complements or modifiers . The phenomena. fall clearly into two groups: • ones relating to distributional biases that are independent of particular lexical items , and • others that are associated with specific open class vocabulary. Token frequencies-with respect to treebank data-of phenomena. in the former group are relatively high , partly because they are not keyed off the presence of a particular lexical item : for example in the case study into the complement distributions of pronoun/proper name phrases versus other NP types ( section 3 . 2 )  there are 13800 data. i terns ( averaging one for every four tree bank sentences ) .  However , there appears to be a tendency for the phenomena in this group to exhibit smaller statistical biases than a.re evident in the latter , lexically-dependent group ( although all biases reported here are significant at least to the 95% confidence level ) .  In the latter group , although token frequencies for each lexical item are not large ( for example, the forms of rise under consideration make up only 1 % of comparable verbs in the treeba.nk ) ,  the biases a.re in genera.I very strong , in what are otherwise an unremarkable set of verbs and nouns ( belie 'v e ,  agre e ,  ·understand, rise ,  jump, vol'llme ,  and shares) . We might therefore infer that although individually token frequencies are not great , t :ype frequencies are ( i . e .  there are a large number of lexical items that display idiosyncratic behavior of some form or other ) ,  and so lexica.lized interdependencies are as widespread a.s non-lexical ones . 
4 Para111eter Esthnation 

4 .1  Training Regime Schabes ( 1992 )  describes an iterative re-estimation procedure ( based on the Inside-Ouside Algorithm ( Baker , 1979 ) )  for refining the para.meters of an SLG( 2 )  grammar given a. corpus of in-coverage sentences ; the algorithm is also able to simultaneously acquire the grammar itself. The aim of the algorithm is to distribute the probability mass ·within the grammar in such as way that the probability of th e training corpus is maximized , i .e .  model as closely as possible the language in that corpus. However , when the goal is to return as accurately a.s possible the correct analysis for each sentence using a pre-existing grammar ,  estimating grammar probabilities directly from normalized frequency counts derived from a pre-parsed training corpus can result in accuracy that is comparable or better to that obtained using re-estimation ( Charniak ,  1 996 ) .  Direct estimation would mesh wel l  with the SLG formalisms described in this pa.per . 14 



4.2  Smoothing 

The huge number of para.meters required for a wide-coverage SLG ( 2 )  ( and even more so for SLG ( 3-4 ) )  means that not only would the a.mount of frequency information be  unmanageable , but data  sparseness would make useful probabilities hard to obtain .  We briefly present three ( essentially orthogonal and independent ) backing-off techniques that could be used to address this problem . 
U nan chored Trees 
It is the size of a wide-coverage lexicon that makes pure SLG( 2-4 ) unmanageable.  However , without lexical anchors a wide-coverage SLG would have only a few hundred trees ( Group , 1 995 ) .  Backup frequency values could therefore be associated with unanchored trees and used when data for the anchored case was absent . 
Lexical Rules 

In a lexicalized grammar , elementary trees may be grouped into families which are related by lexical rulessuch as wh extraction , and passivization . (For example , the XTAG grammar contains of the order of 500 rules grouped into around 20 families) .  In the absence of specific frequency values , approximate (backup ) values could be obtained from a tree that was related by some lexical rule. 
SLG ( -i )  to SLG( i  - 1 )  

Section 3 indicated informally how , when moving from SLG(  1 )  through to SLG(  4 ) , the statistical model becomes successively more fine-grained , with each SLG(i )  model subsuming the previous ones , in the sense that SLG ( i )  is able to differentiate probabilistically all structures that previous ones can . Thus , w hen there is insufficient training data ,  sub-parts of a finer-grained SLG model could be backed off to a model that is less detailed . For example , within a SLG( 3 )  model , in cases where a particular set of meta-productions all with the same mother had a low collective probability, the set could be reduced to a single meta-production with unspecified daughters ( i .e .  giving the effect of SLG ( l )) .  
5 Co111parison with Other Work 
The treatment of stochastic lexicalized grammar in this paper has much in common with recent approaches to statistical language modeling outside the TAG tradition.  F irstly, SLG integrates statistical preferences acquired from t raining data with an underlying wide-coverage grammar , following an established line of research , for example ( Chitrao and Grishman, 1 990 ;  Charniak and Carroll , 1994 ;  Briscoe and Carrol l ,  1995 ) .  The paper discusses techniques for making preferences sensitive to context to avoid known shortcomings of the context.independent probabilities of SCFG ( see e .g .  Briscoe and C arroll ( 1 993 ) ) . Secondly, SLG is lexical, since elementary trees specify lexical anchors . Considering the anchor of each elementary tree as the head of the construction analyzed , successive daughters for example of a single SLG ( 3 ) meta.grammar production can in many cases correspond to a combination of Magerman 's ( 1 995 )  mother/daughter and daughter/daughter head statistics ( although it would  appear that Collins ' ( 1 996 ) head-modifier configuration stat istics are equivalent only to SLG ( 2 )  in power) . However , due to its extended domain of locality, SLG( 3 )  i s  not limited t o  modeling local dependencies such as these , and i t  can express dependencies between heads separated by other , intervening material . For example ,  i t  can deal directly and naturally with dependencies between subject and any verbal complement without requiring mediation via the verb itself: c .f. the example of section 3 . 2 .  Thirdly, the SLG family has the  ability to  model explicitly syntactic strucforal phenomena, in  the sense that the atomic structures to which statistical measures are attached can span multiple levels of derived parse tree structure , thus relating constituents that are widely-separated-structurally as ,vell as sequentially-in a sentence. Bod's DOP model ( Bod ,  1995) shares this characteristic ,  and indeed ( as discussed in section 2 .4 )  i t  fits  naturally into this family, as  what we have called SLG( 4 ) .  Srinivas et al . ( 1 996 ) ( see also Joshi and Srinivas ( 1994 ) )  have recently described a novel approach t o  parsing with LTAG , in  which each word in a sentence is first assigned the most probable elementary tree-or 'supertag 'given the context in which the word appears , according to an trigram model of supertags . The rest of the parsing 
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process then reduces to finding a way of combining the supertags to form a complete analysis .  In this approach statistical information is associated simply with linear sub-sequences of elementary trees , rather than with trees within derivational contexts as in SLG (2-4 ) .  Although Srinivas ' approach is in principle efficient , mistaggings mean that it is not guaranteed to return an analysis for every in-coverage sentence, in contrast to SLG . A lso , its relatively impoverished probabilistic model would not be able to capture many of the phenomena reported in section 3 .  
Acknowledge111ent This work was supported by UK EPSRC project GR/K97400 'Analysis of Naturally-occurring English Text with Stochastic Lexicalized Grammars' ( <http : //www . cogs . susx . ac . uk/lab/nlp/ dtg/ details . html>) ,  and by an EPSRC Advanced Fellowship to the first author. We would like to thank Nicolas N icolov and Miles Osborne for useful comments on previous drafts .  
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Abstract 

Many traditional TAG parsers handle ambiguity by considering all of the possible choices as they unfold during 
parsing. In contrast , D-theory parsers cope with ambiguity by using underspecified descriptions of trees. This paper 
introduces a novel approach to parsing TAG, namely one that explores how D-theoretic notions may be applied to 
TAG parsing. 

Combining the D-theoretic approach to TAG parsing as we do here raises new issues and problems. D-theoretic 
underspecification is used as a novel approach in the context of TAG parsing for delaying attachment decisions. 
Conversely, the use of TAG reveals the need for additional types of underspecification that have not been considered 
so far in the D-theoretic framework. These include combining sets of trees into their underspecified equivalents as 
well as underspecifying combinations of trees. 

In this paper, we examine various issues that arise in this new approach to TAG parsing and present solutions 
to some of the problems. ·we also describe other issues which need to be resolved for this method of parsing to be 
implemented. 

1 Introduction Ambiguity is a central problem in the parsing of natural languages. Within the framework of TAG, a number of approaches have been adopted in trying to  deal with this issue. Traditional approaches share the characteristic of exploring all of the choices in the face of ambiguity. To make such a scheme effective, techniques such as structure sharing and dynamic programming are commonly used. In contrast , we explore a different style of parsing that copes with ambiguity through the underspecification of tree structures. This style of parsing deals with descriptions of trees instead of trees themselves. Notable examples of such parsers include [Marcus, Hindle, and F leck, 1 983] , [Gorrell, 1 995] , and [Sturt and Crocker, 1 996] . We refer to these as D-theory parsers. Following them, we construct an underspecified representation that captures a set of parses for the input seen so far. The primitive of dominance is used in the descriptions that our parser manipulates. Its use in parsing has been pioneered by [Marcus, Hindle, and F leck, 1 983] , and further investigated by the others such as those listed above . It has also been used within the confines of TAG elementary trees, as stated by [Vijay-Shanker, 1 992] . Nevertheless, in our context of using domination to handle ambiguity in TAG parsing, we differ from both of these bodies of work. We differ from the latter because our use of domination is not limited to use within TAG elementary trees; it is crucially used here to underspecify ambiguity in the attachment of elementary t rees. Thus the domination statements that our parser makes· are domination statements between nodes in different elementary trees. We differ from prior work in D-theory parsing because our parser incorporates a specific grammatical formalism and grammar in order to specify syntactically well-formed structures. Moreover, it uses new kinds of representations that have not been considered in D-theory parsing in order to specify ambiguity. This paper discusses several novel issues and presents our solutions to many of the issues that arise in adopting the use of dominance to parsing TAGs. For example, there is considerable bookkeeping that is necessary to ensure whether a particular underspecified representation conforms to a possible legal TAG derivation. Furthermore ,  TAG's extended domain of locality presents a problem because it hinders the degree of underspecification 
* Supported by NSF grants #GER-g35486g and #SBR-g7104 1 1 .  1 8  



that is necessary in order to delay disambiguation decisions . ,ve therefore argue that sets of elementary trees need to be underspecified into single representations . An9ther problem is that the notion ofstandard referent, used in D-theory parsing as the default model of a. given underspecified representation, needs to be reconceptualized in order to accommodate the novel use of domination that is proposed here. This paper is organized as follows .  We first consider some broad distinguishing characteristics of our parser in Section 2. Subsequently, we define some terminology in Section 3 as a preparatory for the following sections, which delve into various aspects of of our parser. Section 4 gives a high level outline of our parser. Section 5 explicates the mechanism whereby descriptions of trees are combined. Section 6 deals with computing the standard referent . Section 7 discusses the issue of combining a set elementary trees into a single representation. Finally, concluding remarks are given in Section 8 .  
2 Parsing Framework Our parser draws on typical characteristics of D-theoretic parsers , such as [Marcus , Hindle, and Fleck, 1 983] and [Gorrell, 1 995] . Such characteristics , as well as their relation to our parser, are discussed in this section. A basic feature of D-theoretic parsers is that the input sentence is parsed strict ly from left to right and a description is constructed that captures a set of parse trees for the input seen . One of our goals, which is shared by many other D-theoretic parsers , is that of incremental interpretation. This means at each point in the parse, a partial semantic representation is constructed from the sentence prefix that has been input so far, as delineated by the underspecified representation . The notion of standard referent, as discussed in [Marcus , Hindle,  and Fleck, 1 983] and [Rogers and Vijay-Shanker, 1996] , is included in our parser. Recall that an underspecified representation specifies a set of parse trees, namely those trees which are consistent with every assertion that is embodied by the underspecified representation. The standard referent is that parse tree which is taken to be the default choice from the set of trees that are consistent with a particular underspecified representation. The need for a standard referent would arise from a requirement of incremental interpretation. However, here it is mainly used in determining how structures may be combined. Our parser subscribes to the notion of informational monotonicity. This means that , during parsing, the assertions that the parser makes are considered to be indelible. This is important because, at any point during parsing, we find that not all of the attachment possibilities that may be expressed by a dominance based description language can be incorporated into the underspecified representation that our parser constructs. Certain ambiguities , for example, may not be expressible in our underspecified representation. Therefore, there is the possibility that one of the assertions that the parser makes will turn out to be incompatible with evidence provided by later input . In that situation, the parser is forced to retract that assertion, leading to backtracking. In the literature on D-theory parsers , it has been commonly conjectured that such backtracking correlates with garden path effects. 
3 Terminology Our terminology borrows from TAG and D-Tree Grammar literature. From TAG, the grammar consists of a set of lexicalized trees. The frontier of each elementary tree is composed of a lexical anchor; the other nodes on the frontier will either be substitution or foot nodes . An interior node is commonly considered to be constituted of a top and bottom feature structure. In contrast, we use the terminology introduced by [Vijay-Shanker, 1 992] in that an interior node is considered as a pair of quasi-nodes. A domination link connects the top and bottom quasi-nodes . The path from the root to the lexical anchor of an elementary tree will be called the trunk. We now define the terms component and lowering node. The notion of component is borrowed from D-Tree Grammars , as defined in [Rambow, Vijay-Shanker, and "feir , 1 995] . A component is a maximal subpart of an underspecified representation that has the property that alt of its nodes are connected by immediate domination links. Consider eto in Figure 1 for example. It consists of two components :  the first contains the nodes S, .N Po , and the top VP quasi-node, while the second contains the bottom VP quasi-node ( V  P0 ) ,  the V node, and the 
N Pi node. A lowering node is the root of a component. It can either be the root of an elementary tree or a bottom quasi-node. We call such nodes lowering nodes be 1ause in D-theory, adjunction or substitution at these 1 9  
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Figure 1 :  A lexicalized TAG tree with two components and t,vo lowering nodes. 

nodes would mean that these nodes would be lowered, i.e . ,  later input causes some structure to be placed above 
them. The elementary tree ao contains two lowering nodes, S and V Po . 
4 Parsing Algorithm 

With the terminology so defined, the disquisition of our parsing algorithm can now proceed. At any given time 
during parsing, we assume that there is a single underspecified representation R corresponding to the sentence 
prefix which has been seen so far. It describes a set of trees that are obtained by combinations of structures 
anchored by the input encountered. For now, we assume that R is treelike except that some of the nodes may 
be connected by domination links instead of immediate domination links. The immediate domination links 
arise only from the immediate domination links that appear in the composed TAG trees. The domination links 
arise from either those that appear in elementary TAG trees or between nodes in different trees. At the start 
of parsing, R consists of a single substitution node S. 

A provisional description of the parsing process is outlined as follows. 

• The next word is input. There will usually be more than one elementary tree corresponding to this word. 

• Those elementary trees that are structurally incompatible with the current representation R are removed from 
consideration. This is addressed in Sections 5.1 and 5.2. 

• The remaining elementary trees must be incorporated into the current representation R to produce the new 
underspecified representation. If only one elementary tree corresponding to the current input word remained 
after the second step's filter, then this would be straightforward. On the other hand, there may be cases where 
more than one tree remains. We propose to address the latter situation by grouping such sets of elementary 
trees into one underspecified representation. This would allow us to delay the choice of elementary tree until 
later while still being consistent with informational monotonicity. Nevertheless, it may still be the case that 
the remaining set of elementary trees corresponding to the current word cannot be grouped together. In 
this case, we would have to make a choice. ·we propose that other sources of information would need to be 
recruited in order to further constrain the set of viable elementary representations, as well as their attachment 
sites. These sources may include semantics, or lexical frequencies as determined from a corpus. 

In what follows, we begin a more detailed discussion of certain essential aspects of our parsing algorithm. 
We start by considering what structural possibilities the parser needs to consider when it tries to combine the 
current underspecified representation R with an elementary tree ry that is anchored by the next input word. 

5 Control Strategy 

This section describes how representations may be combined. Associated with each representation are expec
tation lists that encode how it expects to fit into a complete sentence structure. We first describe the nature 
of expectation lists. Next, we develop the control strategy that is used to check if two representations may be 
combined, through the use of expectation lists. We also consider what actions may take place if two expectation 
lists are incompatible. 
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5 . 1  Expectations At any given point in the parsing of the input sentence, subsequent input may clearly not be inserted into the part of R that is to the left of that path running from the root of R to the leaf l. Extending the notion of trunk, which has hitherto only been defined for elementary trees, we state that the trunk of an elementary representation R is the path from the root to the last input node. Thus, when inserting new structure into R, only the nodes and domination links on and to the right of the trunk need to be considered. These nodes are contained in ,vhat we call the right expec tation list of R. Analogous observations hold about the elementary TAG trees. Namely, at each point in parsing, an elementary tree f/, representing the next input word, is combined with R. When considering how rJ may be combined with R, it suffices to consider only those nodes and domination links that appear on or to the left of that path from the root to the anchor. These nodes are contained in the left expec tation list of 17 . Now we will consider how to compute the left expectation list of R and the right expectation list of rJ. In the relevant subparts of R and 'T/ ,  we need to examine nodes that can be involved in combinations: lowering nodes, substitution nodes ,  and foot nodes. In our expectation lists, we consider expectations of two types: substitution expectations or lowering expectations . A substitution expectation corresponds to a substitution node or a foot node. Conversely, a lowering expectation corresponds to a lowering node. Each expectation is characterized as optional or obligatory. Substitution expectations are always obligatory. Lowering expectations may either be optional or obligatory. Suppose there exists a domination link that states that node a dominates node b. The lowering expectation corresponding to node b is obligatory if the labels of a and b do not match. Expectation lists are ordered lists of expectations. The order of expectations for one representation corresponds to the sequence in which the parser will try to assemble it with the other representation. The algorithm that is presented in Figure 2 returns an ordered list of expectations when given an underspecified representation or elementary t ree and a direction d that specifies whether a left or right expectation list should be found. It first examines the anchor and then makes its way up the t runk of the representation, one node at a time. At each such node n, the algorithm sees if n corresponds to an expectation. If so, this is recorded. It also checks if n has any siblings in the dth direction. If so, each such sibling is scanned in a depth first fashion for any expectations . Consider the expectations in the right expectation list for cx0 in Figure 1 .  The algorithm starts at the anchor "hit" and then makes its way up to the V node. The V node has a sibling, N Pi ,  which is examined in a depth first fashion for any expectations . This yields the first expectation, N Pi ( obl ig , subst) . The algorithm continues up the trunk to the bottom VP quasi-node ( V P0 ) ,  which is associated with another expectation V P( opt ,low ) , which is duly recorded. Continuing further up the trunk, the algorithm finds one more expectation corresponding to the root S ,  which is S( opt ,l ow) · Similarly, the left expectation list of cxo would be < V P( opt ,low ) , N Po ( oblig , subst ) , S( opt ,low )  > . 
5.2 Combining Representations As the parser proceeds through the input sentence from left to right , the parser tries to combine the underspecified representation R with an elementary tree 'T/ corresponding to the current input word. Expectation lists encode how a representation to the left may be combined with an elementary t ree to the right . We say that the underspecified representation R can be combined with the elementary tree 17 when the right expectation list of R is compatible with the left expectation list of 'T/ · An outline of a proposed procedure to determine the compatibility of two expectation lists is delineated in this section. This procedure has two steps . First , one expectation is taken from the left expectation list of rJ and the right expectation list of R is searched for a matching expectation. Second, given that the two representations partially combine according to how these first two expectations match, it is seen whether the two representations can be fully combined. 

1 If d is left (right ) ,  then not d is right (left) .  
2 Node p is a parent of a node c i f  p i s  connected to c by a domination or immediate domination link. For example, a top 

quasi-node is the parent of the corresponding bottom quasi-node. 
3The child relation is defined analogously to the parent relation in the previous footnote. For example, a bottom quasi-node is 

the child of its corresponding top quasi-node. 
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Order_expect(n:node, d:left or right) Case n lies on trunk If n is a lowering node Record n as a lowering expectation Loop through each sibling i · of n that appears to the d of n from not dI to d Order-expect( i ,  d) If n has a parent p2 Order_expect(p, d) Case n does not lie on trunk If n is a substitution node Record n as a substitution expectation Else ( n is an interior node) If n is a lowering node Record n as a lowering expectation Loop through each child3 i of n that appears to the d of n from not d to d Order-expect(i, d) If n is an adjoining node Record n as a lowering expectation 
Figure 2: Algorithm that returns an ordered list of left or right expectations. Finding the First Pair of Matching Expectations We take the first expectation eI from the left expectation list of 'T/ · eI may either be a substitution expectation or a lowering expectation. If it is the former, we look for a matching lowering expectation in R. Conversely, if it is the latter , we look for a matching substitution expectation. It may occur that, although e I  is an obligatory expectation, there is no expectation in R that matches. We need not consider this particular situation further, because the two representations are obviously incompatible. Alternatively, although there may be no matching expectation for e 1 , e I is an optional expectation. In this case, we can skip to the next expectation on the left expectation list of the elementary tree. Matching the Rest of the Two Expectation Lists Suppose that a matching expectation em (in R) for eI (in 'T/) is found. Now there are two tasks that must be accomplished. First it must be ensured that this matching expectation can indeed lead to a valid combination of the two representations that are under consideration. This is accomplished as follows. Suppose that nm and nI are the nodes corresponding to the expectations em and e I , respectively. Now let Pm be the path from the root of the underspecified representation R to nm . Conversely, let PI be the path from the root of the elementary tree 'T/ to nI . The task is to find out if the components along the path Pm can be interspersed with the components along the path PI . This is done by iteratively matching the expectations corresponding to the nodes that lie on path Pm v•.rith those that lie on the path PI , starting from those expectations corresponding to nodes that lie closest to em and e I . Second, any remaining unmatched obligatory expectations in 7J should be matched, in order of their appearance on the expectation list, by recursively calling the aforementioned procedure. Representing Ambiguity of Attachment Suppose e I is a substitution expectation and we find a matching lowering expectation em in R. That em must be the corresponding attachment site for e I  does not immediately hold. In Figure 3 (b) ,  for example, the auxiliary tree could be adjoined at either of the VP's in R. To capture such attachment ambiguity, rather than equating nI and nm ( the node corresponding to the first expectation in the expectation list for R that matches e I ) ,  we will say nI dominates nm . On the other hand, in Figure 3(a) , there is no ambiguity in attachment of the new elementary tree. In this case we can make a stronger statement by equating nI and nm . In general, the type of attachment ambiguity that we underspecify is where e I  is a substitution expectation that matches more than one lowering expectation and no obligatory expectations occur between the first and 22 
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Figure /'JI. Example of case 1 of the algorithm to match expectation lists. (a) is the subcase of unambiguous attachment . (b) is the subcase of ambiguous attachment . the last matching lowering expectations on the left expectation list of f/, inclusively. Whether such an ambiguity exists is determined as follows . Suppose e 1 is a substitution expectation. Furthermore suppose its combination with em , the first matching lowering expectation, does in fact lead to a valid combination of representations . \i\Te may find another valid combination by scanning further in the right expectation list of the underspecified representation R, starting from em , to find another matching expectation em ' (before encountering an obligatory expectation that does not match e 1 ) and verifying that it leads to another valid combination of structures, using the same method that we performed for the first matching expectation em . Our underspecified representation captures this ambiguity as follows. Notice that no matter where the elementary tree 7J is adjoined, it is the case that the node n1 will always dominate the lowest attachment site nm . Therefore, in cases of such ambiguity, we stipulate such a domination as shown in Figure 3 (b ) .  Notice that while the example in Figure 3 (b) corresponds to adjoining, a similar situation arises even if n 1 is a substitution node. Representing the ambiguity in this way has various repercussions . For example, if the elementary tree that is being ambiguously added is an auxiliary tree, then we should make sure that if disambiguation should subsequently occur, an additional assertion should be made in order to guarantee a proper TAG adjunction. In detail, suppose that "I is the auxiliary tree, and n 1 is the foot node of 'Y · When disambiguation occurs, n1 is equated with some bottom quasi-node nb . In that case, an additional stipulation should be made that the top quasi-node nt that corresponds to n6 dominates the root of "I. Another consequence is that an underspecified representation R that encodes such ambiguities is no longer the treelike structure that was assumed earlier. This necessitates alterations in our algorithm for computing expectation lists ,  as will be discussed in Section 6 .  Details Behind Matching the First Two Expectations As noted previously, matching one expectation list against another entails finding a sequence of pairs of corresponding substitution and lowering expectations. Whether two expectations match depends upon various factors , such as whether the substitution expectation occurs in R or 77, and whether the nodes corresponding to the expectations are substitution nodes, foot nodes, or quasi-nodes. 
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Let e1 be the first expectation from the left expectation list of the elementary tree T/ · The expectation e1 may either be a substitution expectation (corresponding to a substitution node or a foot node) or a lowering expectation ( corresponding to a lowering ·node) . We handle the tests for satisfaction of these two kinds of expectation as case 1 and case 2, respectively. In the following we take em to be the first expectation in the right expectation list of R that matches e 1 . Furthermore, let nm and n 1 be the nodes corresponding to the expectations em and e 1 , respectively. Case 1 :  e 1 is a Substitution Expectation. As stated previously, nodes n1 and nm are equated if there is no ambiguity in the placement of n 1 • Otherwise, the ambiguity is encoded into the representation with node n1 dominating nm . Now consider the situations where n 1 is either a substitution node (Case la) or a foot node (Case lb) .  Case la: n1 is a Substitution Node. If n 1 is a substitution node, then nm must be the root of some elementary tree. This follows because the TAG operation of substitution requires that the root of an elementary tree be equated with a substitution node and that entire tree must have already been integrated into R. Node nm may be dominated by another node nn in R. nn may be a substitution node (Case la-i) or a foot node (Case la-ii) . We proceed to consider the cases where n 1 is to be equated with nm . Case la-i: nn is a Substitution Node. Let nr be the root of 'T/· We can say that it is dominated by nn if nr E LC(nn ) 4 • See a 1 3  of Figure 4 for an example . Otherwise, our original assertion of equality between n1 and nn was in error. The use of domination of nr by nn is to allow for further material to the right to be inserted between these two. Case la-ii: nn is a Foot Node. Suppose nn is a foot node. If nr (/. LC(nn ) then nn does not dominate nr . Otherwise, nn may or may not dominate nr ; the rest of the expectation lists would have to be checked in order to find out if there is the possibility of ambiguity in the placement of nr . See a1 4  of Figure 4 .  Case lb :  n 1 i s  a Foot Node. I f  n1 is a foot node, then nm must be a bottom quasi-node. Analogous to Case la, this follows because the TAG operation of adjoining requires that the foot node be equated with a bottom quasi-node. Again, where there is no ambiguity in the placement of n1 , we consider whether nn is a foot node (Case lb-i) or a top quasi-node (Case lb-ii) . Note that node nn cannot be a substitution node because a substitution node cannot occur along the path between a top and bottom quasi-node. Case lb-i: nn is a Foot Node. This case is similar to Case la-ii. Case lb-ii: nn is a Top Quasi-node. If nn is a top quasi-node, then it dominates nr . This is to ensure that a valid TAG adjunction is performed. See Figure 3(a) for an example. Case 2: e 1 is a Lowering Expectation. Again suppose that nm and n1 are the nodes corresponding to the expectations em and e 1 , respectively. This time em must be a substitution expectation. Note that the possible attachment of nm to more than one node in TJ does not occur .  Because n1 is a lowering node, it can only be a bottom quasi-node (Case 2a) or a root of an elementary tree (Case 2b) . Case 2a: n1 is a Bottom Quasi-node. If n1 is a bottom quasi-node, then nm must be a foot node. It cannot be a substitution node because that would mean that a substitution node exists along the path between 
4 LC(v) stands for left corner, by which we include anything that can appear in the left periphery of a tree whose root is v. 24 
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Figure 5: (a) Representations that are selected when the input "\Vho does . . .  " is encountered. (b) The same representations combined with domination. a top and bottom quasi-node. Node n1 is dominated by another node n1,., in elementary tree TJ, which can only be a top quasi-node. Because nk is a top quasi-node, it dominates the root of the auxiliary tree that has nm as a foot node. This follows from the fact that we want to preserve TAG adjoining. 
Case 2b: n1 is the Root of an Elementary Tree. If n1 is the root of the elementary tree TJ, then nm can either be a substitution node or a foot node. In this situation, node nm is made to dominate n1 . Equality is not asserted because it may be possible for material from the right to be inserted between nm and n1 . 

When the Relationship between Two Representations is Locally Unknown It is also possible that there is no expectation e 1 in the left expectation list of the elementary t ree TJ which might suggest how to combine it with the underspecified representation R to its left . Furthermore, the expectations in that list may have all been optional. In this situation, although no assertion of domination can combine R and TJ, it is possible that subsequent input may be able to combine them. Call this Case 3. It occurs for example in the context of the sentence "Who does J ohn annoy?" After the prefix "\Vho does . . .  " has been seen, the parser considers combining the two representations that are shown in Figure 5 (a) , only to find that it is impossible. As a general strategy for case 3, we will assume that the disparate representations are combined using dominance where both of the representations are dominated by the lowest node which we know for certain will dominate both. An example is shown in Figure 5(b) . This strategy would entail complications to the procedure of building expectation lists and checking for the compatibility of expectations. Notice that this strategy is akin to buffering the uncombinable items. There is therefore the problem of determining what , if anything, is the proper buffer size. 
6 Computing the Standard Referent In D-theory, the notion of standard referent plays an important role. The standard referent is a minimal model (tree) of a description. It is usually obtained by minimizing the path lengths of all of the domination links. Such a tree would be useful in incremental interpretation. For us the method for obtaining the standard referent is also useful in determining the order in which the components of the current underspecified representation are to  be  combined with new additional input . Recall that the underspecified representation that our parser produces allows for non-treelike forms in order to describe some forms of attachment ambiguity. On the other hand, the algorithm that was given to compute expectation lists requires a treelike description as input . Consider the description o:8 in Figure 6. The problem here is that obtaining the expectation list for o:8 is not possible because an expectation list requires a unique ordering of domination. In particular, whether X P3 dominates X P4 depends on whether or not X P3 is placed above X P4 . If the standard referent is implicitly assumed to be the default structure, the question arises as to ·what the standard referent of o:8 is. Such cases have never arisen in previous work on D-theory. 5 In defining the notion of standard referent here, we have 

5 See [Rogers and Vijay-Shanker, 1996] for discussion on the determinism hypothesis in D-theory parsing and the uniqueness of 
the standard referent . 25 



ZPi ZP2 
I I z 
I 

X 

z 
I z 

ZPi 
I 
z 
I 
X 

. · . 

� XA ZP2 d1 \ . _ id2 I ){°p0 Z 
I I X z 
I 
y 

ZP1 XP1 ·: 
I di >·: 
z XPo 
I I 
X X 

I 
y Figure 6: An example of our parser's underspecified representation (as ) ,  its standard referent (a9 ) ,  and another representation compatible with as (a10 ) .  t o  consider disambiguating the attachment ambiguity that is expressed in  structures such as a8 • Because the standard referent is usually taken to be the default structure, its definition could also be used to give an ordering for the expectation list . The basic strategy that we would like to use in order to determine the standard referent is to minimize the lengths of the domination links. This strategy, however, does not always yield a single standard referent , as seen in a8 of Figure 6 .  In this case, there is no unique standard referent because the sum of the lengths of the domination links d1 and d2 does not vary with the placement of the auxiliary tree that is rooted by node X P3 . 6 The difficulty arises when two domination links reach the s·ame node. We call such pairs of domination links ambiguous. In as the pair of domination links d1 and d2 are ambiguous because they both dominate the same node X P3 . In order to guarantee that a single standard referent is obtained, the process of determining a standard referent is divided into two stages. First ,  all of the ambiguous domination links are disambiguated by minimizing their lengths sequentially according to a predetermined order, yielding an unambiguous representation R' . Second, a single standard referent is determined from R' by minimizing the sums of the lengths of the domination links. Suppose d1 and d2 are any ambiguous pair of domination links in R. d1 and d2 state that certain nodes U and V dominate a node X .  Clearly, U and V must come from different elementary trees, say f3u and /3v . There must have been an order in which f3u and /3v were introduced into R. This is the order in which the ambiguous domination links d1 and d2 are ordered. Each domination link is assigned a value that specifies the time at which the elementary tree in which the link's parent node resides was introduced into R. In defining the order for an expectation list , the domination link with the higher value is ordered before one with a lower value. Consider for example the underspecified representation as of Figure 6. There are two ambiguous domination links d1 and d2 with value(d1 ) < value (d2 ) . Consequently, d2 's length is minimized before d1 's length. The resulting underspecified representation is a9 . There are two motivations behind our method. First ,  computing the expectation list of the result of computing the first step of the standard referent yields a sequence of expectations that does not omit any possible attachment points. For example, the expectation list of a9 encodes the possibility of material being inserted between X Pi and X P3 , something that would not happen had X P3 been postulated to dominate X P4 , as in a10 • Second, this strategy typically corresponds to right association, as described in [Frazier, 1995] . Specifically, minimizing more recently created domination links first means that more recently added subtrees will be attached as low as possible. For example, the standard referent for the representation in Figure 3(b) has the adverb "today" modifying the lower verb "left ." Insofar as right association has been postulated as a 

6 Another possible standard referent of as would be found by equating the two pairs of nodes X P1 and X P2 , and X P3 and X P4 , 

which would result in a parse tree where, for example, ZP1 and ZP2 are siblings. Nevertheless, it docs not result in a tree obtained 
by any sequence of TAG operations, assuming that the component that is rooted at X P4 and the component that is rooted at 
X P3 come from different elementary structures. We avoid this undesirable result by never attempting, in computing the standard 
referent , to equate two nodes simply because they both happen to be asserted as parents of a single node. 
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(a) (b) Figure 7: (a) Elementary representation corresponding to two elementary TAG trees. (b) Elementary trees that require underspecification in order for parser to avoid backtracking. general strategy for human parsing, modulated perhaps by semantic and discourse factors , it corresponds with this strategy of computing the standard referent , which may be used as the baseline structure for semantic interpretation. 

7 Elementary Representations Underspecification plays an important role in reduced commitment parsing. Too great an underspecification means that few constraints are placed on what the final structure of the sentence will look like. It diminishes the predictive ability of the parser and enlarges the range of potential structures that are considered at any given time. Conversely, too little an underspecification leads the parser into making incorrect predictions and reduces the number of sentences that can be parsed without backtracking. The enlarged domain of locality that TAG provides causes the latter sort of problem in this context . Let us select the strategy of choosing only one elementary tree at each step in the parse. Consider the problems it raises when trying to parse the following pair of sentences: "I know the answer" and "I know the answer is wrong." Crucially, after having seen the word "know" the parser cannot predict which elementary tree to select because the extended domain of locality of TAG requires two different elementary trees for "know," each corresponding to a different subcategorization. In order to alleviate this problem, it is useful to coalesce different elementary trees into a single representation because at this point , there is no way to t ell which is the correct tree to choose. ·we merge the two elementary trees for the verb "know" by having the substitution node corresponding to its obj ect ambiguously specified as NP or S. See Figure 7(a) . We call a single set of assertions with the added proviso of node label underspecification (which represent a set of elementary TAG trees) an elementary representation. The expedient of node label underspecification is also useful in avoiding backtracking in several other situations. Another example is the ambiguity that is associated with PP attachment . Suppose that a PP may either attach at the N' level or the VP level. The problem is that there is a separate elementary tree for each case . ..  With node label underspecification, these separate elementary trees may be coalesced into one elementary representation. Using such elementary representations, we can delay the PP attachment decision until all of the necessary disambiguating information is encountered, as in Figure 8. Other situations require underspecification of structure in addition to node label underspecification. In general, such cases occur when there is an optional argument or an optional modifier. For example, the verb "wash" optionally subcategorizes for an NP. Another instance occurs with the sentence prefix "The wedding marked . . .  " There is ambiguity in whether the reduced relative or the main verb tree for ''marked" ought to be chosen. Notice that parsing free word order languages also introduces this problem of tree selection. The ambiguity · in selection of tree structure may even cross part of speech boundaries. This is exhibited in the sentence pairs "Fruit flies like an orange" and "Fruit flies through the air."  The relevant trees for the word "fruit" are shown in Figure 7 (b) . 
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T/ Figure 8: Node label underspecification allows us to represent PP attachment ambiguity. We are exploring various possibilities for representing this structural ambiguity. One possibility is to license only those parts of an elementary tree up to a certain proj ection. Take the trees in Figure 7(b) for example. Recall that in the case of seeing the word "know," we underspecified the argument label because it was unavailable. Similarly, upon encountering the word "fruit" we underspecify the set of two elementary trees because only projection up to the N level is licensed. The method suggested by [Evans and Weir, 1997] can perhaps be used to coalesce these structures. 
8 Conclusions and Future Work In this work, we consider parsing TAG using underspecified descriptions of trees featuring dominance and underspecified node labels. The prediction component of an Earley parser corresponds to our assertion of domination. The completion component of an Earley parser does not have an analogue in our parser; it is 
a manifestation of how an Earley parser considers all possible parses while our parser leaves the situation underspecified. Specifically, in order to underspecify the attachment ,  we find that in most of the cases in Section 5.2, our parser does not immediately perform TAG operations of substitution and adjoining. That would require equating nodes from two different trees. Instead, our parser asserts domination that leaves us uncommitted to a particular attachment site. Nevertheless, when our parser recovers a parse tree from the underspecified representation, it is necessary for our parser to ensure that the resulting tree corresponds to one derived using substitution and adjoining. In contrast with traditional work in TAG parsing, we envision our parser to be one that delays attachment decisions. However, we would not like our parser to leave the situation completely underspecified, but to reduce the search space through the judicious use of extra information. This is our notion of reduced commitment ,  the  idea that the  underspecified representation that the parser constructs encodes only those relations that the parser strongly believes must hold for the entire sentence. This extra information may include semantics, information about thematic roles, selectional restrictions, or frequency data that are collected from a parsed corpus. It is a subject for future work. While our parser draws elements from D-theory, this work also extends beyond current work on D-theory. Current work on D-theory parsers do not use any explicit grammar formalism or grammar. Our choice of TAG was motivated by several factors. First, TAGs in general have the desirable properties of factoring recursion and localizing dependencies, which provide argument and structural requirements that are needed by D-theory style parsers for making its assertions regarding structures. Second, TAGs encode linguistic knowledge in a declarative format, making it easier to develop and modify than a more procedural design. Third, extensive TAG grammars have already been developed which could be quickly adapted to the deterministic parser that is proposed here. 
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Our use of TAG notwithstanding, we use dominance in a qifferent manner than is customary with D-theory parsers . D-theory parsers usually construct a treelike description. On the other hand, some of the descriptions that our parser constructs are not necessarily treelike. This was necessary to capture attachment site ambiguity. In these cases, a statement is made that the tree which may be ambiguously placed dominates the lowest possible attachment site . Consequent ly, this site ,vould be dominated · by two structures ,  each of which is ambiguously ordered with respect to domination. This ambiguous representation had a direct impact on our computation of the standard referent , another area where we deviate from normal D-theory parsers. We have provided a means of determining a standard referent under these exceptional circumstances. Our solution appears to produce a structure that conforms to right association, which is not the case for all other D-theory parsers. Not only may our standard referent aid in incremental interpretation but in our case it also aids in deciding how representations may be combined. ,ve have also discussed how representations may be combined ·through the use of expectation lists .  We have provided a taxonomy of expectations. These help define a number of cases that illustrate when domination may be postulated between components of different elementary trees . ,ve have enumerated many of these cases and given examples of their application. Finally, we have argued that in incorporating TAG into D-theory style parsing, the assumptions that are standardly made about TAG trees can interfere with the goal of delaying attachment decisions. To alleviate this situation, we have suggested how several TAG trees should be coalesced into one elementary representation. An elementary representation represents elementary TAG trees that differ only in their node labels. This underspecification essentially allows the parser to delay the choice of the specific elementary TAG tree until further information can be obtained. We have also enumerated other cases where node label underspecification is insufficient. We have postulated a solution based on limiting how much of a projection of an elementary tree that we would license in a given situation. This is another subject for further investigation. 
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29 



Controlling Bottom-Up Chart Parsers 

through Text Chunking 

Fabio Ciravegna, Alberto Lavelli 

Istituto per la Ricerca Scientifica e Tecnologica 

Loe .  Pante di Povo , I-38050 Trento ,  Italy 

Email : {  cirave l lavelli} @irst . itc . it  
Abstract In this paper we propose to use text chunking for controlling a bottom-up parser. As it is well known, during analysis such parsers produce many constituents not contributing to the final solution(s) .  Most of these constituents are introduced due to the parser inability of checking the input context around them. Preliminary text chunking allows to focus directly on the constituents that seem more likely and to prune the search space in the case some satisfactory solutions are found. Preliminary experiments show that a CYK-like parser controlled through chunking is definitely more efficient than a traditional parser without significantly losing in correctness. Moreover the quality of possible partial results produced by the controlled parser is high. The strategy is particularly suited for tasks like Information Extraction from text ( IE )  where sentences are often long and complex and it is very difficult to have a complete coverage. Hence, there is a strong necessity of focusing on the most likely solutions; furthermore, in IE the quality of partial results is important . 

1 Introduction 

Bottom-up parsers spend large amounts of time in building constituents not contributing to the final solution( s ) .  Many o f  such constituents are produced due t o  the inability of the parser t o  take into account the surrounding context . For example, in the sentence John Srni th works in the f i eld of language process ing a standard bottom-up parser builds an S constituent spanning just John Smith works in the f ield of language, a constituent not useful for the final correct parse tree (so as many of the constituents subsumed by it ) .  The i111pa.ct of such constituents on pa.rser perfonna.nces is relevant. when long sentences a.re analyzed . One possible alternative solution is that of adopting strategies that integrate the advantages of both bottomup and top-down strategies ( see ['Viren , 1987] for a comparison of different chart-based parsing strategies ) .  Such strategies, however, do not show to work very efficiently or robustly on long and complex texts , especially when the gramnia.r coverage is not expected to be complete ( as is often the case in applicative domains such as Information Extraction from text , henceforth IE ) .  Chunk Parsing [Abney, 1995] is a technique that mostly allows to overcome the problem of effectively taking i1ito considerat ion the surrounding context . Chunks are port ions of text close to the structures highl ighted by psycholinguistic and phonological studies. The chunk parser is designed so to analyze first of all these chunks by using a limited grammar ( recognizing constituents such as NPs, PPs, etc . ) .  In a second step it builds clause structures composing chunks by using theta-roles , in a dependency-like fashion . Such strategies render a text largely unambiguous. vVe think that there a.re some drawbacks in the original Chunk Parsing proposal : 
• it requires the definition of a specifically suited parsing strategy ( i . e . , a strategy that partially builds constituents and partially dependency structures ) ;  
• i t  requires the use of a. non standard grammar , a.s - for the same reason a.s above - some of the operations a.re performed on constituents in a. standard way, some others a.re performed in a non standard way; this obviously prevents the re-use of already existing grammars; 
• a deterministic beha.vior is provided for constituent attachment ( e .g .  PP attachment ) [Abney, 199 1] ; unfortunately, in a.na.lyzing complex sentences effective heuristics for attachment a.re difficult to be found; very often true ambiguity a.rises and it is then necessary to deal with it in a. proper way. 
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The idea proposed in this paper is that of providing a1� agenda-based bottom-up chart parser with the ability of performing its analysis in a chunk based fashion , while maintaining the general characteristics of chart parsing ( i .e .  the standard algorithm , the ability of coping with ambiguity and the possibility of re-using existing grammars ) .  The proposal fits within a well-established experience of chart-based parsing techniques at IRST [Sat.ta and Stock , 1 994) and is a first response to the challenges put to a unification-based approach by the necessity of analyzing real texts . The parser performs i ts analysis in consecutive steps and at each step it behaves as follmvs: 
• partial constituents are built by using only the constituents produced during the previous step ; 
• only some of the possible tasks are activated ; the parser chooses among the most promising ones, delaying or pruning the others . 
This strategy allows to consider at each time only a limited set of paths in the search space, so to reduce the ambiguity seen by the parser at a given time. In order to select the constituents to be built ( and to be used in the following analysis ) ,  the parser control module uses the information provided by an automaton which performs preliminary text chunking. Aim of such preliminary chunking is that of identifying the input areas where certain types of constituents ( such as NPs, PPs ,  etc . ) are likely to be found and to divide the input in sub-chunks that are likely to be clauses 1 . The parser attempts first of all to build a ( set of ) solution ( s) that fulfills the expectations selected by the chunking algorithm: at three different steps NPs, clauses and sentences are recognized ; if the expectations are fulfilled ( e .g .  some complete parse trees are found that cover the sentence under analysis ) ,  the paths in the search space that are not likely to provide equivalent solutions are pruned out and the found solution( s )  are returned . For example in the case of the sentence John Smith works in the f ield of language process ing the idea is that of temporarily h iding the availability of the NP [language) while promoting the NP [language process ing] .  During the first step the NPs [John Smith] , [f ield] and [language process ing] are recognized . During the following step these NPs are promoted to the prejudice of others such as [John] , [Smith] and [language] . Then PPs are recognized and promoted during the clause recognition2 so that [in the f ield] and [of language process ing] are promoted . S ince j ust one clause is present in the sentence, the third step ( sentence analysis) is not necessary. Given that a complete parse tree is found, at the end of clause analysis the tasks that require the use of constituents spanning [John] , [Smith] , [language) and [the f ield] are pruned from the agenda. If a solution has not been found after visiting the paths in the search space recommended by the chunker , different possibilit ies are envisaged : 
• all the remaining paths are visited ; 
• only a limited number of paths a.re visited choosing among the most promising ones not yet pursued ( i . e .  those that are not too far from the chunking expectation ) ;  
• the best partial solutions are chosen among those already found by the parser and no additional steps are performed . 
The best strategy to be adopted depends on both the characteristics of the corpus under analysis and the requirements set for the parser . For example when the grammar is likely to be more or less complete for the corpus and completeness of the analysis is preferred to efficiency, all alternat ive solutions can be searched; on the other hand, when the lack of coverage is l ikely to be frequently experienced and/ or efficiency is one of the requirements for the parser ( as it is often the case in IE ) ,  one of the other two strategies can be selected . The aim of this paper is to a.nalyze how the three step analysis schema can be introduced in an agenda-based bottom-up chart parser without : 
• imposing requirements on the grammar structure or content (so to allow the re-use of preexisting resources ) ;  

1 Throughout the paper we will use the term clause not i n  the usual linguistic sense , but i n  an informal way that wil l  become 
clear in the following. 

2 DP and P P  recognition is "vhere mostly our approach differs from standard chunk parsing; in the following we will clarify the 
dif

f
erence. 
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• requiring modifications in the general parsing algorithm, except in the agenda. manager - a. quite limited piece 
of software - ( so to make it applicable to any agenda-based bottom-up chart parsers ) .  

I n  the following we will :  

• formalize the definition of each chunk level ( Section 2 ) ;  

• ana.lyze the impact on the parsing algorithm ( Section 3 ) ;  

• present some preliminary experimental evidence i n  terms of efficiency and effectiveness of the three step 
strategy on real world texts ( Section 4 ) ;  

• present some conclusions and related research ( Section 5 ) .  

2 The Four Levels of Chunks 

Abney, starting from a cognitive point of view, identifies three levels of chunks, broadly corresponding to: 

• level O words; 

• level 1 non recursive NPs, DPs, P Ps and Verb Groups (VGs ) ;  

• level 2 clauses . 

VVe have modified Abney 's original proposal , giving a. more grammatically oriented definition of chunks; in 
particular we split the definition of level 1 in two because, as we will see in the following , in a standard parser 
elements such as DPs and PPs a.re to be treated differently from NPs and VGs: 

• level O vVord- Clwnks: words ( ignored in this paper ) ;  

• level l a  Head- Chtm.ks: non recursive NPs and VGs; 

• level lb .Mod- Chunks: non recursive PPs, DPs and Complex VGs (CVGs) ; 

• level 2 Clause- Chunks: clauses . 

In the following subsections we \Vill provide a more precise definition of ea.eh level for Italian . 

2 . 1  Head-Chunks: NPs and VGs 
Definition 3 : 

NP ➔ (adv* a.dj+ ) *  noun+ ( adv* adj+ ) * 
VG ➔ ( adv ) *  verb ( adv ) *  

Very often constituents built by separately analyzing Head-Chunks are found as they are inside the final parse 
tree . Consider the following example : 

Example 1 di una societa italiana del gruppo XYZ 4 

In Figure 1 the parse tree for Example 1 is shown: a. complete constituent ( the NP_ spanning societa 
i tal iana) recognizes the Head-Chunk highlighted. For this reason Abney 's proposal of recognizing such chunks 
separately still holds also when using a. standard parser , because - if chunking is done correctly - the resulting 
constituents will contribute to the final parse tree . 

3 The regular expressions used in the definitions are j ust meant to be representative of the set of rules used by the chunker. ln 
the regular expressions the following operators are employed: * ( Kleene star ) , + ( with the usual meaning) ,  and ? ( for optionality ) .  

·1 Literally, o f  a company Italian of-the group XYZ. 
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Figure 1 :  Parse tree ( with hvo chunks highlighted ) for Example 1 .  

J 

2 . 2  Mod-Chunks: DPs,  PPs and Complex Verb Groups 
Mod-Chunks contain Head-Chunks: 

DP -+ De( NP PP -+ Prep Det'? NP CVG -+ ( adv ) *  ( auxiliary ) *  VG 
Often constituents spanning exactly a lVIod-Chunk a.re not found as they are within the final parse tree. In Figure 1 there is no PP covering exactly the Mod-Chunk shown . The PP spanning it also spans other parts of the input not within the same chunk ( i . e .  the PP spanning del gruppo XYZ ) .  What is provided by :rvlod-Chunks is the coverage of DPs and PPs when they do not include any modifier of the same level . The consequence is that it is not possible to recognize Mod-Chunks separately because the resulting constituents may not contribute to the final tree . 

2 . 3  Clause- Chunks 
Clause-Chunks identify the structures of both main and subordinate clauses . Most of the problems in constituent attachments a.rise within Clause-Chunks. Chunking points are mainly commas, relative pronouns , the Italian complementizer che ( more or less equivalent to the English complementizer that ) ,  some types of conjunctions , and some domain-specific cue words.  For example , in the sentence : 

Exan1ple 2 Corporacion Banesto , holding industriale e di servizi del Banco Espanol de Credito , avrebbe perso nel ' 93 103 , 4  mil iardi di  peseta ,  c irca 1 . 200 miliardi di l ire , dopo l ' utile  di 5 , 6  mil iardi del ' 92 .  5 

5 Literally, Co rporac ion Banes to , holding industrial and of s e rvices of Banco  Espanol de Credi to , would-have lost 
in ' 93 103 . 4  b i l l ion of pesetas , about 1 , 200 bill ion of l i re , after the profit of 5 . 6  bill ion of ' 92 .  
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Figure 2 :  Outline of the overall approach . 
chunking after commas produces the following result :  

Chunkl :  Corporacion _Banesto , 
Chunk2 : holding industriale e di servizi del Banco Espanol de Credito , 
Chunk3 : avrebbe perso nel ' 93 103 , 4  �iliardi di  peseta ,  
Chunk4 : circa 1 .  2 00  miliardi di  l ire , 
Chunk5 : dopo l ' ut ile di 5 , 6  miliardi del ' 92 .  

Analysis 
Completion 

Chunk2 and Chunk4 identify appositive clauses , whereas Chunk l and Chunk3 are two parts of the mam clause; Chunk5 identifies a PP modifying the main sentence. 
2 .4  The Chunking Process 

The chunking process is performed via a finite state automaton. In case of uncertainty between closing a chunk or extending it with the next word , a greedy strategy is used , i . e .  the next element is included in the current chunk . Currently the rules are manually encoded . The chunker relies on the output of a Part of Speech Tagger to solve lexical ambiguity. 
3 Parsing, Chunks and Agenda Control 

As said in the introduction , our aim is that of defining a control algorithm that allows a bottom-up chart parser to visit the search space so that: 
l .  satisfactory solutions are pursued as firsts ; 
2 .  non satisfactory solutions can be pruned out from the search space; 
3. the quality of partial solutions is maxii'nized (when a complete solution is not available ) .  

vVe propose text chunking as a way for providing an estimation of the satisfactoriness of solutions . The analysis is divided in three steps; at each stage satisfactory solutions (when found ) are promoted during the following step to the prejudice of other solutions. A recovery action is provided for cases where such solutions are not found. An outline of the three step analysis ( plus preliminary chunking) is shown in Figure 2 .  Before running the parser , preliminary text chunking i s  performed via a finite state automaton . The output of this step is a collection of chunking points , i . e .  the boundaries for Head-Chunks, :rv1od-Chunks and ClauseChunks. Such output is used by the control mechanism of an agenda-based bottom-up chart parser . In agenda.based chart parsers the control relies on activating/delaying tasks in the agenda.  A task is the combination of two adjacent edges ; each pair of edges represents two (groups of) adjacent elements of the right hand side of a rule . One of the two edges will contain the head of the rule and is defined here as the head edge ; the other edge is defined here as modifier edge. The control algorithm requires the parser make the following steps: 
• Step 1 :  Analysis of Head-Chunks; 
• Step 2: Analysis of Clause-Chunks ; 
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Figure 3 :  Outline of the algorithm for the analysis of a chunk (of any type) .  
• Step 3 :  Text Analysis Completion . 

During Step 1 the parser a1ialyzes each Head-Chunk separately. Tasks that require to go beyond the chunk limits are delayed . If chunking is done correctly, this step produces complete constituents spanning the entire chunk that will be found as they are in the final parse tree. A constituent spanning exactly a Head-Chunk is defined here as HEAD- CONST. During Step 2 each Clause-Chunk is analyzed separately. The following two rules are used : 
R FLE0: 

head edge i.s a generic edge (e.g. a prepo.sition , an article , e tc. ) not spanned by any HEA D- CONST; 

modifier edge i.s at lea.sf a HEA D- CONST; both the edges are within the same Afod- Chunk. 
and 
R ULEJ : 

head edge i.s a HEA D- CONST; 

modifier edge i.s MOD- CONST. 

We define a MOD-CONST as an edge either built by following RULE0 and spanning a whole Mod-Chunk, or built by following RULEl . Tasks trying to build MOD-CONSTs are favored in Clause-Chunk recognition; a. MOD-CONST spanning a complete Clause-Chunk is defined a.s a. CLAUSE-CONST. During Step ;J the completion of text analysis is executed; in this phase the parser executes all the tasks delayed in the previous steps, i . e .  it executes those tasks that require to overcome the constraints imposed by any levels of chunks . But the agenda is ordered so as to favor those tasks following: 
R ULE2: 

the head is at  least a HEA D- CONST and the modifier is a CLA USE- CONST. 

A constituent built by following RULE2 is also a. CLAUSE-CONST. The analysis stops when the agenda. is empty. 
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3 . 1  Some Considerations 

Head- Chunks identify input portions where constituents contributing to the final parse tree can be recognized . After being recognized during Step 1 ,  for the rest of the analysis these constituents a.re preferred to those subsumed by them. This strategy allows to declare portions of input as non separable units. For example, in: Exa111ple 3 La Dhl Internat ional del network DHL consegue un ut ile lordo 6 a Head-Chunk spans ut ile lordo. Favoring the NP that covers it exactly means favoring the construction of the S constituent spanning the entire sentence, while delaying the production of an S constituent spanning only La Dhl Internat ional del network DHL consegue un ut ile .  klod- Clwnks pick the minimum area in which modifiers are found. Minimum area means that chunks identify the portion of the sentence spanned by such constituents if they do not have any modifiers either . This allows delaying the use of constituents spanning sub-chunks of Mod-Chunks as modifiers. For example it delays the use of NPs internal to a pre-verbal PP a.s verbs subjects . In Example 3 the combination 
( netwo1·k Dhl ) modi .f + ( consegue  un ·ut ile  ) h r n d is delayed because network DHL is a sub-chunk of the Mod-Chunk spanning del network DHL. Clause- Chunks help in the complex problem of connecting constituents. In defining Clause-Chunks we start from an intuition a.bout some cue words: let 's consider for example commas. In most languages commas do not follow precise rules , nevertheless they a.re largely used in texts for introducing intonation pauses ; very often commas delimit portions ,vithin sentences too long to be read as a whole. Instead of trying to capture in the grammar the information brought by commas ( quite a difficult task for many languages) ,  we give them a status of preference feature to be used in constituent attachment ; i .e .  we prefer attachments of CLAUSE-CONSTs rather than attachments of subconstituents of CLAUSE-CONSTs. In the text about Banesto ( Example 2 )  the use of constituents that entirely span chunks 2, 4 and 5 ( i .e .  appositives for 2 and 4 and a PP for .5 ) is favorecl . As a matter of fact it seems obvious to a normal reader that none of the PPs inside Chunk.5 (except the first one) can modify anything outside such chunk: for example di 5 ,  6 miliardi cannot modify perso .  That seems to happen because commas separate the sentence in well defined subparts . Clause-Chunks are used to capture such separation . By using the limits imposed by Clause-Chunks , most attachments are clone without the need of a comparison with other possibilit ies involving their subconstituents, greatly reducing the problem of attachment when the complexity of the sentence grows. 

3 .2  A Refinement :  the Direction of Analysis Building Clause-Chunks separately means not taking into account that the constituents internal to the ClauseChunk under consideration n1ay have as modifiers some of the other CLAUSE-CONSTs. In the text about Banesto ( Example 2) Chunk4 modifies the NP spanning 103 , 4 miliardi in Chunk3. Build ing Chunk3 without considering the rest of the sentence means completely recognizing such NP without attaching one of its modifiers. In general this means regularly sending the parser down a garden path when the text is composed by many Clause-Chunks . In Italian ( the language ,ve are working on) modifiers appear mainly to the right of the head; hence we build CLAUSE-CONSTs starting from the rightmost. In this way when considering the constituents internal to a Clause-Chunk, any CLAUSE-CONST to its right is available for attachments . For this reason tasks composing CLAUSE-CONSTs external to the current Clause-Chunk with edges internal to the current Clause-Chunk are also considered during Step 2. In Example 2 Chunk3 is recognized after Chunk4 and Chunk5 and the composition of parts of Chunk3 with Chunk4 and Chunk5 are considered during Step 2 .  
6 Literally, The Dhl Internat ional of-the netirnrk DHL achieves a prof it gros s .  
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3.3 Further Details 

As mentioned , the aim of the control algorithm is first of all  that of rapidly focusing on satisfactory solutions. Satisfactory solutions are defined as follows: 
• for a word : a lexical edge or its projections ; 
• for a Head-Chunk : a HEAD-CONST; 
• for a Clause-Chunk : a CLAUSE-CONST; 
• for a sentence: a CLAUSE-CONST spanning the vvhole sentence. 

To focus on satisfactory solutions , during the three steps of analysis tasks are classified as7 : 

• E:rec- Ourr-Step: a task with immediate evaluation; it involves the composition of edges declared as satisfactory solutions for some sub-chunks; the edge that results from the task execution will still span within the current chunk; 
• Delay- Ourr-Step: a task delayed in the current step ; a composition involving non satisfactory solutions for some sub-chunks; resulting edge still spans ,vithin the current chunk; 
• E:rec-Netct-Step: a task to be favored in the next step ; composition involving satisfactory solutions for the current chunk or some of its sub-chunks; resulting edge no longer spans within the current chunk ; 
• Delay-Ne:rt-Step: a task delayed in the next step; composition involving non satisfactory solutions; resulting edge no longer spans within the chunk. 

Table 1 summarizes the task classification algorithm for the three steps of analysis . 
Class/Step Step 1 Step 2 Step 3 Exec-Curr-Step INT INT RULE0- 1 or INT-EXT RULE2 INT RULE2 Delay-CmT-Step none other INT other tasks Exec-Next-Step INT-EXT RULE0- 1 EXT RULE2 none Delay-Next-Step other INT-EXT other tasks none 

Table l :  Task classification during analysis :  INT tasks involve edges only spanning ,vithin the current chunk;  INT-EXT tasks compose an edge of the current chunk with one external to i t .  EXT tasks involve an edge (generated by the execution of INT-EXT tasks) spanning more than the current chunk and an external edge. RULE0- 1 tasks respect the conditions imposed by RULED or RULE l .  

3.4 Agenda Pruning 

Until now we have shown how pursuing the satisfactory solutions as firsts . In this paragraph we will see how to reduce the search space. This is done either when at least one satisfactory solution is found or when we are sure that no satisfactory solution can be found for a specific chunk . The general idea is that of pruning the non satisfactory solutions for the chunks for which a satisfactory solution is available. For the other chunks only a limited number of tasks are executed after the sat isfactory solution has demonstrated to be not available ; the number of tasks activated is a function of the complexity of the current chunk ( e .g .  the length of the spanned input ) .  At the end of the analysis of each chunk (of any type ) all the Exec-Curr-Step tasks have been activated . The other tasks are then reclassified according to the algorithm shown in Tables 2 (for cases when a satisfactory solution is found ) and 3 (for the other cases ) .  The final algorithm for task classification ( inclusive of agenda pruning) i s  shown i n  Figure 4 .  
7 Such classification is performed when tasks are generated and inserted into the agenda. 



Step 1 Step 2 Step 3 A: Exec-Curr-Step activated activated activated B: Dela.y-Curr-Step removed removed removed C: Exec-Next-Step ----+ 2A ➔ 3A none D:  Delay-Next-Step removed removed none 
Table 2: Task reclassification at the end of ea.eh step when a. satisfactory solution was found for the current chunk; ➔ 2A means that before starting Step 2 the tasks contained in that cell a.re reclassified as Exec-Curr-Step. 

Step 1 Step 2 Step 3 A :  Exec-Curr-Step activated · a.cti vat.eel activated B: Dela.y-Curr-Step activated activated activated C: Exec-Next-Step none none none D: Delay-Next-Step ----+ 2A ➔ 3A none 
Table 3: Task reclassificat ion at the end of each step when NO satisfactory solution was found for the current chunk . ➔ 2A means that the current tasks a.re reclassified during Step 2 as Exec-Curr-Step . 
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Parsing Strategy · Total edges average/text % produced NON controlled 3.50 ,644 2 , 874 100% Controlled 1 1 0 , .5 1 1  905 32% 
Table 4: Edges produced in analyzing 1 22 sentences. 

Parsing Strategy Global Time average/text % Time NON controlled 06 :.54 : 1 8  00 :03 :26 100% Controlled 0 1 : 32 :25 00 :00 :4.5 22% 
Table 5 :  Time consumed in analyzing 122 sentences. 

4 Preliininary Experin1ents 

vVe have carried on some experiments on the effectiveness of the strategy proposed in this paper . G iven the lack of corpora for Ital ian annotated such as in TreeBanks , the amount of data used in such experiments is quite limited ,  and therefore the results are only preliminary. We plan in the near future to carry on more extensive experiments in order to verify the effectiveness of the approach . The chunk-based control strategy was added to a CYK-like parser; the parser uses a grammar based on a Typed Features Logic ( TFL)  [Carpenter , 1 992] oriented formalism; the control strategy effectiveness was compared with that of the standard control mechanism in analyzing 1 22 sentences taken from articles of the Italian financial newspaper "IL SOLE 24 Ore" and news provided by ANSA. The total number of words in the corpus is 2769 , an average of 2 :3 words for sentence . Table 4 and .5 show the results of the comparison .  As  it may be seen , there i s  a reduction of  a.bout 68% of  constituents ( edges ) generated and of  78% of time consumed. Note that both parsers were constrained to produce less than 1 0 ,000 edges per sentence ; the non-controlled version reached 21 t imes such limit , against 4 of the controlled ; this means that a completely uncontrolled parser could generate more edges and spend more t ime than showed and that the effectiveness of the strategy could increase in the tables . Concerning correctness of the results, this is the most difficult pa.rt to be tested given the la.ck of annotated corpora for Ital ian .  \V"e have manually checked the correctness of the results on 3 1  sentences among the most complex of our corpus. The controlled version of the parser ,va.s able to find 29 correct solutions missing 2 .  The two errors were due to  the pruning strategy based on  Clause-Chunks . In  both cases the parser missed to produce a complete parse tree and produced 2 meaningful partial parses . The non-controlled parser produced 27 correct solutions out of 3 1 ;  missing 4 solutions when the upper limit of 10 ,000 edges was reached . In such cases the quality of the partial parses was kind of random, clue to the LIFO strategy in activating the tasks in the agenda: some parts of the input were fully a.nalyzecl , other were completely una.nalyzecl ; with a FIFO strategy the partial results could be better, but the number of the missing solutions could increase as the edge limit could be reached for other sentences . The inability of the non-controlled parser to find in some cases the correct solutions clue to the upper limit of 1 0 , 000 edges is an interesting point . Some other experiments show that reducing the limit to 9 , 000 the number of missing solutions grows for the non controlled parser ; on the contrary, for making the controlled parser losing further solutions it is necessary to bring that limit under 4 ,000 .  Further experiments on the 1 22 sentences show that ,  establishing for the controlled parser an upper limit of 4 ,000 edges ( instead of 1 0 ,000) , only 2.5% of the edges were produced and 12% of the t ime was consumed , if compared ,vith the non-controlled one (with the limit of 1 0 , 000 edges ) .  We are currently investigating the impact of the 4 ,000 limit on the correctness of the results on all the 122 sentences . Anyway, considering that we use the controlled parser in an application of Information Extraction from text ( where there a.re demanding time and space constraints and complete solutions are not necessarily required ) and considering that the analysis of only 1 0  out of 1 22 sentences exceeded the limit of 4 , 000 edges , we a.re confident that such limit can provide a suitable trade-off between parsing efficiency and effectiveness . As for the relat ionship between sentence length and effectiveness of the proposed approach, some qualitative considerations can be drawn. As said above, the sentences were taken from two different sources, the short news of a financial newspaper and a nev.rs agency. In the former case , sentences are short ( the length is usually less than 25 words) , the text grammatical structure is plain and the linguistic phenomena used are very often completely dealt with by the grammar; the improvement introduced by our strategy on these texts is relevant . 
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As for the latter case , agency news are usually longer ( 35 words on average) and much more complex from a linguistic point of view: nested clauses (such as nested incidentals ) and long PP sequences are frequent ; the grammar very often does not completely recognize the sentences. In this case the strategy seems to be insufficient in the pa.rt relying on the clause level chunking, as - especially when confronted with nested clauses - the current strategy is too straightforward and needs to be refined . Anyway the cut in the search space is always relevant ,  especially when the grammar does not cover the sentence. 
5 Final Re111arks 

This pa.per shows how it is possible to modify Abney's definition of Chunk Parsing so to allow its use within a framework such as standard cha.rt parsing . The proposed approach maintains the advantages of Chunk Parsing (mainly the reduction of ambiguity ) a.voiding most of its problems such as the use of a. mixed constituency /dependency parsing and the complexity of constituent attachment at the clause level . The performances of the cha.rt parser based on preliminary chunking outperformed those of one adopting a. traditional LIFO strategy for ordering tasks in the agenda, without significantly losing in correctness. Introducing the control strategy in a pre-existing parser required a. limited effort ( about one person/month ) ;  the chunking grammar accounting for three levels of chunking is composed by a.bout 20 rules in all .  The controlled parser is now used within a system for Information Extraction ( IE )  from economical news: more precisely it is used in FACILE [FACILE-Team, 1996] ,  a 3-yea.r project funded by the European Union within the  framework of  Language Engineering. The goal of the project is to build a set of tools for categorizat ion of financial texts and information extraction from them. The general aim of an application derived from such tools is message dispatching and routing for financial institutions ( banks, trading companies , rating companies ) .  Relevant texts include agency news and newspaper articles. vVe think that the chunk-based strategy is particularly suited for Information Extraction from text where there is a strong interest in focusing on the most likely pheno1nena [Lehnert , 1994] even if it can cost in terms of completeness of the analysis .  ·when the parser focuses on the solution proposed by chunking, actually promotes constituents that a.re supposed to be l ikely, given the current sentence . The (possible ) analysis of parts of the search space outside the chunking hints is an attempt to look also for alt ernative solutions when they a.re needed ; limiting the number of steps clone when looking for alternative solutions is a way for pursuing such solutions only if they a.re not too distant from the expectation ( i .e .  if they are not too unlikely ) .  Moreover the experiments show that the partial results produced by the controlled parser a.re interesting from a qualitat ive point of view ( and the quality of partial results is another requirement for IE ) . The use of chunking for controlling the parser is coherent with the current trends in IE  towards the use of finite state models of language for helping in a.na.lyzing texts : t hese models have been used for preprocessing (e .g .  in proper name recognition [Vila.in and Day, 1996] ) or even for the whole IE process (Appelt et al . ,  1 993] .  In our approach finite state devices a.re used for chunking input texts: the results a.re later on used by the control mechanism of the parser in order to decide how to visit the search space. Other authors use techniques similar to preliminary chunking for information extraction . McDonald [McDonald , 1 992] pre-segments the input that is then ana.lyzecl by a. bidirectional cha.rt parser adopting a. semantic grammar . :McDonald's segments broadly correspond to our Mod-Chunks and are used in a. similar manner . The problem of the complexity of attachment in long sentences ( even when using semantic knowledge for solving attachment problems) is not t a.ken into consideration . Terminal Substr-ing Parsing is used in TACITUS [Hobbs et al . ,  1 992] for avoiding the complete chart-based analysis of very long sentences ; sentences a.re segmented around commas and other function words ( i .e .  in a. way similar to our Clause-Chunk ) and segments a.re ana.lyzed from right to left . Terminal Substring Parsing is adopted only for very long sentences and not for all the sentences as we do; moreover ,vithin the segments the overgeneration of false constituents is not controlled as we do by using the information on Head-Chunks and Mod-Chunks. 
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Abstract 
The standard resource sensitive invariants of categorial grammar are not suited to prune search space in the 
presence of coordination. We propose a weaker variant of count invariancy in order to prune the search space for 
parsing coordinated sentences at a stage prior to proper parsing. This Coordinative Count Invariant is argued to 
be the strongest possible instrument to prune search space for parsing coordination in categorial grammar. Its mode 
of operation is explained, and its effect at pruning search space is exemplified. 1 

1 Lexical Ambiguity and Natural Language Parsing 

Lexical ambiguity is known to be a major threat to efficient parsing of natural language. It is easy to 
see why. Let GNL be a grammar for a language NL, and L a lexicon with initial assignment A of 
nonterminals to the words of NL. Let S = w1 . . .  wn be a sentence over L. Under a parsing-as-deduction
approach, then, the parsing problem for S is whether for some sequence C = c1 . . .  en, with c; E A(w;), 
C is derivable under GNL· The solution to the problem may require checking the derivability of many 
such Cs. Basically, the number of sequences of which the derivability must be checked for a certain 
S is II� I A( w;) I ,  exponentially dependent on n. II� I A( w;) I measures the search space for parsing S .  
There is a trade-off between lexical ambiguity and properties of  the grammar. In  particular, a grammar 
may assign nonterminals to certain lexically assigned nonterminals, by having monadic rules or 
theorems of type c ➔ c'. In that case, the search space for parsing S is partially erected by the grammar 
itself. Again, the question whether GNL derives S, explodes to a multiplicity of queries as to whether 
GNL derives a certain C, thus simulating the effect of structural variation in parsing phrase structure 
grammar. But categorial grammar tends to spell out ( or compile) structural variation in the lexicon. 
A certain degree of lexical ambiguity, or rather: polymorphism per lexical atom, seems inevitable and 
inherent to the expressive power of natural language. In categorial grammar, for example, differences 
in subcategorization (a verb may select an infinitival as well as a tensed complement), word order (a 
finite verb may have its complements to the left or to the right) or functionality (a word may be a 
preposition or a particle) must lead, in some stage of the parsing process, to branching possibilities of 
assignments and an increase of search space. 

To a large extent, the art of parsing consists in finding secure means to restrict the number of possible 
assignments. Given the function II� I A(w;) I over strings of words, efficiency requires serious pruning 

1 We are greatly indebted to three anonymous referees for their valuable comments on an earlier version of 
this paper, and to Michael Redford and Jeroen van de Weijer. 
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of the search space. Optimally, the means for pruning are anchored in the grammar that is to be 
applied. Occurrence-sensitive or linear categorial grammar offers some options for pre-checking 
assignments. In this article, we will discuss a particular instrument that overcomes a flaw in the 
effectiveness of the standard pre-checks in the presenc� of coordination. This instrument is developed 
and tested as a part of a parsing system for Dutch - Delilah - in which the lexicon is the main generator 
of search space. 2 Some test results are presented in section 4. 

2 Categorial Count Invariance and Parsing Coordination 

Certain categorial calculi exhibit a property that is known as count invariance [Van Benthem 1986]. 
For these logics, it is true that if a proposition Y ➔ z is derivable, the string to the left of ➔ and the 
type to its right share the results of a particular way of counting occurrences of basic types. This count 
protocol discriminates between positive and negative occurrences of basic types; for each basic type 
x and for each string of types S it yields an integer representing the occurrences of x in S. Here and 
below, slash categories are invariantly written in the format (head)-direction-argument, where direction 
is indicated by the slash; the bracketing of the head is often suppressed. 

( 1 )  Count Protocol 
for each basic type x, 
countlx) = l 
countly) = 0 if y is a basic type and y -:t x 
countlylz) = countly\z) = countly) - countlz) 
countly1, • • •  , Yn) = countly1) + . . .  + countlYn). 

Because of this way of counting, a complex type x/y will be said to contain a positive occurrence x of 
type x and a negative occurrence ly of type y. The main application of type count is stated in (2): 

(2) Count Invariance for grammar G 
if Y ➔ z is derivable in some resource sensitive categorial grammar G, then for all 
basic types x, countlY) = countlz). By consequence, if z is a basic type, then for all 
basic types x -:t z, countlY) = 0. 

Count Invariance can be proved for resource sensitive calculi like Lambek, Lambek+Permutation and 
Ajdukiewicz/Bar-Hillel, but does, of course, not hold in systems that perform Contraction or Expansion 
- with y y ➔ y - and/or Monotonicity - if X ➔ y then X x ➔ y; see [Van Benthem 1991 ] .  Count 
Invariance underlies the notion of balance in proof nets [Roorda 1992] : for a sequent Y ➔ z (in 
Roorda' s notation: y1 • • •  yn z) to be balanced implies that for every basic type x, countlY) - countlz) = 
0. Consequently, if for some (sub)sequent S coun(lS) -:t 0, S is unbalanced in x. 
Count Invariance can be used to delimit the search space unfolded by lexical ambiguity [Moortgat 
1988] .  By contraposition of (2), a proposition Y ➔ z cannot be proved in a count invariant system G 
if for some basic type x, countlY) '# countlz). 

2 This parsing system is available athttp://fonetiek-6.leidenuniv.nl/hijzlndr/delilah.html. Among the phenomena 
it deals with are unbounded coordination, verb clustering including cross-serial dependencies, wh-movement, 
topicalization and adjunction. 
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Almost by definition, coordination in natural language involves the multiplication of types: a certain 
subsequence of types to the left of the coordination point is doubled or mirrored at the right of the 
coordination point. The relative unrestrictedness of coordination is reflected in the proposal to 
categorize coordinating elements like and as (X\X)IX, i.e. by means of essential variables over types 
[Wittenburg 1986, Moortgat 1988, Steedman 1990, Emms 1993] . Thus they are assigned type frames 
(polymorphic types) rather than types. We may assume that these frames do not occur negatively in 
any other type, as coordinations - or free coordinations, at least - are not selected by other elements in 
a natural language [ Grootveld 1993]. 

This categorization as a frame of type variables also accounts for the doubling of types induced by 
coordination. This doubling would interfere with Count Invariance: unless the repeated sequences are 
themselves fully balanced, the count of certain types will be unbalanced by the repetition of 
subsequences. The variables in the coordinator' s type frame (X\X)IX are supposed to be instantiated by 
a type to which both the repeated sequences can be reduced. Since, according to the Count Protocol, 
the type frame for and halves the counts for whatever type substitutes X, the effect of doubling is 
neutralized and Count Invariance is still a property of a coordinated sentence. 

Unfortunately, this is not sufficient to keep Count Invariance available as a method to prune the search 
space for coordination. In fact, Count Invariance (2) needs more information than is available prior to 
proper parsing, to do its pruning job. It is not difficult to see what prevents it from being effective in 
the presence of coordination. Consider the following sequent as one of the possible hypotheses 
emenating from a lexicon concerning the assignment of categories to the words of the coordinated 
sentence w1 . . .  and .. .  wn, according to which the category C; is assigned to w;, 

In order to know whether it is sensible to look for a possible proof of this sequent, we would like to 
check Count Invariance, i .e. the property that for every basic type x, countic1 . . .  en) =  countis). Since 
the sequent contains a coordinator, we know that for the sequent to be derivable, for some i and some 
m the segment c; . . .  ck and the segment ck+2 . . .  cm must have identical count characteristics, which 
accumulate in the overall count. According to one' s theory of coordination and the scope of the 
intended grammar, one can relax the conditions on the two count characteristics, but the categorial 
structure of the two coordinates will always be related in one way or another, and will always be 
dependent on the non-coordinated context. In the spirit of [Sag et al. 1 985], one could try to define a 
more general or liberal relation between the categorial characteristics of the coordinates. This would 
only complicate but not alter the problem of finding the coordinates. For ease of exposure, however, 
we choose here the most restrictive form of coordination, and require the coordinates to be categorially 
equal. 

The doubling of type occurrences disturbs the count balances. As a matter of fact, the relevant instances 
of Count Invariance are countxf c1 . . .  en) - countick+2 . . .  c,,J = countis); here the part of the string 
counted twice is substracted to restore the balance. In order to check these instances at (3), however, 
we have to know which is the proper value of m, and of i, for that matter. Since we have not yet parsed 
the sequent - we are just testing whether it should be parsed - we do not have information as to the 
borders of the coordinates. It is well known that neither coordinates nor their borders are locally marked 
- which is a problem for parsing itself anyway [Cremers 1993] .  Consequently, we can only guess i and 
m without having any clue, and apply Count Invariance with respect to each pair. This is easily 
recognized as a procedure which is as complex as parsing: for every assignment of lexical categories 
to the sentence, we have to check every possible pair <i, m>, and if we find a pair for which Count 
Invariance can be established, this pair marks the borders of the coordination. But this implies that we 
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(partially) parse that particular assignment while we are pre-checking its derivability. It follows that we 
cannot use Count Invariance to prune search space, since applying Count Invariance presumes the 
exploration of search space. In the presence of coordination, Count Invariance is a blunt knife. 
It is worth noting that replacing the type frame for coordinators by a set of constant types does not 
solve the problem. It would just lead to the additional hypothesis that the coordinator type which was 
(randomly) selected in a certain assignment, complies with the counts for c; .. ck and ck+2 • •  cm. Again, 
by lack of a proper parse we can only guess the values i and m. In either case, therefore, Count 
Invariance (2) faces a comparison of two unknown elements. 

This indeterminacy of coordination at the level where Count Invariance is supposed to come in, is a 
property of natural language coordination as such. It is not caused or provoked by a particular way of 
categorizing a language. Since almost everything can almost always be coordinated and coordinations 
are generally neither selected nor selecting, a string of words or categories can contain no immediately 
accessible hints as to what is coordinated in that particular case. 
In the presence of coordination, Count Invariance (2) thus turns out to be of no help at selecting viable 
sequences prior to parsing. Therefore, we developed a weaker alternative which can be effectively 
exploited in delimiting the search space for coordinated sentences. It operates at least on the basis of 
a nonassociative, context-sensitive and bracket-free categorial grammar, as designed in [Cremers 1993] .  
Its basic properties, however, are definable for any grammar that i s  sensitive to directionality and 
occurrence. 

3 A Count Invariant for Coordinated Sequences 

Coordination can be constructed so as to imply that certain elements outside the scope of the 
coordination have a double task with respect to elements inside the scope of the coordination: they have 
to serve elements in both coordinates. Under this approach a coordinator is treated syncategorematically, 
and thus as combinatorially inactive. For example, in a sequent 

(4) a/b b [&] b dv1 ➔ d 

the single negative occurrence lb in a/b has to deal with the two positive occurrences of b to the left 
and the right of the coordinator & which itself does not contribute to balancing the sequent. In fact, we 
see that b is coordinated in that string, and being so it overcharges, in terms of count balance, its non
coordinated context. By contrast, the negative occurrence \a in dv:z is cancelled on a one-to-one basis 
by the positive occurrence a in alb; neither a nor \a occurs in the scope of coordination, and they are 
balanced. This phenomenon is general: in a well-formed coordinated string, being in the scope of 
coordination determines whether or not the occurrences of a type are balanced (for some relevant 
lemmas in this respect, see [ Cremers 1993, eh. 3 .3] .  Types occurring in a coordinate and not balanced 
inside that coordinate, will require certain other types to take care of more than one of them. The 
outside types, like lb in ( 4 ), can be said to have double functions. 
By just counting the positive and negative occurrences of primitive types to the left and the right of 
the coordinator, we can check whether enough suitable double function categories are available.' Their 
presence in the sequent is a necessary condition for grammaticality. For example, if we change (4) into 
(5) by adding a positive occurrence b to the left of the coordinator which cannot be part of the 
coordination, the intended double function type lb is no longer available for the coordinated b' s, and 
the sequent must be rejected. 
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(5) a/b b b [&J b d\£l ➔ d 

In order to bring about this rejection in an early stage, we only have to know the count values of the 
intended coordinated substring, since these values will specify the nature of the need for double 
function primitives. The question is, then, how to determine these 'coordinated' count values prior to 
proving the corresponding propositions, i.e. prior to deriving the proper coordinates. 

For that purpose, we need a particular counting device which keeps track of detailed information on 
the categorial architecture of an assignment. Suppose we have a string of words of the form w1 • • •  wi 

and wi+z . ; .  wn. Let L be an assignment of types e1 • • •  ei to w1 . . .  wi; let R be an assignment of types ei+z 
. . .  en to wi+z . . .  wn. Assume that a negative and a positive occurrence of a certain type cancel each other 
on a one-to-one basis. In a sequent . . .  x . . .  x . . .  y\x . . .  exactly one of the x-occurrences and the \x
occurrence cancel each other; the other x is free i{ there is no other occurrence of \x or Ix in the 
sequent. In this stage of parsing we cannot and do not need to decide which particular occurrence is 
cancelled against which other occurrence. We are just interested in the numbers of cancellation 
candidates. 
Accordingly, with L can be associated a register regL of quadruples of integers <bound_head, 
bound_arg, free_head, free_arg>, such that for each primitive type x there is an x-quadruple specifying: 

bound_heatrL: the number of (positive) occu-rrences of x in L that are cancelled by (negative) 
occurrences of x under a \-slash (\x) in L; 
bound_arftL: the number of (negative) occurrences of x under a /-slash (Ix) in L that are 
cancelled by (positive occurrences) of x in L; 
free_heatrL: the number of (positive) occurrences of x in L that are not cancelled by (negative) 
occurrences of \x or Ix in L; 
free_arftL: the number of (negative) occurrences of Ix in L that are not cancelled by (positive) 
occurrences of x in L. 

Each occurrence (positive or negative) of a type is counted once in its register. The procedure for this 
way of counting differs from the count protocol ( 1 )  underlying Count Invariance (2) in being sensitive 
to the direction of the negative occurrences. A head (or positive occurrence of) x is counted as free in 
L if there is no Ix to its left or \x to its right in L by which it could be cancelled. Similarly, an 
argument ( or negative occurrence of) Ix is free in L if no head to its right can possibly match it. There 
is no need to count free occurrences of \x. Arguments \x cannot be free in L if L is to be the prefix of 
a derivable sequent, by the directionality invariant of [Steedman 1990] : no rule can change the 
directionality of an argument type; if an occurrence of \x is free in a prefix, it can never be cancelled 
by a positive occurrence to its right, and thus it is doomed to remain free. A free argument \x will 
obstruct any derivation of a sequent in which it occurs. As soon as a free argument \x shows up in L, 
L can be rejected as a prefix of the sequence of assignments to the sentence. 
For R, a similar register regR is supposed to be available, though directional parameters are reversed. 

Here is an example of a full register re& for basic types a, b, e, and of the register for the first three 
types in L. (6) L = ale b/c/a b\b e\b a a 

re& = { a:<0, 1,2,0>, b:<1,0,0,0>, e: <0,l,0, l >  }. 
L3 = ale b/c/a b\b (a prefix of L) 
re&3 = { a:<0,0, 1, 1>, b:<1,0, J,0>, e:<0,0,0,2> } 
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Computing the register is a linear task. It is computed and updated incrementally and accumulatively 
whenever a new type is added to the prefix. In (6), re& reflects the changes in regLJ after adding c\JJ, 
a and a to L3 • 

What can the registers re& and regR tell us about combining L and R into a hypothesis L [ &] R ➔ s? 
The values forfree_heatf andfree_ar� in each quadruple provide the number of positive and negative 
occurrences, respectively, that are not cancelled at their side of the coordinator. These occurrences may 
or may not be in the domain of coordination. We can determine the occurrence patterns that are 
characteristic for grammatical, i.e. derivable sequents as follows (for some more formal elaboration on 
this topic, see [Cremers 1993, eh. 3] .  Suppose a free (positive) occurrence a in L is in the scope of 
coordination. By the nature of coordination, this occurrence has a matching occurrence in R that is 
necessarily cancelled at its side. For a free occurrence of x in L to be inside the scope of coordination, 
a potentially cancelling type must be available in the balanced part of R -this type will have a double 
function. By the same line of reasoning, if the occurrence of x which is free in L, is to be outside the 
scope of coordination, it has to cancel against some free occurrence in R. We can illustrate the range 
of possibilities with a simple example; it is assumed that the substrings V, W, X, Y and Z do not 
contain occurrences of type a. 

(7) X a Y [ &] W a V b\a Z ➔ s 
L = X a Y 
R = W a V b\a Z 
a-quadruple in regL = <0, 0, l ,  0> 
a-quadruple in regR = <0, l ,  0, 0> 

The a-quadruple in regL tells us that some positive occurrence of a is free in L: free_heatfl L = 1 .  This 
occurrence may be part of the coordinated substring. If it is, there must be some negative occurrence 
in R that takes care of both a in L and its matching counterpart in R. This negative occurrence, 
however, is cancelled in R, and must be accounted for in the number of bound arguments \a in regR, 
bound_arga

R; this number happens to be 1 ,  due to the composition of R .  Now suppose the positive free 
occurrence of a in L is not inside the scope of coordination; Then there must be a negative occurrence 
\a free in R. This negative occurrence should be counted infree_arga

R· Since, in example (7),free_arga
R 

has the value 0, the latter assumption is rejected; all the occurrences counted in free_heatflL must be 
in the scope of coordination. 

This type of reasoning can be generalized in order to decide, under the hypothesis that the coordinated 
sequent is derivable, how many balanced negative and positive occurrences of basic types in L and R 
must be in the scope of coordination. Here �s the argument. 
Let Ax be the difference free_heatfL - free_ar�R• for some basic type x. Clearly, if Ax > 0, there are 
Ax positive occurrences of x in L which are not cancelled by negative occurrences \x free in R. These 
Ax occurrences must therefore be in the scope of coordination and be co-covered by already bound 
negative occurrences \x in R. In that case, the value of bound_ar� R must be at least as large as Ax. On 
the other hand, if Ax < 0, there must be negative occurrences \x in R that, for the string to be 
grammatical, must be dealt with by already cancelled occurrences x in L, accounted for in the number 
bound_heatfL; this number must be large enough ·to accommodate the I Ax l negative occurrences \x 
in R. If Ax = 0, all or none of the free_heatf L positive occurrences andfree_argx

R negative occurrences 
are in the scope of coordination, depending on other parameters. An equivalent reasoning can be built 
around the value Px, this being the difference free_heatfR - free_argx

L· (As a corollary, Ax + Px = 

countiC) for that proper affix C of L and of R that happens to be in coordination.) 

The above reasoning gives us the following inequalities for two assignments L and R: 
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(8) Coordinative Count Invariant 
if L [ &] R ➔ s is derivable, then 
for every basic type x -:t= s such that 

<bound_healf v bound_arlf v free_healf v free_arg\> is in re& and 
<bound_healfR, bound_arlf R> free_healf R> free_arlf R> is in regR and 
Ax = free_hea<I'L - free_argx

R and 
Px = free_healfR - free_argxu 

it is true that 
Ax $ bound_arlf R and 
Px $ bound_argx

L and 
-Ax $ bound_healfL and 
-Px $ bound_healfw 

.By contraposition, a sequence of types with a coordinator is not reducible to s if for some primitive 
type x one or more of the jnequalities in (8) does not hold. This justifies the following statement: 

(9) Conjoinability 
An assignment L of types to the words to the left of a coordinator and an assignment 
R of types to the words to its right are conjoinable with respect to a basic type x iff 
the quadruples for x in regL and regR satisfy the inequalities of (8). 
Two strings of types L and R are conjoinable as L [ &] R iff L and R are conjoinable 
with respect to every basic type x, x -:t= s. 

This is the invariant that can do the job of selecting coordinated type sequences prior to proper parsing. 
It requires neither information nor guesses as to the nature and the extent of the coordination in the 
sentence which is to be parsed. 
Given a sentence W1 and Wr, a set LL of assignments to W1 and a set RR of assignments to Wr, with 
registers associated to each member of each set, it is straightforward to select those pairs <L, R> in LL 
x RR that are conjoinable according to (9). Only these pairs have to be checked for derivability. The 
pairs rejected as not conjoinable cannot represent a well-formed coordination, by modus tollens applied 
to (8). 
Here is a simple example involving just two basic types where both LL and RR contain only two 
assignments; the designated type s is neglected, as its count deserves special treatment. ( 10) specifies 
the four subsequences of assignments to a coordinated sentence of length 7, including the coordinator, 
and the related registers. ( 1 1 )  - (14) specify the relevant data for a particular member of the product 
LL x RR, according to the registers in ( 10) ,  and apply the Coordinative Count Invariant (8) in a modus 
tollens mode. If one of the queries fails, the hypothesis that that particular member of LL x RR gives 
rise to a derivable sequent, is rejected, by Conjoinability (9). 

( 10) LL = {L 1 , L2} 

L 1 = a bib a\b 
L2 = a b a\b 
RR = {R1 , R2 } 

R 1 = a\b s\a\a 
R2 = a\b s\b\a 

regu = { a:<0,0,2,0>, b:<1 ,0,0, 1>}  
re&2 = { a:<0,0,2,0>, b:<1 ,0,0,0>} 

regR1 = { a:<0,1 ,0 ,1>, b:<0,0,0, 1> }  
regR2 = { a:<0,1 ,0,0>, b:<0,0,0,2>} 
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(1 1)  hypothesis 1 :  L1 [&] R1 ➔ s (L 1 and R 1 are conjoinable) 
A.a = 1 ;  Pa = 0; A,, = - 1 ;  Pb = - 1 ;  bound_arg\ = 0; bound_artR = 1 ;  
bound_headaL = 0 ;  bound_heada

R = 0 ;  bound_argbL = 0 ;  bound_argb
R = 0; 

bound_headb L = 1 ;  bound_headb 
R = 0 

A.a ::; bound_arga
R ? true ; Pa ::; bound_arg\ ? true; -Aa ::; bound_head\ ? true; 

-Pa � bound_heada
R ? true; A,, ::; bound_argb

R ? true; Pb ::; bound_arg\ ? true ; 
-A,, ::; bound_headb L ? true; -pb ::; bound_headb 

R ? false 
• hypothesis 1 rejected by (9) 

( 12) hypothesis 2: L1 [ &] R2 ➔ s (L1 and R2 are conjoinable) 
Aa = 2; Pa = 0; A,, = -2; Pb = - 1 ;  bound_argaL = 0; bound_argaR = 1 ;  
bound_head\ = 0 ;  bound_heada

R = 0; bound_arg\ = 0; bound_argbR = 0; 
bound_headb L = 1; bound_headb 

R = 0 
Aa ::; bound_arga 

R ? / alse 
• hypothesis 2 rejected by (9) 

( 13) hypothesis 3 :  L2 [ &] R1 ➔ s (L2 and R 1 are conjoinable) 
Aa = 1 ;  Pa = 0; A,, = - 1 ;  Pb = 0; bound_arga L = 0; bound_arga 

R = 1 ;  
bound_heada L = 0; bound_heada 

R = 0; bound_argb L = 0; bound_argb 
R = 0; 

bound_headb L = 1; bound_headb 
R = 0 

Aa ::; bound_arg\ ? true; Pa ::; bound_arg\ ? true ; -Aa ::; bound_head\ ? true; 
-Pa ::; bound_head\ ? true; A,, ::; bound_argb 

R ? true; pb ::; bound_argb L ? true ; 
-A,, ::; bound_headb L ? true; -pb � bound_heada 

R ? true 
• hypothesis 3 can not be rejected by (9) .  

( 14) hypothesis 4: L2 [ &] R2 ➔ s (L2 and R2 are conjoinable) 
Aa = 2; Pa = O; A,, = -2; Pb = 0; bound_argaL = O; bound_arga

R = 1 ;  
bound_head\ = 0; bound_heada

R = 0; bound_arg\ = 0; bound_argb
R = 0; 

bound_headb L = 1 ;  bound_headb 
R = 0 

Aa ::; bound_arga 
R ? / alse 

• hypothesis 4 is rejected by (9) .  

Only one of the four possible hypotheses concerning the derivability of the sentence underlying the 
assignments in LL x RR is submitted to the proper parsing procedure. One can easily check that this 
sequent, a b a\JJ [ &] a\JJ s\a.\a ➔ s, is the only one that induces a proper coordination. The type a\JJ 
is coordinated. If one occurrence of this type and the inert coordinator type & are neglected, the 
resulting sequent a b a\JJ s\a\a ➔ s complies with the general Count Invariance (2) and will tum out 
to be derivable under standard assumptions of categorial grammar. The other three hypotheses can be 
rejected on the basis of the checklist defined in the consequent of (8); these checks are performed in 
constant time, not dependent on the length of the sentence cq. the sequents of types. This rejection is 
correct. None of the hypothesis checked in (1 1 ), ( 12) and (14) looks fit for derivability. In particular, 
they do not appear to contain two coordinates in such a fashion that the non-coordinated context with 
one of the coordinates added makes sense as a derivable sequent. For example, the hypothesis tested 
in ( 12), a bib a\JJ [ &] a\JJ s\a\a ➔ s, may seem to contain a coordination a\JJ [ &] a\JJ, but the 1de
coordinated' sequent a bib a\JJ s\a\a ➔ s from which the coordination is removed, does not even 
comply with (2) and is thus inderivable. Therefore, the check in ( 12) correctly rejects the hypothesis. 
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4 Effectiveness of Conjoinability 

Conjoinability (9) has been implemented in a categorial parsing system called Delilah, which embodies 
among other things the algorithm for parsing unbounded coordination of [Cremers 1993] .  In this system 
the selection of conjoinable pairs of strings is completely deterministic. During the construction of an 
assignment, a register is  maintained and associated with it. If the assignment passes some other 
occurrence tests, it is admitted to LL or RR; its register is fixed. The procedure for comparing 
assignments in the product LL x RR checks pairs of quadruples from the registers in the spirit of the 
contraposition to the Coordinative Count Invariant (8). This requires only a fixed number of steps per 
pair of quadruples and per pair of registers. Furthermore, the check based on the Coordinative Count 
Invariant (8) is applied in addition to and in accordance with occurrence checks living on the more 
general Count Invariance (2); for these checks, see [Cremers 1989] . Here is an example of the effect 
of conjoinability in Delilah. 

Sentence (15) contains 5 1  words from a · restricted but highly polymorphic lexicon of Dutch. In this 
lexicon, all kinds of combinatorial options for each word are spelled out as categorial types. Because 
of this lexical polymorphism, the number of possible different assignments of lexical categories to the 
sentence is 5.3e16. The coordinator en is handled syncategorematically. 

( 15) Omdat ik niet had willen zeggen dat ik door de man met 
Because I not had want say that I by the man with 
de auto werd gedwongen te proberen Henk met de pop en 
the car was forced to try Henk with the doll and 
Agnes met een boek te laten spelen, werd de man door de 
Agnes with a book to let play, was the man by the 
vrouw gedwongen te zeggen dat hij mij niet met de pop 
woman forced to tell that he me not with the doll wilde proberen te laten spelen. 
wanted try to let play. 

First, some general occurrence checks that are not related to coordination keep the number of 5.6el6 
possibilities just virtual by dynamically reducing the set of viable assignments of categories to this 
string to 2.9e6, or 6e-9 % of the search space. This number is the product of 1 36 assignments to the 
left of the coordinator - the set LL - and 21576 assignments to the right of the coordinator - the set RR. 
Then, applying Conjoinability to LL x RR leaves 652 combinations of a left and a right assignment as 
viable, i .e. 0,02 % of ILL x RR 1 - Only these 652 assignments are analyzed by the parser, which in 
this case finds a derivation for exactly one of them. 
By the joined forces of independent occurrence checks and Conjoinability the number of assignments 
admitted to full parsing, is thus reduced to 1 .2e-12 % of the original 5.3e16. 

It is very difficult, if not impossible, to find a general metric for the effect of Conjoinability (9) on the 
set of admitted sequences: its effect - the ratio of pairs of left and right assignments that are rejected -
is intrinsically dependent on type instantiations. Therefore, we can only give some more data to 

illustrate its effect. Table (16) contains, for some grammatical coordinated sentences over the same 
lexicon as was used for sentence (15) ,  their length in words L, the number of possible assignments PA 
(= Il� IA(w;) I ), the product CP = ILL x RR I , the ratio CP/PA as a percentage, the number AA of 
assignments admitted to parsing, and the ratio ANCP as a percentage. The latter ratio measures the 
effectiveness of applying Conjoinability. The ratio AA/PA gives the percentage of the total space of 
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possibilities that is transmitted to the parsing module; it stands for the effectiveness of the count 
preselection as a whole. 
A comparable overview for some ungrammatical sentences is given in ( 17). The zero values mean that 
the system, in a stage prior to proper parsing, could not find any potentially derivable sequence; in the 
case of ungrammatical sentences this is, of course, a desirable result. 

( 16) Pruning search space for grammatical coordinated sentences 

L PA CP CP/PA % AA AAICP % AA/PA % 

16 6.0e3 2el 3 .3e- 1 2 l .Oel 3.3e-2 

22 7.7e5 9.6el l .2e-2 4 4.2e0 5.2e-4 

33 5.0e7 1 .2e3 2.3e-3 8 6.9e-1 l .6e-5 

39 7.4e7 5.4e3 7.3e-3 72 1 .3e0 9.7e-5 

44 4.4e8 2.2e4 5. l e-3 2 8 .9e-3 4.Se-7 

( 17) Pruning search space for ungrammatical coordinated sentences 

L PA CP CP/PA % AA AAICP % AA/PA % 

15  2.0e3 2.4el 1 .2e0 0 0 0 

22 9.6e2 2.2e2 2.3el 4 l .9e0 4.2e-1 

33 1 .5e6 2. l e3 1 .4e-1 0 0 0 

38 3.7e7 2.7e3 7.3e-3 24 8.8e-1 6.Se-5 

47 2.6e8 6.7e4 2.6e-2 242 3.6e-1 9.2e-5 

L: sentence length in words, including the coordinator. PA: the number of possible different 
assignments of lexical categories to the sentence of length L. CP: the cardinality of the 
cartesian product over the set of pre-checked assignments to the left hand side of the 
coordinator and the set of pre-checked assignments to the right of the coordinator, previously 
referred to as LL x RR. AA: the number of sequents admitted to the proper parsing procedure 

From these figures one can conclude that the fraction AA/PA, which measures the effectiveness of the 
complete battery of count checks prior to parsing, including Conjoinability (9), tends to decrease as the 
search space PA, i.e. the number of lexically possible assignments, increases. This is also the tendency 
of AA/CP in figure ( 16): as CP increases - with PA - this ratio gets smaller, though not monotonically. 
The flaws in the tendency may be due to the ratio' s  being dependent on each and every detail in the 
type string. Nevertheless, we feel the tendency suggests that applying Conjoinability (9) is not only 
effective but also efficient: the time needed to bring about the reduction of CP to AA is only linearly 
dependent on CP, and the time for checking (8) and (9) at an individual sequent - demonstrated in (1 1 )  
to ( 14) - i s  constant and given with the fixed number of  basic types in  a grammar. 
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5 Inevitability of Inequalities in Coordinative Count 

In many cases, Conjoinability admits more assignments to the parser module than is necessary or 
desirable from a parsing point of view. The remaining redundancy is due to the fact that the 
Coordinative Count Invariant (8) is stated in terms of inequalities, rather than in terms of equalities. 
Count invariants in terms of inequalities, however, are the best we can get for a pruning instrument 
prior to parsing in the presence of coordination. To see why, consider the family of conjunctions 

( 1 8) Henk zei dat ik Agnes een boek en 
Henk said that I Agnes a book and 
(a) een tijdschrift had gegeven 

· a magazine had given 
(b) de vrouw een tijdschrift had gegeven 

the woman a magazine had given 
( c) jij de vrouw een tijdschrift had gegeven 

you the woman a magazine had given 

Each of the right hand sides ( 18)a - c is a legitimate continuation of the given left hand side. Now take 
some assignment L to the left environment of the -coordinator, i.e. to Henk zei dat ik Agnes een boek. 
From L alone one cannot make any predictions as to the nature of assignments R that are conjoinable. 
The only grammaticality condition imposed by L on R is that some proper prefix of R should reflect 
some proper suffix of L. Because coordination does not express itself functionally to the left nor to the 
right of the coordinator, we cannot tell which suffixes of L are available. In general, then, there will 
be more than one conceivable way of grammatically extending the string to the right of the coordinator. 
Consequently, several essentially different sequences R for (1 8)a - c · have to be conjoinable with L. 
Nothing in L or its register imposes a priori occurrence conditions on assignments to possible 
extensions of the string to the right of a coordinator. The fact is that an assignment L with a fixed 
register regi may be conjoinable with many different Rs. Since these Rs all bear different registers, it 
is impossible to derive an nontrivial equality-condition on regR from regi - nor can it be done the other 
way around. One would have to look for a two-place function / such that f(l, r) is constant for some l 
while r varies: these functions will hardly be dependent on r in an interesting way. Thus, the 
Coordinative Count Invariant defines the margins for the candidate Rs as narrowly as possible, but has 
to leave room for variation caused by the functional indeterminacy of coordination. 

6 Discussion 

The above result does not offer a general method of reducing parsing complexity in the presence of 
coordination. Rather it shows that in parsing certain types of lexicon-driven categorial grammars the 
harmful mix of natural language' s  intrinsic ambiguity and the intrinsic indeterminacy of coordination 
can be tamed. Although every grammar will confront its parsers with thi� mix in one way or another, 
it is by no means clear that there is a general strategy to handle this source of computational 
complexity. This paper argues that there is an approach for certain categorial grammars, namely those 
for which the parameters of the Coordinative Count Invariant (8) can be set in a meaningful way. These 
grammars are certainly not structurally coinplete . in the sense of [Buszkowski 1988], but may have 
mildly contex�-sensitive capacity [Joshi et al. 199 1 ] . To the categorial grammars in the scope of the 
present approach belong at least those dubbed 'parenthesis-free' in [Friedman et al. 1986]. For other 

52 



(categorial) grammars, there may be no, or a completely different, solution to the explosion of search 
space in the presence of coordination. 
Moreover, up to now the Coordinative Count Invariant (8) is only consolidated for sentences containing 
a single coordinator. Handling multiple coordination in the same spirit will be even more tedious, but 
there is no reason to believe that (8) could not be generalized. The discussion in 4 suggests that the set 
of conditions resulting from generalizing (8) will be weaker than the present set of inequalities. 
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1 Introduction Computational linguistics has a long tradition of lexicalized grammars , in which each grammatical rule is specialized for some individual word. The earliest lexicalized rules were word-specific subca.tegoriza.tion frames . It is now common to find fully lexicalized versions of many grammatical formalisms, such as context-free and tree-adjoining grammars [Schabes et al. 1988] .  Other formalisms, such as dependency grammar [Mel 'cuk 1988] · and head-driven phrase-structure grammar [Pollard & Sag 1994] , are explicitly lexical from the start . Lexicalized grammars have two well-known advantages . Where syntactic acceptability is sensitive to the quirks of individual words , lexicalized rules are necessary for linguistic description . Lexicalized rules a.re also computationally cheap for parsing written text : a parser may ignore those rules that do not mention any input words. More recently, a third advantage of lexicalized grammars has emerged . Even when syntactic acceptabilit:I) is not sensitive to the particular words chosen, syntactic distribution may be [Resnik 1993] . Certain words may be able but highly unlikely to modify certain other words. Such facts can be captured by a. probabilistic lexicalized grammar, where they may be used to resolve ambiguity in favor of the most probable analysis , and also to speed parsing by avoiding ( "pruning" ) unlikely search paths. Accuracy and efficiency can therefore both benefit .  Recent work along these lines includes [Charniak 1995, Collins 1996, Eisner 1996b, Collins 1997] ,  who reported state-of-the-art parsing accuracy. Related models are proposed without evaluation in [Lafferty e t  al .  1992 , Alsha.wi 1996] . This recent flurry of probabilistic lexicalized parsers has focused on what one might call bilexical granuuars ,  i n  which ea.eh grammatical rule i s  specialized for  not one but two  individual words. 1 The central insight i s  that specific words subcategorize to some degree for other specific words: ta:r is a good object for the verb raise .  Accordingly, these models estimate , for  example, the probability that ( a. phrase headed by ) word y modifies word x, for any two words x, y in the vocabulary V. At first blush, probabilistic bilexica.l grammars appear to carry a. substantial computational penalty. Chart parsers derived directly from CKY or Earley 's algorithm take time O(n3 min( n ,  1 11 1 ) 2 ) ,  which amounts to O (n5 ) in practice. Such algorithms implicitly or explicitly regard the grammar as a context-free grammar in which a noun phrase headed by tiger bears the special nonterminal NP tiger · Such :::::::: O( n5 ) algorithms are explicitly used by [Alshawi 1996,  Collins 1996] , and almost certainly by [Charniak 1995] as well .  The present paper formalizes an inclusive notion of bilexica.l grammars , and shows that they can be parsed in time only O(n3g3t '2m, ) ::::::::  O (n3 ) ,  where g, t ,  and m are bounded by the grammar and are typically smal l .  ( g  is the maximum number of senses per input word, t measures the degree of lexical interdependence that the grammar allmvs among the several children of a. word , and rn bounds the number of modifier relations that the parser need distinguish for a given pair of words . )  The new algorithm also reduces space requirements to 0 ( 11 2g2t )  :::::::: O (n2 ) ,  from the :::::::: O(n3 ) required by CKY-style approaches to bilexical grammar. The parsing algorithm finds the highest -scoring analysis or analyses generated by the grammar, under a. probabilistic or other measure. Non-probabilistic grammars may be treated as a. special case. * l am grateful to lVlike Collins and Joshua Goodman for useful discussions of this work. 1 Actually, [Lafferty et al. 1 992] is formulated as a trilexical model, though the influence of the third word could be ignored. 54 



The new � O ( n3 )-time algorithm has been implemented, and was used in the experimental work of [Eisner 1 996a, Eisner 1 996b] , which compared various bilexica.l probability models . The algorithm also applies to the head-automaton models of [Alsha.wi 1 996] and the phrase-structure models of [Collins 1996 ,  Collins 1 997] ,  allowing � O(n3 )-time rather than � O ( n5 )-time parsing , granted the (}inguistica.lly sensible) restrictions that the number of distinct X-ba.r levels is bounded and that left and right adjuncts a.re independent of ea.eh other . 
2 Formal Definit ion of Bilexical Grammars 

2 . 1  Unweighted Bilexical Grammars 

A bilexica.l grammar consists of the following elements: 
• A set V of v.rords, called the vocabulary, which contains a distinguished symbol RO OT.  

The elements of V may be used to represent word senses : so V can contain separate elements bank 1 , bank2 , and bank3 to represent the various meanings of bank. For parsing to be efficient , the maximum number of senses per word,  g, should be small .  
• A set A1 of one or more n1odifier roles .  

1'1 does not affect the  set of  sentences generated by the  grammar, but  it affects the  structures assigned to them. In these structures, elements of lvf will be used to annotate syntactic or semantic relations among words. For example, John might not merely modify loves ,  but modify it as SUBJECT or OBJECT , or as AGENT or PATIENT ; these a.re roles in kl. 
For parsing to be efficient , 1',J, should be small .  ( While a semantic theory may posit a great many modifier roles, it need not be the parser's job to make the finer distinctions . )  More precisely, what should be small is m, the maximum number of modifier roles available for connecting two given words , such as John and loves. 

• For each word w, a. pair of deterministic finite-state automata l\v and 1·w . Each automaton accepts some set of strings over the alphabet V x M . .Cw specifies the possible sequences of left dependents ( arguments and adjuncts ) for w .  1'w specifies the possible sequences of right dependent.s for 'W . By convention, the first element in such a. sequence is closest to 'W in the surface string. Thus , the possible dependent sequences are specified by ,C(  Cw )
R and ,C( 1'w ) respectively. 

Note that the collection of automata in a grammar may be implemented as a pair of functions C and r, such that C( w, s, iv' , µ ) returns the destination state of the ( w' ,  µ, )-la.beled arc that leaves state s of automaton Cw , and similarly for r( w ,  s, w' , µ. ) .  These functions may be computed in any convenient way. 
For parsing to be efficient , the maximum number of states per automaton , t ,  should be small. However, without penalty there may be arbitrarily many distinct automata. ( one per word in V ) ,  and each automaton state may have arbitrarily many arcs ( one per possible dependent in V ) , so I V I does not affect performance. 
We must now define the language generated by the grammar,  and the structures that the grammar assigns to sentences of this language . Let a dependency tree be a rooted tree whose nodes ( internal and external ) are labeled with words from V, and whose edges are labeled with modifier roles from 1'1 . The children ( ''dependents" ) of a node are ordered with respect to each other and the node itself, so that the node has both left children that precede it and right children that follow it . Figure l a. illustrates a. dependency tree all of whose edges a.re labeled with the empty string. Given a bilexical grammar ,  a leaf a: of a dependency tree may be  expanded to modify the tree as follows. Let w be the word that labels x, a be any string of left dependents accepted by .Cw , and /3 be any string of right dependents accepted by 1\v . These strings are in ( V x M ) * .  Add l a l  left children and l/31 right children to the leaf x. Label the left children and their attached edges with the symbol pairs in a (from right to left ) ;  similarly label the right children and their attached edges with the symbol pairs in /3 ( from left to right ) .  A dependency parse tree  i s  a dependency tree generated from the grammar by  starting with a single node, labeled with the special symbol ROOT E V ,  and repeatedly expanding leaves until every node has been expanded exactly once . F igure l a. may be so obtained : one typical expansion step gives the leaf plan the child sequences Cl' = the ,  J3 = of, raise .  Another such step expands the ,  choosing to give it no children at all ( a = f3 = e ) .  
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( a ) 

(b ) 

( c ) 

ROOT 

plan 

The of
� 

raise 

to/ government tax 
;:f / 

the income 

� 
Det N e-----._ P  Det N To V N N 

The plan of the government to raise income tax ROOT 

� � 
of the government to raise plan of the government to raise 

no yes yes 

� �  
The plan of the government to raise income tax ROOT 

� � 
overnment to raise income tax ROOT 

' ' 

the government to raise Figure 1 :  ( a) An unla.beled dependency parse tree . ( b )  The same tree shown flattened out .  A span of the tree is any substring such that no interior word of the span links to any vrnrd outside the span. One non-span and two spans are shown . ( c) A span may be decomposed into smaller spans as repeatedly shown ; therefore, a. span can be built from smaller spans by following the arrows upward . The parsing algorithm builds successively larger spans in a dynamic programming tab le ( cha.rt ) .  The minimal spans, used to seed the chart , a.re linked or unlinked word bigra.ms , such as The-plan or ta;r ROOT.  
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A string w E \/* is generated by the grammar, with analysis T, if T is a dependency parse tree and listing the node labels of T in infix order yields the string w followed by ROOT.  w is called the fringe of T. The term bilexical refers to the fact that ( i )  each w E 1, · may specify a ,:vholly different choice of automata l\v and rw , and furthermore ( ii )  each such automaton may make distinctions among individual words that are appropr iate to serve as children of w. Thus the grammar is sensitive to specific pairs of lexical items. For example,  it is possible for one lexical verb to select for a completely idiosyncratic set of nouns as subject , and another lexical verb to select for an entirely different set of nouns. Since it never requires more than a two-state automaton ( though with many arcs ! ) to specify the set of possible subjects for a verb,  there is no penalty for such behavior in the parsing algorithm to be described here . 
2 .2  Weighted Bilexical Grammars 

The ability of a verb to subcategorize for an idiosyncratic set of nouns, as above , can be used to implement black-and-white ( "hard" ) selectional restrictions. Where bilexical grammars are really useful ,  however , is in capturing gradient  ( ''soft'' ) selectional restrict ions . A weighted bilexical grammar can equip each verb with an idiosyncratic probability distrib1tiion over possible object nouns, or indeed possible dependents of any sort .  vVe now formalize this notion . A weighted finite- state automaton A is a finite-state automaton that associates a real-valued weight with each arc and each final state. Following heavily-weighted arcs is intuitively "good,"  "probable , '' or "cqmmon" ; so is stopping in a heavily-weighted final state. Each accepting path through A is automatically assigned a ,veight , namely, the sum of all a.re weights on the path and the final-state weight of the last state on the path .  Ea.eh string accepted by A is assigned the weight of i ts  accepting path . Now, we may define a weighted bilexical grammar as a bilexica.l grammar in which all the automata. fw and 
1,w are ,:veighted automata.. The grammar assigns a weight to ea.eh c).ependency parse tree: namely, the sum of the weights of all strings of dependents , a and ,8, generated while expanding nodes to derive the tree . ( This weight is well-defined: it does not depend on the order in which leaves were expanded. ) The goal of the parser is to determine whether a string w E l '* can be generated by the grammar, and if so , to determine the highest-weighted analysis for that sentence. It is convenient to set up the weighted automata. so that ea.eh automaton formally accepts all strings in l ' * , but assigns a weight of -(x:, to any that a.re not permitted by the competence grammar .  Then a .sentence is rejected as ungrammatical if its highest-weight analysis has ,:veight only -oo .  The unweighted case is therefore a special case of the weighted case. 
2.3 Lexical Selection 

The above formalism must be extended to deal with lexical selection . Regrettably, the input to a parser is typically not a string in lT* .  Rather, it contains ambiguous tokens such as bank, whereas the "words" in V are word senses such as bank 1 , bank3 , and bank3 , or part-of-speech-tagged words such as bank /N and bank /V. One would l ike a parser to resolve these ambiguities as well as structural ambiguities . ,,Ve may modify the formalism as follows. Consider the unweighted case first . Let O be the real input-a string not in \/* but rather in P( V ) * ,  where P denotes powerset . Thus the ith symbol of O is a confusion set of possibilities for the ith word of the input ,  e .g . , { bank 1 , bank2 , bank3 } .  0 is generated by the grammar, with analysis T, if some string w E \/* is so generated, where w is formed by replacing ea.eh set in O with one of its elements .  Note that w is the fringe of T. For the weighted case , each confusion set in the input string f2 assigns a weight to ea.eh of its members . Again , intuitively, the heavily-weighted members a.re the ones that are commonly correct ,  so the noun bank/N would be weighted more highly than the verb bank/V.  ,,1e score dependency parse trees as before, except that now we also add to a tree's score the ,veights of all its fringe words , as selected from their respective confusion sets .  Formally, we say that f2 = VV1 H12 . . .  H7n E P( V ) * is generated by the grammar , with analysis T and weight p + q1 + · · · + qn , if some string w = w1w2 . . .  w11 E V* is generated with analysis T and weight p,  and lw l  = l fl l  = n and for each 1 � i :::;  n, Wi appears in the set Hli with weight qi . 
2 .4  Adding String-Local Constraints 

An extension is to allow the grammar to specify a list of excluded bigrams .  If  a tree 's fringe contains an excluded bigram ( two-word sequence ) ,  the tree is not considered a valid dependency parse tree , and is given 
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score -oc,. §3 .8  shmvs how this extension lets the scoring model consider such factors as the probability of  the tag k-grams that appear in the parse ( even for k > 2 ) ,  as proposed by [Lafferty et al. 1992] . Consideration of such factors has been shown useful for probabilistic systems that simultaneously optimize tagging and parsing [Eisner 199Gb] . 
3 Uses of B ilexical Grammars Bilexical grammars, and the new parsing algorithm for them, are not limited to dependency-style structures . They a.re flexible enough to capture a variety of grammar formalisms and probability models .  This section will i llustrate the point with some key cases. vVe begin with the dependency case, and progress to phrase-structure grammars . 
3 . 1  A Simple Case: Monolexical Dependency Grammar It is straightforward to encode dependency grammars such as those of [Gaifman 1 965] . w·e focus here on the case that [Milward 1 994] calls Lexicalized Dependency Grammar ( LDG ) .  Milward demonstrates a parser for this case that requires O( n3g3t3 ) � O( n3 ) time and O ( n2 g 2 ( 1 ) � O(n2 ) space , using a left-to-right algorithm that maintains its state as au acycli c  directed graph. Here t is taken to be the maximum number of dependents on a. ,vord. m does not appear because Milward takes tree edges to be unlabeled , i . e . , m = 1 .  LDG is defined to be only mon o lexical. Ea.eh word sense entry i n  the lexicon i s  for a word tagged with the type of phrase it projects . An entry for helped /S, which appears as head of the sentence Nurses helped John 
wash, may specify that it wants a. left dependent sequence of the form wi f N and a right dependent sequence of the form w2/N, w3/V . However , under LDG it cannot constrain the lexical content of ·w1 , w2 , or W3 , either discretely or probabilistically. 2 By encoding a monolexical LDG as a. bilexical grammar ,  and applying the algorithm described below in §4 ,  we can improve parsing time and space by a factor of  t .  The encoding is straightforward. To capture the preferences for helped/S as above, we define th dpe d/ S to be a two-state automaton that accepts exact ly the set of nouns , and 1'h t lp e d/ S to be a three-state automaton that accepts exactly those word sequences of the form (noun , verb) .  Obviously, l\. e ip t d/ S includes a great many arcs-one arc for every noun in V. This does not however affect parsing performance ,  which depends only on the number of states in the automaton. 
3 .2  Optional and Iterated Dependents The use of automata makes the bilexical grammar considerab ly more flexible than its  LDG equivalent . In the example of §3 . 1 ,  1'h dp c d/ S can be trivially modified so that the dependent verb is optional ( Nurses he lped John ) .  LDG can accomplish this only by  adding a new lexical sense of  helped/S, increasing g .  Similarly, under a bilexical grammar ,  t1rn r s u /N can be  specified to  accept dependent sequences of  the form ( adj , a.dj , adj , . . .  adj , ( <let ) ) .  Then nurses may be expanded into weary Belgian n urses. Unbounded iteration of this sort is not possible in LDG ,  where each word sense has a fixed number of dependent.s. In LDG,  as in categorial grammars, weary Belgian nurses would have to be headed by the adjunct weary. Thus , even if LDG were sensitive to bilexicalized dependencies , it would not recognize nurses-;.helped as such a dependency. 
3 .3  Bilexical Dependency Grammar In the example of §3 . 1 ,  we may arbitrarily weight the individual noun arcs of the £h elp e d  automaton, according to how appropriate those nouns are as subjects of helped. ( In the unweighted case, we might choose to rule out inanimate subjects altogether, by removing their arcs or assigning them the weight -oc,. )  This turns the grammar from monolexical to bilexical, without affecting the cubic-time cost of the parsing algorithm of §4. 

2 What would happen if we tried to represent bi.lexical dependencies in such a grammar'! ln order to restrict w2 to nouns denoting 
helpless animate creatures, the grammar would need a new nonterminal symbol, NPhelpable · All nouns in this class would then 
need additional lexical entries to indicate that they are possible heads of NP helpable . The proliferation of such entries would drive 
g up to I \/ I in Milward 's algorithm, resulting in performance of O ( n 3 I V l 3 t3 ) ( or by ignoring rules that do not refer to lexical items 
in the input sentence, O ( n6 {3 ) :::::  O ( n6 ) ) . 58 



3 .4  Probabilistic Bilexical Dependency Grammars 

[Eisner 199Gb] compares several probability models for dependency grammar .  Each model simultaneously eval
uates the part-of-speech tags and the dependencies in a given dependency parse tree . Given an untagged input 
sentence, the goal is to find the dependency parse tree ,vith highest probability under the model. 

Each of these models can be accomodated to the bilexical parsing framework , allowing a cubic-t ime solution. 
In each case, V is a set of part-of-speech-tagged words. For simplicity, 1',f is taken to be a singleton set { c: } .  Each 
weighted automaton Cw or 'l'w is defined so that it accepts any dependent sequence in l/* , but the automaton 
has 8 states , which enable interactions among successive dependents in a sequence. Any arc that accepts a 
noun (say )  terminates in  the Noun state. The 'W arc from Noun may be weighted differently than the w arcs 
from other states ; so a given dependent word w may be more or less l ikely depending on whether the previous 
dependent in the sequence ,vas a noun.  The final-state weight of Noun may also be selected freely : so the 
sequence of dependents might be likely or unlikely to end with a noun .3 

As sketched in [Eisner 1996a] ,  each of Eisner's probability models is implemented as a particular scheme for 
weighting such an automaton . For example, model C regards tw and 1'w as Markov processes , where each state 
specifies a probability distribution over its exit options , namely, its outgoing arcs and the option of halting. The 
,veight of an arc or a final state is then the log of its probability. Thus if 1'h dp t d/ F  includes an arc labeled with ( bathe/\! ,  c:) and this arc is leaving the Noun state, then the arc weight is ( an estimate of ) 

log Pr( next right dependent is bathe/\! I parent is helped/\! and previous right dependent was a noun )  

The  weight of a dependency parse tree under this probabil ity model i s  a product of  such factors, which means 
that it estimates Pr (  dependency links & input words ) according to a generative model. By contrast ,  model D 
estimates Pr(  dependency links I input words ) ,  using arc ,,reights that are roughly of the form 

log Pr( bathe/\! is a right dep . of helped/\! I both words appear in sentence and prev. right dep . was a noun )  

which is similar to the  p robability model of  [Collins 1 996] .  Some of  the models evaluated also rely on  weighted 
string-local constraints ,  as implemented in § :3 . 8  below. 

3 . 5  Probabilistic Bilexical Phrase-Structure Grammar 

In some situations,  one wishes a parser to evaluate phrase-structure trees rather than dependency parse trees . 
[Collins 1997] observes that since VP and S are both verb-headed, the dependency grammars of §3 .4  would falsely 
expect them to appear in the same environments . (The expectation is false because con thwe subcategorizes 
for VP only. ) Phrase-structure trees address the problem by providing nonterminal labels. In addition , phrase
structure trees are less flat than dependency trees : a ,,,ord 's dependents attach to it at different levels, providing 
an obliqueness order on the dependents of a word .  Obliqueness is of semantic intere(',t , and is also exploited by 
[vVu 1995] ,  whose statistical translation model preserves the topology ( ID ,  not L P )  of binary-branching parses . 

Fortunately, it is possible to encode ( headed ) phrase structure trees as dependency trees with labeled edges . 
One can therefore use the fast bilexical parsing algorithm of § 4  to generate the highest-weighted dependency 
tree, and then convert t hat tree to a phrase-structure tree . 

For the encoding, ,:ve expand V so that all words are tagged not with single nonterminals but with nonter
m.inal chains . Let us encode the phrase-structure tree [John {con tiwuedv [to batheF himself}vp }vp }s . The 
word bathe is the head of V and VP constituents, while con tinued is the head of V, VP, and S constituents 
( reading from the leaves upward) .  In the dependency tree , we therefore tag them as bathe/V, VP and co11 ti11 -'lt ed/V, llP, S. The automaton 1'continut d can now require a dependent 's tag to end with VP;  this captures the 
ungrammaticality of *John con tinued {Oscar to bathe himself}. 

Next , we put Af to be the set of nonterminals. To encode the fact that in the phrase-structure tree , himself 
modifies bathe by attaching at the VP level above bathe ,  ,:ve attach himself to bathe in the corresponding 
dependency tree ,,,ith a VP-labeled edge . 

Finally, we wish to ensure that any dependency tree the parser returns can be mapped back to a phrase
structure tree . For this reason , the bilexical grammar's automata must require that the left or right dependents 
of a word are appropriate to the word 's tag. Thus, any edges depending from con tin-ued/V, VP, S  must be 

3 The eight states are START ,  Noun, Verb, Noun Modifier, Adverb,  Preposition, Wh-word, and Punctuation. 
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labeled with V, VP, or S-the nonterminals that continued projects-and must fall in this order on each side . 
For instance, 1'contin u ed fF,FP,S may not allow S-labeled right dependents to precede VP-labeled right dependents . 

. For this scheme to work , certain conditions must hold of the phrase-structure trees we are encoding. Only 
finitely many nonterminal chains may be available to tag a given word,  and the nonterminals in a chain may 
not repeat . This is essentially in conformance with X-bar theory. The one difference is in the treatment of 
adjunct.ion: in X-bar theory, three adjuncts to a VP would require 4 VP levels. One may work around this by 
stipulating a single VP-ADJ UNCT level above VP, to which all VP adjuncts (0 or more ) attach .4 

This encoding scheme improves on that of [Collins 1996) , because any dependency tree can be converted back 
to a phrase-structure tree , and this tree is unique . This makes it possible to use the fast bilexical parser , which 
( unlike Collins's )  produces dependency trees without regard to whether they were derived from phrase structure 
trees. It also means that a probabilistic parsing model ( unlike Collins's ) need not be deficient , i . e . ,  probability 
is not assigned to dependency structures that cannot be used by the phrase-structure grammar. 

One interesting artifact of Collins 's encoding scheme is that unary rules are impossible : every non terminal 
level must have at least one dependent , whether on the left or on the right . If desired , the nev;,r scheme can be 
made to have this property as well .  VVe augment V further , so that each non terminal in a non terminal chain 
is annotated with either "L'' or "R," indicating that it requires children on the specified side . If VP is marked 
with "L ,"  then the left-child automaton for that word must rule out any left-dependent sequence that does not 
have at least one dependent with a VP-labeled edge, and preserve the weights on all other dependent sequences. 

3 .6  Relationship to Head Automata 

It should be noted that weighted bilexical grammars are essentially a special case of head-automaton grammars 
[Alshawi 1 996] .  As noted in the introduction , head-automaton grammars are bilexical in spirit . However , the 
left and right dependent.s of a word w are generated not separately, by automata l\11 and 1\u , but in interleaved 
fashion by a single weighted automaton, dw . dw assigns weight to strings over the alphabet 1/ x { +- 1 --} ; each 
such string is an interleaving of lists of left and right dependents from l7

. 

Head automata, as well as [Collins 1997] ,  can model the case that §3 . 5  cannot : where nonterminal sequences 
may include nonterminal cycles. [Alshawi 1 996] poi11ts out that this makes head automata are fairly powerful . 
An automaton corresponding to the regular expression ( ( a ,  +-) ( b , -'-) )*  requires its word to have an equal number 
of left and right children , i . e , . an 1ub11

• ( By contrast ,  a bilexical grammar or dependency grammar may be made 
to generate { a 11 1ub11 

: n 2: O}  only by making words other than w the heads of these strings , so that the words 
that are allowed to interact bilexically would change . )  

For syntactic description, this added power is probably unnecessary. ( Linguistically plausible interactions 
among left and right subcat frames, such as fronting, can be captured in bilexical grammars simply via multiple 
word senses . ) What head-automaton grammars offer over bilexical grammars is the ability for a head to specify 
an obliqueness order over all its dependents, including arbitrarily many adjuncts. A head-automaton parse tree 
for a2a 1 wb 1 b2 is more finely detailed than in dependency grammar . It essentially gives the phrase headed by w 
a binary-branching analysis , such as 

3 .  7 Idiom Encoding 

To the bilexical construction of § :3 . 3 ,  one may add detectors for special phrases. Consider the idioms (a) run 
scared, ( b )  run circles [aroun d NP}, and ( c )  run NP {in to  the groun d}. ( a) ,  like most idioms, is only bilexical, so 
it may be captured "for free" : simply increase the weight of the scared arc in 1·,.un/F  · .But because ( b )  and ( c)  
are trilexical , they require augmentation to the grammar . ( b )  requires a special state to be added to 1'run /F , so 
that the dependent sequence ( cir(:[es, aroun d) may be recognized and weighted heavily. ( c) requires a specialized 
lexical entry for into ;  this sense is a preferred dependent of run and has gromz d as a preferred dependent . 

'1 This scheme conflates the two semantically distinct parses of "intentionally knock twice" ; a later semanti c  component would 
have to resolve the scope ambiguity. 'The more powerful head automata of 33.6 could distinguish the readings, but at the cost of 
using a O ( n5 ) rather than O ( n3 ) parsing algorithm. 
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3.8 k-gram Tagging 

One may use the string-local constraints of § 2 . 4  to score dependency parse trees according to the trigram part-ofspeech tagging model of [Church 1988) .  Each input word w ( including ROO T )  is regarded as a confusion set over all tuples of the form ( t " ,  t ' ,  t ,  w ) ,  where t is a tag for ·w and t" ,  t' are tags for the two words that precede w. (Thus ,  V consists of  such tuples. ) The weight of  the tuple ( t" ,  t ' ,  t ,  w)  in  i t s  confusion set i s  log( Pr ( w  I t ) ·  Pr ( t  I t" ,  t ' ) ) .  The bigram ( t? ,  t � ,  t i ,  wi ) ( t �� 1 , t �+ l , t i+l , Wi+ i )  is an excluded bigram unless t �  = t �� 1 and t i  = t �+ l . Because of the excluded bigrams, any dependency parse tree has a fringe ( including ROO T )  of the form 
( BOS , BOS ,  t 1 ,  'W1 ) ( BOS ,  i 1 ,  i 2 ,  W2 ) ( t 1 , t 2 ,  t 3 ,  W3 ) . . .  ( tn - 1 , t 11 , EOS , ROOT ) 

Then the total vveight accruing to the tree from the confusion sets is 
log( Pr ( t 1  I BOS ,  BOS ) · Pr ( t 2  I BOS , t 1 ) · Pr ( t3  I t 1 , t 2 ) · · · Pr (EOS I tn - 1 , t 11 ) 

· Pr ( w1 I t 1 )  · · · Pr( wn I t n ) · Pr(ROOT I EOS ) )  
and to maximize this total is to maximize the probability product shown , j ust as [Church 1 988) does . k-gr ms for k > :3 may be handled in exactly the same way. Since the parser maximizes the above sum of confµsion-set ·weights an d the weights accruing from the cl oice of paths through the automata, grammatical structure also helps determine the highest-weighted parse. 
4 Cubic-Time Parsing 

This section begins by reviewing the general idea of chart parsing, presenting a general method drawn from context-free "dotted-rule'' methods such as [Graham et al. 1980,  Earley 1 970) . Second , we will see why this method is inefficient when applied to bilexical grammars in the obvious ,vay. Finally, a more efficient ( cubictime ) algorithm is presented, which applies the general chart parsing method rather differently. 
4 . 1  Generalized Chart Parsing Method 

The input is a string n = VV1 W2 . . .  Hl11 of confusion sets ( so each VVi � V ) .  C ( the chart ) is an ( n +  1 )  x ( n +  1 )  array. The chart cell Ci ,j holds a set of partial analyses of the input . Each partial analysis has a weight , and also a signature that concisely describes its ability to combine with other partial analyses . For each signature 
s , the subcell Ci ,j [s] holds the highest-weight partial analysis of the input substring l'l-'i+l  H7i+'2 . . .  llj for vvhich s is the signature. 5 

Let Discover( i , j, P )  be an operation that replaces C ,j [s ignat ure ( P )] with the partial analysis P if P has higher weight than the partial analysis currently in C\ ,j [signatv1·e ( P )] .  A basic chart-parsing method is then as follows: 
1.  for i :=  1 to n + l 

foreach -W E  H'i , where Hr
n+l = { RO O T }  ( *  seed chart with m embers of tht confus ion s e t *) 

3 .  foreach partial analysis a of  t he single word w 
1 .  Discover ( i  - 1 ,  i ,  a )  
s .  for wiclth := 1 to n + l 
6. for .start := 0 to ( n  + 1 )  - width 

end := .start  + width 

5 ln a more general conception, C\ ,j [s) holds a summary of all known partial analyses of M1i+ l W;+2 . . .  1111
j having signature s .  

Summaries must be defined in such a way that i f  f i s  an operation that combines two partial analyses, and A.  and H are sets of 
partial analyses of adjacent substrings, then s-u.mmary( { f ( a , b ) : a E A.  and b E H } )  must be computable from s 11-rnrnary (A )  and 
s-urnrnary ( B  ). ln addition. if A. and H are both sets of partial analyses of IV; + 1  IV;+2  . . .  11-·1 having signature s ,  then smnrnary ( A.  U 
H )  must be computable from s urnma.ry ( A. )  and sumrna.ry ( H ) ,  so that new analyses can be added to the chart. 

1n the usual case, where the ultimate goal of the parser is to find the highest-weight dependency parse tree, surnrna.ry(A.)  is just 
the highest-weight parse tree in A. ( or,  more generally, a forest of all parse trees in A. that tie for the highest weight ) .  However, 
if the parser is to return something else, one might set things up so that s-u.rnrnary ( A. )  was a list. of the 10 highest-weight parse 
trees in A.-or even something more out.re. lf the parser is being used only to do language modeling for speech recognition, for 
instance, and the goal is to minimize the per-word error rate, then the summary might give a posterior probability distribution 
over the confusion set. for the kth word, for each i < k � j; this would be determined by allowing the partial analyses in A. to vote 
in proportion to their weight. 
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s .  for mid : = start + l to end - l 
!i. foreach partial analysis a. in Cc tar t ,mid (* i . e . ,  each Cs t a r t , m i d [s] that is defined *) 
1 0 .  foreach partial analysis b in Cmid ,rn. cl 
1 1 .  foreach way of combining a. and b into a new weighted analysis c ( if any ) 
1 ::? .  Discover( sfa.rt , end ,  c)  
1 3 .  foreach partial analysis a .  in Co ,n+ 1 
H .  if signa.ture ( a. )  indicates that a i s  a full ( not partial ) analysis o f  t he sentence 
1 s .  then print a The iterations in lines 3 and 1 1  have yet to be defined ,  but the dynamic programming idea is clear ( and familiar ) :  analyses of length- I substrings can be created from the substrings themselves ( line 3 ) ,  and analyses of successively longer substrings can be created by gluing together shorter analyses in pairs ( line 1 1 ) ,  until we have one or more analyses of the whole sentence. In particular ,  the problem has the optimal substructure property : any optimal analysis of a long string can be found by gluing together just optimal analyses of shorter substrings . ( An optimal analysis is defined to be a partial analysis of maximum weight for its signature ; Discover( )  ensures that the cha.rt contains only optimal analyses. )  For suppose that a. and a.' a.re partial analyses of the same substring , and ha.�e the same signature , but a. has less weight than a.' . Then suboptimal a. cannot be  pa.rt of any optimal analysis b in the chart-for if it were ,  the definition of signature ensures that we could substitute a' for a. in b to get an partial analysis b' of greater total weight than b and the same signature as b ,  which contradicts b 's optimality. The algorithm's running time is dominated by the six nested loops , yielding time 0 (n3 S'2 d) . Here S' is the maximum number of possible signatures that may fall in a given cha.rt cel l ,  and d is the maximum number of ways to combine two adjacent partial analyses into a larger one. 

4 .2  Inefficient Chart Parsing of Bilexical Grammars 

How might we apply the above method to parsing of bilexical grammars? The obvious way is for each partial analysis to represent a subtree . More precisely, each partial analysis would represent a kind of dotted subtree that may not yet have acquired all its children . The signature of such a dotted subtree is a triple ( w ,  sew , srw ) ,  where w E V i s  an input word,  sew is a state of fw , and Sr w i s  a state of 1'w . I f  both S£ w and Sr w are final states , then the signature is said to be complete .  It is clear that in l ine 3 of the algorithm, the sole analysis a. is the triple ( w , start state of l\v , start state of 
1'w ) .  It is also clear that line 14 should ensure that we print only trees with complete signatures as analyses of the sentence . Finally, consider line 1 1 .  If a. has signature ( w , s.cw , srw )  and b has a complete signature , then there a.re m possible values of c in which b is attached to the root of the dotted subtree a. as a new right child . These analyses have signatures 

{ ( w , se w , 1· ( w , Sr w , w' ,  µ ) )  : µ E 1W} (where r ( 1.o , . . .  ) is the transition function of 1'w as defined in § 2 . 1 ) 
The case where a. is attached to the root of b as a new left child is similar , and may give another m values for c. \Vhy is this method inefficient? Because there a.re too many possible signatures. The probability with which b attaches to a. depends on the roots of both a. and b .  Since the root w of a could be any of the words at positions start + l ,  sta1't + 2, . . . mid, and there may be min( n ,  I V I )  distinct such words in the worst case , the number S' of possible signatures for a is at least min( n ,  I V I  ) .  The same is true for b, whose root w' could likewise be any of many words . But then the runtime of the algorithm is O ( n3 min( n ,  IVl ) 2 I M I ) � O (n5 ) .  In a nutshell , the problem is that each chart cell may have to maintain many differently-headed analyses . 
4 .3  Efficient Chart Parsing of Bilexical Grammars 

To eliminate these two additional min( n, !V I ) factors, we must reduce the number of possible signatures for a partial analysis. The solution is for partial analyses to represent some kind of contiguous string other than constituents .  Each partial analysis in Ci,j will be a new kind of object called a span, which consists of one or two "half-constituents'� in a sense to be described. The headword( s )  of a span in Ci,j are guaranteed to be at positions i and j in the sentence. This guarantee means that where Ci ,j in the previous section had n-fold uncertainty a.bout the correct location of the headword for the optimal analysis of VVi+ 1 VVi+2 . . .  H1j ,  here it will have only :3-fold uncertainty. The three possibilities are that Wi is an unattached headword , that Wj is ,  or that both are . 
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Given a dependency parse tree , we know what its constituents are : a constituent is any substring consisting of a word and all its descendants. The inefficient parsing algorithm of the §4 . 2  assembled the correct parse tree by finding and gluing together analyses of the tree 's constituents in an approved way. For something similar to be possible with spans, we must define what the spans of a given dependency parse tree are , and how to glue analyses of spans together into analyses of larger spans. Not every substring of the sentence is a correct constituent , and in the same way, not every subst'ring is a correct span. Figure l a.-b i llustrates what spans a.re. A span of the dependency parse tree in ( a )  and ( b )  is any substring Wi 'l.l1i+I  . . .  'Wj (j  > i )  of the tree 's fringe, such that none of the interior ,vords of the span communicate with any words outside the span . Formally: if i < k < j, and Wk is a dependent of 'Wk '  or vice-versa, then i � k' � j . Since we will build the parse by assembling analyses of spans , and the interiors of adj acent spans a.re insulated from ea.eh other , we crucially never need to know anything about the internal analysis inside a span . \¥hen we combine two adjacent spans, we never add a link from or to the interior of either. For ,  by the definition of span, if such a link were necessary, then the spans being combined could not be spans of the true parse anyway. There is always some other way of decomposing the true parse ( itself a span ) into smaller spans so that no such links from or to interiors are necessary. Figure l e  shows such a decomposition . 6 Any span of greater than two words, say a.gain from 'U'i to 'Wj , can be decomposed uniquely by the following deterministic procedure . Choose i < k < j such that w1., is the rightmost word ( strictly inside the span ) that connects to wi ; if there is no such word ,  put k = i +  l .  Because crossing l inks are not allowed , the substrings from Wi . . .  w1.: and w1.: . . .  Wj must also be spans . \V"e can therefore assemble the original 'Wi . . .  'Wj span by concatenating the 'l.l1i . . .  w1., and 'WJ., . . .  Wj spans, and optionally adding a link between the end words, 'l.l\ and Wj . By construction , there is never any need to add a link between any other pair of words. Notice that when the two narrower spans a.re concatenated , w1.: gets its left children from one span and its right children from the other . The procedure for choosing k can be rephrased declaratively. To wit , the left span in the concatenation , 
Wi . . .  w1.: , must be si111ple in the following sense : it must have a direct link between 'U\ and w1., ,  or else have only two words . It is useful to note that the analysis of a span always takes one of three forms ; Figure lb  illustrates the first two- ( la.beled "yes" ) .  In the first case , the endwords tl'i and Wj are not yet connected to each other: that is, the pat.h between them in the final parse tree will involve words outside the span.  Then the span consists of two "half-constituents"-wi with all its right descendants , followed by Wj with all its left descendants. Wi and Wj both need parents. In the second case, Wj is a descendant of U\ via a chain of one or more leftward links within the -span itself; then the span consists of Wi and all its right descendants to the left of Wj ( inclusive ) ,  and only Wi still needs a pa.rent . The third case is the mirror image of the second. ( It is impossible for both 'l.l\ and Wj to both have parents inside the span : for then some word interior to the span would need a pa.rent outside it . ) The signature of a span does not have to state anything a.bout the internal analysis except which of these three cases holds-i . e . ,  which of Wi , Wj need pa.rents . This is needed so that the parser knows when it is able to add a link from i or j to a more distant word after concatenation , without creating multiple parents or otherwise j eopardizing the form of the dependency parse . To determine the allowability of the dependent introduced by such a new link , or the weight associated with i t ,  the signature of a span from Wi to Wj must also include the states of the automata. 1\v ; and lwi . vVe can now understand the actual algorithm . It is convenient to slightly alter the definition of Ci ,j , so that it stores the best analysis ( as a span ) of H1d1Vi+ 1 . . .  lVj . 7  vVe may represent an analysis of a span as a tuple ( linktype , a, b ) ,  where linktype specifies the label ( E M )  and direction of the link , if any, between the leftmost and rightmost words of the span ,  and where a and b point to 'the narrower spans that were concatenated to obtain this one. If the span is only two words wide, then we represent an analysis of it as ( linktype , w 1 , w:� ) so that the analysis specifies the words it has chosen from the confusion set . As usual , the analyses we discover in a cell of the cha.rt a.re organized into competitions or subcells by their sig1la.tures . The signature of an analysis has the form ( L? , R? , w L, w R, Sr , s c ,  sirnpl e ?) . Here L? and R? are boolean variables stating whether the leftmost and rightmost words have parents in the span . WL and WR are the leftmost and rightmost words of the span ( as chosen from the appropriate confusion sets ) .  Sr is the state 

6 [Lafferty et al. 1992] give a related decomposition for the case of link grammar, and use it .  to construct. an O ( n3 ) top-clown 
parsing algorithm. The bilexical parsing algorithm could be adapted to the case of link grammars, in which case it would resemble 
a bottom-up version of the independent algorithm of [Lafferty et a l. 1 992] . 

; Why not start with H-';+ 1 as in 34 . 1 '! Because the spans we concatenate, unlike constituents that we concatenate, overlap in 
one word. 

63 



of the leftmost word 's right-dependent automaton 1'w L after the automaton has read all the leftmost word's dependents within the span, and se is similarly the state of the rightmost word 's left-dependent automaton l\u R . Finally, simple? is true just if the span is simple , as defined above; we use this to prevent ourselves from finding the same analysis in multiple ,:va.ys. 
1 .  

3 .  

� -

5 .  

6 .  

8 .  

Q .  

1 0 .  

l l .  

1 2 .  

1 3 .  

1 4 .  

1 -5 .  

1 6 .  

17 .  

18 .  

l !:i .  

for i := 1 to n 
foreach Wi E ll/; , -Wi+1 E l1'Vi+ 1 such that 'Wi 'Wi+ 1 is not an excluded bigram , where ll'n+1  = { ROOT} 

foreach lin ktype E ( {-,  -} x M) U {NONE } 
Discover ( i, i + 1 ,  ( linktype , 'Wi ,  Wi+l )) ( *  s eed with t.wo-word spans *) for width := 3 to n + 1 

for start := 1 to ( n + 1 )  - width end := start + -width 
for mid := start + 1 to end - 1 

foreach partial analysis a, in C's tart ,rnid (* i . e . _.  a is each C, t a r t , m id [s] that is defined *) 
if sig ( a ) . simple? ( *  whe re s ig (a )  is just s from comment  above ; don't recompute  i t *) 

foreach partial analysis b in C'mid,1c. nd such t hat sig ( b ) .WL = sig( a. ) . WR 
(* so a, b agree on sense  of overlapping word *) 

if ( sig( a ) . R? xor sig( b ) . L ? ) ( *  overlapp ing word ge ts exac tly one  parent *) 
Discover ( sta.rt ,  end,  ( N O N E ,  a., b ) )  ( *  version without a co vering link *) 
if not ( sig( a ) . L ?  or sig ( b ) . R ? )  (* prevents multiple parents ,  link cycles *) 

foreach l·inktype E { -, -} x ivf 
Discover( start,  e nd, ( linktype , a, b ) ) 

foreach partial analysis a. in C'o , 11+ 1  
if sig( a ) . L ?  ( *  so  a i s  a connected tree roo ted at  R O O T  *) 

then print a 

Computing the signatures is fairly straightforward . For example, if l-inktype is rightward in line 1 6  ( making 
'Ws tart a dependent of 'We n d ) ,  then the new analysis ( linktype , a, b) has the signature ( TRU E ,  FALSE , sig ( a ) . 'WL , s ·ig( b ) . 'l.liR , sig (a ) . sr , 8 ( sig( b ) . sc ,  sig( a. ) .wL ) , TRU E )  

Computing weights o f  analyses i s  also fairly straightforward. In the above example, ( linktype , a ,  b)  has weight 
weight ( a. )  + weight ( b )  + a.1'cweight ( sig( b ) . se ,  sig ( a. ) .wL )  + stopwe ight ( sig ( a. ) .se ) + stopwe-ight ( sig ( b ) . sr ) 

Note the use of the final-state weights ,  stozn.ue ight , to reflect the fact that the overlapping word Wrnid ( see line 1 1 )  can no longer get new children once it is hidden in the interior of the span. 8 For a two-word span ( linktype , Wi , Wi+ l ) with rightward link ,  as created in line 4, the weight is a1·cweight( wi+ 1 . START , wi ) plus the weight of wi ( only ! )  in its confusion set . The algorithm requires 0( n 2 S) space for the cha.rt , where S is the maximum number of signatures per cel l .  The running t ime is a.gain dominated by the s ix nested loops. It is  O ( n3 • S2 • I A1 1 ) .  Given the definition of signatures , S = O(g2 t '2 ) ;  that is, it is bounded by a constant times ( max size of confusion set, ) 2 t imes ( max states per a.:utoma.ton )2 . ( Crucially, there a.re only g choices for ea.eh of 'WL and 'WR . )  Thus, the grammar constant S is typically small .  ,vith careful coding it is possible to improve the runtime somewhat , from O(n3g4t4 I A1 1 )  to O ( n3
g

3t 2 m ) .  Perhaps only some link types a.re possible i n  line 1 5 ,  so I A·f l can be replaced by 1n. We can save a. factor of g at line 1 1 ,  because the restriction on sig( b ) .wL means that we only need to iterate through S/g of the signatures. Finally, we can reduce S to just O(g2 t ) ,  which helps both t ime and space complexity. Instead of Discover() using a. single cha.rt to maintain the best analysis with signature ( L? ,  R?, WL , WR , sr , se , s irnple? ) ,  it will use two charts to maintain , respectively, the best analyses with signatures ( L? ,  R?, WL , WR, sr , HALTED ,  simple? )  and 
( L? ,  R?, WL , WR ,HALTED , s e , simple? ) .  Ea.eh of these two analyses has already had one stopweight added to its weight . The algorithm should now be modified to select a from the first chart and b from the second cha.rt .  
5 Conclusions 

This paper has introduced a .  new formalism, weighted bilexical grammars , in which individual lexical items can have idiosyncratic selectional influences on ea.eh other. Such "bilexica.lism'' has been a theme of much current 
8 ln the case where start = 0, also add stopweight ( sig ( b ) .s c ) ;  if end = n + I ,  also acid sto7n.ueight ( sig ( a ) .sr ) .  
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work . The new formalism can be used to describe bilexical approaches to both dependency and phrase-stru cture grammars, and its scoring approach is compatible ,vith a wide variety of probability models . The obvious parsing algorithm for bilexical grammars ( used by most authors ) takes time 0( n5 ) .  A more efficient 0( n3 ) method is exhibited . The new algorithm has been implemented and used in a large parsing experiment [Eisner 199Gb] .  
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In wide-coverage lexicalized grammars many of the elementary structures have substructures in common. This means that during parsing some of the computation associated with different structures is duplicated. This paper explores ways in which the grammar can be precompiled into finite state automata so that some of this shared structure results in shared computation at run-time. 
1 Introduction 

This paper investigates grammar precompilation techniques aimed at improving the parsing · performance of 
lexicalized grammars. In a wide-coverage lexicalized grammar, such as the XTAG grammar (XTAG-Group, 
1995), many of the elementary structures1 have substructures in common. If such structures are viewed as 
independent by a parsing algorithm, the computation associated with their shared structure may be duplicated. 
This paper explores ways in which the grammar can be precompiled so that some of this shared structure results 
in shared computation at run-time. 

We assume as a starting point a conventional kind of parser for lexicalized grammars (such as Vijay-Shanker 
and Joshi (1985), Schabes (1990), Vijay-Shanker and Weir (1993) for LTAG), although the techniques described 
here are not restricted to the specific details of any particular parsing algorithm. Our approach is based on the 
observation that the process of traversing an elementary structure (ES) during parsing can be expressed as a finite 
state automaton (FSA), and hence that the whole parsing process can be viewed in terms of interacting FSA's2 • 

By doing this, it becomes possible to apply standard FSA optimisation techniques (such as determinisation and 
minimisation) to sets of ES's, and to vary control strategy on a per-ES basis to achieve optimum results. 

We shall begin by describing how an ES can be mapped onto an automaton, and how a conventional parsing 
algorithm can be adapted to work with such automata. Then, using a family of related ES's we shall give 
two examples of optimisation of the processing of ES's through a deterministic merging of their corresponding 
automata, and show how different control strategies yield different optimisations. We will illustrate the approach 
using Lexicalized Tree Adjoining Grammars (Joshi and Schabes, 1991), but we note that the techniques described 
here can also be applied to other lexicalized grammar formalisms3 . 

2 Automaton-based parsing of LTAG 

Generally speaking, parsing algorithms for LTAG have the property that a traversal is made through the nodes 
of elementary trees (the 'elementary structures' of an LTAG grammar). In bottom-up parsers, for example, this 

1 We use the term elementary structures to mean the basic components of grammatical description. In LTAG (Joshi and Schabes, 
1991) ,  for example, the elementary structures are initial and auxiliary trees. A grammar consists of a finite set of elementary 
structures that are built into derived structures using the composition operations of the formalism. 

2 Cf. Alshawi ( 1996) for a similar approach. but with different objectives and a different style of formalism. The approach we 
present here is also reminiscent of LR parsing in that the FSA used by an LR-parser to recognize viable prefixes can be viewed 
as the result of determinizing a nondeterministic finite state automaton constructed by linking with E-transitions deterministic 
automata for the individual productions. 

3The second author is currently involved in the development of a wide-coverage grammar and automaton-based parser using the 
formalism described in Rambow, Vijay-Shanker, and Weir ( 1995) . 
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involves traversing the trees from the anchor of the tree ·up to its root as more and more of the input is spanned 
to the right and left of the anchor. Hence, the recognition of an elementary tree can be seen to involve a sequence 
of computation steps: eg, "find an NP to the right, then find a PP to the right and then find an NP to the left" . 
The particular sequence of steps is determined by the tree structure and the labels attached to substitution 
(and adjunction) nodes. We shall call each of these steps an elementary computation step (or ECS) and 
the sequence corresponding to the processing of an entire elementary tree an elementary computation. 

Consider, for example, the ditransitive tree given in Figure 1. A bottom-up parser will initially anchor this 
tree on an actual ditransitive verb in the input and start its traversal at the 'v' node. If a noun phrase is 
detected to the right of the verb, the first ECS will be to consume it and move to the 'npl '  node. A preposition 
to the right of that will generate a second ECS, moving to the 'p '  node, then an additional noun phrase will 
take it to the 'np2' node. Here the traversal continues to the 'pp' node and then the 'vp' node with no further 
inputs (and so no elementary computation steps) ,  and so the final ECS consumes a noun phrase to the left , 
taking the parser to the 'np3' node, and from there straight to the 's '  node. 

s 

� 
np3 vp 

� 
v npl pp 

� 
p np2 

Figure 1 :  A di transitive verb tree 

This description of the processing clearly invites representation as a finite state automaton, and a possible 
automaton is given in Figure 2. This automaton has five states, with each transition between states corre
sponding to an ECS. The input language for the automaton consists of tokens representing parse table states 
that trigger the ECS ( "NP to the left" , notated as Jr, for example). The additional loop attached to the 
fourth node allows for optional adjunctions at the 'vp '  node (notated as �' and triggered by the presence of 
a complete auxiliary tree enveloping the completed 'vp' subtree). These introduce arbitrarily many additional 
ECS's without changing the state in the automaton, that is, without traversing the underlying elementary tree 
at all. 

B vp 

�Q--iL-�o np .,9 � P-0 
Figure 2 :  Finite state automaton for the ditransitive verb tree 

Automata such as this can be 'executed' by a parser in a manner similar to a conventional tree traversal 
approach. The parser manipulates a table associating automaton states with segments of the input string 
(represented as quadruples of indices, or pairs of indices together with a stack of tree addresses - see Vijay
Shanker and Weir ( 1993)) .  The table is first populated with initial states for all the automata associated with 
trees anchored by the words in the input string. Thereafter , elementary computation steps are triggered by the 
presence of final states in the table. Final states are labelled with the tree they represent (such as the label ' 1 '  
i n  Figure 2 ) ,  and from this the parser can recover the information required to licence a new ECS - the root 
category of an initial tree (to licence a substitution) or the head and foot node categories of an auxiliary tree (to 
licence an adjunction). The parser looks for adjacent table entries encoding automata states that are waiting 
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for this ECS trigger (on the appropriate side). When such an adj acent entry is found, the ECS is executed by passing the trigger as input to  the automaton, making a transition to a new state in the automaton, and then creating a new tab le entry for the new state spanning a suitably enlarged input segment. The control strategy for identifying and executing ECS's is a detail of the parsing algorithm that need not concern us here. Parsing t erminates when no further ECS ' s  can b e  generated. At that point any tab le entries containing a final state of some automaton and spanning the entire input correspond to parses. Reading off a parse tree may involve further work, however. Not ice that the automaton in Figure 2 does not directly encode all the structure of the tree, and could in fact correspond t o  a number of well-formed trees. But the tree label associated with its final state does provide the additional information we need to derive a tree from the parse tab le4 . As presented so far, this transformation from trees to  automata is straightforward and we will not dwell on the details of its application to  any specific parsing algorithm here. Instead we will focus on the pot ential for exploiting the automaton-based representation more fully. For although the transformation is straightforward it is not completely trivial: there is a significant difference between the tree-based and the automaton-based parsers, and it is a difference in the distribution of control information. In the tree-based parser, the trees are passive data structures which are traversed in an order specified by the parsing algorithm. In the automatonb ased parser, some of this control is vested in the automata themselves, rather than the parsing algorithm. The parser still controls the overall order of execution of ECS's, but the effect of an ECS on a particular automaton is determined by the automaton, not by the parsing algorithm. There  are two consequences of this that we will pursue  in the rest of this paper :  • The parser can operate on any automata over the ECS input language - it does not depend on one particular mapping from trees t o  individual automata. This means we can use standard t echniques for merging automata for several trees together into optimal combined representations, resulting in automata that implement several trees at once. This result s in greater parsing efficiency, without having to change the parser or the grammar. • Each automaton encodes a control strategy for traversing the corresponding tree ( or set of trees) . In the example above we chose one particular traversal, but others are also possible. There is no requirement that the same strategy b e  used in all the automata, since the parser just follows the automata specifications b lindly. So we can consider different strategies giving different optimisations for different parts of the grammar. 
3 Some Examples In this section we shall explore these ideas in more detail, by looking at a particular set of related trees, and some of the automata that can b e  derived from them. The trees we shall use are all pot entially anchored by the same surface word so it is likely that they would all need to be considered together during a parse. We will describe automata corresponding to two different traversals of these trees, and show the different result s that are obtained by determinising the union of all the automata in each case. 
3 . 1  The Trees The set of trees we shall consider are a selection from the di transitive verb family, including the basic di transitive itself and some (but by no means all) of its regular syntactic and semantic alternations. One feature of these trees is that they can all b e  anchored by the same word ( a present participle or gerund form, such as ' giving' ) ,  so  that a parser may need t o  consider all of them simultaneously during parsing. Tree 1 is the basic ditransitive form itself, which we take to include a noun phrase and a prep ositional phrase. We assume here  that ' v' is the lexical anchor and that adjunction can only occur at the ' vp '  node. Not e  that although this tree is potentially complete for finite verb forms, our example sentence uses a present participle, which requires the adjunction of an auxiliary verb to  form a valid sentence. In our example sentences, we shall indicate such additional words, not contained in the actual tree, but putting them in parentheses. Other adjunctions ( of adverbial modifiers etc.) are also p ossible. Trees 2 and 3 are the regular transitive and intransitive alternants that any ditransitive verb has (where the missing complements are left unsp ecified) , 

4For a simple recognizer, it is sufficient to label the final states with the category information the parser actually requires to 
identify ECS's - see also Section 3 .2 below. 
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np vp 

� 
V 11p pp , 

� 
p 11p 

Tree 1 :  Ditransitive 
Mary {is) giving presents to the children 

s 

� 
np vp 

/ 
Tree 3: Intransitive 

Mary {is) giving 

s 

11p vp 

� 
np 

Tree 2: Transitive 
Mary {is) giving presents 

np vp 

� 
np np 

Tree 4: Dative 
Mary {is} giving the children presents 

Tree 4 assumes that we are in the specific subclass of ditransitives that can undergo dative movement, and 
provides the appropriate double-np subcategorisation for it. 

Trees 5-8 represent the wh-relative versions of Trees 1-4. Note that these are in fact auxiliary trees which 
can be adjoined into noun phrases. As well as having extra structure to support this, the subject position is 
marked as a 'wh' form. As before, adjunctions can take place at the 'vp' node. 

nom 

� 
110ll1 S 

wh vp 

� 
V 11p pp 

� 
p np 

Tree 5:  WR-ditransitive 
(someone) who {is) giving presents to the children 

110111 

� 
110111 S 

wh vp 

/ 
Tree 7: WR-intransitive 

(someone} who {is) giving 

110111 

� 
110111 S 

wh vp 

� 
11p 

Tree 6: WR-transitive 
{someone} who {is} giving presents 

110111 

� 
110111 S 

wh vp 

� 
11p 11p 

Tree 8: WR-dative 
{someone} who {is} giving the children presents 

Trees 9-11 provide nominal variants of the ditransitive, transitive and intransitive forms, using a gerund. 
Here, the object noun phrase (when present) has become a prepositional phrase, and the trees represent a 
noun-phrase with a determiner rather than a sentence with a subject. Adjunction can only occur at the 'nom' 
node5 • 

In all we have eleven trees, all anchored in the same word, and all clearly duplicating structure. There are 
many other trees in this family including those for topicalized sentences and wh-sentences. By mapping these 

5This is not the only possible analysis of gerunds of course, but it is adequate for present illustrative purposes. 
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� 
dclp nom 

� 
V pp pp . 

� �  
p np p 11p Tree 9: Ditransitive gerund 

the giving of presents to the children 

detp 110111 

Tree 1 1 : Intransitive gerund 
the giving 

detp nom 

� 
V pp 

� 
p 11p Tree 10: Transitive gerund 

the giving of presents 

eleven into automata, we aim to collapse some of this structure using standard automata techniques, and so 
make parsing of this tree set more efficient . In general there is more than one way to do this, and the following 
two subsections illustrate two possibilities. 

3.2 Bottom-up traversal 

Our first example takes these eleven trees and applies the same traversal as we introduced above - a bottom-up 
traversal that builds complete local trees working from the anchor outwards before moving to higher structure. 
Figure 3 shows the resulting eleven automata. 

The automata transitions are labelled according to the convention for elementary computation steps intro
duced above. Jp denotes substitution of a noun phrase on the left , np denotes substitution of a noun phrase 
on the right and � denotes adjunction at a verb phrase node. The final states are labelled with the number of 
the tree that they complete. 

The first step in optimising these automata is to union them into a single (nondeterministic) automaton by 
introducing a new initial state and E-transitions from it to the start states of each of the above automata. Once 
this has been achieved, we can then reduce and determinize the resulting automaton, and this gives us the 
automaton in Figure 4. Here, as well as the labels on the final states , we have labelled non-final states with the 
list of tree numbers (in italic script) whose EC passes through that state. This is not relevant to the parser, 
but may make the diagram easier to follow. 

How does this automaton compare with the original eleven? It is difficult to compare the behaviour of one 
automaton with that of eleven operating in concert without committing to a particular parsing algorithm. So 
it may be more useful to compare our determinized automaton with the single union automaton described in 
the previous paragraph. Even then, it is not clear what metrics might be lead to useful comparisons, but the 
following three (interrelated) metrics seem to provide interesting insights :  
1. the total number of states in the automaton, as a basic indicator of complexity. 
2 .  the average number of trees per state: each state represents a point in the traversal of one or more of the 

trees. By averaging the number of trees associated with each state, we get a measure of the amount of sharing 
that has been achieved. In each of the original automata this figure is 1 (and in the union it is close to 1 ,  the 
additional start state introduces a little sharing) ,  but higher numbers -reflect more sharing of structure. 

3. the representational expansion factor, that is, the ratio of the number of tree/state combinations compared 
with the original automata. Larger values for this ratio represent the introduction of additional structure not 
present in the original representation (for example to ensure determinism). 
The table in Figure 4 gives values for these metrics for the union automaton and the determinized automaton. 

We can see from these figures that we have nearly halved the number of states with every state doing work for 
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two trees on average. The expansion factor reflects the introduction of new states to cope with the optionality 
of adjunction in a deterministic setting. The· third line of results is for a version of the determinized automaton 
which only performs recognition, included for interest although we have not included the automaton itself. As 
we noted above, a recognizer need only distinguish the category information associated with final states, not 
the licencing tree, and this results in additional sharing of structure. In this case the improvement is even more 
marked - a fourfold improvement in size on the original automata. 

3 .3  Left-right traversal 

The English grammar used in the XTAG system (XTAG-Group, 1995) has the property that foot nodes of 
auxiliary trees are always at the extreme left or extreme right of the tree. This means that when adjunction 
takes place all the nodes of the adjoined tree lie to the · right or to the left of the node at which adjunction 
occurred. For grammars with this property we can distinguish between left adjunct ion (where the foot is on the 
extreme right of the tree) and right adjunct ion ( where it is on the extreme left) , and assume that these are the 
only kinds of adjunction that occur, that is , that no two-sided adjunctions occur. 

The previous example used a traversal of the trees which built complete structures bottom-up before moving 
to parent nodes. If no two-sided adjunctions are permitted, we can consider a different traversal, which attempts 
to work left first and then right , independently of local tree structure. Using the same trees and starting at the 
'v' anchor node, this time we look first for left adjunctions at the parent 'vp' , then for a subject , and only then 
do we look for complements and finally right adjunctions. For the same eleven trees introduced above, the set 
of automata resulting from this traversal is given in Figure 5, and the determinized version in Figure 6. We use 
-!- vp to denote the left adjunction of a 'vp' auxiliary tree and vp -!- to denote right adjunction of a 'vp' auxiliary 
tree. As in Figure 4 we have annotated states with the numbers of trees whose EC passes through that state, 
but notice that in this case some states are final for one tree, but non-final for others. 

The values for the three metrics introduced above are also given in the table in Figure 6. From these figures 
we see that something slightly different has happened. Although the determinized automata have the same 
number of states in the two examples , in this second case the amount of sharing is also higher, but this is 
counterbalanced by the expansion factor . Looking closely at the automaton, we see that there is more effective 
sharing of state (because the left hand sides of our trees are more similar than the subcategorisation frames, 
roughly speaking), but we also had to introduce more states to cope with the splitting up of the adjunction into 
two phases. The figures for the recognizer are still significantly better, but there seems to have been less scope 
for compression, again due to the need for expansion to cope with the adjunctions. 

4 Discussion 
We have presented a formulation of lexicalized grammar parsing that lends itself to a range of precompilation 
optimisations, and given examples of two such precompilations. One issue that we have not yet made clear is 
exactly which sets of trees should be precompiled in this way. In a lexicalized grammar, the usual distinction 
between the lexicon and the grammar is reflected in the distinction within the lexicon between the Elementary 
Structures Database and the Word Database: 

• The Elementary Structures Database (ESD) is a set of unanchored ES's (typically several hundred) . An 
unanchored ES is one in which no lexical item has been · associated. Collections of related ES's are often 
organized into families. 

• The Word Database (WD) is an association of words (perhaps several hundred thousand) with those elements 
of the ESD that they can anchor. Typically a word will anchor all the members of a family, and may anchor 
structures from several families. 

This architecture has interesting consequences for our precompilation approach. The set of ES's associated 
with a given lexical token seems an obvious target for FSA optimisation. However, many tokens share their set 
of ES's with other tokens, often many other tokens. The distinction between the ESD and the WD allows us to 
optimize structure in the ESD only, so that these tokens can continue to share the optimized structures. On the 
other hand some tokens have overlapping but non-identical ES sets. ES's in the intersection may be integrated 
into two different automata, possibly in different ways, optimized to the particular requirements of each token. 
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But this apparent duplication of grammatical structure has no processing disadvantage, since only one of the two representations will ever be associated with any given input token (though they may both be active in the parse as a whole) . We saw above that alternative traversals of the underlying elementary structures leads to different automata, and hence different merging of elementary computations. B ecause the parser operates directly on the automata, different choices of traversal are equally valid, and will result in different parsing strategies . In fact, there is no reason why different parts of a single grammar should not use different traversals.  This might b e  motivated by the linguistic structure (strategies for verbal or nominal subcategorisation might differ from those for coordination, for example) , or by the relative sizes of the automata themselves, but a particularly interesting approach would b e  to try and optimise performance on a statistical basis .  Time is wasted during parsing when locally licensed ECS's are made in situations that cannot lead to complete parses .  Let us call these usel ess steps. since the order of ECS's in an elementary computation varies from one traversal to another, it is possible that some traversals will lead to less occurrences of useless steps than others. It should, in principle, b e  possible to use the information provided by a large parsed corpus to select traversals that minimize the number of useless steps that will arise. Finally, it is interesting to note the duality b etween the kind of optimisation proposed here and the more traditional representational optimisation through the expression of linguistic generalisations. We have previously argued (Evans, Gazdar, and Weir, 1995) that lexicalized grammars can b enefit from the representational tools developed for lexical representation (such as inheritance hierarchies, exceptions and lexical rules) . The present work does not exploit such generalisations at all, but rather assumes a completely flat base grammar. The implicit architecture promoted here views optimisation for parsing as independent of linguistic generalisation. To a large extent this is a .consequence of the underlying parsing framework ( which also cannot exploit lingusitic generalisations) .  It would b e  interesting further work to explore the relationship b etween these linguistic and parsing optimisations, to see, for example, whether linguistic generalisations might inform the optimisation process, or conversely whether they might arise as emergent properties of parsing optimisations carried out for other reasons, or else to conclude that the two are indeed b est treated as independent aspects of language structure. 
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Abstract 
This paper presents a robust system for deep syntactic parsing of unrestricted French. This system uses tech-

niques from Part-of-Speech tagging· in order to build a constituent structure and uses other techniques from depen
dency grammar in an original framework of memories in order to build a functional structure . The two structures are 
build simultaneously by two interacting processes. The processes - share the same aim ,  that is, to recover efficiently 
and reliably syntactic information with no explicit expectation on text structure. 

1 Introduction This paper describes a robust system for deep syntactic parsing of  unrestricted French . In  this system , deep syntactic analysis means identifying constituents and linking them together . A brief presentation of the problematics will clarify the choice we have made. In western-european natural languages such as French , both constraints and liberties exist in respectively t\:vo distinct levels . The stylistic liberties of the French author ( Moliere, 1670) i llustrate this phenomenon in the famous following lines: 
"[Belle marquise}, [vos beaw: yem-J {me font} {mouri·1-J [d 'amom- J" 

''[D 'amour] [mourir} {me font}, [belle ni.arquise], [vos beautr: ye'UJ.}" 
//[Vos beaux yev:1.,-J [d 'arnom-J [me font}, [belle marquise}, [mourirr The order of small chunks of words ( here bracketed ) is fairly free . However , we point out a roughly fixed wordorder within these chunks which strong constraints are applied to. These two kinds of opposite and independent behaviors in two distinct levels led us to consider that these levels could not be managed properly with a unique process and a unique representation. One will note that chunks are traditional syntactic groups as defined in ( Le Goffic , 1 993 )  without their dependents 1 . These chunks are Non-Recursive phrases ( nr-phrases ) .  The first level ,  called word-level , i s  achieved within the framework of partia.l parsing also called shallow parsing (Voutilainen and Ja.rvinen , 1 995 ; Abney, 1 996 ;  Chanod and Tapanainen , 1 996 ) :  it uses Part-Of-Speech Tagging and Chunking techniques in order to reliably and efficiently build up nr-phrases on unrestricted texts. The second level , called nr-phrase-level , works with no explicit expectation on the input structure in order to deal with unrestricted text . We have developped our own approach to relations computation by revising the definition of specifying them . This approach allows a flexible management of both short and long dependencies . Moreover , it intrinsically enables the interaction with higher-level knowledge sources required in a framework of deep syntactic analysis . Each of the two levels has its own process and its own representation ; both representations are build simultaneously by the two interacting input-driven processes . The interaction is a requirement since many ambiguities arising at word-level can not be solved reliably there ; the nr-phrase-level helps solving them. Hereafter, we first describe the architecture of the parser . Then , we introduce the reader to the building of nr-phrases . Then , we emphasize on the way of linking nr-phrases together . After presenting how the two levels interacts, a concrete analysis is detai led . Then , we show the adequacy of the model , studying the resolution of some major l inguistic problems . Finally, a precise evaluation is carried out, empirically demonstrating the adequacy of our novel concepts .  

1 Dependents are excluclecl in order to u nify the representation of contiguous and discontiguous dependents . 
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2 The Architecture The architecture of the process combines two techniques : ( 1 )  partial parsing, or more precisely Part-Of-Speech tagging techniques at word-level that build a constituent structure (each constituent is an nr-phrase) ; ( 2 )  dependency rules at  nr-phrase-level that link nr-phra.ses to build a functional structure . In our approach , both constituent and functional structures are build simultaneously by two interacting processes . The analysis is carried out as shown in figure 1 .  

Figure 1 :  Process o f  analysis Figure 1 shows two processes , labelled 1 and 2, managing respectively the word-level and the nr-phra.se-level . The first process assigns tags to each part-of-speech and defines nr-phrase boundaries , shown as square brackets ( section 3) . The second process defines relations between nr-phra.ses ( section 4) . The two labels O' and /3 show the interactions between word-level and nr-phrase-level ( section 5) . The execution of an entire basic cycle of deductions is successively :  1 ,  O', 2 ,  ;3. The parse is done from left to right with a possible change of past deductions ( and their consequences) when new knowledge invalidates them . Let us now describe precisely the two processes and their interaction . 
3 Building Non-Recursive phrases 
3 . 1  Framework Word-level builds up nr-phrases with the help of an extended Part-Of-Speech ( POS)  tagger using hand-coded affirmative rules . In rule-based POS tagging , two approaches exist . In the negative approach , a set of tags is first assigned to ea.eh token then contextual rules try to discard tags in order to avoid impossible contiguities. In the affirmative approach , contextual rules assign tags which are certain in the local context . While tagging , two special tags are assigned as nr-phrase boundaries ( beginning/end of nr-phra.se ) .  The nr-phrases correspond to "chunks" as defined in (Abney, 1996 ) .  I n  this section , the problematics o f  tagging is assumed t o  b e  known and will not b e  completely detailed . Specific features required for the genera.I understanding of the whole system are described and several tagging improvements are suggested . 
3 .2  Tag Assignment The tagging is achieved in two steps: an initial step which can be seen a.s a bootstrap for a second step , called the deduction step . The initial step is first to assign grammatical words with their most likely tag .  One will note that during the deduction process, contextual rules may change these default tags . For instance , in French the ambiguity determiner/clitic2 is solved by assigning the default tag determiner. Subsequently, contextual rules may change this tag into clitic if a. personal pronoun , an other clitic or a. verb appears in its local context . This process has a. close relative in ( Cha.nod and Tapanainen , 1 9956; Constant , 1 99 1 ) .  In (Brill , 1995 ) ,  most l ikely tags are not only assigned to grammatical words ( or most frequent words) but also to every other word . 

2 Clitic:  French adverbial pronouns ( en, y )  and object personal pronouns ( le .  la ,  les, lu i, lett r, l ' )  always next to the verb. 
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In the initial step , we also use a lexicon containing all inflexional information on verbs ( and their explicit polycategory ) and a guesser that studies endings in order to give default assignments to other lexical words . Explicit polycategory of lexical vmrds is pointed out by assigning sets of tags. During the deduction process , contextual rules may change the default tags to handle the incompleteness of knowledge(see section 3 .4 ) . In the deduction step , all the rules have the following template : "the tag of this word is in this set of tags in this  local context" . Obviously, the set of tags contains only one item if the context is not ambiguous . If  a set of tags is already assigned to a word , the intersection of the two sets is assigned to the word. If the intersection of the two sets is empty, the old set of tags is replaced by the new one . While tagging, two special tags a.re assigned as nr-phra.se boundaries ( beginning/end of nr-phrase) .  The nr-phrases correspond to "chunks'' as defined in (Abney, 1996 ) .  This is a generalization of "baseNP" used by ( Collins ,  1996)  or of minimal NP to every other kind of phrases (e .g . ,  verbal , adjectival ) .  The syntactic features of nr-phrases a.re defined by the interaction a with the nr-phra.se-level ( see section 5 . 1 ) .  
3 .3  Access t o  Knowledge Sources In the earlier version of our system, access to the lexicon was always done first , then to morphological information and finally to contextual information . This strategy is also chosen in most systems but is this strategy the best one ? Tests show that about 85% of the default tags that are assigned in the initial step a.re not changed by the contextual rules . However , contextual rules that change default tags always replace them ignoring their default value. Moreover , the changes done by the contextual rules a.re always right . Thus,  in order to express that contextual information is always stronger than lexical and morphological information , the latter should only be accessed when no more information can be found through contextual deductions rather than be accessed solely in the initial step. Here is a.n analysis of the tagging process for je le bois (I drink it) . Notation : 

la l . l -t : ex1ca. access, � : contextual information access . Tagging with lexical access first :  je  le bois � jePP le  bois � jePP le dtt bois � jePP le de t boisvbjnm � jePJJ lepo boisv bjnm � jePP lepo boisvb · Tagging with lexical access when required : je le bois � jePP le bois � jePP Lepo bois � jePP lepo boisvb · A partial implementation of this principle has been carried out and already shows a better interaction between the knowledge sources . 
3 .4  Handling Double Incompleteness of Lexicon vVhile processing unrestricted text , the problem of incompleteness of lexical knowledge is often pointed out .  The incompleteness of lexicon i s  partly clue t o  unknovvn words , such a.s domain-specific words , borrowings from one language to another , neologisms, spelling mistakes and so on (Cha.nod and Ta.pa.na.inen , 1995a) . It is also due to an interesting effect of missing categories for particular words in the lexicon . The use of guessers is a traditional way to deal with unknown words but its sole advantage is to partially overcome one ea.use of the incompleteness. Furthermore, guessers can introduce irrelevant tags on unknown words and are efficient only on highly inflected languages . For these reasons , we have to find out complementary ways to handle incompleteness of lexical and morphological knowledge if we want to be able to deal with the common problems which usually arise while processing unrestricted text . In this system, using the fact that contextual information is stronger than lexical and morphological information,  we have added many affirmative contextual rules which can partially handle the two causes of incompleteness . For instance , a rule such as ''after a personal pronoun , there is a verb" can handle sentences such a.s ''je positive." where positive is first person singular present of the verb positiver, a neologism that probably can not be found in a lexicon . This kind of rules can also deal with missing categories . For instance , if 
bois only occured as a verb in the lexicon (I drink ) ,  contextual rules could deduce i t  can also be a noun (wood) as in "dans le bois" ( in the wood ) .  
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It is interesting to notice that negative constraints can not be used in this case since they discard tags assigned by a previous access to lexical or morphological information . 
3 . 5  Reliability of Local Deductions We saw in the introduction that nr-phrase order is fairly free , therefore, contiguous words of different nr-phrases are not supposed to have any relations . With respect to this principle, when the local context defined by an nr-phra.se contains too little information , some words should remain ambiguous since they can not be disambiguated reliably enough at word-level by POS tagging techniques . In other words, reliable deductions are those whose context has a scope restricted to one nr-phrase, using its inside strong syntactic constraints.  Involving information outside this scope is not reliable since deductions that have a scope of several nr-phrases can not capture linguistic generalities . Thus at word-level , we try to write rules propagating contextual deductions on words , and this solely within nr-phrases . Usually, these rules involve a grammatical word which helps categorizing the contiguous lexical words of their chunk . Remaining ambiguities are solved by the interaction with higher-level knowledge involved at nr-phrase-level . 
4 · Linking Non-Recursive phrases 
4. 1 Framework The linguistic background of our work is based on the work of Lucien Tesniere (Tesniere , 1 959 ) .  From his first approach to dependency definition "Between a word and its neighbours, the mind foresees some connections." , we have derived our own concepts for specifying nr-phrases relations.  vVe have pointed out that the traditional static descriptive relation definition is not precise enough in order to be used efficiently in a parsing process. Thus , we introduce a dynamic analysis-oriented relation definition , that takes into account the linking constraints of the other relations . In our system , we have implemented this definition so that it handles all major dependency relations , the coordination relation and the antecedence relation . The approach revises the notion of dependency as a relation between nr-phrases , and not between words , as opposed to (Covington , 1 990 ;  Covington , 1 994 ; Tapanainen and Ja.rvinen , 1997 ) . As said in ( Abney, 1 996 ) ,  "By reducing the sentence to chunks [i .e . , nr-phrases] , there are fewer 1.lnits whose associations m1.lst be considered, and we can have more confidence that the pairs being considered act-ually stand in the syntactic relation of interest, rather than being random pairs of words that happen to appear near each other" . 
4 .2  A new approach to  relation specification Dependency grammar-based formalisms allow for the specification of general relations by defining ( 1 )  the two structures being considered in the relation of interest and (2 )  static constraints existing between these two structures . This way of specifying relations leads to a failure since either the constraints on the structure of the two items are too relaxed and the silence is high , or they are too strict and the noise is too high . Such static constraints on structures are unavoidable .  Introducing constraints of possible or impossible occurences of structure between the two items can only lead to a failure since any such rule can be proved wrong within any unrestricted corpus. Specifying a relation only with constraints on structure does not seem to be the right solution . Thus, we make the hypothesis that relations have to be defined with the help of three kinds of linguistic knowledge : 1 .  the two structures being considered in the relation of interest , 2. the constraints existing between these two structures , 3 .  the other linking constraints which , within the sentence , constrain these two items to be l inked . The two structures have to be computed dynamically in order to be robust . The constraints between the two structures are made of static knowledge. The interdependency of relations , as defined in point 3, has to be handled dynamically. 
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4.3 Dynamic handling of relation interdependencies 

In our research , we have emphasized the handling of relation interdependencies which has become the predominant feature of our architecture . In other words , we have studied how the insta.nciation of a relation reduces the complexity of further decisions by discarding potential choices . An example illustrates this general concept which happens to be the process definition . Considering the sentence : '' The  flight from Paris is cancelled because of a strike" By instanciating a subject-verb relation between The flight and is cancelled, the process discards from Paris as expecting any other relation . Thus, ,vhen beccwse  of a strike occurs it can only be attached to The flight or to is cancelled. 
4 .4  Implementation of the linking process 

Our linking process is a1� implementation of the l inguistic process described above . The process is both data-driven and declarative: condition-action rules does not describe syntactic structures but the l inking process . They manage both relations instancia.tion and linking constraints between relations.  Relation insta.ncia.tions are achieved in two distinct steps by two distinct kinds of rule actions : 
l .  store an nr-phra.se as a candidate for some particular relations of interest in the relevant memories , 
2 .  attach one nr-phrase to another one and discard some particular items as possible candidates for some particular relations from the relevant memories . 

Thus,  building up the functional structure is constrained by the interactions of the rules through the memories . In fact , when a. rule discards an i tem in a memory, this corresponds to the death of a potential relation . For instance, here are the two independent rules written to manage a subject-verb relation . 
if the current nr-phrase is a nominal nr-phrase and is not object and is not already subject and is not attached to a preposition then it is stored as possible subject into the subject-verb memory. 

if the current nr-phrase is a verbal nr-phrase and there a.re possible subjects in the subject-verb memory then retrieve the best fit subject from the memory attach the verb to this subject ,  discard this subject from the memory, discard items located between the subject and the verb from every memory. 
The method which selects the best fit candidate is described in section 4 . 5 .  The conditions within the rules allow the ma.nipula.t. ion of: ( 1 )  relations in  the dependency tree (defined by the functional structure ) ;  ( 2 )  heads of nr-phrases ; ( 3 )  features of nr-phrases ; ( 4 )  and status of the memories . There a.re two kinds of actions within the rules : ( 1 )  actions on a. memory ( storing an nr-phrase and linking two nr-phrases , era.sing the content of a . memory, discarding an item in  a memory ) ,  ( 2) actions on an nr-phrase ( to change/ add a feature ) .  The analysis is carried out from left to right . When an action updates nr-phrase features, coherence with word-level is achieved via interactions (see section 5 . 2 ) .  Such an implementation requires the system to store candidates for possible expectations ( e .g ,  nominal nrphrase possibly expecting a. verb for a subject-verb relation ) and to retrieve the best-fit candidate for a particular relation . This ability is provided by the memory-based framework . 

4 . 5  Memory-Based Framework 

Men1ories as favoured places to perfor1n relations 
The process is based on a set of memories . Each memory is dedicated to the management of one specific relation ( e .g ,  subject-verb , verb-object , coordination , PP attachment ) .  A memory contains nr-phrases ·whose 
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association with a future nr-phrase must be considered . For instance , the memory that manages the subject.verb dependency relation contains nominal nr-phra.ses which can be involved in a future relation with a verbal nr-phrase . The power of such an approach is that all relevant candidates are together in a single location and at the time when the relation has to be corn pu ted ( a memory is a limited search-space ) :  for a specific relation , the required know ledge sources can choose a successful candidate in the best conditions ( see section 4. 5 ) .  Moreover ,  when the selection has to b e  performed , the process does not have t o  consider the past o f  the analysis but the current state of the memories . Therefore , far discontiguous relations a.re handled the same way as contiguous relations ( if necessary, ways to distinguish them exist ) . An other interesting point is that memories contain candidates for an association with a future nr-phrase . No requirement is made on the presence of the future nr-phrase. If such an nr-phrase never occurs then at the end of the sentence , the memory is erased : the candidates are forgotten . This means that when a new nr-phrase is added to a memory, no explicit expectation on structure is done , only implicit expectations are described by the rules . This kind of behaviour is to be related to tagging techniques and is fundamental to deal with unrestricted text . 
Selection in a me1uory Each memory is dedicated to the management of a specific relation . It is obvious that the knowledge required for selecting a candidate in the different memories is not always the same. In this system, every memory has its own specific method for choosing the successful candidate . For instance , in our system, syntactic knowledge is involved for constra ining the search space ( i .e . , the memory) depending on number , person and gender in a subject-verb dependency relation ; similarity of structures is considered for coordination relation ; psycholinguistic knowledge constrain the distance between the future associated nr-phrases . It is interesting to point out that the above-mentioned knowledge sources a.re not enough to deal with complex phenomena.. In memories , semantic and pragmatic knowledge sources can also interact with other knowledge sources to constrain the search space . 
Focusing on the Subject-Verb memory It is interesting to show in a concrete way how modularity of memories leads to flexibility, and to clarify how it helps us m astering the triggering of adequate knowledge sources and which items the triggered sources will act on . The subject-verb memory is an example of such a memory where several kinds of knowledge a.re combined in order to handle the corresponding relation in a reliable and robust way. We will see that all the knowledge which deals with subject selection is clearly located in a single place : • Syntactic constraints on agreement : these constraints are based on coordination relations, person and number of nr-phra.ses . • Structural constraints on nr-phrase : they are involved in specific configurations in order to favour subject with determiner rather than subject without determiner . • Ba.sic semantic constraints are used to a.void some particular temporal NP to be taken as subject . • This memory selects the leftmost possible subject close to the first barrier ( e .g ,  a relative pronoun , a subordination conj unction) located on the left-hand side of the verb. This models the linking process of a subject with its verb, taking into account embedded clauses . The latter shmvs the tight links between memories and the dynamic linking process which feeds them. -Selection in memories is usually achieved with the help of a standard constraints relaxation mechanism. 
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5 Interaction between levels 

As seen in section 2, the two levels are build up simultaneously, so that information has to be sent from one level to the other for the sake of coherence . The two processes parse the input from left to right . \Ve choose to make deductions as soon as possible in the two structures even if, sometimes , this implies the ability to change some decisions when new information appears . To every nr-phra.se defined at nr-phra.se-level corresponds a chunk of words delimited at word-level by two nr-phrase boundaries . Deductions from word-level to nr-phrase-level have a restricted scope :  from words within a chunk to their corresponding nr-phrase , and vice-versa. 
5 . 1  Interaction from word to nr-phrase 

The interaction from word-level to nr-phra.se-level ( labelled er in figure 1 )  allows the assignment of features to nr-phrases . These informations act ivate the nr-phrases in the building process of the functional structure. 
Un fichier d 'incidents complete le dispositif. ( 1 )  

( A  file of incidents completes the device . )  For instance, in sentence 1 ,  when masculine singular determ iner i s  assigned t o  " Un" at word-level , a nominal nr-phrase is created and the feature masculine sing-ular is added to this nr-phrase . 
5 .2  Interaction from nr-phrase to word 

The interaction from nr-phrase-level to word-level ( labelled ;J in figure 1 )  is needed to constrain word features . In fact , we explained in section 3 . 5  that the local context of a word can contain too little information to be fully disambiguated . For instance , in sentence 1 ,  as soon as we know at nr-phrase-level that "complete" is a verbal nr-phrase ( because it has been linked to its subject " Un fich-ier" ) , the tag verb is assigned to "complete" at word-level , thus removing the adjective/ verb ambiguity. 
6 Detailed Analysis 

Here is a detailed analysis of the sentence " Un fich-ier cl 'incidents complete le dispositif. '' ( a file of incidents completes the device ) as solved by our system. The word co·mpleteadJ l vb  has to be d isambiguated . ( 1 )  and ( 2 )  are the two processes ; (a ) and ( ,B )  are the two interactions defined i n  section 2 .  
• 1st execution cycle : ( 1 )  builds the chunk '' un fichier'' ( square bracketed ) ,  ( a )  creates the corresponding N P  ( oval i n  the Figure ) ,  ( 2 )  stores this NP i n  two memories : as possible subject ,  and as possibly expecting a PP (/3)  does nothing. 
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Figure 2 :  Cycle 1 
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• 2nd execution cycle: 
( 1 )  builds the chunk "d  "incidents'' , ( a )  creates the corresponding PP :  PP 1 ,  ( 2 )  selects in the "Exp. PP memory" the NP " tm 
fichier'' as regent of PP 1 ,  stores PP 1 as possible regent of an other PP. ( ,B)  does nothing . 
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Figure 3: Cycle 2 



• 3rd execution cycle: 
( 1 )  builds the chunk "complete" ( the word "complete" is ambiguous) ,  (a )  creates the ambiguous corresponding VP IAP (verbal or a.dj ecti val n r-phrase ) , ( 2 )  supposes it is a. VP, finds a. matching NP as possible subject ( " tm fichier" ) ,  tags the ambiguous nrphrase as VP, then it links this VP to the NP, and updates the memories , (/3 )  tags the word "complete" as verb for coherence. This figure displays the chunk structure after ( 1) and the structure in progress a.t the end of the third cycle . tn fich ier

J i

d' incident

J [

co1:1plet

J [

le det noun prep noun adJ or vb det masc masc masc masc s ing sing plur plur sing sing tn fichieJ [d' incidentJ [completJ [le det n oun prep noun vb det masc masc n-iasc m.asc s ing s ing plur plur sing sing 

I Subj-Verb Mem . I Exp . PP Mem . 

I I - un fichier 
- complete 

- com plete 

Figure 4 :  Cycle 3 

• 4th execution cycle : 
( 1 )  builds the chunk "le dispositif" , ( a )  creates the corresponding NP, 
( 2 )  finds the matching VP " complete" to attach this NP as object , stores the NP as possibly expecting a PP. ( /3) does nothing. td�t ��71i�1J [;'�ep �n0ct:�ent

J [
��
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At the end of the sentence , some memories contains items : they are erased . 
7 Son1e linguistic studies Some well-known difficult problems find a solution in this framework . • sod. . .  soit (either . . .  or )  The first ''sod" is either the subjonctive form of '' etre" ( to be) or a conj unction ( either ) .  

'' C 'est a [ 'inspection academique desormais de proposer au:i: families, (. . .) ,  soit u n  autre etablissemen t - ce 
qui reviendrait sans doute a deplacer le probleme - soit une fornwle de cours par correspondance (. . .) ." In our framework , the previous example is processed as fol lows : the first "soit" is not the subjonctive form of "etre" because no subject is available ; it is stored in a memory, expecting an eventual second "soit" ; when this second "soit" arrives , the first "soit" is found in the memory, and a coordination between the two nominal nr-phrases is set up .  The structure ni . . .  ni  (neither . . .  nor ) is solved in the same way. • plus . . .  que (more . . .  than )  

"Les appels a l a  recomposition (. . . )  me paraissent relever plus de  la  mise en valeur d 'un parti social-iste 
syndical (. . .) que de la construction d 'une reelle organisation syndicate independante." 

"plus" is stored in a memory, expecting an eventual "que" ; then , the following PP is linked to "relever" ; when "que" occurs , its following PP is also linked to "relever" . • "de'' : preposition or partitive is a recurrent problem in French . It finds a natural solution in our system. 
"De nombreuses molecules sont transferees dans les reseaux trophiques 11wrins.'' 
''De nombreuses molecules" is an ambiguous nr-phrase: NP if the nr-phrase is either subject or object , PP otherwise . If it is NP then ''De" is a determiner, otherwise it is a preposition : the solution is impossible to find 
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with POS tagging. In our system, when the verb "sont transferees" occurs, the process call the subject-verb memory to look for a subject , "De nombre'Uses molfrules" is the only possible candidate :  it becomes NP and an interaction tags "De" as partitive. • Verbal ellipsis resolution : Ellipsis resolution is a major difficulty to handle in traditional formalisms. In our approach , it can be handled as relation computation , defining it as a process . 
' 'Les lapins ne se contentent plus de lu::erne ,  les cochons de pornm es de terre e t  les poulets de grains de mais" ( Rabbits do not contend themselves with grass , pigs with potatoes and chicken with corn seeds . )  This kind of ellipsis can b e  handled in our model as an enumeration of possible clauses whose heads are subjects :  Rabbits, pigs and chicken .  This enumeration is managed as every other relation in a dedicated memory. \Vhen with potatoes occurs , its similarity with the verb dependent with grass, the absence of Subject.Verb relation involving pigs and the presence of a possible elliptic verb in the ellipsis memory allows with 

potatoes to be linked to pigs via a Subject-Verb-Object relation . Then , the Subject-Verb relation pigs-contend and Verb-PP contend- with potatoes can be computed . 
8 Evaluation The evaluation has been carried out on both structures build by the parser : a tagging evaluation and a relation computation evaluation . The precise evaluation we offer on relations is restricted to subject-verb relations since no french treebank is available yet . However , it is possible to use our syntact ic parse viewer on internet at http : //www. i nfo. u n icaen . fr/ ,..._,giguet ( for J a.va.-enabled browsers ) to have an idea of the parser reliability for other relations . 
8 . 1  Corpus Metrics The evaluation of the parser has been carried out on a set of art icles from the newspaper "Le Monde'' . This corpus has not been used to build up the parsing rules . This set is made of 24 articles ( dealing with politics , economics, fashion , h igh-technology, every day life ,  . . .  ) representing 47 4 sentences ( max. length :  82 words , avg .  length :  24.43 words ) .  The definition of sentence is standard but includes two additional boundaries ' ' ; "  and " :" . 
8 . 2  Tagging Evaluation The corpus has been manually annotated by a linguist from the G RACE3 tagging evaluation project , with the standard tagset proposed in MULTEXT4 and EAGLES5 projects .  This tagset is made of 1 1  ma.in categories . Ea.eh category can be completed with a maximum of 6 attributes which can take their value from a set containing up to 8 distinct values . For the needs of the evaluation , a translation function has been written to convert our tagset into the tagset of the annotated corpus . The fine grain tokeniza.tion (e .g . , apostrophies a.re tokens) makes 12691 tokens appear . In the protocol ,  an assigment is ( 1) correct if the parser assigns one tag with the correct value to every field , ( 2 )  amhiguous if the parser assigns more than one tag or more than one field value but the correct tag exists , ( 3 )  incorrect if the correct tag can not be found . Two evaluations a.re carried out .  In the first one, the tag has only one field: the main category. In the second one , the tag is composed of the ma.in category and the rei'a.tive attributes. Figure 6 presents the results . These results a.re not the official results of the G RACE evaluation project since the evaluation contest is not started yet . These results are computed from the output of the parser , that is ,  not only with process 1 at word-level but also with interactions /3 generated at n r-phrase-level when relations a.re corn pu ted by process 2 ( see figure 1 ) .  About 1 % of the correct tags are computed thanks to a relation computation , using interactions /3 ,  the others are computed at word-level . 

3 http :/ /www. cir i l .fr/ ~pap/grace .html 
4 http :/ /www. lp l . u niv-a ix .fr/projects/multext 
5 http :/  /www . i lc . p i .cnr . i t/ EAGLES / home. html 
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Evaluation Complete Tag Main Category tokens correct 12691  1 1502 12691  1 2524 ambiguous incorrect 5 1 6  673 0 1 67 % correct 
90.63% 
98.68% Figure 6 :  Tagging Evaluation 8.3  Relation computation evaluation Subject-Verb relations in the corpus 
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In this corpus , there are 738 Subject -Verb relations .  Figure 7 shows t.he span of subject-verb relations in the sentences : 39 sentences do not have subject verb relations and the maximum number of subject-verb relation per sentence is 6. According to the nature of the subject , we distinguish 4 kinds of SV relations: relations involving ( 1 ) an NP subject , ( 2 )  an Infinitive VP subject , ( 3 )  a Relative Pronoun subject and (4 )  a Personal Pronoun subject .  An other interesting metric is the distance between the verb and its subject . Figure 8 i llustrates this phenomenon only for NP-subject . This metric is less relevant for other relations, even if several sentences contain personal pronouns and relative pronouns that are far subjects , for instance in cases of verb enumeration or prepositional phrase insertion . The figure shows that the distance between an NP-subject and its verb can reach up to 45 words . Evaluation on Subject-Verb Relations The evaluation function is based on the following principle : every verb has to be attached to no more than one subject . From this starting point , 3 cases exist : it is a correct relation if the verb is attached to the expected subject , incorrect if not and a silence if no subject is provided but one was expected . In cases of subjects coordination , each verb depending on the· coordination has to be attached to the head of this coordination , that is , to the head of the first item . In cases of verbs coordination , one correct relation counts for ea.eh verb attached to the expected subject and one incorrect relation for each verb not attached to the expected subject . 86 



The results a.re listed in Figure 9 .  Precision is the ratio of correct links over the number of computed links. 
Recall is the ratio of correct links over the number of expected links . The very high rate that we report (96 .39% precision and 94.04% recall ) empirically validate the approach of defining relations as a .  linguistic process. Our results can still be improved since this evaluation ,va.s the first on large corpora . The 42 silences and incorrect relations can be classified in 5 categories : ( 1 )  incorrect im plementa.tion of a.greemen t check , ( 2 )  illfonned nr-phrases , ( ;3 ) coordination not found , ( 4 )  inverted subject in reported speech , ( 5 )  incorrect nr-phrase tags . vVe have pointed out better ways of solving the three first classes . · The fourth and fifth classes requires further studies to be carried out in a general way. Nature of subject number correct incorrect silence prec1s1on recall NP 458 418  26  14 94 . 14% 9 1 .27% lnfini ti  ve VP 2 2 0 0 100 .00% 1 00 . 00% Relative Pronoun 85 85 0 0 100 .00% 100 . 00% Personal Pronoun 193 1 9 1  0 2 100 .00% 98 .96% Total 738 694 26 16 96.39% 94.04% Figure 9 :  Evaluation on Subject-Verb Relations 
Comparison with other systems It is still difficult to compare these results with other french systems since no strictly comparable experiment has been carried out under such difficult evaluation conditions .  However , Xerox has evaluated its last incremental finite-state parser (Ait-Mokhtar and Cha.nod , 1 997)  for subject recognition. This task is less complex than ours since subject-verb relation computation includes the resolution of both subject and verb coordinations . On a half-sized evaluation corpus from "Le Monde" ( 5872 words ,  249 sentences ) ,  their parser achieves 92 .6% precision and 82 .6% recall .  
9 Conclusion and Future Work Vve ha.ve described a system for syntactic parsing of unrestricted French . The contribution of this work can be summarized in two points .  First , we have shown that a restriction of POS tagging to deductions within nr-phrase could lead to better global results since an interaction with the l inking process is more powerful for deductions between nr-phra.ses . Second , we have provided a flexible memory-based framework for unrestricted relations and a process which has no explicit expectation on structures . The success of our system is due to the new approach to computing relations: dynamically taking into account all the relevant relations which , within the sentence , constrain the two items to be linked . The result is a flexible architecture which has the ability to handle in a natural way all the major syntactic relations in a unique framework : standard relation such as subject-verb , verb-object , PP attachment , but also complex relations such as coordination , enumeration , apposition , antecedence , and ellipsis . Running on a collection of newspaper articles from "Le l\fonde" ( 1 1 583 words, 474 sentences and 739 subject verb relations) where very complex structures appear , we get 96 .39% precision and 94 .04% recall for suject-verb relations . These first results empirically validate the approach and we can say the parser is very reliable for this relation . Moreover , it is robust since one parse is always provided ( sometimes a partial parse) . The present version of the linking process is very efficient : it is deterministic and it has a linear complexity in time. Today, we a.re working on a slightly modified version of the parsing process in order to enable new knowledge to change past deductions . In this case , these deductions and their consequences a.re discarded . We now have to continue precise evaluation of our parser for all the other kinds of relations ( a hard work since no treeba.nk is available at the moment ) and generally to continue improving the parser . A demo is available at http : //www. i nfo . u n icaen .fr/ ~giguet .  
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Abstract 

We present a new formalism, probabilistic feature grammar (PFG) .  PFGs combine most of the best properties of 
several other formalisms, including those of Collins, Magerman, and Charniak, and in experiments have comparable 
or better performance. PFGs generate features one at a time, probabilistically, conditioning the probabilities of 
each feature on other features in a local context. Because the conditioning is local, efficient polynomial t ime parsing 
algorithms exist for computing inside, outside, and Viterbi parses. PFGs can produce probabilities of strings, 
making them potentially useful for language modeling. Precision and recall results are comparable to the state of 
the art with words, and the best reported without words. 

1 Introduction Recently, many researchers have worked on statistical parsing techniques which try to capture additional context beyond that of simple probabilistic context-free grammars (PCFGs) , including Magerman (1995) , Charniak ( 1996) , Collins ( 1996; 1997) , Black, Lafferty, and Roukos ( 1992) , Eisele ( 1994) and Brew ( 1995) . Each has tried to capture the hierarchical nature of language, as typified by context-free grammars, and to then augment this with additional context sensitivity based on various features of the input . Unfortunately, none of these works combines the most important benefits of all the others, and most lack a certain elegance. We have therefore tried to synthesize these works into a new formalism, probabilistic feature grammar ( PFG) . PFGs have several important properties. First ,  PFGs can condition on features beyond the nonterminal of each node, including features such as the head word or grammatical number of a constituent . Also, PF,Gs can be parsed using efficient polynomial-time dynamic programming algorithms, and learned quickly from a treebank. Finally, unlike most other formalisms, PFGs are potentially useful for language modeling or as one part of an integrated statistical system (e.g. Miller et al. , 1996) or for use with algorithms requiring outside probabilities. Empirical results are encouraging: our best parser is comparable to those of Magerman ( 1995) and Collins ( 1996) when run on the same data. When we run using part-of-speech (POS) tags alone as input , we perform significantly better than comparable parsers. 
2 Motivation PFG can be regarded in several different ways: as a way to make history-based grammars (Magerman, 1995) more context free, and thus amenable to dynamic programming; as a way to generalize the work of Black et al. (1992) ; as a way to turn Collins' parser (Collins, 1996) into a generative probabilistic language model; or as an extension of language-modeling techniques to stochastic grammars. The resulting formalism, which is relatively simple and elegant , has m9st of the advantages of each of the systems from which it is derived. Consider the following simple parse tree for the sentence "The man dies" : 

* This material is based upon work supported by the National Science Foundation under Grant No. IRI-9350192 and a National 
Science Foundation Graduate Student Fellowship. I would like to thank Stanley Chen , Lillian Lee, David Magerman, Wheeler Ruml ,  
Stuart Shieber, and Fernando Pereira for helpful comments and discussions, as  well as  the anonymous reviewers for their useful 
comments and suggestions. 
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s NP VP 
� I the man dies While this tree captures the simple fact that sentences are composed of noun phrases and verb phrases, it fails to capture other important restrictions. For instance, the NP and VP must have the same number ,  both singular, or both plural. Also, a man is far more likely to die than spaghetti, and this constrains the head words of the corresponding phrases. This additional information can be  captured in a parse tree that has been augmented with features, such as the category, number, and head word of each constituent, as is traditionally done in many feature-based formalisms, such as HPSG, LFG ,  etc. 

While a normal PCFG has productions such as S ➔  NP VP ,ve will ,v-rite these augmented productions as, for instance, (S, singular, dies) ➔ (NP, singular, man) ( VP, singular, dies) In a traditional probabilistic context-free grammar, we could augment the first tree with probabilities in a simple fashion. We estimate the probability of S ➔ NP VP using a tree bank to determine C(S ;r; VP) , the number of occurrences of S -4 NP VP divided by the number of occurrences of S. For a reasonably large treebank, probabilities estimated in this way would be reliable enough to be useful (Charniak, 1996) . On the other hand, it is not unlikely that we would never have seen any counts at all of C((S, singular, dies) ➔ (NP, singular, man) ( VP, singular, dies) ) C((S, singular, dies) ) which is the estimated probability of the corresponding production in our grammar augmented with features. The introduction of features for number and head word has created a data sparsity problem. Fortunately, the data-sparsity problem is well known in the language-modeling community, and we can use their techniques, n-gram models and smoothing, to help us. Consider the probability of a five word sentence, w1 . . .  w5 : 

While exactly computing P(w5 lw1 w2w3w4 ) is difficult,' a good approximation is P(w5 lw1 w2w3w4 ) � P(w5 lwsw4 ) .  Let C(w3w4w5 ) represent the number of occurrences of the sequence w3w4w5 in a corpus. We can then empirically approximate P(w5 IW3W4 ) with cbc��:�·) ) .  Unfortunately, this approximation alone is not enough; there may still be  many three word combinations that do not occur in the corpus, but that should not be assigned zero probabilities. So we smooth this approximation, for instance by using 
P(w, lwaw• ) "" A1 °b7::::t + (1 - Ai ) ( A2 °b7::;, ) + ( 1 - A2 )
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Now, we can use these same approximations in PFGs. Let us assume that our PFG is binary branching and has g features , numbered l . . .g ; we will call the parent, features ai , the left child features b i , and the right child features ci . In our earlier example , a 1 represented the parent nonterminal category; a2 represented the parent number (singular or plural) ; a3 represented the parent head word; b 1 represented the left child category; etc . We can write a PFG production as ( a1 , a2 , . . .  , a9 ) -+ ( b1 , b2 , . . .  , b9 ) ( c1 , c2 , . . .  , c9 ) .  If we think of the set of features for a constituent A as being the random variables A1 , . . .  , A.9 , then the probability of a production is the conditional probability P(B1 = b1 , . . .  , B9 = b9 , C1 = c1 , . . .  , C9 = c9 IA1 = a1 , . . .  , A9 = a9 ) We write af to represent A1 = a1 , . . .  , A1.: = a1.: , and sometimes write ai as shorthand for Ai = ai . \\'e can then write this conditional probability as 
P( bf , cf laf ) This joint probability can be factored as the product of a set of conditional probabilities in many ways . One simple way is to arbitrarily order the features as b1 , . . .  , b9 , c1 , . • •  , c9 . \\1e then condition each feature on the parent features and all features earlier in the sequence. 

We can now approximate the various terms in the factorization by making independence assumptions . For instance , returning to the concrete example above, consider feature c1 , the right child nonterminal or terminal category. The following approximation should work fairly well in practice : 
That is , the category of the right child is well determined by the category of the parent and the category of the left child. Just as n-gram models approximate conditional lexical probabilities by assuming independence of words that are sufficiently distant , here we approximate conditional feature probabilities by assuming independence of features that are sufficiently unrelated. Furthermore, we can use the same kinds of backing-off techniques that are used in smoothing traditional language models to allow us to condition on relatively large contexts .  In practice , a grammarian determines which features should be considered independent , and the optimal order of backoff, possibly using experiments on development test data for feedback. It might be possible to determine the optimal order of backoff automatically, a sub ject of future research. Intuitively, in a PFG,  features are produced one at a time. The probability of a feature being produced depends on a subset of the features in a local context of that feature. Figure 1 shmvs an example of this featureat-a-time generation for the noun phrase "the man."  To the right of the figure, the independence assumptions made by the grammarian are shown. 
3 Formalism In a PCFG, the important concepts are the terminals and nonterminals , the productions involving these, and the corresponding probabilities. In a PFG, a vector of features corresponds to the terminals and nonterminals .  PCFG productions correspond to PFG events of the form (a1 , . . .  , a9 ) -+ (b1 , . . .  , b9 ) (c1 , . • •  , c9 ) ,  and our PFG rule probabilities correspond to products of conditional probabilities , one for each feature that needs to be generated. 
3 .1  Events and EventProbs There are two kinds of PFG events of immediate interest . The first is a binary event, in which a feature set af ( the parent features) generates features bf cf ( the child features) .  Figure 1 is an example of a single such event . Binary events generate the whole tree except the start node, which is generated by a start event. The probability of an event is given by an EventProb, which generates each new feature in turn, as�igning it a conditional probability given all the known features . For instance, in a binary event , the EventProb assigns probabilities to each of the child features , given the parent features and any child features that have already been generated. _ _  Formallri_ an EventProb [ is a 3-tuple (JC, N,  F) , where JC is the set of conditioning feat�es ( the Known features) ,  N = N1 , N2 , . . .  , N11 is an ordered list of conditioned features ( the New features) ,  and F = Ji , h ,  . . .  , fn 
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P(B3=thelA1 =NP, A2 =singular, . . .  , B2 =singular) 

P(B3 = thelB1 =DET, A3 =man) 

P (C3 =manlA1 =NP, A2 =singular, . . .  , C2 =singular) 

Figure 1 :  Producing the man, one feature at a time 
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is a parallel list of functions . Each function fi (ni ,  k1 , . . .  , kk , n1 , n2 , . . .  , ni-l )  returns P(Ni = ni lI<1 = k1 , . . .  Kk = kk , N1 = n 1 , N2 = n2 , . . .  , Ni- l  = ni-1 ) ,  the probability that feature Ni = ni given all the known features and all the lmver indexed new features. For a binary event , we may have EB = ( { a1 , a2 ,  . • .  , a9 } ,  (b1 , . . .  , b9 , c1 , . . .  , c9 ) ,F B ) ;  that is, the child features are conditioned on the parent features and earlier child features. For a start event we have Es = ( { } ,  (a1 , a2 ,  . . .  , a9 ) ,  Fs) ;  i .e .  the parent features are conditioned only on each other. 
3 .2  Terminal Function, Binary PFG We need one last element : a function T from a set of g features to (T, N) which tells us whether a part of an event is terminal or nonterminal: the terminal function. A Binary PFG is then a quadruple (g ,  EB , Es , T) : a number of features, a binary EventProb, a start EventProb, and a terminal function. Of course, using binary events allows us to model n-ary branching grammars for any fixed n: we simply add additional features for terminals to be generated in the future, as well as a feature for whether or not this intermediate node is a "dummy" node (the continuation feature) . 1 
4 Comparison to Previous Work PFG bears much in common with previous work, but in each case has at least some advantages over previous formalisms. Some other models (Charniak, 1 996; Brew, 1 995 ; Collins, 1 996; Black, Lafferty, and Roukos , 1 992) use probability approximations that do not sum to 1 ,  meaning that they should not be used either for language modeling, e .g. in a speech recognition system, or as part of an integrated model such as that of Miller et al . ( 1 996) .  Some models (Magerman, 1 995 ; Collins, 1 996) assign probabilities to parse trees conditioned on the strings , so that an unlikely sentence with a single parse might get probability 1 ,  making these systems unusable for language modeling. PFGs use joint probabilites , so can be used both for language modeling and as part of an integrated model. Furthermore, unlike all but one of the comparable systems, PFGs can compute outside probabilities, which are useful for grammar induction, some parsing algorithms ( Goodman, 1 996) ,  and, as we will show, pruning (Goodman, 1 997) .  
4 .1  Bigram Lexical Dependency Parsing Collins ( 1 996) introduced a parser with extremely good performance. From this parser, we take many of the particular conditioning features that we will use in PFGs. As noted, this model cannot be used for language modeling. There are also some inelegancies in the need for a separate model for Base-NPs, and the treatment of punctuation as inherently different from words. The model also contains a non-statistical rule about the placement of commas. Finally, Collins' model uses memory proportional to the sum of the squares of each training sentence's length .  PFGs in general use memory ,vhich is only linear. 
4.2 Generative Lexicalized Parsing Collins ( 1 997) worked independently from us to construct a model similar to ours. In particular, Collins wished to adapt his previous parser (Collins, 1996) to a generative model. In this he succeeded. However, while we present a fairly simple and elegant formalism, which captures all information as features, Collins uses a variety of different techniques: variables (analogous to our features) ;  a special stop category; modifications of nonterminal categories; and information computed as a function of child nodes . This lack of homogeneity fails to show the underlying structure of the model, and the ways it could be expanded. Furthermore, our model of generation is very general. VVhile our implementation captures head words through the particular choice of features, Collins' model explicitly generates first the head phrase, then the right children, and finally the left children. Thus, our model can be used to capture a wider variety of grammatical theories, simply by changing the choice of features. 

1 Unary branching events arc in general difficult to deal with (Stokke, 1!)!)3) .  We introduce an additional EvcntProb for unary 
events, and do not allow more than one unary event in a row. 
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Finally, there are some subt le interesting differences with respect to the distance metric. While both bigram lexical dependency parsing and generative lexicalized parsing use a distance metric, generative lexicalized parsing does not include symbols in the child node on the parent head side as part of the distance, because it is difficult to do so in that model. Our use of features allows this information to be captured. 
4.3 Simple PCFGs Charniak (1996) showed that a simple PCFG formalism in which the rules are simply "read off" of a treebank can perform very competitively. Furthermore, he showed that a simple modification, in which productions at the right side of the sentence have their probability boosted to encourage right branching structures, can improve performance even further. PFGs are a superset of PCFGs, so we can easily model the basic PCFG grammar used by Charniak, although the boosting cannot be exact ly duplicated.  However, we can use more principled techniques, such as a feature that captures whether a particular constituent is at the end of the sentence, and a feature for the length of the constituent . Charniak's boosting strategy means that the scores of constituents are no longer probabilities, meaning that they cannot be used with the inside-outside algorithm. Furthermore, the PFG feature-based technique is not extra-grammatical, meaning that no additional machinery needs to be added for parsing or grammar induction. 
4.4 Stochastic HPSG Brew (1995) introduced a stochastic version of HPSG. I n  his formalism,  i n  some cases even if two features have been constrained to  the same value by unification, the probabilities of their productions are assumed independent. The resulting probability distribution is then normalized so that probabilities sum to one. This leads to problems with grammar induction pointed out by Abney ( 1 996) .  Our formalism, in contrast , explicitly models dependencies to the extent possible given data sparsity constraints. 
4.5 IBM Language Modeling Group Researchers in the IBM Language Modeling Group developed a series of successively more complicated models to integrate statistics with features. The first model (Black, Garside, and Leech, 1993 ; Black, Lafferty, and Roukos, 1992) essentially tries to convert a unification grammar to a PCFG, by instantiating the values of the features. Due to data sparsity, however, not all features can be instantiated. Instead, they create a grammar where many features have been instantiated, and many have not ; they call these partially instantiated features sets mnemonics. They then create a PCFG using the mnemonics as terminals and nonterminals. Features instantiated in a particular mnemonic are generated probabilistically, while the rest are generated through unification. Because no smoothing is done, and because features are grouped, data sparsity limits the number of features that can be generated probabilistically, whereas because we generate features one at a time and smooth, we are far less limited in the number of features we can use. Their technique of generating some features probabilistically, and the rest by unification, is somewhat inelegant ; also, for the probabilities to sum to one, it requires an additional step of normalization, which they appear not to have implemented. In their next model (Black et al. , 1 992; Magerman, 1 994, pp. 46-56) ,  which strongly influenced our model, five attributes are associated with each nonterminal: a syntactic category, a semantic category, a rule, and two lexical heads. The rules in this grammar are the same as the mnemonic rules used in the previous work, developed by a grammarian. These five attributes are generated one at a time, with backoff smoothing, conditioned on the parent attributes and earlier attributes. Our generation model is essentially the same as this. Notice that in this model, unlike ours, there are two kinds of features: those features captured in the mnemonics, and the five categories; the categories and mnemonic features are modeled very different ly. Also, notice that a great deal of work is required by a grammarian, t o  develop the rules and mnemonics. The third model Magerman:94a, extends the second model to capture more dependencies, and to remove the use of a grammarian. Each decision in this model can in principal depend on any previous decision and on any word in the sentence. Because of these potentially unbounded dependencies, there is no dynamic programming algorithm: without pruning, the time complexity of the model is exponential. One motivation for PFG was to capture similar information to this third model, while allowing dynamic programming. This third model uses 
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for each length l ,  shortest to longest for each start s for each split length t for each bf s . t .  chart[s , s + t, bf] =/:- 0 for each cf s . t .  chart[s + t, s + l ,  cf] =/:- 0 for each a1 consistent with bf cf for each a9 consistent with bf cf af- 1 chart[s , s + l, af]+ = EB (af --+ bf cf ) 
return I:£s (af ) x chart[l , n + l ,  af] ) 

ai Figure 2 :  PFG Inside Algorithm 
a more complicated probability model: all probabilities are determined using decision trees ; it is an area for future research to determine whether we can improve our performance by using decision trees. 
4.6 Probabilistic LR Parsing with Unification Grammars Briscoe and Carroll describe a formalism (Briscoe and Carroll, 1 993; Carroll and Briscoe, 1 992) similar in many ways to the first IBM model. In particular, a context-free covering grammar of a unification grammar is constructed. Some features are captured by the covering grammar, while others are modeled only through unifications. Only simple plus-one-style smoothing is done, so data sparsity is still significant. The most important difference between the work of Briscoe and Carroll ( 1 993) and that of Black, Garside, and Leech ( 1 993) is that Briscoe et . al. associate probabilities with the (augmented) transition matrix of an LR Parse table; this gives them more context sensitivity than Black et . al. However, the basic problems of the two approaches are the same: data sparsity; difficulty normalizing probabilities ; and lack of elegance due to the union of two very different approaches . 
5 Parsing The parsing algorithm we use is a simple variation on probabilistic versions of the CKY algorithm for P CFGs, using feature vectors instead of nonterminals (Baker, 1 979; Lari and Young, 1 990) .  The parser computes inside probabilities ( the sum of probabilities of all parses, i .e .  the probability of the sentence) and Viterbi probabilities ( the probability of the best parse) ,  and, optionally, outside probabilities . In Figure 2 we give the inside algorithm for PFGs .  Notice that the algorithm requires time O (n3 ) in sentence length ,  but is potentially exponential in the number of children, since there is one loop for each parent feature, a1 through a9 • When parsing a PCFG, it is a simple matter to find for every right and left child what the possible parents are. On the other hand, for a PFG, there are some subtleties. We must loop over every possible value for each feature. At first , this sounds overwhelming, since it requires guessing a huge number of feature sets ,  leading to a run time exponential in the number of features ; in practice, most values of most features will have zero probabilities, and we can avoid considering these. For instance, features such as the length of a constituent take a single value per cell. Many other features take on very few values ,  given the children. For example, we arrange our parse trees so that the head word of each constituent is dominated by one of its two children. This means that ,ve need consider only two values for this feature for each pair of children .  The single most time consuming feature is the Name feature, which corresponds to the terminals and non-terminals of a PCFG. For efficiency, we keep a list of the parent/left-child/right-child name triples which have non-zero probabilities , allmving us to hypothesize only the possible values for this feature given the children. Careful choice of features helps keep parse times reasonable. 95 



5 .1  Pruning We use two pruning methods to speed parsing. The first is a simple beam-search method, inspired by techniques used by Collins (1996) and Charniak (1996) ,  and described in detail by Goodman (1997) .  Within each cell in the parse chart , we multiply each entry's inside probability by the prior probability of the parent features of that entry, using a special EventProb, [p . We then remove those entries whose combined probability is too much lower than the best entry of the cell. In speech recognition, multiple-pass recognizers (Zavaliagkos et al. , 1994) have been very successful. V\7e can use an analogous technique, multiple-pass parsing (Goodman, 1997) with either PCFGs or PFGs.  We use a simple, fast grammar for the first pass, which approximates the later pass.  We then remove any events whose combined inside-outside product is too low: essentially those events that are unlikely given the complete sentence. The first pass · is fast , and does not · s low things down much, but allows us to speed up the second pass significantly. The technique is particularly natural for PFGs, since for the first pass, we can simply use a grammar with a superset of the features from the previous pass .  Actually, the features we used in our first pass were Name, Continuation, and two new features especially suitable for a fast first pass, the length of the constituent and the terminal symbol following the constituent . Since these two features are uniquely determined by the chart cell of the constituent, they are especially suitable for use in a first pass ,  since they provide useful information without increasing the number of elements in the chart .  However, when used in our second pass ,  these features did not help performance, presumably because they captured information similar to that captured by other features.  Multiple-pass techniques have dramatically sped up PFG parsing. 
6 Experimental Results The PFG formalism is an extremely general one that has the capability to model a wide variety of phenomena. Still, it is useful to apply the formalism to actual data, as a proof of concept . Vve used two PFGs, one which used the head word feature, and one otherwise identical grammar with no word based features ,  only POS tags. The grammars had the features shown in Figure 4 .  A sample parse tree with these features is given in Figure 3 .  The feature D L is a 3-tuple, indicating the number of  punctuation characters, verbs , and words to the left of a constituent 's head word. To avoid data sparsity, we do not count higher than 2 punctuation characters , 1 verb, or 4 words. So, a value of D L = 014 indicates that a constituent has no punctuation, at least one verb, and 4 or more words to the left of its head word. DR is a similar feature for the right side. Finally, DB gives the numbers between the constituent 's head word, and the head word of its other child. "\1/ords, verbs , and punctuation are counted as being to the left of themselves: that is, a terminal verb has one verb and one word on its left . Notice that the continuation of the lower NP in Figure 3 is Rl , indicating that it inherits its child from the right , with the 1 indicating that it is a "dummy" node to be left out of the final tree. The probability functions we used were similar to those of Section 2 .  There were three important differences. The first is that in some cases, we can compute a probability exact ly. For instance, if we know that the head word of a parent is "man" and that the parent got its head word from its right child , then we know that with probability 1, the head word of the right child is "man." In cases where we can compute a probability exactly, we do so. Second, we smoothed slightly differently. In particular, when smoothing a probability estimate of the form C(abc) p(a j bc) � ,,\ C(bc) + ( 1  - .\)p(a lb) we set ,,\ = !.:��tic ) ,  using a separate k for each probability distribution. Finally, we did addit ional smoothing for words , adding counts for the unknown word. It would take quite a bit of space to give the table that shows for each feature the order of backoff for that feature. We instead discuss a si:µgle example, the order of backoff for the 2R feature, the category of the second child of the right feature set . The least relevant features are first : TtVR , PR , CL , NL , CP , NP, lR, HR , CR , NR .  We back off from the head word feature first, because, although relevant , this feature creates significant data sparsity. Notice that in general, features from the same feature set , in this case the right features, are kept longest ; parent features are next most relevant ; and sibling features are considered least relevant . We leave out 96 
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N Name Corresponds to the terminals and nonterminals of a PCFG. 
C Continuation Tells whether we are generating modifiers to the right or the left, and whether it is time to generate the head node. 
1 Childl Name of first child to be generated. 
2 Child2 Name of second child to be generated. In combination with Childl , this allows us to simulate a second order Markov process on nonterminal sequences. 
H Head name Name of the head category. 
P Head pos Part of speech of head word. 
W Head word Actual head word. Not used in POS only model. 
D L � left Count of punctuation, verbs, words to left of head. DR � right Counts to right of head. DB � between Counts b etween parent's and child's  heads. Figure 4: Features Used in Experiments entirely features that are unlikely to be relevant and that would. cause data sparsity, such as Hl L ,  the head word of the left sibling. 

6 . 1  Results We used the same machine-labeled data as Collins ( 1 996; 1 997) :  TreeBank II sections 2-21 for training, section 23 for test, section 00 for development, using all sentences of 40 words or less.2 We also used the same scoring method (replicating even a minor bug for the sake of comparison) .  Our results are the best w e  know of from POS tags alone, and ,  with the head word feature, fall between the results of Collins and Magerman, as given by Collins ( 1997) .  Model Labeled Labeled Recall Precision PFG Words 84.8% 85.3% PFG POS only 81 .0% 82.2% Collins 97 best 88 .1% 88.6% Collins 96 best 85.8% 86.3% Collins 96 POS only 76 . 1% 76 .6% Magerman 84.6% 84. 9% 
7 Conclusions and Future Work 

Crossing 0 Crossing ::; 2 Crossing Brackets Brackets Brackets 1 .21 57.6% 81 .4% 1 .47 49. 8% 77.7% 0.91 66.5% 86 .9% 1 . 14 59. 9% 83.6% 2.26 1 . 26 56.6% 81 .4% 
While the empirical performance of probabilistic feature grammars is very encouraging, we think there is far more potential. First, for grammarians wishing to integrate statistics into more conventional models, the features of PFG are a very useful tool, corresponding to the features of DCG,  LFG, HPSG, and similar formalisms. TreeBank II is annotated with many semantic features, currently unused in all but the simplest way by all systems; it should be  easy to integrate these features into a PFG. PFG has other benefits that we would like to explore, including the possibility of its use as a language model, for applications such as speech recognition. Furthermore, the dynamic programming used in the model is amenable to efficient rescoring of lattices output by speech recognizers. 

2Wc arc grateful to Michael Collins and Adwait Ratnaparkhi for supplying us with the part-of-speech tags. 98 



Another benefit of PFG is that both inside and outside probabilities can be computed, making it possible to reestimate PFG parameters . We would like to try experiments using PFGs and the inside/outside algorithm to estimate parameters from unannotated text . ·while the generality and elegance of the PFG model makes these and many other experiments possible, we are also encouraged by the very good experimental results. \Vordless model performance is excellent, and the more recent models with words are comparable to the state of the art .  
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Abstract 
We argue for a performance-based design of natural language grammars and their associated parsers in order to meet the 

constraints imposed by real-world NLP. Our approach incorporates declarative and procedural knowledge about language and 
language use within an object-oriented specification framework. We discuss several message-passing protocols for parsing and 
provide reasons for sacrificing completeness of the parse in favor of efficiency based on a preliminary empirical evaluation. 

1 Introduction 

Over the past decades the design of natural language grammars and their parsers was almost entirely based on competence 
considerations (Chomsky, 1965). These hailed pure declarativism (Shieber, 1986) and banned procedural aspects · of 
natural language use out of the domain of language theory proper. The major premises of that approach were to consider 
sentences as the primary object of linguistic investigation, to focus on syntactic descriptions, and to rely upon perfectly 
well-formed utterances for which complete grammar specifications of arbitrary depth and sophistication were available. In 
fact, promising efficiency results can be achieved for parsers operating under corresponding optimal laboratory conditions. 
Considering, however, the requirements of natural language understanding, i.e., the integration of syntax, semantics, and 
pragmatics, and taking ill-formed input or incomplete knowledge into consideration, their processing costs either tend to 
increase at excessive rates or linguistic processing even fails completely. 

As a consequence, the challenge to meet the specific requirements imposed by real-world texts has led many researchers 
in the NLP community to re-engineer competence grammars and their parsers and to provide various add-ons in terms 
of constraints (Uszkoreit, 1 991 ), heuristics (Huyck & Lytinen, 1993), statistics-based weights (Charniak, 1993), etc. In 
contradistinction to these approaches, our principal goal has been to incorporate performance conditions already in the 
design of natural language grammars, yielding so-called peiformance grammars. Thus, not only declarative knowledge 
(as is common for competence grammars), but also procedural knowledge (about control and parsing strategies, resource 
limitations, etc.) has to be taken into consideration at the grammar specification level proper. This is achieved by providing 
self-contained description primitives for the expression of procedural knowledge. We have taken care to transparently 
separate declarative (structure-oriented) from procedural (process-oriented) knowledge pieces. Hence, we have chosen 
a formally homogeneous, highly modularized object-oriented grammar specification framework, viz. the actor model of 
computation which is based on concurrently active objects that communicate by asynchronous message passing (Agha, 
1990). 

The parser whose design is based on these performance considerations forms part of a text knowledge acquisition 
system, operational in two domains, viz. the processing of test reports from the information technology field (Hahn & 
Schnattinger, 1997) and medical reports (Hahn et al. ,  1996b). The analysis of texts (instead of isolated sentences) requires, 
first of all, the consideration of textual phenomena by a dedicated text grammar. Second, text understanding is based on 
drawing inferences by which text propositions are integrated on the fly into the text knowledge base with reference to a 
canonical representation of the underlying domain knowledge. This way, grammatical (language-specific) and conceptual 
(domain-specific) knowledge are closely coupled. Third, text understanding in humans occurs immediately and at least 
within specific processing cycles in parallel (Thibadeau et al. ,  1 982). These processing strategies we find in human 
language processing are taken as hints how the complexity of natural language understanding can reasonably be overcome 
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by machines. Thus, text parsing devices should operate incrementally and concurrently. In addition, the consideration of real-world texts forces us to supply mechanisms which allow for the robust processing of extra- and ungrammatical input. 
We take an approach where - in the light of abundant specification gaps at the grammar and domain representation level 
- the degree of underspecification of the knowledge sources or the impact of grammar violations directly corresponds to 
a lessening of the precision and depth of text know ledge representations, thus aiming at a sophisticated fail-soft model of partial text parsing. 

2 The Grammar 

The performance grammar we consider contains fully lexicalized grammar specifications (Hahn et al. ,  1994). Each lex
ical item is subject to configurational constraints on word classes and morphological features as well as conditions on 
word order and conceptual compatibility a head places on possible modifiers. Grammatical conditions of these types are 
combined in terms of valency constraints (at the phrasal and clausal level) as well as textuality constraints (at the text 
level of consideration), which concrete dependency structures and local as well as global coherence relations must satisfy. 
The compatibility of grammatical features including order constraints (encapsulated by methods we refer to as SYNTAX
CHECK) is computed by a unification mechanism, while the evaluation of semantic and conceptual constraints (we here 
refer to as CONCEPTCHECK) relies upon the terminological and rule-based construction of a consistent conceptual rep
resentation. Thus, while the dependency relations represent the linguistic structure of the input, the conceptual relations 
yield the targeted representation of the text content (for an illustration, cf. Fig. 7). 

In order to structure the underlying lexicon, inheritance mechanisms are used. Lexical specifications are organized 
along the grammar hierarchy at various abstraction levels, e.g. , with respect to generalizations on word classes. Lexical
ization of this form already yields a fine-grained decomposition of declarative grammar knowledge. It lacks, however, 
an equivalent description at the procedural level. We therefore provide lexicalized communication primitives to allow for 
heterogeneous and local forms of interaction among lexical items. 

Following the arguments brought forward, e.g., by Jackendoff ( 1990) and Allen ( 1993), there is no distinction at the 
representational level between semantic and conceptual interpretations of texts. Hence, semantic and domain knowledge 
specifications are based on a common hybrid classification-based knowledge representation language (for a survey, cf. 
Woods & Schmolze ( 1992)). Ambiguities which result in interpretation variants are managed by a context mechanism of 
the underlying knowledge base system. Robustness at the grammar level is achieved by several means. Dependency grammars describe binary, functional 
relations between words rather than contiguous constituent structures. Thus, ill-formed input often has an (incomplete) 
analysis in our grammar. Furthermore, it is possible to specify lexical items at different levels of syntactic or semantic 
granularity such that the specificity of constraints may vary. The main burden of robustness, however, is assigned to a 
dedicated message-passing protocol we will discuss in the next section. 

3 The Parser 

Viewed from a parsing perspective, we represent lexical items as word actors which are acquainted with other actors 
representing the heads or modifiers in the current utterance. A specialized actor type, the phrase actor, groups word actors 
which are connected by dependency relations and encapsulates administrative information about each phrase. A message 
does not have to be sent directly to a specific word actor, but will be sent to the mediating phrase actor which forwards 
it to an appropriate word actor. Furthermore, the phrase actor holds the communication channel to the corresponding 
interpretation context in the domain knowledge base system. A container actor encapsulates several phrase actors that 
constitute alternative analyses for the same part of the input text (i.e. , structural ambiguities). Container actors play 
a central role in controlling the parsing process, because they keep information about the textually related (preceding) 
container actors holding the left context arid the chronologically related (previous) container actors holding a part of the 
head-oriented parse history. 

Basic Parsing Protocol (incl. Ambiguity Handling). We use a graphical description language to sketch the message
passing protocol for establishing dependency relations as depicted in Fig. 1 (the phrase actor' s active head is visualized 
by ffi). A searchHeadFor message (and vice versa a searchModifierFor message if searchHeadFor fails) is sent to the 
textually preceding container actor (precedence relations are depicted by bold dashed lines), which simultaneously directs 
this message to its encapsulated phrase actors. At the level of a single phrase actor, the distribution of the searchHeadFor 
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nzenon sells this printer" "for $2,000" 

Figure 1 :  Basic Mode (incl. Structural Ambiguities) 

message occurs for all word actors at the "right rim" of the dependency tree (depicted by @). A word actor that receives 
a searchHeadFor message from another word actor concurrently forwards this message to its head (if any) and tests in its 
local site whether a dependency relation can be established by checking its corresponding valency constraints (applying 
SYNTAXCHECK and CONCEPTCHECK). In case of success, a headFound message is returned, the sender and the receiver 
are copied (to enable alternative attachments in the concurrent system, i.e. , no destructive operations are carried out), and a 
dependency relation, indicated by a dotted line, is established between those copies which join into a phrasal relationship 
(for a more detailed description of the underlying protocols, cf. Neuhaus & Hahn (1996)). For illustration purposes, 
consider the analysis of a phrase like "Zenon sells this printer" covering the content of the phrase actor which textually 
precedes the phrase actor holding the dependency structure for "for $2,000". The latter actor requests its attachment as 
a modifier of some head. The resultant new container actor ( encapsulating the dependency analysis for ''Zenon sells this 
printer for $2,000" in two phrase actors) is, at the same time, the historical successor of the phrase actor covering the 
analysis for "Zenon sells this printer". 

The structural ambiguity inherent in the example is easily accounted for by this scheme. The criterion for a structural 
ambiguity to emerge is the reception of at least two positive replies to a single searchHeadFor (or searchModifierFor) 
message by the initiator. The basic protocol already provides for the concurrent copying and feature updates. In the 
example from Fig. 1 ,  two alternative readings are parsed, one phrase actor holding the attachment to the verb ("sells"), 
the other holding that to the noun ( ''printer"). The crucial point about these ambiguous syntactic structures is that they 
have conceptually different representations in the domain knowledge base. In the case of Fig. 1 verb attachment leads to 
the instantiation of the PRICE slot of the corresponding SELL action, while the noun attachment leads to the corresponding 
instantiation of the PRICE slot of PRINTER. 

Robustness: Skipping Protocol. Skipping for robustnes purposes is a well known mechanism though limited in its 
reach (Lavie & Tomita, 1993). But in free word-order languages as German skipping is even vital for the analysis of 
entirely well-formed structures, e.g. , those involving scrambling or discontinuous constructions. For brevity, we will 
base the following explanation. on the robustness issue and refer the interested reader to Neuhaus & Broker ( 1997). The 
incompleteness of linguistic and conceptual specifications is .ubiquitous in real-world applications and, therefore, requires 
mechanisms for a fail-soft parsing behavior. Fig. 2 illustrates a typical "skipping" scenario. The currently active container 
addresses a searchHeadFor ( or searchModifierFor) message to its textually immediately preceding container actor. If both 
types of messages fail, the immediately preceding container of the active container forwards these messages - in the 
canonical order - to its immediately preceding container actor. If any of these two message types succeeds after that 
mediation, a corresponding (discontinuous) dependency structure is built up. Furthermore, the skipped container is moved 
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•zenon sells this printer• •totally" •over-priced• 

®--

"totally" •zenon sells this printer over-priced• 

Figure 2: Skipping Mode 
to the left of the newly built container actor. Note that this behavior results in the reordering of the lexical items analyzed 
so far such that skipped containers are continuously moved to the left. As an example, consider the phrase "Zenon sells this printer'' and let us further assume "totally" to be a grammatically unknown item which is followed by the occurrence 
of "over-priced" as the active container. Skipping yields a structural analysis for "Zenon sells this printer over-priced", 
while "totally" is simply discarded from further consideration. This mode requires an extension of the basic protocol 
in that searchHeadFor and searchModifierFor messages are forwarded across non-contiguous parts of the analysis when 
these messages do not yield a positive result for the· requesting actor relative to the immediately adjacent container actor. 
Backtracking Protocol. Backtracking to which we still adhere in our model of constrained concurrency accounts for a 
state of the analysis where none of the aforementioned protocols have terminated successfully in any textually preced
ing container, i.e., several repeated skippings have occurred, until a linguistically plausible barrier is encountered. In 
this case, backtracking takes place and messages are now directed to historically previous containers, i.e. , to containers 
holding fragments of the parse history. This is realized in terms of a protocol extension by which search Head For ( or 
searchModifierFor) messages, first, are reissued to the textually immediately preceding container actor which then for
wards these messages to its historically previous container actor. This actor contains the head-centered results of the 
analysis of the left context prior to the structural extension held by the historical successor. 1 Attachments for heads or 
modifiers are now checked referring to the historically preceding container and the active container as depicted in Fig. 3a. 

If the valency constraints are met, a new phrase actor is formed ( cf. Fig. 3b) necessarily yielding a discontinuous anal
ysis. A slightly modified protocol implements reanalysis, where the skipped items send research Head For ( or reSearch
ModifierFor) messages to the new phrase actor, which forwards them directly to those word actors where the discontinuity 
occurs. As an example, consider the fragment "the customer bought the silver" (with "silver'' in the noun reading, cf. 
Fig. 3a). This yields a perfect analysis which, however, cannot be further augmented when the word actor "notebook" asks 
for a possible attachment. 2 Two intervening steps of reanalysis ( cf. Fig. 3b and 3c) yield the final structural configuration 
depicted in Fig. 3d. 
Prediction Protocol. The depth-first approach of the parser brings about a decision problem whenever a phrase cannot be 
integrated into (one of) the left-context analyses. Either, the left context and the current phrase are to be related by a word 
not yet read from the input and, thus, the analysis should proceed without an attachment.3 Or, depth-first analysis was 
misguided and a backtrack should be invoked to revise a former decision with respect to attachment information available 
by now. 1 Any container which holds the modifying part of the structural analysis of the historical successor (in Fig. 3a this relates to "the" and "silver'') is deleted. Hence, this deletion renders the parser incomplete in spite of backtracking. 2Being an arc-eager parsing system, a possible dependency relation will always be established. Hence, the adjective reading of "silver" will not be considered in the initial analysis. 3This effect occurs particularly often for verb-final languages such as German. 
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a 

"The customer bought the silver" 

b 

C 

- <ID - @  

d 

"notebook" 

"the" "silver" 
"the customer bought" "notebook" 

"the customer bought the notebook" 

"The customer bought the silver notebook" 

Figure 3 :  Backtracking Mode 

Prediction can be used to carry out a more informed selection between these alternatives. Words not yet read, but 
required for a complete analysis, can be derived from the input analyzed so far, either top-down (predicting a modifier) or 
bottom-up (predicting a head). Both types of prediction are common in phrase-structure based parsers, e.g. Earley-style 
top-down prediction (Earley, 1970) or left-corner strategies with bottom-up prediction (Kay, 1986). Since dependency 
grammars, in general, do not employ non-lexical categories which can be predicted, so-called virtual words are constructed 
by the parser, which are later to be instantiated with lexical content as it becomes available when the analysis proceeds. 

Whenever an active phrase cannot attach itself to the left context, the head of this phrase may predict a virtual word as 
tentative head of a new phrase under which it is subordinated. The virtual word is specified with respect to its word class, 
morphosyntactic features, and order restrictions, but is left vacuous with respect to its lexeme and semantic specification. 
In this way, a determiner immediately constructs an NP ( cf. Fig. 4a), which can be attached to the left context and may 
incrementally incorporate additional attributive adjectives until the head noun is found ( cf. Fig. 4b ) .4 The virtual word 
processes a searchPredictionFor protocol initiated by the next lexical item. The virtual word and this lexical item are 
merged iff the lexical item is at least as specific as the virtual word ( concerning word class and features) and it is able to 
govern all modifiers of the virtual word (cf. Fig. 4c). 

This last criterion may not always be met, although the prediction, in general, is correct. Consider the case of German 
verb-final subclauses. A top-down prediction of the complementizer constructs a virtual finite verb (designated by ®), 
which may govern any number of NPs in the subclause ( cf. Fig. Sa). If the verbal complex, however, consists of an 
infinite full verb preceding a finite auxiliary, the modifiers of the virtual verb must be distributed over two lexical items.5 

An extension of the prediction protocol accounts for this case: A virtual word can be split if it may govern the lexical 
item and some modifiers can be transferred to the lexical item. In this case, the lexical item is subordinated to a newly 

4This procedure implements the notion of mother node constructing categories proposed by Hawkins (1994), which are a generalization of the notion 
head to all words which unambiguously determine their head. The linguistic puzzle about NP vs. DP is thus solved. In contrast to Hawkins, we also 
allow for multiple predictions. 

5We here assume the finite auxiliary to govern the subject (enforcing agreement), while the remaining complements are governed by the infinite full 
verb. 
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a 

"Zenon sells" "a" 

b 

"Zenon sells a " "printer" 

C 

Figure 4: Predicting and merging a noun 
created virtual word (indicated by CB in Fig. 5b) governing the remaining modifiers. Since order restrictions are available 
for virtual words, even non-projectivities can be accounted for by this scheme ( cf. Fig. 5b ). 6 

Although prediction allows parsing to proceed incrementally and more informed (to the potential benefit of increased 
efficiency), it engenders possible drawbacks: In underspecified contexts, a lot of false predictions may arise and may dra
matically increase the number of ambiguous analyses. Furthermore, the introduction of additional operations (prediction, 
split, and merge) increases the search space of the parser. Part of the first problem is addressed by our extensive usage of 
the word class hierarchy. If a set of predictions contains all subclasses of some word class W, only one virtual word of 
class W is created. 
Text Phenomena. A particularly interesting feature of the performance grammar we propose is its capability to seamlessly 
integrate the sentence and text level of linguistic analysis. We have already alluded to the notoriously intricate interactions 
between syntactic criteria and semantic constraints at the phrasal and clausal level. The interaction is even more necessary 
at the text level of analysis as semantic interpretations have an immediate update effect on the discourse representation 
structures to which text analysis procedures refer. Their status and validity directly influence subsequent analyses at the 
sentence level, e.g. , by supplying proper referents for semantic checks when establishing new dependency relations. In 
addition, lacking recognition and referential resolution of textual forms of pronominal or nominal anaphora (Strube & 
Hahn, 1 995), textual ellipses (Hahn et al. ,  1996a) and metonymies (Markert & Hahn, 1 997) leads to invalid or incohesive 
text knowledge representation structures. These not only yield invalid parsing results (at the methodological level) but also 
preclude proper text knowledge acquisition (at the level of system functionality). Hence, we stress the neat integration of 
syntactic and semantic checks during the parsing process at the sentence and the text level. We now tum to text grammar 
specifications concerned with anaphora resolution and their realization by a special text parsing protocol. 

The protocol which accounts for local text coherence analysis makes use of a special actor, the centering actor, which 
keeps a backward-looking center (Cb) and a preferentially ordered list of forward-looking centers (CJ) of the previous 
utterance (we here assume a functional approach (Strube & Hahn, 1996) to the well-known centering model originating 
from Grosz et al. (1995)). These lists are accessed to establish proper referential links between an anaphoric expres
sion in the current utterance and the valid antecedent in the preceding ones. Nominal anaphora (cf. the occurrences of 
"the company" and "these printers" in Fig. 6) trigger a special searchNomAntecedent message. When it reaches the 
C f list, possible antecedents are accessed in the given preference order. If an antecedent and the anaphor fulfill certain 6Non-projectivities often arise, e.g. due to the fronting of a non-subject relative pronoun. As indicated by the dashed line in Fig. Sb and Sc, we employ additional projective relations to restrain ordering for discontinuities. 
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a 

C 

"weil ihn Zenon " 

because it.ACC Zenon 

"weil ihn Zenon entwickelt " 

because Zenon _ developed it 

"entwickelt" 
developed 

"hat" 
has 

Figure 5: Predicting and splitting a verb 
grammatical and conceptual compatibility constraints, an antecedentFound message is issued to the anaphor, and finally, 
the discourse referent of the antecedent replaces the one in the original anaphoric expression in order to establish local 
coherence. In case of successful anaphor resolution an anaphorSucceed message is sent from the resolved anaphor to 
the centering actor in order to remove the determined antecedent from the C f list (this avoids illegal follow-up refer
ences). The effects of these changes at the level of text knowledge structures are depicted in Fig. 7, which contains the 
terminological representation structures for the sentences in Fig. 6. 

4 Preliminary Evaluation 

Any text understanding system which is intended to meet the requirements discussed in Section 1 faces severe performance 
problems. Given a set of strong heuristics, a computationally complete depth-first parsing strategy usually will increase 
the parsing efficiency in the average case, i.e., for input that is in accordance with the parser' s preferences. For the 
rest of the input further processing is necessary. Thus, the worst case for a depth-first strategy applies to input which 
cannot be assigned any analysis at all (i.e., in cases of extra- or ungrammaticality). Such a failure scenario leads to an 
exhaustive search of the parse space. Unfortunately, under realistic conditions of real-world text input these cases occur 
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"The company claims these printers print at up to 3 ppm in co/or. " 

Figure 6: Anaphora Resolution Mode 

CO LOR-LASER-PRINTER 

printer-007 

0---1 XColor l 
in-series 

A-----printer-speed-008 
has-speed 

printing-speed 

(-M-A-NU-F-AC_T_U_RE_R_) 

,,, ___ I Zenon I 
producer 

Figure 7: Sample Output of Text Parsing 

quite often. Hence, by using a computationally complete depth-first strategy one merely would trade space complexity 
for time complexity. 

To maintain the potential for efficiency of depth-first operation it is necessary to prevent the parser from exhaustive 
backtracking. In our approach this is achieved by two means. First, by restricting memoization of attachment candidates 
for backtracking (e.g., by retaining only the head portion of a newly built phrase, cf. footnote 1 ). Second, by restricting 
the accessibility of attachment candidates for backtracking ( e.g., by bounding the forwarding of backtracking messages to 
linguistically plausible barriers such as punctuation actors). In effect, these restrictions render the parser computationally 
incomplete, since some input, though covered by the grammar specification, will not be correctly analyzed. 
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4.1 Performance Aspects 

The stipulated efficiency gainthat results from deciding against completeness is empirically substantiated by a comparison 
of our PARSETALK system, henceforth designated as PT, with a standard chart parser,7 abbreviated as CP. As the CP 
does not employ any robustness mechanisms (one might,e.g. , incorporate those proposed by Mellish (1989)) the current 
comparison had to be restricted to entirely grammatical sentences. We also do not account for prediction mechanisms the 
necessity of which we argued for in Section 2. For the time being, an evaluation of the prediction mechanisms is still under 
way. Actually, the current comparison of the two parsers is based on a set of 41 sentences from our corpus (articles from 
computer magazines) that do not exhibit the type of structure requiring prediction (cf. Fig. 5 and the example therein) .  For 
40 of the test sentences8 the CP finds all correct analyses but also those over-generated by the grammar. In combination, 
this leads to a ratio of 2.3 of found analyses to correct ones. The PT system ( over-generating at a ratio of only 1 .6) finds 36 
correct analyses, i.e., 90% of the analyses covered by the grammar (cf. the remark on ' near misses' in Section 4.2). Our 
preliminary evaluation study rests on two measurements, viz. one considering concrete run-time data, the other comparing 
the number of method calls. 

number of speed-up factor 
samples min-max average 

25 1 . 1 -4.2 2.8 
10 5 . 1-8.9 6.9 
6 10.9-54.8 45 .2 

Table 1 :  Ratio of run times of the CP and the PT system, chunked by speed-up. 

The loss in completeness is compensated by a reduction in processing costs on the order of one magnitude on the 
average. Since both systems use the identical dependency grammar and knowledge representation the implementation 
of which rests on identical Smalltalk and LOOM/Common Lisp code, a run time comparison seems reasonable to some 
degree. For the test set the PT parser turned out to be about 17 times faster than the CP parser (per sentence speed-up 
averaged at over 10) .  Table 1 gives an overview of the speed-up distribution. 25 short to medium long sentences were 
processed with a speed-up in a range from 1 . 1  to 4.2 times faster than the chart parser averaging at 2.8. Another 1 0  longer 
and more complex sentences show the effects of complexity reduction even more clearly, averaging at a speed-up of 6.9 
(of a range from 5. 1 to 8 .9). One of the remaining 6 very complex sentences is discussed below. 

Accordingly to these factors, the PT system spent nearly two hours ( on a SPARCstation 10 with 64 MB of main 
memory) processing the entire test set, while the CP parser took more than 24 hours. The exorbitant run times are largely 
a result of the (incremental) conceptual interpretation, though these computations are carried out by the LOOM system 
(Mac Gregor & Bates, 1987), still one of the fastest knowledge representation systems currently available (Heinsohn et al. ,  
1994) . 

While the chart parser is completely coded in Smalltalk, the PT system is implemented in Actalk (Briot, 1 989) - an 
extension of Smalltalk which simulates the asynchronous communication and concurrent execution of actors on sequential 
architectures. Thus, rather than exploiting parallelism, the PT parser currently suffers from a sche�uling overhead. A more 
thorough comparison abstracting from these implementational considerations can be made at the level of method calls. We 
here consider the computationally expensive methods SYNTAXCHECK and CONCEPTCHECK (cf. Section 2). Especially 
the latter consumes large computational resources, as mentioned above, since for each syntactic interpretation variant a 
context has to be built in the KB system and its conceptual consistency must be checked continuously. The number of 
calls to these methods is given by the plots in Figs. 8 and 9. Sentences are ordered by increasing numbers of calls to 
SYNTAXCHECK as executed by the CP (this correlates fairly well with the syntactic complexity of the input). The values 
for sentences 39-41 in Fig. 8 are left out in order to preserve a proper scaling of the figure for plotting (39: 14389, 40=4 1 :  
27089 checks). A reduction of the total numbers of syntactic as well as semantic checks b y  a factor of nine to ten can be 
observed applying the strategies discussed for the PT system, i.e., the basic protocol plus skipping and backtracking. 

7The active chart parser by Winograd (1983) was adapted to parsing a dependency grammar. No packing or structure sharing techniques could be 
used since the analyses have continuously to be interpreted in conceptual terms. We just remark that the polynomial time complexity known from chart 
parsing of context-free grammars does not carry over to linguistically adequate versions of dependency grammars (Neuhaus & Broker, 1997). 

8Toe problem caused by the single missing sentence is discussed in Section 4.2. 
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Figure 8: Calls to SYNTAXCHECK 
Conceptual Checking 
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Figure 9: Calls to C0NCEPTCHECK 

4.2 Linguistic Aspects 

The well-known PP attachment ambiguities pose a high processing burden for any parsing system. At the same time, PP 
adjuncts often convey crucial information from a conceptual point of view as in sentence 40: Bei einer BlockgroBe, die 
kleiner als 32 KB ist, erreicht die Quantum-Festplatte beim sequentiellen Lesen einen Datendurchsatz von 1 . 1 00 KB/s bis 
1 .300 KB/s. [For a block size of less than 10 KB, the Quantum hard disk drive reaches a data throughput of 1. 100 KB/s to 
1.300 KB/s for sequential reading]. Here, the chart parser considers all 1 6  globally ambiguous analyses stemming from 
ambiguous PP attachments. 

Apart from the speed-up discussed above the PT parser behaves robust in the sense that it can gracefully handle cases 
of underspecification or ungrammaticality. For instance, sentence 36 (Im direkten Vergleich zur Seagate bietet sie fiir 
denselben Preis weniger Kapazitiit. [In direct comparison to the Seagate drive, it (the tested drive) offers less capacity for 
the same price.]) contains an unspecified word ' weniger' (i.e. ' less' ) such that no complete and correct analysis could be 
produced. Still, the PT parser was able to find a ' near miss' , i.e., a discontinuous analysis skipping just that word. 

A case where the PT parser failed to find the-correct analysis was sentence 39: Die Geriiuschentwicklung der Festplatte 
ist deutlich ho her als die Geriiuschentwicklung der Maxtor 7080A. [The drive' s noise level is clearly higher than the noise 
level of the Maxtor 7080A]. When the adverb ' deutlich' (i.e. ' clearly' ) is processed it is immediately attached to the 
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matrix verb as an adjunct. Actually it should modify ' hoher' (i.e. ' higher' ) ,  but as it is not mandatory no backtrack is 
initiated by the PT parser to find the correct analysis. 

5 Conclusion 

The incomplete depth-first nature of our approach leads to a significant speed-up of processing approximately in the order 
of one magnitude, which is gained at the risk of not finding a correct analysis at all. This lack of completeness resulted 
in the loss of about 10% of the parses in our experiments and correlates with fewer global ambiguities. We expect to find 
even more favorable results for the PT system when processing the complete corpus, i.e., when processing material that 
requires prediction mechanisms. 
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Abstract 

This paper present� c1 new technique for selecting the correct parse of ambiguous sentences hased on a probabilistic analy�, of lexical cooccurrences in semantic forms. The method is called "Semco" (for semantic cooccurrence analysis) and is specifically targeted at the differential distribution of such cooccurrences in correct and incorrect parses. It uses Bayesian Estimation for the cooccurrence probabilities to achieve higher accuracy for sparse data than the more common Maximum Likelihood Estimation would. It has been tested on the Wall Street Journal corpus (in the PENN Treebank) and shown to find the correct parse of 60.9% of parsea e sentences of 6-20 words. 
1 Introduction In recent years there have been many proposals for probabilistic natural language parsing techniques, t hat is, techniques which not only find the possible syntactic derivations for a sentence, but also attempt to determine the most likely parse according to some probabilistic model. A basic example is a probabilistic context free grammar (PCFG ) ,  in which each production rule is associated with t he conditional probability of it being applied when the left -hand non-terminal occurs in the generation of a sentence (e.g . ,  Baker ,  1982; Kupiec, 199 1 ;  Pereira and Schabes, 1992) . This effectively regards the derivation of a sentence as a top-down recursive stochastic process, starting with  t he sentence non-terminal and ending wit h  a random sentence in the language being modelled. While a PCFG is a pleasingly simple model, the fact t hat it assumes t he choice of production at each step is only conditional on the left-hand non-terminal is a limitation to its accuracy. Some variations have therefore been proposed, by which the probability of a rule ( or more generally, a parse derivation step) is made conditional on an extended view of the preceding derivation. For example, Briscoe and Carroll ( 1993) associate probabilities with transitions in an LR(l )  parse table (partly reflecting the left context and a one-word lookahead) , while Black et al. ( 1 993) present a model in which virtually any aspect of the partial parse at any point in a derivation may be taken into account. Both Briscoe and Carroll and Black et al. tie the probabilistic analysis to t he precise parsing algorithm being used, effectively shifting the emphasis from modelling sentence generation to parse selection as a goal in its own right. Others take this further by separating the parsing and t he parse S(

1 l ection completely. Hindle and Rooth (1993) , for example, propose a system for resolving PP attachment ambiguities by co�paring the degree of statistical association between the possible verb/preposition/noun triples after an arbitrary parser has produced a set of syntactically possible parses. This approach is attractive because it is based on lexical cooccurrences, which may reflect the acceptability of the meaning of a parse, but is less comprehensive than the other methods mentioned, since only a particular kind of ambiguity is covered.  
* I  am very grateful to Ted Briscoe, John Carroll, Miles Osborne, John Daugman, Gerald Gazdar, Steve Young and the  anonymous 

IWPT-97 reviewers for their valuable advice. The work was made possible by a generous grant from the Norwegian Research Council 
( Norsk Forskningsrad, ST.30.33.221752) and an Overseas Research Students Award from the Committee of Vice-Chancellors and 
Principals of the Universities of the United Kingdom (ORS/9109219) .  
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Yet others have made the opposite move, and presented parsing methods where the probabilistic analysis 
is used as the main driving force for the parser independently of any linguistically motivated grammar. Both 
Magerman (1995) and Collins (1996) propose such systems, where complex statistical patterns extracted from 
a Treebank constitute both the (shallow) syntactic grammar and selectional criteria. The results are systems 
which are comprehensive in the types of ambiguities they can handle and designed to extract a highly detailed 
and wide ranging statistical data from the training corpus, but which do not take any advantage of the analytical 
syntactic rules encoded in a formal grammar, and which do not support the derivation of semantic forms. 

The system presented in this paper is essentially a specialised parse selector based on semantic forms derived 
from the parses found by a separate parser, and can therefore be used ,vith any grammar and parser supporting 
formal semantics. It is based on lexical cooccurrences in terms of the predicates in the semantic forms, but 
handles all predicates uniformly and is therefore generally comprehensive in the types of ambiguities covered. 
It uses a complex statistical analysis to extract a large set of probabilistic parameters from the training corpus, 
but does not abandon the use of a formal grammar. Significantly, the system uses Bayesian Estimation1 rather 
than simple Maximum Likelihood Estimation (MLE) for determining cooccurrence probabilities. This appears 
to be a sufficient response to the high degree of sparseness in the lexical cooccurrence data without the blurring 
associated with smoothing and clustering techniques (generally required for MLE). It seems reasonable to expect 
that a parse selection system should benefit from being trained on the same form of data that it is to be applied 
to-that is, specifically on the selection of the correct parse in sets of possible parses for different sentences 
rather than the unconditional probability of correct parses in isolation. The focus of the training in tb,is system 
is therefore the differential distribution of cooccurrences in correct versus incorrect parses. The system is called 
"Semco" ( for semantic cooccurrence analysis) , and has been trained and tested on ( separate parts of ) the Wall Street Journal corpus in the PENN Treebank. 

2 Definitions 

The aim of the Semco analysis is to model cooccurrences of lexical predicates in semantic forms for the purpose of 
parse selection. A semantic form is here assumed to be a logical expression or description (including unscoped 
or quasi logical forms) derived in a compositional manner from a syntactic parse tree, and thus in general 
representing one of several possible interpretations of a sentence. A cooccurrence should represent the variable 
semantic linking of the predicates (generally representing lexical items from the sentence) in such expressions, 
and is therefore defined as the coincidence of two predicates being applied to the same element ( a quantified 
variable or a constant). More precisely, if the ith argument of the predicate Q and the jth argument of the 
predicate R are the same, the semantic form is said to include the cooccurrence (Q .i , R.j) understood as an 
unordered pair. 

To see how such cooccurrences can be used for sentence disambiguation, consider the following exchange 
(from Andy Warhol, 1975) :  
( 1 )  B :  Is that a female impersonator? 

A: Of what ? 
The expression female impersonator is so commonly used as a noun-noun compound ( "an impersonator of a 
female" ) ,  that it comes as a surprise here when A's reply requires an alternative reading in which female is 
used as an adjective (giving "an impersonator who is female" ). The difference between the two readings is 
represented by the semantic predicates and cooccurrences shown in Table 1. Note that the cooccurrences are 
concise representations of the facts that female and impersonator form a noun compound in Reading 1, while female is used as an adjectival modifier of impersonator in. Reading 2. 

The probabilistic analysis treats cooccurrences as elementary, atomic units, so that for a given grammar 
and lexicon there is a finite set C of possible cooccurrences. As far as this analysis is concerned, a _parse, or 

1 Note that Bayesian Estimation (following e.g. Freund, 1992) refers not merely to the use of Bayes's law, but to the particular 
technique of estimating unknown prol ,:-ihilities by integration over a continuous probability distribution applied in Section 4 .  

114 



Reading 1 Reading 2 
Categories femaleN impersonatorN femaleAdj impersonatorN 
Predicates (fema le x) (fema le x) 

(impersonator y) (impersonator x) 
(NCOMP y x) 

Cooccurrences (female .a NCOMP.1) (fema le .a impersonator.a) 
( impersonator.a  NCOM P.a) 

Table 1: Example predicates and co occurrences derivation, is regarded as a set of cooccurrences, with the set of all parses being V = {d I d � C} . Similarly, a 
sentence is regarded as a set of possible parses, such that the set of all possible sentences is S = { s I s � V}. 

For each cooccurrence, parse and sentence there is a corresponding event-conventionally represented by 
the corresponding capital letter-referring to the status of a random sentence. More precisely: 

• C is the event that the correct parse of the sentence includes the cooccurrence c. 
• D is the event that the correct parse is d. It can be expressed as the conjunction of the cooccurrence 

events for all the cooccurrences in d and the negated cooccurrence events for all other cooccurrences: 
D = f\ C A f\ -, C. 

cEd c(t_d 

(2) 

• S is the event that the correct parse is an element of s ,  and is simply the disjunction of the corresponding 
parse events :  

S =  V D. (3) 
dEs 

3 The Event Space 

Given the above definitions of cooccurrence, parse and sentence events, one's first reaction may be to regard 
the associated probabilities as the relative frequencies of the respective entities in the language-that is, in the 
correct analyses of the sentences in the training corpus. This is not the only possible definition, however, and 
would have serious disadvantages for the following analysis . For example, it would mean that the model should 
reflect the typical number of cooccurrences in an average sentence, making any assumption of independence 
between cooccurrences inappropriate (since the probabilities of any additional cooccurrence would diminish 
once the number has passed this average). It would also make it impossible for the training to be based on the 
differential distribution of cooccurrences in correct and other syntactically possible, but incorrect , parses of the 
training sentences, since such alternative parses would have no particular status in the model. 

Alternative definitions of the basic probabilities are possible because all actual references to probabilities will 
be conditional on some given sentence. The only requirement of the probabilistic model is that it predicts the 
relative, conditional probabilities for different parses for any given sentence, while the unconditional probabilities 
of different sentences in the corpus are never directly relevant. 

To derive a suitable definition of the basic event space here, we will take the presumed indepeqdence of all 
cooccurrence events as the starting point , based on the view that the model ought to satisfy the following basic 
assumption: 
(4) Basic Assumption: The relative probabilities of any two parses depends only on the cooccurrences 

that distinguish between them, and not on any cooccurrence present in both of them, any cooccurrence 
absent in both of them, or any further possible parses of the same sentence. 
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The independence of the cooccurrence events follows by considering two parses, d1 and d2 , that are only 
distinguished by a single cooccurrence c, say c E d1 and d2 = d1 \ c. By the basic assumption, the ratio 
P(D 1 I S) : P(D2 I S) is invariant for any such d1 and d2 and s 2 {d1 , d2 } ,  and this ratio must be P(C) : P(,C) . 
From the independence of the cooccurrence events and (2 )  it follows that the unconditional probability of a 
parse event D is given by 

P(D) = II P(C) II P(,C). cEd c(/.d 
4 Cooccurrence Probability Estimation 

(5) 

The cooccurrence probabilities P( C) represent the basic parameters in the analysis and need to be estimated 
from the training corpus. In many other probabilistic analyses of corpus data the basic parameters are estimated 
as the observed relative frequencies of sentences displaying the relevant characteristics, but such a simple 
approach is not possible here. Instead, Bayesian estimation (see e.g. Freund, 1992) is used, by which the 
estimate is defined in terms of the distribution of the probability to be estimated regarded as a continuous 
probabilistic variable. 

More precisely, the unknown probability P( C) for a given c is regarded as the continuous probabilistic 
.variable e with a value 0 in the interval (0 , 1) . Let Si for i in 0, . . .  , t be all the sentences in the training corpus, 
and let di be the correct parse of each Si . Let also Si be the event corresponding to Si , and let Ci be the event 
associated with the cooccurrence c with respect to the sentence Si . The overall status of the corpus with respect 
to c can then be expressed as the conjunction of the events S = I\ Si and 

6 = f\ CJ, f\ , Ci .  cEd; c(/.d; (6) 

The distribution of e given the observed status of the corpus can then be expressed as the probability density 
function </>(0 16 ,  S), which according to Bayes's law is given by 

A.(0 16 S) = P(610 S) h(�IS} 
'f/ ' ' P(CIS) (7) 

Here h(0 IS) is the probability density function for the distribution of e given only the sentences in the corpus 
(i.e., not knowing the correct parses), and P(6IS) is the (discrete) probability of 6 not knowing 0. In other 
words, h(B IS) is effectively (for our purposes) the prior distribution of e (regarding S as fixed) , while </>(0 16 ,  S) 
is the posterior distribution of the same given the correct disambiguation of the sentences implied by 6.  

The probability P(610 ,  S), that is, the probability of  the correct (observed) parse selections in the corpus 
in terms of the cooccurrence c and given 0 = P(C), is given according to (6) and the fact that each sentence 
represents an independent draw in the event space by the product 

(8) 

To determine P(Ci l0 ,  S), let ni and mi be the number of parses of Si which do and do not, respectively, include 
c. Since the ratio of the probabilities of each of the former to each of the latter is 0 : (1 - 0), we get 

(9) 

Returning to equation (7) , the probability P(6 IS) can now be determined from P(610,  S) by the integral 

P(C' IS) = [ P(610, S)h(0 IS) d0. ( 10) 

1 16 



This leaves only the prior distribution, h (0 I S ) ,  which cannot be determined analytically, but which may be 
estimated empirically from a preliminary estimation of all the cooccurrences in the corpus (e.g . ,  using h (0 I S) = 1 
as a temporary simplification without seriously affecting the overall distribution) .  

Having found the posterior distribution </>(0 16 , S) , a straightforward application of the Bayesian estimation 
method would be to estimate the unknown probability P( C) as the expected value of (9 ,  that is 

E( 0 1 6, 5) = [ <f,(0 16, 5) 0 d0. (11) 

A slight variation of this will be used here, however, based on the observation that the expected value operator 
in ( 1 1 )  essentially represents a continuous, arithmetic mean of the cooccurrence probability 0 weighted by the 
distribution function </>( 0 16 ,  S) . As such, it would represent a reasonable estimation of P (  C) if the result were to 
be used as a term in a sum of such results, but according to (5) the main use of a cooccurrence probability will 
be represented by a factor of either P( C) or 1 - P( C) in a parse probability. As the net effect of the presence 
or absence of the cooccurrence in a parse thus is to either multiply or divide the parse probability by 1�0 , a 
more suitable estimate of P(  C) is found by applying the expected value operator to ln 1 �0 , that is , defining the 
estimate as Pc given by the equation2 

Pc e 
I 

A A 1 1 
A A 0 

ln --_ = E ( ln --D C, S) = </>(0 IC , S) 1n -
0

d0. 1 - Pc 1 - o O 1 -
( 12) 

From (7) , (8) , ( 10) and ( 12) , noting that the integral in (10)' does not depend on 0 and can therefore be moved 
outside that in ( 12) , we then get the following overall expression for the cooccurrence probability estimate: 

- 1 A 
A 

A 0 
Pc fo P(Cl0 , S )h (0 I S) ln I=e d0 

ln 
1 - Pc 

= 
J; P(Cl0 , S )h (0 I S) d0 

( 1 3) 

To summarise, the effect of all this is that the posterior probabilistic distribution of the cooccurrence prob
ability is determined from the prior distribution of such probabilities and the observations relating to this 
cooccurrence in the corpus. The posterior distribution represents the full knowledge we have of the likelihood 
of different possible values of the cooccurrence probability, and the final estimate is defined as that which 
represents the best approximation (for our purposes) of this as a fixed value. 

5 Implementation Notes 

The previous section derived ( 13 )  in conjunction with (8) and an empirical estimation of h (0 IS )  as the main 
expression for the estimate Pc of a cooccurrence probability P(C) . In practice, only sentences with at least one 
parse that includes c and one that doesn't, that is, for which ni ,  mi > 0, have any effect on the result. For any 
such sentence, moreover ,  it is enough to record the ratio 

in the training data. Then, by defining 

and 

ni 
Ti = mi 

f (0) = [J:L 1, (0)] h (0 15) 

ri0/ (ri0 + 1 - 0) if c E di 

( 1  - 0)/ (ri0 + 1 - 0) otherwise, 

(14)  

( 15) 

( 16) 

2The convergence of the integral in ( 12) , although In 1�0 ➔ ±oo for 0 ➔ 0 and 0 ➔ 1, follows from the well-known convergence 

of f
0
1 

In 0 d0 = - 1  and the fact that the relevant probability distribution functions are finite. 
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(a) examples of /i (0)  for Ti = ½ , � ' % , f ,  f (for i = 1 ,  . . .  , 5, resp. )  and c E di 
h(0 IS)  

0 '-------'----'---'-------'----'-----''------'--.....____, _ __. 0 (c) the prior distribution h(0 IS) = ( l+�·.;�0 )2 in the Wall Street Journal ( found by manual curve fitting to the results of a preliminary analysis) 
1 

(b)  more examples of fi (0)  for the same Ti (for i = 6, . . .  , 10, resp . )  but with c (/:. di 

( d) possible posterior distributions based on the preceding functions: 
A: f(0)  = [IT�0 fi (0)] h(0 IS) , B :  f (0 )  = [IT2 , 7  /i (0 )] h(0 IS) 

Figure 1 :  Cooccurrence probability density functions. All functions are scaled to give a maximum 
value of 1 with no significance for the cooccurrence probability estimation. equation (13) is reduced to Pc fol f (0) In 1�0 d0 In -- = -------1 - Pc f0

1 f (0) d0 ( 1 7) The functions fi ( 0) and f ( 0) represent scaled probability density functions of fJ :  h ( 0) is (proportional to) the apparent distribution based only on sentence i ;  f (0) is (proportional to) the posterior distribution based on all the relevant sentences as well as the prior distribution h(0 IS) .  Fig. 1 shows some t ypical examples of the Ji ( 0) functions, the h( 0 15') found to  represent the distribution of cooccurrence probabilities in the Wall Street 
Journal corpus, and two possible forms of f (0) derived from them. The actual computation of Pc will have t o  be by numerical integration of (1 7) based on the ri values extracted from the t raining corpus for each cooccurrence.3 This may seem rather costly in computational terms, but is feasible in practice  with a careful implementation. In particular, it is generally not necessary to compute Pc for all the cooccurrences in the t raining corpus, since in most cases only a small fraction of them will ever be 3To avoid arithmetic overflow at or near 0 = 0 and 0 = 1 ,  however, it is convenient to rewrite the nominator in ( 17) as 

f0

1 ( [!(0) - J(O)] ln 0 - [! (0) - J( l)] ln( l - 0)) d0 - f(O) + J ( l ) ,  and omit the logarithms when the preceding factors are 0 .  
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required. Instead, a practical implementation may compile indexed files with the Ti values extracted from the 
corpus for each cooccurrences and compute the small number of cooccurrence probabilities required for any 
sentence when the need arises. 

6 Test Results 
An implementation of the Semco analysis has been tested with a feature unification-based, medium-wide cov
erage, syntactic/semantic grammar and sentences from the bracketted form of the Wall Street Journal part of 
the PENN Treebank. Due to limitations in the grammar and parser, the corpus had to be restricted in different 
ways: It was first limited to sentences of 6-20 words (after the deletion of parenthetical material) which parsed 
successfully with at most 100 parses (as more ambiguous ones would add disproportionately to the overall cost 
of the computation) . It was further reduced by rejecting sentences for which no parse achieved a minimum 
threshold similarity with the corpus bracketting, or for which more than 30% of the parses achieved the same, 
maximal such similarity. 

The parse/bracketting similarity measure used was a weighted sum of different counts based on shared 
constituents (with or without matching labels) , crossing brackets ,  and the overall length of the sentence (for 
normalising the result) . The threshold was set to correspond, typically, to a parse including about three-quarters 
of the corpus constituents with no crossing brackets .  Multiple parses achieving the same, maximal score above 
this threshold ( within the limit mentioned above) were presumed "equally correct" for training and testing 
purposes. The number of sentenc�s left in the corpus after each step in the selection process were: 

Number of sentences of length 6-20 words 
. . .  which parsed successfully 
. . .  which had up to 100 parses 
. . .  ,vhich . met the similarity measure requirements 

20155 
12162 
10852 
7887 

The final set of sentences was shuffled and divided into five partitions, allowing a cycle of five training/testing 
iterations to be run with different splits of the corpus into i for training and ½ testing. 

Table 2 shows a detailed overview of the main test statistics. The main part of the table refers to a particular 
division of the corpus, and shows a breakdown by sentence length and ambiguity. This is followed in the last 
row by the mean results of the five training/testing rounds based on different divisions of the corpus. 

The Parseval measures in the table have become a frequently used, common standard for comparison of 
different systems, but are only partly relevant for a system such as this . The fact that they are taken at 
constituent level means that they primarily measure the ability of the system to reproduce the precise bracketting 
in the corpus rather than the correct selection of parses as such. As a result , fully correct parses receive reduced 
scores where the grammar used by the parser differs significantly from that assumed in the corpus, while 
incorrect parses are credited to the extent that some of their constituents coincide with those in the corpus. In 
this system the grammar generally produces much more detailed parses than the corpus (i.e. , with many more 
constituents,  e.g. at bar-1 level) ,  meaning that the precision rate is severely reduced and effectively rendered 
meaningless, while the recall rate is not similarly badly affected. This systematic imbalance between the corpus 
bracketing and the parses also prompted the inclusion of two crossing brackets rates : where four words are 
bracketed as " (w1 w2 ) w3 w4 " in the corpus but parsed as "w1 ( (w2 w3 ) w4 ) " , for example, it counts as one 
crossed bracket in the corpus ( "xb/c" ) but two in the parse ( "xb/p" ) .  Again, the generally greater number 
of constituents in the parses than in the corpus means that the latter is artificially high and a poor basis for 
comparison with other systems. 

The table includes three variant Parseval measures. The "non-crossing precision" , which is like the standard 
precision rate except that any constituent in the parse that does not actually cross brackets with the corpus form 
is assumed to be correct, is intended as an illustration of a possible way to deal with the problem discussed above. 
The labelled precision and recall rates are the common variations of the Parseval measures ,vhere constituents 
are required to have matching syntactic labels. 
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Parseval measures Variants Correct parse ranked in top n 
prec rec xb/c xb/p nxpr lpre lrec 1 2 3 4 5 

Results with the origin al partitioning of the corpus for training/testing : 
All sents 61.3 87.2 0.40 0.79 93.1 58.0 82 .5 60.8 75.1 81.3 85.6 89.2 
Length 

6-10 70.0 94.3 0.12 0.20 97.2  67.7 91.2  82.4 91.2 94.2 97.0 98.7 
11-15 61.5  87.1 0.41 0.76 93.5 58.2 82 .5 58.9 75.3 82 .7 87.2 90.6 
16-20 57.2 83.7 0.67 1.45 91.0 53.5 78.4 41.2  57.9 65.7 71.3 77.1 

Ambiguity 
1-20 62.8 89.9 0.31 0.53 95.1 59.8 85 .6 69.3 83.1 88.6 92.9 95.6 

21-40 59.0 83.1 0.63 1.20 90.9 55.3 77.9 42 .5  60.2 69.2 74.7 80.1 
41-60 58.1 81.4 0.69 1.47 89.6 54.2 75.8 37.9 56.0 64.7 67.2 71.6 
61-80 56.8 78.7 0.59 2.12 85 .0 53.4 73.9 35 .1 45 .9 51.4 55.4 63.5 

81-100 58.2  83.2  0.44 1.40 90.1 54.5 78.0 38.5  46.2 51.9 55.8 61.5 
The mean results over a cycle of five different partitionings of the corpus: 

All sents 61.3 87.4 0 .41 0.77 93.4 58.0 82.7 60.9 74.7 82 .2 85.9 89.3 
All entries are in %, except xb/c and xb/p which are per sentence. Definitions: 

prec 
rec 
xb/c, xb/p 
nxpr 
lpre, lrec 
1-5 

precision, the proportion of the constituents in the parses also found in the corpus 
recall, the proportion of the constituents in the corpus also found in the parses 
crossing brackets rate, counted in the corpus form or selected parse, resp. 
non-crossing precision, constituents in the parse that don't cross any brackets in the corpus 
labelled precision/recall, where the syntactic labels in the parse and the corpus must match 
n best correct selection rate, sentences for which the correct parse ( i .e . ,  the best match with 
the corpus bracketting) is ranked in the top n parses by the selection algorithm Table 2: Parse selection accuracy test results 

The measures that most directly reflect the practical accuracy of the Semco system in my opinion are those 
headed "Correct parse ranked in top n" , as these show the relative frequencies of fully correct, sentence-level 
disambiguations (n = 1) and near-misses (n in 2-5). In the compilation of these figures, the "correct" parse of 
each sentence was identified by comparison with the corpus bracketting using the same similarity formula that 
was used for the training of the system. 

The table shows, as one would expect, that the selection accuracy tends to diminish as sentences increase in 
length or ambiguity, but the differences in the three higher bands of ambiguities are relatively minor (indeed, 
for many measures the sentences with 81-100 parses do better than those of 41-60 parses). This indicates that 
the decision to omit sentences of more than 100 parses from the testing is not likely to have affected the overall 
performance of the system greatly. 

7 Conclusions 

The results in Table 2 show that the Semco technique achieves relatively high levels of parse selection accuracy, 
and that it therefore may represent a good practical method of sentence disambiguation. This is reflected in 
the · Parseval recall rate of 87.4%, the average of only 0.41 crossing brackets per sentence (with respect to the 
corpus bracketting), and in the correct disambiguation of 60.9% of the sentences (with this figure increasing to 
74.7% and 82 .2% if near-misses ranked 2nd or 3rd are included). 

Comparison with other published work is made difficult by the problems with the Parseval measures discussed 
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Sentence Precision Recall Labelled Labelled Crossing lengths precision recall brackets Semco 6-20 61.3 87.4 58 .0  82 . 7  0 .41 11-20 59.8 85 . 8  56 .3  80 .9  0 .51 Magerman (1995) 10-20 90. 8  90. 3  89.0 88 .5 0 .49 (SPATTER) 4-40 86 .3  85 . 8· 84.5 84.0 1.33 Collins (1996) 1-40 86.3 85 . 8  1. 14 
Entries are in %, except the crossing brackets rate, which is per sentence. Note that the precision and 
labelled precision rates are poor measures of the Semco system's accuracy because of the more detailed 
parses produced by the grammar compared to the corpus annotations. The crossing brackets rate included 
for Semco is that counted against the corpus bracket ting ( "xb / c" ) .  

Table 3 :  Parseval measures of parse accuracy of different systems above and by other incompatibilities between the different systems and the precise corpora used. Table 3 shows, however, the main figures from the Semco system and results published by Magerman (1995) (for his "SPATTER" system) and Collins (1996) .  Considering the strong relationship between sentence length and accuracy shown in Table 2, the most comparable figures in Table 3 are those for Semco with 11-20 words and Magerman's  SPATTER system with 10-20 words. Disregarding the precision rates, which are severely biased against Semco, the table shows that while SPATTER performs somewhat better in terms of recall, the difference in the crossing brackets  rates is insignificant . (Collins only includes results for sentence of  1-40 words, making any direct comparison with Semco dubious, but the results are broadly similar to Magerman's  for 4-40 words. ) To be fair, the Semco results are based only on a subset of suitable, parseable sentences in the corpus (about 39% of the original sentences within the length range) , but this is an inevitable consequence of the major differences between the systems. Magerman's  and Collins' s systems are both based on extracting local syntactic structures along with their statistical distribution direct ly from the corpus annotation, and are therefore independent of any linguistic analysis of the corresponding syntax. This robustness can be an important advantage-it is very hard to write a formal grammar with something approaching full coverage of naturally occurring languages-but has several disadvantages too. In particular, the lack of a linguistic analysis means that there is no guarantee that a parse generated by these systems represents a meaningful sentence-wide syntax, and the models cannot support interpretation through compositional semantics. The Semco system is compatible with any parsing technique capable of supporting formal semantics, making it potentially much more useful in a wider, practical NLP system where any form of interpretation is required. The lack of robustness in the experimental set-up discussed in this paper is not a consequence of the Semco technique, but a reflection of the limited coverage of the grammar used. In future developments of this work, it is intended that the Semco system will be used with a fully wide-coverage natural language grammar and an n-best parser that includes mechanisms for handling undergeneration. To conclude, the main novel aspect of the Semco analysis is the way the probabilistic model is based on the differential distribution of cooccurrences in correct and incorrect parses. This requires an analysis in which probabilities don't represent direct frequencies in the data, but rather correspond to a hypothetical event universe of which real sentences are only a small fragment. Simply put , the event universe includes sentences with any number of cooccurrences-whether they require a million words or ten-but this is no problem for the practical application of the system which is always conditional on a concrete,  given sentence. There is no need for normalisation of the probabilities of parses with different numbers of cooccurrences in this analysis, sine the presence and absence of any cooccurrence are regarded as complementary events. The use of Bayesian estimation for the basic cooccurrence probabilities is part ly a requirement from the probabilistic model, but is also a means of dealing with the highly sparse data in a theoretically motivated manner. Where MLE tends to be highly inaccurate for very sparse data-requiring clustering or smoothing-121 



and directly inappropriate for unseen data, Bayesian estimation finds the result theoretically expected to represent 
the best approximation of the true probability based on a full analysis of the latter's continuous probability 
distribution. The result is unable to distinguish between different cooccurrences with the same observations 
(e.g. , unseen) ,  as smoothing or clustering might , but are statistically unbiased such that the random errors 
in the probability estimates for a set of cooccurrences will tend to cancel out and lead to improved accuracy 
in the parse probabilities. More detailed experiments by Hektoen (1997) show, moreover, that clustering the 
cooccurrence data in combination with Bayesian estimation reduces the accuracy of the parse selection. 
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Abstract 
This paper presents a new formalization of probabilistic GLR language modeling for statistical parsing. 

Our model inherits its essential features from Briscoe and Carroll 's generalized probabilistic LR model [3) , 
which obtains context-sensitivity by assigning a probability to each LR parsing action according to its left 
and right context. Briscoe and Carroll 's model , however, has a drawback in that it is not formalized in any 
probabilistically well-founded way, which may degrade its parsing performance. Our formulation overcomes 
this drawback with a few significant refinements, while maintaining all the advantages of Briscoe and Carroll's 
modeling. 

1 Introduction 

The increasing availability of text corpora has encouraged researchers to explore statistical approaches for various 
tasks in natural language processing. Statistical parsing is one of these approaches. In statistical parsing, one 
of the most straightforward methodologies is to generalize context-free grammars by associating a probability 
with each rule in producing probabilistic context-free grammars (PCFGs). However, as many researchers have 
already pointed out ,  PCFGs are not quite adequate for statistical parsing due to the lack of context-sensitivity. 
Probabilistic GLR parsing is one existing statistical parsing methodology which is more context-sensitive than 
PCFG-based parsing. 

Several attempts have been made to incorporate probability into generalized LR (GLR)J >arsing [17] .  For 
example, Wright and Wrigley proposed an alg6rithm to distribute probabilities originally associated with CFG 
rules to LR parsing actions, in such a way that the resulting model is equivalent to the original PCFG [19] .  
Perhaps, the most naive way of coupling a PCFG model with the GLR parsing framework would be to assign the 
probability associated with each CFG rule to the reduce actions for that rule. Wright and Wrigley expanded on 
this general methodology by distributing probabilities to shift actions as well as reduce actions, so that the parser 
can prune improbable parse derivations after shift actions as well as reduce actions. This can be advantageous 
particularly when one considers applying a GLR parser to, for example, continuous speech recognition. However, 
since their principal concern was in compiling PCFGs into the GLR parsing framework, their language model 
still failed to capture the context-sensitivity of languages. 

Su et al. proposed a way of introducing probabilistic distribution into the shift-reduce parsing frame
work [16] .  Unlike Wright and Wrigley's work, the goal of this research was the construction of a mildly context
sensitive model1 that is effective for statistical parsing. Their model distributes probabilities to stack t ransitions 
between two shift actions, and associates a probability with each parse derivation, given by the product of the 
probability of each change included in the derivation. Further, they also described an algorithm to handle this 
model within the GLR parsing framework, gaining parse efficiency. However, since their probabilistic model 
in itself is not intimately coupled with the GLR parsing algorithm, their model needs an additional complex 
algorithm for training. 

On the other hand, Briscoe and Carroll proposed the distribution of probabilities directly to each action 
in an LR table to realize mildly context-sensitive parsing' [3] . Their model overcomes the drawback of context
insensitivity of PCFGs by estimating the probability of each LR parsing action according to its left (i .e. LR 
parse state) and right context (i.e. next input symbol) . The probability of each parse derivation is computed 
as the product of the probability assigned to each action included in the derivation. Unlike the approach of 

1 By "a mildly context-sensitive model" , we mean a model that is moderately more context-sensitive than context-free models 
such as PCFGs, but not a fully context-sensitive one, which would be intractable in both training and parsing. 
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Su et al., this makes it easy to implement context-sensitive probabilistic parsing by slightly extending GLR 
parsers, and the probabilistic parameters can be easily trained simply by counting the frequency of application 
of each action in parsing the training sentences. Furthermore, their model is expected to be able to allow 
the parser to prune improbable parse derivations at an equivalently fine-grained level as that of Wright and 
Wrigley 's statistical parser, since it assigns probabilities to both shift and reduce actions. However, in as far 
as we have tested the performance of Briscoe and Carroll's model (B&C model, hereafter) in our preliminary 
experiments, it seems that , in many cases, it does not significantly improve on the performance of the PCFG 
model, and furthermore, in the worst case, it can be even less effective than the PCFG model. According to our 
analysis, the�e seem to be result, principally, of the method used for normalizing probabilities in their model, 
which may not be probabilistically well-founded. In fact ,  Briscoe and Carroll have not explicitly presented any 
formalization of their model. 

This line of reasoning led us to consider a new formalization of probabilistic GLR (PGLR) parsing. In this 
paper, we propose a newly formalized PGLR language model for statistical parsing, which has the following 
advantages: 

• It provides probabilistically well-founded distributions. 
• It realizes mildly context-sensitive statistical parsing. 
• It can be trained simply by counting the frequency of each LR parsing action. 
• It allows the parser to prune improbable parse derivations, even after shift actions. 

Although the performance of our model should be evaluated through large-scaled experiments, we are achieving 
promising results in our preliminary experiments. In what follows, we first present our new formalization of 
PGLR parsing (section 2). We then review B&C model according to our formalization, demonstrating that 
B&C model may not be probabilistically well-founded through the use of simple examples (section 3). We 
finally discuss how our refinement is expected to influence parsing performance through a further example 
(section 4). 

2 A P GLR Language Model 

Suppose we have a CFG and its corresponding LR table. Let Vn and Yt be the nonterminal and terminal 
alphabets, respectively, of the CFG. Further, let S and A be the sets of LR parse states and parsing actions 
appearing in the LR table, respectively. For each state s E S, the LR table specifies a set La( s) � ½ of possible 
next input symbols. Further, for each coupling of a state s and input symbol l E La(s ) , the table specifies a 
set of possible parsing actions: Act(s, l) � A. Each action a E A is either a shift action or reduce action. Let 
As and Ar be the set of shift and reduce actions, respectively, such that A = As U Ar U { accept} ( accept is a 
special action denoting the completion of parsing). 

As with most statistical parsing frameworks, given an input sentence, we rank the parse tree candidates 
according to the probabilities of the parse derivations that generate those trees. In LR parsing, each parse 
derivation can be regarded as a sequence of transitions between LR parse stacks, which we describe in detail 
below. Thus, in the following, we use the terms parse tree, parse derivation, and stack transition sequence 
interchangeably. 

Given an input word sequence W = {w1 , . . . , wn } ,  we estimate the distribution over the parse tree candi
dates T as follows: 

P(T IW) = a ·  P(T) · P(WIT) ( 1 ) 

The first scaling factor a is a constant that is independent of T, and thus does not need to be considered in 
ranking parse trees. The second factor P(T) is the distribution over all the possible trees that can be derived 
from a given grammar, such that , for T being the infinite set of all possible trees: 

L P(T) = l 
TET 

(2) 

We estimate this syntactic distribution P(T) using a PGLR model. The third factor P(WIT) is the distribution 
of lexical derivations from T, where each terminal symbol of T is assumed to be a part of speech symbol. 
Most statistical parsing frameworks estimate this distribution by assuming that the probability of the i-th word 
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wi E Hl depends only on its corresponding terminal symbol ( i . e. part of speech) li . Since l i is uniquely specified by T for each i, we obtain equation ( 3) :  P( W I T) � II P (  Wi l li ) ( 3) w; E W One could use a more context-sensitive m·odel to estimat e the lexical distribution P( WIT) ;  for example, one could introduce the statistics of word collocations . However, this is beyond the scope of this paper. For further discussion, see [7] . A stack transition sequence T can be described as (4 ) :  l 1 ,a1 l2 , a2 l ,,_ - 1 ,a ,, _ 1  l ,. ,a. ,, O"Q :::::::::::::;> 0"1 :::::::::::::;> • • • � O" n - 1 ===} O" n (4) where O"i is the i-th stack, whose stack-top state is denoted by top(O"i ) ,  and li E La( top(O"i_ i ) )  and ai E Act(top(O"i_ i ) ,  li ) are, respectively, an input symbol and a parsing action chosen at O"i- l · It can be proven from the LR parsing algorithm that , given an input symbol li+l  E La( top( O"i ) )  and an action ai+l E Act( top(O"i ) ,  l i+ I  ) ,  t h e  next (derived) stack next(O"i , ai+ i )  (= O"i+ i )  can always be uniquely det ermined as follows :  • If the current action ai+I  is a shift action for an input symbol li+ l , then the parser consumes li+ I , pushing li+I onto the stack, and then pushes the next state Si+I , which is uniquely specified by the LR table, onto the stack. • If the current action ai+ I  is a reduction by a rule A � {3, the parser derives the next stack as follows .  The parser first pops 1 /3 1  grammatical symbols together with 1/3 1  state symbols off the stack, where 1/3 1  i s  the length of  {3. In this way, the stack-top state  Sj  i s  exposed. The parser then pushes A and s i+I onto the stack, with S i+1 being the entry specified in the LR goto table for Sj and A. All these operations are executed deterministically. A parse derivation completes if ln = $ and an = accept. We say stack transition sequence T is complete if ln = $ , an = accept, and O" n = final, where final is a dummy symbol denoting the stack when parsing is completed . Hereafter, we consist ently refer to an LR parse state  as a state and an LR parse stack as a stack. And,  unless defined explicit ly, S i denotes the stack-top stat e of the i-th stack O"i , i . e. S i = top(O"i ) -The probability of a complete stack transition sequence T can be decomposed as : P(T) n P(O"o ) · II P(li ,  ai , O"i lO"o , li , a1 , 0"1 , . . .  , li- I , ai- I , O"i-1 ) i= l  
( 5 )  (6) Here we assume that O"i contains all the information of its preceding parse derivation that has any effect on the probability of the next transition, namely: ( 7) This assumption simplifies equation (6)  to: 

n P(T) = II P(l i , ai , O"i lO" i_i ) ( 8) i= l  Now, we show how we estimate  each transition probability P(li , ai , O"i lO"i_ i ) ,  which can be decomposed as in ( 9) :  P(li , ai , O"i lO"i- 1 ) = P(li lO"i_ i )  · P(ai lO"i-1 , l i ) · P(O" i l O"i- 1 , ai , l i )  To begin with ,  we estimat e the first term P(li lO" i -I )  as  follows :  Case 1 .  i = 1: 
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Case 2 .  The previous action ai- l is a shift action, i.e. ai-l E As . VVe assume that only the current stack-top 
state Si-l = top((Ti- i )  has any effect on the probability of the next input symbol k This means that: 

( 1 1 ) 

where L P(l l s) = 1 ( 12) 
lE La( s )  

Case 3.  The previous action ai- l  i s  a reduce action, i.e. ai- l  E Ar . Unlike Case 2, the input symbol does not 
get consumed for reduce actions, and thus the next input symbol li is always identical to li - l ; namely, li 
can be deterministically predicted. Therefore, 

(13) 
Next, we estimate the second term P(ai l(Ti- l ,  li) relying on the analogous assumption that only the current 
stack-top state Si-I  and input symbol ii have any effect on the probability of the next action ai : 

( 14) 
where L P(a l s, l) = 1 ( 15) 

aEAct ( s , l )  

Finally, as  mentioned above, given the current stack (T i - l  and action ai , the next stack (Ti can be uniquely 
determined: 

( 16) 
As shown in equations ( 1 1) and (13), the probability P(li l (Ti_i )  should be estimated differently depending 

on whether the previous action ai- l  is a shift action or a reduce action. Let Ss be the set containing s0 and all 
the states reached immediately after applying a shift action, and Sr be the set of states reached immediately 
after applying a reduce action: 

def 

def 

{so } U { s l :3a E As , (T : s = top(next((T, a))} 
{ s l :3a E Ar, (T : s = top( next((]", a))} 

where s0 is the initial state. Note that these two sets are mutually exclusive2 : 

S = S s U Sr and S s n Sr = 0 
Equations (9) through (18) can be summarized as: 

(for Si- 1 E Ss) 
(for Si-l  E Sr) 

( 1 7) 
( 18) 

( 19) 

(20) 

Since Ss and Sr are mutually exclusive, we can assign a single probabilistic parameter to each action in an LR 
table, according to equation (20). To be more specific, for each state s E Ss , we associate a probability p(a) 
with each action a E Act(s, l) (for l E La(s)), where p(a) = P(l, a l s) such that: 

L p( a) = 1 ( for s E S s)  (21)  
lELa( s )  a E Act( s , l )  

2 It i s  obvious from the  algorithm for generating an  LR( l )  goto graph[l] that , for each state s (# so ) ,  if there exist states S i  and 
Sj whose goto transitions on symbol Xi and Xj , respectively, both lead to s ,  then Xi = Xj . Namely, for any given state s ,  the 
symbol X required to reach s by way of a goto transition is always uniquely specified. On the other hand, if the current state is in 
Ss , then it should have been reached through a goto transition on a certain terminal symbol X E Vi, whereas, if the current state 
is in Sr , then it should have been reached through a goto transition on a certain nonterminal symbol X E V,1 . Given these facts, 
it is obvious that Ss and Sr are mutually exclusive. 
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On the other hand, for each state s E Sr , we associate a probability p(a) with each action a E Act( s ,  l) (for l E La(s)) ,  where p(a) = P(al s ,  l) such that :  
L p( a) = 1 ( for s E Sr) ( 22 )  

aEAct ( s , l )  Through assigning probabilities to actions in an LR table in this way, we can estimate the probability of  a stack transition sequence T as given in ( 4) by computing the product of the probabilities associated with all the actions included in T: n , 
P(T) = IT p( ai ) (23) i= l  Before closing this section, we describe the advantages of our PGLR model. Our model inherits some of its advantages from B&C model. First , as in equation ( 14), the probabilistic distribution of each parsing action depends on both its left context (i .e . LR parse state) and right context (i .e . input symbol). This incorporates context-sensitivity into the model. We elaborate this through an example in section 4. Second, since the probability of each parse derivation can be estimated simply as the product of thE; probabilities associated with all the actions in that derivation, we can easily implement a probabilistic LR parser through a simple extension to the original LR parser. VVe can also easily train the model, as we need only count the frequency of application of each action in generating correct parse derivations for each entry in the training corpus. Third, both B&C model and our model are expected to be able to allow the parser to prune improbable parse derivations at an equivalently fine-grained level as that for Wright and Wrigley's statistical parser, since these two models assign probabilities to both shift and reduce actions. Furthermore, since our model assigns a single probabilistic parameter to each action in an LR table similarly to B&C model, the algorithm proposed by Carroll and Briscoe [4] for efficient unpacking of packed parse forests with probability annotations can be equally applicable to our model. Finally, although not explicitly pointed out by Briscoe and Carroll, it should also be noted that PCFGs give long-term preference over structures but do not sufficiently reflect short-term bigram statistics of terminal symbols ,  whereas both B&C model and our PGLR model reflect these types of preference simultaneously. P(li l s 1 _ 1 ) in equation ( 1 1) is a model that predicts the next terminal symbol ii for the current left context s i- I E S5 • In this case of s i -I E Ss , since s i- I uniquely specifies the previous terminal symbol Li- I ,  P ( li l s i-d = P(li l si- i , li- d ,  which is a slightly more context-sensitive version of the bigram model of terminal symbols P( li l li_i ) .  This feature is expected to be significant particularly when one attempts to integrate syntactic parsing with morphological analysis in the GLR parsing framework (e .g. ( 1 1 ]), since the bigram model of terminal symbols has been empirically proven to be effective in morphological analysis. Besides these advantages, which are all shared with B&C model, our model overcomes the drawback of B&C model; namely, our model is based on a probabilistically well-founded formalization, which is expected to improve the parsing performance. We discuss this issue in the remaining sections .  

3 Comparison with Briscoe and Carroll's Model In  this section, we briefly review B&C model, and make a qualitative comparison between their model and ours . In our model, we consider the probabilities of transitions between stacks as given in equation ( 8), whereas Briscoe and Carroll consider )he probabilities of transitions between LR parse states as below: n 
i = l  n IT P(li , ai l s i _ i )  · P(si l s i- 1 , li , ai ) i= l 

( 24) ( 25) Briscoe and Carroll initially associate a probability p(a) with each action a E A ct( s ,  l )  (for s E Ss , l E La(s ))  in an LR table ,  where p(a) corresponds to P(li , ai l s i- d ,  the first term in ( 25): p(a) = P( l, a i s )  (26) 
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Figure 1 .  Pa�se trees derived from grammar Gl (The square-bracketed value below each t ree denotes the number of 
occurrences of that tree . )  

Table 1 .  LR table for grammar Gl ,  with  trained parameters (The numbers given in the middle and bottom of each row 
the parameters for B&C model and our model, respectively.) 

state action goto 
u V X $ X s 

0 shl (m +n) 4 5 
(Ss )  1 1 

1 re3 (m) re3 (n) 
(Ss )  m/(m+n) n/ (m+n) 

m/(m+n) n/ (m+n) 
2 rel (m) 

(Ss )  1 1 
3 re2 (n)  (Ss ) 1 1 
4 sh2 (m) sh3 (n) 

(Sr )  m/(m+n) n/ (m+n) 1 1 
5 ace (m+n) 

(Sr )  1 
1 such that: 

Vs E S. L I: p(a) = 1 (27) 
lELa. ( s )  a.E Act ( s , l )  In this model, the probability associated with each action is normalized in the same manner for any state. However, as discussed in the previous section, the probability assigned to an action should be normalized differently depending on whether the state associated with the action is of class S s or Sr as in equations ( 21)  and (22). Without this treatment, probability P(li ls i- l ) in equation (1 1) could be incorrectly duplicated for a single terminal symbol, which would make it difficult to  give probabilistically well-founded semantics to  the overall score. As a consequence, in B&C formulation, the probabilities of all the complete parse derivations may not sum up to one, which would be inconsistent with the definition of P(T) (see equation (2) ). To illustrate this, let us consider grammar Gl as follows. 

Grammar Gl : (1 ) S -► X u (2) S -► X v (3) X -► x This grammar allows only two derivations as shown in Figure 1 .  Suppose that we have tree (a) with frequency 
m, and (b) with frequency n in the training set. Training B&C model and our model, respectively, with these trees, we obtain the models as shown in Table 1 ,  where, for each LR parse state, each bracketed value in the top row denotes the number of occurrences of the action associated with it, and the n�mbers in the middle and bottom of each row denote the probabilistic parameters of B&C model and our model, respectively. Given this setting, the probability of each tree in Figure 1 is computed as follows (see Figure 1 ,  where each circled number denotes the LR parse state reached after parsing has proceeded from the left-most corner to the 128 



Jocation of that number) : 
· m m 

( 
m ) 2 PB&c (tree (a) )  = 1 · -- · -- · 1 = --m + n m + n  m + n  n ' n ( n ) 2 PB&c (tree(b) ) = 1 · -- · -- · 1 = --m + n m + n m + n  m m PPGLR (tree (a) )  = 1 · -- · 1 · 1 = --m + n m + n  

n n PPGLR (tree(b ) )  = 1 · -- · 1 · 1 = --m + n m + n  
(28) (29) ( 30) (31 )  where B&C denotes B&C model and PGLR denotes our model. This computation shows that our model correct ly fits the distribution of the training set , with the sum of the probabilities being one. In the case of B&C model, on the other hand, the sum of these two probabilities is Bmaller than one. The reason can be described as follows. After shifting the left-most x, which leads the process to state 1 ,  the model predicts the next input symbol as either u or v, and chooses the reduce action in each case, reaching state 4. So far, both B&C model and our model behave in the same manner . In state 4, however, B&C model repredicts the next input symbol, despite it already having been determined in state 1. This duplication makes the probability of each tree smaller than what it should be. In our model, on the other hand, the probabilities in state 4, which is of class Sr , are normalized for each input symbol, and thus the prediction of the input symbol u ( or v) is not duplicated. Briscoe and Carroll are also required to include the second factor P(si l s i- l , li , ai ) in (25) since this factor does not always compute to one. In fact , if we have only the information of the current state and apply a reduce action in that state,  the next state is not always uniquely determined. For this reason, Briscoe and Carroll further subdivide probabilities assigned to reduce actions according to the stack-top states exposed immediately after the pop operations associated with those reduce action. Contrastively, in our model, given the current stack, the next stack after applying any action can be uniquely determined as in ( 16 ) ,  and thus we do not need to subdivide the probability for any reduce action. To illustrate this, let us take another simple example in grammar G2 as given below, with all the possible derivations shown in Figure 2. Further, the LR table is shown in Table 2 .  

Grammar G2:  ( 1 )  S ---+ u X (2) S ---+ v X (3) X ---+ x Let us compute again the probability of each tree for the two models :  m m, ( m ) 2 PB&c (tree (a) )  = -- · 1 · -- · 1 = --m + n m + n m + n  n n ( n ) 2 PB&c (tree(b ) )  = -- · 1 · -- · 1 = --m + n m + n  m + n m m PPGLR (tree (a) )  = -- · 1 · 1 · 1 = --m + n m + n  n n PPGLR (tree (b ) )  = -- · 1 · 1 · 1 = --m + n m + n  
( 32) ( 33) ( 34) (35) In B&C model, the probability assigned to the reduce action in state 3 with the next input symbol being $ is subdivided according to whether the state reached after the stack-pop operation is state 1 or 2 (see Table 2). This makes the probability of each tree smaller than what i t  should be. The above examples illustrate that ,  in B&C model, the probabilities of all the possible parse derivations may not necessarily sum up to one, due to the lack of probabilistically well-founded normalization . In our model, on the other hand, the probabilities of all the derivations are guaranteed to always sum to one3 • This flaw in B&C model can be considered to be related to Briscoe and Carroll's claim that their model tends to 

3Precisely speaking, this is the case if the model is based on a canonical LR (CLR) table. In  the case of lookahead LR (LALR) 
tables, the probabilities of all the complete derivations may not sum up to one even for the case of our model, since some stack 129  



Figure 2. Parse trees derived from grammar G2 (The square-bracketed value below each tree denotes the number of 
occurrences of that tree. )  

Table 2 .  LR table for grammar G2, with trained parameters (For each state, the numbers given in the middle and 
bottom of each row denote the parameters for B&C model and our model, respectively. Each middle bracketed number 
for state 3 denotes the state exposed by the stack-pop operation associated with the corresponding reduce action. )  

state action goto 
u V X $ X s 

0 shl (m) sh2 (n) 6 
(Ss )  m/(m+n) n/ (m+n) 

m/(m+n) n/ (m+n) 
1 sh3 (m) 4 

(Ss )  1 1 
2 sh3 (n) 5 

(Ss )  1 1 
3 re3 (m+n) 

(Ss )  ( l )m/ (m+n) ; ( 2 )n/ (m+n) 1 4 rel (m) 
(Sr )  1 1 

5 re2 (n) 
(Sr )  1 1 

6 ace (m+n) 
(Sr )  1 1 favor parse trees involving fewer grammar rules, almost regardless of the training data. In B&C model, stack transition sequences involving more reduce actions tend to be  assigned much lower probabilities for the two reasons mentioned above: (a) the probabilities assigned to actions following reduce actions tend to b e  lower than what they should b e, since B&C model repredicts the next input symbols immediately after reduce actions, (b) the probabilities assigned to reduce actions tend to be lower than what they should be, since they are further subdivided according to the stack-top states exposed by the stack-pop operations. Therefore, given the fact that stack transition sequences involving fewer reduce actions correspond to parse trees involving fewer grammar rules, it is to b e  expected that B&C model tends to strongly prefer parse trees involving fewer grammar rules. 

transitions may not be accepted (for details of CLR and L ALR, see, for example, [ 1 ,  5] ) .  However, this fact will never prevent our 
model from being applicable to LALR. Let T ace C T be the infinite set of all possible complete and acceptable stack transition 
sequences. The second factor P(T) in equation ( 1 )  is a distribution over complete and acceptable stack transition sequences such 
that the probabilities of all the transition sequences in T ace sum up to one. However, if one considers �n LALR-based model, since 
there may be rejected transition sequences in T, equation ( 1 )  should be replaced as follows: 

P(TIW) = O · P(TIT E Tacc ) · P(WIT) = 01 
• P(T) · P(WIT) 

where o' is a constant that is independent of T, and P(T) is a distribution over all the possible complete transition sequences; 
whether acceptable or not , such that �TET P(T) = l .  Thus, one can rank the parse tree candidates for any given input sentence 
according to P(T) and P(WIT) ,  whether one bases the model on CLR, LALR, or even LR(O) ( i .e .  SLR) . For further discussion , 
see [8] . 130 



To solve this problem, Briscoe and Carroll proposed calculating the geometric mean of the probabilities of the actions involved in each stack transition sequence. However, this solution makes their model even further removed from a probabilistically well-founded model. In our model, on the other hand, any bias toward shorter derivations is expected to be much weaker, and thus we do not require the calculation of the geometric mean. One may wonder to what extent these differences matter for practical statistical parsing. Although this issue needs to be explored through large-scaled empirical evaluation, it must be still worthwhile to consider some likely cases where the difference discussed here will influence parsing performance. We discuss such a case through a further example in the next section . 
4 Expected Impact on Parsing Performance In this section, we first demonstrate through an example how B&C model and our model, which we class as GLR-based models here, realize mildly context-sensitive statistical parsing, as compared to the PCFG model. We then return to the issue raised at the end of the previous section . Suppose we have grammar G3 as follows: 

Grammar G3: 
(1 )  S � LI S 
(2 )  S � V S 
(3) S � X 

(4) S � S S Further , let us assume that we train the PCFG model, B&C model, and our PGLR model, respectively, using a training set as shown in Figure 3, where trees (a) and (b) are the parse trees for input sentence vlfi = { u ,  x, x} , and ( c) and ( d) are those for W2 = { v ,  x, x} .  Table 3 shows the LR table for grammar G3, with the trained 

(d) [4] 

Figure 3. Training set (The square-bracketed number below each tree denotes the number of occurrences of that tree.) 

parameters4 . According to the training data in Figure 3, right branching ( i .e .  tree (a) )  is preferred for input sentence W1 , whereas left branching (i .e .  tree (d) )  is preferred for input sentence W2
5 • It is easy to see that the PCFG model does not successfully learn these preferences for either of the sentences, since all the parse trees produced for each sentence with involve the same set of grammar rules. Unlike the PCFG model, both the GLR-based models can learn these preferences in the following way. In the LR parsing process for sentence vl/i , the point where the parser must choose between parse trees (a) and (b)  is in state 5, which is reached after the reduction of the left-most x into S (see Figure 3) . In state 5, if the shift action is chosen , parse tree ( a) is derived, while ,  if the reduce action is chosen, (b) is derived. Thus, the preference for ( a) to (b) is reflected in the distribution over the shift-reduce conflict in this state. Table 3 shows that both B&C mod�l and our model correct ly prefer the shift action in state 5 with the next input symbol being x. For input sentence W2 , on the other hand, the left branching tree (d) is preferred . This preference is also reflected in the distribution over the shift-reduce conflict in the state reached after the reduction of the left-most x into S ,  but , this time, the state is state 6 instead of state 5 .  According to Table 3, state 6 with the next input symbol being x correctly prefers the reduce action, which derives the left-branching tree ( d) . In sum, 

4 In practical applications, when computing parameters, one would need to use some smoothing technique in order to avoid 
assigning zero to any parameter associated with an action that had never occurred in training. 

5Such preferences a·re likely to be observed in real corpora. For example, in Japanese sentences, a conjunction at the beginning 
of a sentence tends to modify the rest of the sentence at the top-most level of the sentence. This corresponds to the preference for 
sentence lV1 with u equating to a conjunction. On the other hand, a postpositional phrase tends to be subordinated by its left-most 
verb, which corresponds to the preference for sentence lV2 with v and x being a postpositional phrase and a verb, respectively. 
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Table 3. LR table for grammar G3, with trained parameters (For each state, the numbers given in the middle and 
bottom of each row denote the parameters for B&C model and our model, respectively. Each middle bracketed number 
denotes the state exposed by the stack-pop operation associated with the reduce action corresponding to that number.)  

state action goto 
X y z $ s 

0 shl sh2 sh3 4 
(Ss ) . 5  . 5  0 

.5  . 5  0 

1 shl sh2 sh3 5 
(Ss ) 0 1 0 

0 1 0 

2 shl sh2 sh3 6 
(Ss ) 0 0 1 

0 0 1 

3 re3 re3 re3 re3 

(Ss ) 0 0 ( l ) . 25  ; (2 ) .25 (4 ) .3 ; (5 ) . 15  ; (G ) .05 
0 0 .5  . 5  

4 shl sh2 sh3 ace 7 
(Sr ) 0 0 .23 .77 

1 1 1 1 

5 shl/rel sh2/rel sh3/rel rel 7 
(Sr ) 0/0 0/0 .38/0 ) .25 .38 

.5/ .5  .5/ .5  . 6 / . 4  1 

6 shl/re2 sh2/re2 sh3/re2 re2 7 
(Sr ) 0/0 0/0 . 1 1r) .61 . 1 7  

. 5/ . 5 . 5/. 5 . 2/ .8  1 

7 shl/re4 sh2/re4 sh3/re4 re4 7 
(Sr ) 0/0 0/0 0/0 (0 ) _6 ; ( 1 ) _3 ; (2 ) _ 1 

.5/ .5  .5/ .5  .5/ .5  1 

the different preferences for W1 and W2 are reflected separately in the distributions assigned to the different 
states (i .e. states 5 and 6) . 

As illustrated in this example, for each parsing choice point , the LR parse state associated with it can 
provide a context for specifying the preference for th.at parse choice. This feature of the GLR-based models 
enables us to realize mildly context-sensitive parsing. Furthermore, although not explicitly demonstrated in the 
above example, it should also be noted that the GLR-based models are sensitive to the next input symbol as 
shown in ( 14) in section 2. 

Now, let us see how the probabilities assigned to LR parsing actions are reflected in the probability of each 
parse tree. Table 4 shows the overall distributions provided by the PCFG model, B&C model, and our model, 
respectively, to the trees in Figure 36 . According to the table, our model accurately learns the distribution of 
the training data, whereas B&C model does not fit the training data very well. In particular, for sentence W1 , 

it goes as far as incorrectly preferring parse tree (b) . This occurs due to the lack of well-founded normalization 
of probabilities as discussed in section 3. As mentioned above, B&C model correctly prefers the shift action in 
state 5, as does our model. However, for the rest of the parsing process, B&C model associates a considerably 

6 Although Briscoe and Carroll proposed to take the geometric mean of peripheral distributions as mentioned in section 3, we 
did not apply this operation when computing the probabilities in Table 4, to give the reader a sense of the difference between the 
probabilities . given by B&C model and our model. Note that, in our example, since the number of state transitions involved in each 
parse tree is always the same for any given sentence, and given that the grammar generates only binary trees, taking the geometric 
mean would not change the preference order. 
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Table 4. Distributions over the parse trees from Figure 3 (trees (a) and (b) are the parse trees for input sentence 
W1 = { u ,  x ,  x} , and (c) and (d) are those for W2 = {v ,  x ,  x} )  

II P(tree(a) l 14'1 ) I P(tree(b) I W1 ) II P(tree(c) J lV2 ) I P(tree(d) J W2 )  I PCFG .50 .50 .50 .50 B&C .37 .63 .005 .995 PLR .60 .40 .20 .80 training data .60 . 40 .20 .80 higher probability to the process from state 4 through 3 and 7 to 4, which derives tree (b) , than the process from 3 through 7 and 5 to 4, which derives tree (a) , since , in their model, the former process is inappropriately supported by the occurrence of tree ( d) . For example, in both parsing processes for (b) and ( d) , the pop operation associated with the reduction in state 3 exposes state 4, and -B&C model thus assigns an inappropriately high probability to this reduction, compared to the reduction in state 3 for tree (a) . Of course, as far as various approximations are made in constructing a probabilistic model similar to both B&C model and our model, it is always the case that the model may not fit the training data precisely due to the insufficiency of the model's  complexity. Analogous to B&C model, our model does not always fit the training data precisely due to the independence assumptions such as equations (7 ) ,  (11) , etc .  However, it should be noted that , as illustrated by the above example, there is a likelihood that B&C model not fitting the training data is due not only to the insufficiency of complexity, but also the lack of well-founded normalization . 
5 Conclusion In this paper, we newly presented a formalization of probabilistic LR parsing. Our modeling inherits some of its features from B&C model. Namely, it is mildly -context-sensitive , and naturally integrates short-term bigram statistics of terminal symbols and long-term preference over st ructures of parse trees. Furthermore, since the model is tightly coupled with GLR parsing, it can be easily implemented and trained. Inheriting these advantages, our formalization additionally overcomes an important drawback of B&C model: the lack of wellfounded normalization of probabilities. We demonstrated through examples that this refinement is expected to improve parsing performance. Those examples may seem to be relatively artificial and forced. However, in our preliminary experiments, we are achieving some promising results, which support our claim ( see (15] for a summary of preliminary results) . We are now planning to conduct further large-scaled experiments. It should also be noted that our modeling is equally applicable to both CLR tables and LALR tables. Since it is a highly empirical issue whether it is better to use CLR-based models or LALR-based models, it may be interesting to make experimental comparisons between these two types (for a qualitative comparison, see (8] ) .  Other approaches t o  statistical parsing using context-sensitive language models have also been proposed, such as (2 , 9, 12, 14] . We need to make theoretical and empirical comparisons between these models and ours. The significance of introducing lexical sensitivity into language models should also not be underestimated. In fact , several attempts  to use lexically sensitive models already exist : e .g. (6 , 10, 13] . Our future research will also be directed towards this area (7] . 
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Abstract 
A type of 'non-traditional constituents' motivates an extended class of Combinatory Categorial Grammars, CCGs 

with Generalized Type-Raised Categories (CCG-GTRC) involving variables. Although the class of standard CCGs is 
known to be polynomially parsable, unrestricted use of variables can destroy this essential requirement for a practical 
parser. This paper argues for polynomial parsability of CCG-GTRC from practical and theoretical points of view. First, 
we show that an experimental parser runs polynomially in practice on a realistic fragment of Japanese by eliminating 
spurious ambiguity and excluding genuine ambiguities. Then, we present a worst-case polynomial recognition algorithm 
for CCG-GTRC by extending the polynomial algorithm for the standard CCGs. 

1 Introduction 

In Japanese, as in other SOV languages, a sequence of NPs can form a conjunct as exemplified below. 
(1)  John-ga Mary-o Ken-ga Naomi-o tazuneta. 

{ John-N0M May-ACC } C0NJ { Ken-N0M Naomi-ACC } visited 
"John visited Mary and Ken [visited] Naomi." 

This type of 'non-traditional constituents' poses a problem to many grammar formalisms and parsers, including those 
specifically designed for Japanese, e.g., JPSG [Gunji, 1987] and JLE (based on finite-state syntax) [Kameyama, 1995] .  
Although these systems could be  extended to cover the presented case, such extensions would not generalize to the wide 
range of non-traditional constituency. 

Combinatory Categorial Grammar (CCG) has been proposed to account for non-traditional constituency in various 
areas of syntax [Ades and Steedman, 1982, Dowty, 1988, Steedman, 1985, Steedman, 1996] and also in the related areas 
of prosody, information structure, and quantifier scope [Prevost and Steedman, 1993, Hoffman, 1995, Park, 1995]. The 
mechanisms independently motivated to cover the wide range of non-traditional constituency can also provide an analysis 
for the NP-NP sequences in (1) as follows: 

(2) John-ga Mary-o 
NP NP 
-U- -IJ-

S/ (S\NP) �/ ((S\NP) \NP) 

s I ( (S\NP) \NP) 

type raising 

functional composition (underlined portions are cancelled) 

Informally, the NPs are assigned higher-order function categories associated with the basic category NP, and these func
tions can compose to derive another function category representing the NP-NP sequence. The two instances of such a 
category can then be coordinated and take the transitive verb category, ( S\N P) \NP, as the argument to derive the category 
s. 

. 

A similar type of constituents can also be formed of NPs extracted from different levels of embedding as in the following 
example: 

*I am grateful to Mark Steedman for his numerous suggestions and comments. I would also like to thank Jason Eisner, B. Srinivas, David Weir, 
K. Vijay-Shanker, and the anonymous reviewers for their comments. The research was supported in part by NSF Grant Nos. IRI95-04372, STC-SBR-
8920230, ARPA Grant No. N66001-94-C6043, and ARO Grant No. DAAH04-94-G0426. 
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(3) Japanese: Rinyouzai-wa natoriumu-ni, � syadanzai-wa koukan sinkei kei-ni, kankei-no aru kouketuatu-no hito-ni kikimasu. Gloss: {Diuretic-TOP sodium-DAT} & {� blocker-TOP sympathetic nervous system-DAT} relevance-GEN exist hypertension-GEN person-DAT effective. Translation: "Diuretic is effective for the person with hypertension related to sodium, and � blocker [is for the person with hypertension related] to sympathetic nervous system." This is a simplified version of the sentence taken from the text actually parsed in the experiment discussed below. The original sentence includes three conjuncts, a few adverbs, and another level of embedding. The underlined part is another instance of non-traditional constituent, which includes an extraction from the relative clause. Its structure is schematically shown as follows: 
(4) [t1 hypertension2-GEN person-DAT effective.] 

[t2 t3 relevance-GEN exist] Due to functional composition, the category (S\NP) \NP, identical to the transitive verb category, can be derived for the above phrase with two extraction sites t1 and t3.1 As in the first example, the NP-NP sequences at the sentence-initial position receive the category S / ( (S\NP) \NP) and then the sentence category is derived after the combination with the category (S\NP) \NP. Assuming that the competence grammar does not place a bound on the levels of embedding [Miller and Chomsky, 1 963] ,  we may have unboundedly-many extractions [cf. Becker et al., 1991 ]. Since no systematic constraint has been identified for the bound on the composition of such extracted constituents, we also assume that these constituents can compose without a limit, potentially resulting in an unboundedly-long NP sequence.2 As in the case of embedding, the degraded acceptability of long sequences can be attributed to performance issues. These assumptions calls for an infinite set of type-raised categories such as (S\Xn · · · \Xi ) / ((S\Xn· · · \Xi ) \NP) associated with NP. We capture this polymorphic situation by using variables as in T / (T\NP).3 Although CCGs have also been motivated by psychological aspects, we will be concerned only with syntactic aspects in this paper. Formal properties of the standard CCGs (CCG-Std) not involving variables are relatively well-studied. CCG-Std is proved weakly-equivalentto Head Grammars (HG), Linear Index Grammars (LIG), and Tree Adjoining Grammars (TAG), known as "mildly context-sensitive grammars" [Vijay-Shanker and Weir, 1 994]. CCG-Std is also shown to be polynomially parsable [Vijay-Shanker and Weir, 1990, Vijay-Shanker and Weir, 1 99 1 ,  Vijay-Shanker and Weir, 1993]. 4 But, unrestricted use of variables can destroy these properties. For example, Hoffman [1993] showed that a grammar involving categories of the form (T\x) / (T\y) can generate a language anbncndnen , which is no longer equivalent to LIGs. The use of variables in the coordination schema "x+ conj x ---+  x" is also believed to generate a language beyond LIG's power, namely (wet [Weir, 1988]. This paper is concerned with the other aspect: polynomial parsability of the CCGs with a generalized class of type-raised categories (CCG-GTRC) involving variables, from both practical and theoretical points of view. Related questions about the generative power of CCG-GTRC are addressed in [Komagata, 1997b, Komagata, 1 997c]. For the practical side, we demonstrate that our CKY-style parser for Japanese appears to run in polynomial time once 
spurious ambiguities (multiple derivations for the equivalent semantics) are eliminated by equivalence check and genuine 
ambiguities (e.g., attachment ambiguity) are excluded. For the theoretical side, we present a worst-case polynomial recognition algorithm, by extending the polynomial algorithm proposed for CCG-Std by Vijay-Shanker and Weir [ 1990]. We will also observe that practical and theoretical polynomial results are _due to distinct factors and thus the theory and practice do not directly correspond for the present case. This paper is organized as follows: Section 2 introduces Generalized Type-Raised Categories and defines CCG-GTRC. Section 3 analyzes the performance of the practical parser through an experiment after a discussion about spurious ambiguity elimination. Section 4 presents the theoretical worst-case polynomial recognition algorithm for CCG-GTRC. 

1 The use of trace t is for illustration purposes only. The current approach does not assume the notion of gap or movement as the theories which 
employ trace. 

2This assumption needs to be examined more carefully and is left for future research [cf. Joshi et al., 1994). Since this paper assumes that the 
scope of coordination and adverb modificatioin is bounded, the unbounded composition of type-raised category actually calls for a motivation involving 
information structure [Komagata, 1 997a]. 

3It is also possible to dynamically type-raise categories as needed. We take lexical approach to avoid the procedural aspects associated with dynamic 
type raising. 

4This situation can be contrasted with Lambek calculus. For example, Konig [ 1994] showed an exponential parsing algorithm for the calculus, which 
can be improved to a polynomial one by setting a bound on the number of extractions. 136 



2 CCGs with Generalized Type-Raised Categories CCG-GTRC involves the class of constant categories (Const) and the class of Generalized Type-Raised Categories (GTRC). A constant (derivable) category c can always be represented as Flan · • • la1 where F is an atomic target category and 
a/s with their directionality are arguments. We will use "A , . . .  ,Z'' for atomic, constant categories, "a, . . .  , z" for possibly complex, constant categories, and ' I ' as a meta-variable for directional slashes { / ,  \ }. Categories are in the "resultleftmost" representation and associate left. Thus we usually write Flan · • • la1 for ( . . .  (Flan ) . . .  1a1 ). We will call " la; . . .  la/' a sequence ( of arguments). The length of a sequence is defined as I la; . . .  la1 I = i while the nil sequence is defined to have the length 0. Thus an atomic constant category is considered as a category with the target category with the nil sequence. We may also use the term 'sequence' to represent an ordered set of categories such as "c1 , . . .  , c2" but these two uses can be distinguished by the context. The standard CCGs (CCG-Std) solely utilize the class of Const. GTRC is a generalization of Lexical Type-Raised Category (LTRC) which has the form T ( ( T ) a) lb; . . .  lb1 associated with a lexical category alb; . . .  lb1 where T is a variable over categories with the atomic target category T. The target indication may be dropped when it is not crucial or all the atomic categories are allowed for the target. We assume the order-preserving form of LTRC using the following notation. ' ( '  and ' ) ' indicate that either set of slashes in the upper or the lower tier can be chosen but a mixture such as '/ '  and ' / '  is prohibited.5 GTRC is defined as having the form of T ( (T lam · • • la2 ) ai )  lbn • • • lb1 resulting from compositions of LTRCs where m 2'. 1, n 2'. 0, and the directional 

inner sequence outer sequence constraint is carried over from the involved LTRCs. When the directionality is not critical, we may simply write a GTRC as T l (Tlam· • • la2 la1 ) lbn · • • lb1 . For gtrc = TI  (Tlam · • • la1 ) lbn · • • lb 1 ,  we define lgtrcl = n + l ,  ignoring the underspecified valency of the variable. Note that the introduction of LTRCs in the lexicon is non-recursive and thus does not suffer from the problem of the overgeneration discussed in [Carpenter, 1991]. These categories can be combined by combinatory rule schemata. Rules of (forward) "generalized functional composition" have the following form: 
(5) xli_ ►k �IZk - - • lz1 -r xlzk - - • lz1 functor category input category result category The integer 'k' in this schema is bounded by kmax, specific to the grammar, as in CCG-Std. Rules of functional application, "x/y ►0 y -+  x", can be considered as a special case of (5) where the sequence z; 's is nil. The index k may be dropped when no confusion occurs. We say " 'x/y ► YIZk - • • lz1 ' derives xlzk - • • lz1", and "xlzk - • • lz1 generates the string of nonterminals 'x/y,ylzk - • • lz1 ' or the string of terminals 'ab' " where the terminals a and b are associated with x/y and Y IZk - • • lz1 , respectively. The case with backward rules involving '◄'  is analogous. Inclusion of GTRCs calls for thorough examination of each combinatory case depending on the involved category classes. A summary is given in Table 1. The categorial representations for a few relevant cases will be shown below, but the details are left to the accompanying technical report [Komagata, 1997a]. The three cases indicated by ' * '  in Table 1 introduce categories which are neither Const nor GTRC due to the residual variables. For example, observe Case 3c below. (6) Combination type of "Const►GTRC" where k > l inputl (and k > 2) : 

k 

a/'2. ►k To IT  I l (To lT I lcm · • • ici ) ldk-2 · · · 1d1 -r a IT I l (b IT1 lcm · • • lc1 ) ldk-2 · • • ld16 
- t residual This is an unintended, accidental use of functional composition. The closure of the system must be maintained by exclud-ing these cases.7 We are now in the position to define the class of CCG-GTRC: 

Definition 1 A CCG-GTRC is a six tuple (VN,  Vr ,S, 'I, f, R) where • V N is a finite set of nonterminals ( atomic categories) • Vr is a finite set of terminals (lexical items, written as a, . . .  , z) 5For a related discussion, see [Steedman, 1991]. 6 T could also be decomposed into To IT k ·. - IT 1 for a larger k but all these share the same characteristics with the above scheme. 7This condition is particularly important for implementation since the residual variables can behave beyond our imagination. 
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Case Functor cat Input cat Result cat Class Outer Class k � J inputj Class Residual Unbounded seq variable const argument 1 Const Const < Const no no 
2a GTRC yes Const < GTRC no no 
2b GTRC no Const < Const no no 
3a Const GTRC < Const no no 
3b Const GTRC Const no possible * 3c Const GTRC > neither yes possible 
4a GTRC yes GTRC < GTRC no no 
4b GTRC yes GTRC GTRC no possible * 4c GTRC yes GTRC > neither yes possible 4di GTRC no GTRC < GTRC no no 4dii GTRC no GTRC < Const no no 
4e GTRC no GTRC GTRC no no * 4f GTRC no GTRC > neither yes possible 

Table 1: Combinatory Cases for CCG-GTRC • S is a distinguished member of VN 
• 'T is a countable set of variables8 • f is a function that maps elements of VT to finite subsets of "Const U LTRC" • R is a finite set of rule instances summarized in Table 1 ( except for those with ' * ' ). 9 

3 Progress Towards a Practical Parser for CCG-GTRC This section investigates the performance of the experimental parser and demonstrates that it runs polynomially in practice. Since any practical parser for CCGs ( or categorial grammars in general) requires some kind of spurious ambiguity elimination, we start with a discussion about spurious ambiguity elimination techniques. 
3.1 Spurious Ambiguity Elimination Let us first define different types of ambiguities referred to in this paper: (7) a. Categorial ambiguity: Availability of multiple categories (lexical/derivational), e.g., {NP, S\NP}. 

b. Spurious ambiguity: Multiple derivations of the same category which are semantically equivalent [Wittenburg, 1986] ,  e.g., "John visited B ill." has two derivations of S (left and right branching) in CCG with the identical semantics ' (visited bill john )' . 
c. Genuine ambiguity: (i) Lexico-semantic am]?iguity: Multiple semantic assignments to a single lexical category: (ii) Attachment ambiguity: Multiple derivations of the same category with distinct semantics. E.g., PP attachment. Note that by 'semantics' ,  we assume predicate-argument structure (a kind of logical form) as the input to the semantic module. Since spurious ambiguity is often accused of as the source of inefficient parsing, CCG parsers must implement some means of spurious ambiguity elimination. We review three classes of approaches: (i) syntactic, (ii) semantic, and (iii) those which do not belong to the previous two. The syntactic approaches eliminate ' spurious derivations' which are not 'the normal form'. Hendriks [1993] and Konig [1994] worked on Lambek calculus which does not have functional composition as a primitive rule. Hepple and Morrill 

8Each instance of GTRC must be assigned a new variable when the GTRC is instantiated at a particular string position in order to avoid unintended 
variable binding. 

9 Due to the introduction of GTRC, the rule instances may involve variables even at the first argument of the functor category and at the input category. 
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[1989] cover a subset of the current formalism but do not have the mixed instances of function composition nor type raising. Eisner [1996] covers a wider range of CCGs but the case including type raising remains to be shown correct. Labeled deduction [Morrill, 1994] has a means to interpret semantics syntactically but normal form deduction must be adjusted. Karttunen [1 986] proposed the following semantic method. For each new derivation, discard it if its semantics is 
equivalent to ( or mutually subsumes) that of some entry with the same category already in the cell. 10 This directly enforces the definition of spurious ambiguity and does not depend on the syntax. Note that 'equivalence' depends on the semantic representation [Thompson, 1991 ] .  For the case where the semantics is represented in A-calculus, equivalence is not computable [Paulson, 199 1 ] . For the case of feature structure, equivalence is defined as alphabetic variants and characterized by the isomorphism between the structures [Carpenter, 1992] . Our case corresponds to the latter although the equivalence check on p�edicate-argument structures are term unification rather than graph unification for the feature structure. Among the third type, Pareschi and Steedman [1987] employed a control-based mechanism but the published algorithm has been shown to be incomplete [Hepple, 1987] . Wittenburg and Wall [ 1991 ]  use a compilation scheme but the crucial notion of flexible constituency is compromised. To be precise, the definition of spurious ambiguity for syntactic methods is not the same as our definition given above. Since syntactic methods are insensitive to semantics, they cannot distinguish genuine (attachment) and spurious ambiguities and eliminate both of these. With semantic equivalence check, we can adjust the way the genuine ambiguity is handled. While equivalence check in its original form is sensitive to genuine ambiguity, equivalence check applied only to category (ignoring semantics) is insensitive to genuine ambiguity much like syntactic methods. We refer to these two cases as (i) category+semantics and (ii) category-only. Both cases are explored in the experiment in the following subsection. Among the presented methods, the only proposal immediately compatible with the present formalism is Karttunen's semantic equivalence check. Let us review some arguments against this approach. Eisner [1996] argued that a sequence of categories exemplified by "X /X . . .  X . . .  X\X" can slow down the parser exponentially. Note that we assume that X /X and X\X are 'modifiers' of X with distinct semantics . But this is an instance of genuine ambiguity, a problem to any parser. Note that for syntactic methods, this appears as spurious ambiguity and the semantic processing is simply left for a later stage. Wittenburg [1987] objected to the cost of equivalence check. But an equivalence check (for our semantics) is inherently easier than the general case of subsumption check, the latter requiring the occurs check for soundness [Pereira and Shieber, 1987] . Hepple and Morrill [1989] have raised another objection. While syntactic methods detect spurious ambiguities before deriving a result, equivalence checking needs to compare the derived result with every entry in the current table cell. However, the cost associated with the semantic method depends on how many genuinely ambiguous entries are in the cell but not on the number of spuriously-ambiguous entries (they are eliminated as soon as they are derived and do not accumulate) . This does not introduce additional complexity specific to sp�rious ambiguity check. Further, once semantics is involved, it is not possible to distinguish between spurious and genuine ambiguities unless we actually check the involved semantics . 
3.2 Experiment We now look at the results of a pilot experiment done on Sun Ultra E4000 2x167MHz Ultraspacs with 320MB memory running SunOS 5 .5 . 1 .  The program (100KB approx., about a half is the grammar) was written in Sicstus Prolog Ver. 3 and CPU time was measured by Sicstus' built-in predicate stat ist i cs .  We parsed 22 contiguous sentences (6  paragraphs) in  Japanese in  a section arbitrarily chosen from "Anata-no Byouinno Kusuri (Your Hospital Drugs) 1996" by Tadami Kumazawa and Ko-ichi Ushiro. Japanese is chosen because the current work is a part of a larger project of medical database interface using this language. The romanized sentences are partially-segmented to the word level but the verb inflection and suffixes are considered as a part of the word. The average number of words in a sentence is 20 and the longest sentence contains 41 words. The sentences are realistically difficult, and include complex clauses (relative and complement), coordination (up to 4 conjuncts), nominal/verbal modifications (adjectives/adverbs), scrambling, and verb argument dropping. The parser is based on a CKY algorithm [Aho and Ullman, 1972] equipped with Karttunen's equivalence check for spurious ambiguity elimination but without the worst-case polynomial algorithm introduced in the next section. 1 1  LTRCs are assigned to words by lexical rules and GTRCs are restricted to unidirectional forms. Coordination is handled by 

10Shieber [1986) contains a detailed discussion of subsumption. 
1 1Earlier applications of a CKY-style algorithm to CCG parsing include [Pareschi and Steedman, 1987). 139 
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Figure 2: Basic Data Set (log scale) special trinomial rules [Steedman, 1 996] with a few categorial features added to limit the coordination involving multiple constituents only to the left-branching structure. Verb argument dropping is handled by lexical rules which change the verb valency. Morphological analysis is a complete substring match and the results are dynamically 'asserted' among the code. About 200 lexical entries are asserted after parsing the 22 sentences. Currently, morphological analysis takes about 0.2 seconds per word on average and needs improvement. The output of a parse is an enumeration of the final result categories associated with the features and the semantics as seen below. 
(8) itumo 95mmHg o koeru baai_wa tiryou ga hituyoudesu . 

always num(95mmHg) -ACC exceed in_case treatment [-N0M , -C0NJv] necessary 
Cat : 

SS : s 
Fs : [] 

PA : (in_case always ( (exceed num(95mmHg) $ 1 ) ) (necessary treatment) )  
Cat : 

SS : s 
Fs : [] 

PA : always ( (in_case (exceed num(95mmHg) $2) (necessary treatment) ) )  
CPU time : 280 ms Elapsed : 320 ms Words : 8 Solutions : 2 The unresolved pronoun is shown as '$n' where n E N. The ambiguity regarding adverbial modification is left unresolved. The implementation has a simplified treatment of quantifiers and scope ambiguity too is left unresolved. We consider the following two cases: (i) category-only and (ii) category+semantics. As we have discussed in the previous subsection, the application of equivalence check to the category-only case not only eliminates spurious ambiguities but also provide a result without genuine ambiguities. Let us start with the analysis of the category-only case.12 This case corresponds to the situation involving syntactic methods and also the polynomial algorithms introduced in the next section. The results are shown in Figure 1 (linear scale) and 2 (log scale). Both exponential (y = 0 . 1963 x 1 . 14n) and polynomial (y = 0.002 x n2.496) regression lines calculated by Microsoft Excel are provided. Although it is often easier to fit either an exponential or a polynomial curve on a log-scale graph, the data do not seem to be enough for such a conclusion. To �ee how the experiment might extend to the case with words longer than 45 words, we parsed pseudo-long sentences. That is, some of the test sentences are conjoined to form long sentences. Although these are semi-fabricated data, most long sentences are in fact the results of coordination. Thus natural data are expected to behave similarly rather than differently from our pseudo-long sentences. The results are shown in Figures 3 and 4. The polynomial curves (y = 0.0017 x n2 ·5616) seem to represent the data better than the exponential curve (y = 0.4375 x 1 .09n), especially on the log-scale graph. Since the data is sparse, we do not attempt to obtain a significant statistic analysis for these and simply eye-fit the data. With these qualifications, we conclude that the performance appears no worse than n3 • The result also shows that categorial ambiguities still present in the parses 12Category-only is the case also corresponding to the spurious ambiguity check of syntactic methods. 140 
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A few remarks are in order. We compared our results with the following experiment to see how the figures stand. Tanaka and Ueki [1995] report that the LR-based syntactic analysis of a 19-word sentence in Japanese took 3.240sec.13 The range of CPU times for our sentences with 19-23 words is between 3 to 8sec (category-only case). The performance of our parser seems to be within a comparable range. Another point is that the effect of spurious ambiguity check is immediate. Without the check, orily the sentences with 10 or fewer words were parsed. Under this condition, the maximum number of cell entries easily exceeds 300 for longer sentences, which resulted in out-of-space errors. We thus confirmed that the exponential effect of spurious ambiguity is well controlled by semantic equivalence check. Since one of the advantages of CCG parsers is the ability to derive semantics along with syntactic structure, the results of the category+semantics case is of special interest. The situation naturally looks quite different. The exponential regression line t = 0.0638 x 1 .24n (Figures 1 and 2) seems to fit the data closely. In fact, the two longest sentences with 40 and 41 words results in out-of-space errors. Since spurious ambiguities are eliminated by equivalence check and categorial ambiguity is only polynomial as shown in the category-only experiment, the exponential slow down is due exclusively to genuine ambiguity. Genuine ambiguity is a major problem for our parser as it is for any parser. As a potential solution to genuine ambiguity problem, Dorre [1997] recently reported a polynomial algorithm to build shared semantic structures from shared syntactic structures. Unfortunately, this technique may not be directly applicable to our parser because semantic equivalence check is now required to traverse the shared structures. It is not clear if the traversal can be done in polynomial time. This concern is shared by the situation of applying structure sharing technique to conceptual dependency [Broker et al., 1994]. 
4 Worst-Case Polynomial Recognition Algorithm Although the implemented parser runs efficiently (the category-only case), its worst-case performance is still exponential due to categorial ambiguity. This section presents a worst-case polynomial recognition algorithm for a subclass of CCGGTRC (Poly-GTRC) by extending the polynomial algorithm of Vijay-Shanker and Weir [1990] for CCG-Std (Poly-Std). We will observe below that the crucial property of CCG-Std employed by Poly-Std can be extendbd to the subclass of CCG-GTRC with an additional condition. Let us start with a brief review of the intuitio� behind Poly-Std and then move on to Poly-GTRC. Note that Poly-Std has the second stage of structure building but we concentrate on the more critical part of recognition. 

13Tbe word count is based on our criteria. Other details are ignored for now. 141 



4.1 Polynomial Algorithm for CCG-Std First, observe the following properties of CCG categories: (9) a. The length of a category in a cell can grow proportionally to the input size. 
b. The number of categories in a cell may grow exponentially to the input size. For example, consider a lexicon f = { (a,S/NP /S) , (a, S/PP /S) } .  Then, for the input "a . . . .  a", the top CKY-cell includes +--+ 

n 2n combinations of categories like S { j�; } . . .  { j�; } /S derived by functional composition. Thus, we have exponential 
n worst-case performance with respect to the input size . . The idea behind Poly-Std is to store categories as if they were some kind of linked list. Informally, a long category F lan · • • la2 la1 is stored as ' this portion is linked in a cell [p, q] with index la2 la1 ' .  A crucial point here is that the instances of target category F and arguments a2 and a1 are bounded. We will come back to this point in the next subsection. The pair [p, q] can be represented as a n2 matrix. Thus by setting up n2 subcells in each CKY-table cell, we can represent a category in a finite manner. The effectiveness of such a representation comes from the fact that CCG rule application does not depend on the entire category. Namely, in order to verify "F lan · • • la2 la1 ►

k bo l bk . .  , lb 1  --+ F lan . .  , la2 lbk · • • lb1", the sequence marked by '*' ...____.., - - ...____.., * * does not need to be examined. Thus, for the functor category, we only need to check F and a1 available in the current cell. In addition, since bo must be unified with a bounded a1 , and k is also bounded by kmax, the entire input category is bounded and thus can be stored in the current cell. Therefore, the proposed representation does not slow down this type of process. When the result category exceeds a certain limit, we leave the excessive portion right in the original cell and set up a link to it. One complication is that when an argument ( e.g., a1 in the above example) is canceled, we may have to restore a portion of the category from the linked cell (as the ' index' for the cell is required). We need to scan the linked cells and find the categories with the same index from n2 subcells. Even though there may be multiple such categories, all of them can be restored in one of n2 subcells associated with the result category. This case dominates the computational complexity but can be done in O ( n3 ) .  Since this is inside i, j, k of CKY-style loop, the overall complexity is O ( n6) .  

4.2 Polynomial Algorithm for CCG-GTRC We first note that there are cases where a crucial property of CCG-Std cannot be maintained in CCG-GTRC. The property is that arguments of derived categories are bounded. Although there might be a polynomial algorithm for CCG-GTRC which does not depend on this property, we pursue a straightforward extension of Poly-Std with an additional condition on the rules. 14 The problematic cases are 3b and 4b in Table 1. As we have motivated in Introduction, the inner sequence of GTRC must be allowed to grow unboundedly long ( otherwise, the resulting grammar becomes equivalent to CCG-Std). Then an argument can grow unboundedly long as exemplified by Case 3b below. ( 10) Combination type of "Const►GTRC" where k = l inputl (and k � 1) :  k a/Q ► k I l (T lcm · • • l ct ) ldk- l · • • ld1 --+ a l (b l cm · • • lct ) ldk- l · • • ld1 
f-------t 
unbounded But we do not want to exclude Cases 3b and 4b entirely since a case involving a sentential adverb may be possible as follows: "S/S ► Tl (T IA IB)". The present approach is to place the following condition on the rule application: 

( 1 1 )  Bounded Argument Condition: The input GTRCs in the cases 3b and 4b must be instantiated. This is in a sense analogous to placing a bound kmax on functional composition instantiating the input category. By this condition, we have the following property: ( 12) The set of arguments of cons�t categories and the set of arguments of the inner and outer sequences of GTRC are all finite. 
14The length of the argument is still bounded by O (n) in CCG-GTRC since the only source of unboundedness is GTRC inner sequences. If every 

argument can be represented in some finite manner with link information similar to the one used for the Poly-Std, polynomial recognition might be 
possible. 142 



That is, by considering the inner sequence at the same level as the outer sequence of a GTRC or the arguments of a constant category, we can maintain the property analogous to the one found for CCG-Std. Note that the Bound Argument Condition is not implemented in our parser. The inner sequence of GTRC does not grow unboundedly in practice and thus the arguments of categories do not grow unboundedly either. Now, consider the subclass of CCG-GTRC constrained by the Bounded Argument Condition. In the rest of this section, we will concentrate on this subclass. Poly-GTRC is an extension to Poly-Std. The basic organization of the algorithm is analogous to Poly-Std. We use the same n2 x n2 CKY-style table and a similar representation for constant categories. But we need to deal with GTRCs in polynomial time as well. First, let us examine two representative cases of rule applications since this reveals the necessary conditions for polynomial parsing. The inner sequence of GTRC can grow as a result of Case 4e shown below: (13) T / (Tlam · • • la2\a1 ) ►k !!l ( U lcp · • • lc1 ) ldk- l · • • ld1 -t TJ (Tlam· • • la i Jcp · · · lci ) ldk- l · · • ld1 (k 2'.: 1)  t The only information needed to determine if the rule is applicable is the directionality of the slash indicated by 't' . Thus we do not actually need to know the inner sequence of the functor or input categories. The inner sequence of the result GTRC can thus be represented as two links to the functor and input categories. This link information virtually encodes a kind of grammar for deriving the inner sequence and is thus considered as an application of structure sharing [Billot and Lang, 1 989, Dymetman, 1 997] . The outer sequence can be represented in a way similar to the argument of constant category. Although there may be exponentially-many GTRCs associated with each CKY cell, the number of cell entries is bounded by the link destinations of the inner sequence and the finite representation for the outer sequence. Next, consider Case 2b. 
We need to show that the unification process of the underlined portions can be done in polynomial time. As the first approximation, consider this process as an iteration of (backward) functional application of the form " qJ_ ◄ co 1cm . . .  Js_" for 
i = 1 to m where a; and c; are canceled. But recall that in general, we only store a finite portion of both the functor and the input categories in the current cell and the remaining information must be restored through the links. The restoration of the information could cost exponential time since there may be multiple links to lower locations at any point. Therefore it is crucial that we proceed from i = 1 to m so that no enumeration of all the instances of c; ,  . . .  , c1 and a; , . . .  , a1 in (14) is actually generated. The traversal of the link from c1 and a1 may introduce sets of categories 4 and � for each position of i 2'.'. 2, as schematically shown below. (15) Gn 

t � {ci } 
t {al } Note that each set 4 and � are bounded. This is the crucial point we needed the Bounded Argument Condition. Now, suppose that an element in 4 is canceled with some elements in �. We can proceed to the next set 4+ 1 where the elements in 4+1 are obtained by traversing the links from the canceled elements in 4. Once we move from 4 to 4+1 , the history of cancellation can be forgotten, as in the case of iterative functional application in Poly-Std. Thus even though we have potentially exponential instances of c; , . . .  , c1 , the traversal of this side can be done step-by-step without suffering the exponential effect. The traversal of �•s is more challenging. The availability of a; for cancellation with some c; depends on the history of the cancellation of a;- 1 , . . .  , a1 . Actually, it depends on the tree structure exactly encoded by the structure sharing technique. The 'GTRC recovery algorithm' will be introduced below to handle this situation in polynomial time. The other cases are included in the technical report along with a more detailed description and a worked example of recovering GTRCs [Komagata, 1997a] . Through the examination, we conclude that the polynomial parsability of CCGGTRC depends on recovery of GTRCs. We present the polynomial GTRC recovery algorithm in Figure 5. The GTRC recovery algorithm takes advantage of the encoded shared structure, and utilizes an additional n2 GTRC recovery table to restore possibly ambiguous GTRC derivations in polynomial time. The first stage (table setup) is to represent the derivational structure available in the CKY table in a slightly different way. Suppose the following partial CKY table starting from a GTRC in question: 143 



Initialization: • Create an n2 GTRC recovery table, R 
Table setup (Stage 1 ) :  • For each cell (top-down) • For each entry ( depending on the midpoint) • Restore the derivation info from CKY table 0 (n2) 

O (n) and store the children in the appropriate cells O ( n2) 
Recovery (Stage 2) : • For each cell in the bottom row (right-to-left) 0 (n) • For each entry O ( n) • If there is a matching category in the target category set • Mark the current entry as 'success' Otherwise • Mark the current entry as 'fail' • Do status percolation 
Status percolation (subprocedure): • For each cell (bottom-up) • For each entry • For each parent • If the parent is marked as 'fail' • Mark the current entry as 'fail' Otherwise • If the current entry is the right branch and marked as 'fail' 

and all the right branch siblings are marked as 'fail, • Mark the parent as 'fail' • If the current entry is the left branch and marked as 'success' • Mark the parent as ' success' 
Figure 5: GTRC Recovery Algorithm ( 16) Partial CKY table: TI (T · · · \B) r1 ,21► f3,sl T / (T · · · \B)f3,3l◄ f4,5l 

0 (n2) 
O (n) 
0 (n2) 

5 4 3 2 1 TI (T\A)r1 , 11►r2,21 T\ (T /C)f4,4l◄f5 ,5l I TI (T\A) /D D TI (T\B) E I T\ (T/C) \E I 
2 3 4 5 T / (T  ... \B)[l ,2)► [3,5) represents the derivation "T / (T\A) [l , l)► [2,2) ► T / (T ... \B) [3,3) ◄ [4,5) ----+  T / (T ... \B)" at the designated string positions. A GTRC recovery table can be used to store the same derivational structure with the bottom row corresponding to the order of the inner sequence of the GTRC rather than the string position. This is the order to process the inner sequence for Q-� comparison shown in (15) .  S ince GTRC recovery process only concerns with the inner sequence of the GTRCs, the recovery table may have a dimension smaller than the corresponding portion of the CKY table as seen in the following example: ( 17) GTRC recovery table: 3 T / (T . . .  \B) 1 , 1 ► 2,3 2 1 TI (T\A) 

3 
TI (T\B) 1 The categorial ambiguities originally aligned at string positions are now aligned in the order of processing. In the second stage (recovery stage), the comparison with the target categories is done while the above-mentioned dependency among LTRCs in the bottom row is checked. The comparison proceeds from right to left in the bottom row. The decision on the cancellation of the argument under consideration, ai, depends on (i) if it is unifiable with some target category (in Ci) and (ii) if the corresponding sequence to the right of ai was successfully canceled. This latter condition 144 



can be checked by observing the status of the first right branch from the current position since all the processes up to that point must have been completed. For the later processing (for the positions to the left), the success/failure status of the current category must also be percolated to the relevant higher nodes (status percolation). The total complexity turns out to be a rather daunting O (n 10) = O( _n_3 x n2 x n5 . ) .  1 ,1 ,k recovery percolatlon The extremely-high cost of GTRC recovery process seems to be related to the following conjecture: the generative power of this subclass of CCG-GTRC is greater than CCG-Std. A more restricted version of CCG-GTRC has been shown to be weakly equivalent to CCG-Std [Komagata, 1997b, Komagata, 1997c] . This subclass restricts the directionality of GTRC to the unidirectional case and only deals with GTRCs without outer sequence, thus allowing only the GTRCs of the form T ( (T ) am . . .  ) a1 ) .  In this case, the inner sequence and the string positions agree on the number and the order of the arguments and no GTRC recovery algorithm is needed. Realistically, most languages seem to restrict the use of GTRCs in some sense. For example, the Japanese grammar used in our experiment restricts GTRCs to the unidirectional variety but still with outer sequence. 
5 Conclusion The practical and the theoretical polynomial results are due to distinct factors. The former comes from a practical bound on the number of cell entries after spurious ambiguity elimination, showing CFG-like behavior. The latter (for both PolyStd and Poly-GTRC) is achieved by efficiently representing and processing the potentially exponentially-many entries in a cell. This is possible even with the presence of spurious/genuine ambiguities. But it turns out that what the polynomial algorithms do is to eliminate a possibility which in practice rarely occurs. The additional cost for Poly-Std/GTRC of managing n2 subcells and links to cover all the cases of exponential factors including spurious/genuine ambiguities is thus considered as overkill for the practical case. Although it may be possible to add spurious ambiguity check to PolyStd/GTRC, we are better off with a simple CKY-style parser with equivalence check, without the overhead of the PolyStd/GTRC. The above conclusion naturally remains qualified by the small scale of the experiment reported here. But, the test sentences are reasonably representative and relatively challenging. They vary in sentence length and complexity and span the space we may typically encounter. With additional data, it is reasonable to expect that the missing points will be filled and statistic significance will be obtained. It is also reasonable to believe that the experiment with pseudo-long sentences characterizes the kind of complexity that will be found in natural data. Few grammars or parsers designed for a configurational language such as English perform well on realistic fragments of a language like Japanese. One of the reasons may be abundance of non-traditional constituents found in SOV languages. Our parser, in contrast, demonstrates a reasonable performance although the grammar is basically an instantiation of the same framework applied for English [Steedman, 1996] . This strongly suggests that a framework which can analyze non-traditional constituents as a part of the competence property has an advantage in dealing with cross-linguistic data. 
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Abstract We introduce a novel parser based on a probabilistic version of a left-corner parser. The left-corner strategy is attractive because rule probabilities can be conditioned on both top-down goals and bottom-up derivations. \i\Te develop the underlying theory and explain how a grammar can be induced from analyzed data. We show that the left-corner approach provides an advantage over simple top-down probabilistic context-free grammars in parsing the Wall Street Journal using a grammar induced from the Penn Treebank. We also conclude that the Penn Treebank provides a fairly weak test bed due to the flatness of its bracketings and to the obvious overgeneration and undergeneration of its induced grammar. 
1 Introduction For context-free grammars (CFGs) , there is a well-known standard probabilistic version, Probabilistic ContextFree Grammars (PCFGs) , which have been thoroughly investigated [Suppes , 1970, Sankoff, 1971, Baker, 1979, Lari and Young, 1990, Kupiec, 1991, Jelinek et al. , 1992, Charniak, 1993) . Under this model, one assigns probabilities for different rewrites of a non-terminal. Or in other words, one is giving the probability of a local subtree given the mother node. So, for example, we might have: 

P(N P ➔ Det N) 0.2 
P(N P ➔ Pron) 0 .1 where in general, V nonterminals A, L'"Y P(A ➔ 1) = 1. But standard PCFGs are only one way to make a probabilistic version of CFGs. If we think in parsing terms,  a PCFG corresponds to a probabilistic version of top down parsing, since at each stage we are trying to predict the child nodes given knowledge only of the parent node. Other parsing methods lend themselves to different models of probabilistic conditioning. Usually, such conditioning is a mixture of top-down and bottomup information. This paper discusses some initial results from another point in this parameter space where the conditioning reflects a left-corner parsing strategy, yielding what we will call probabilistic left-corner grammars (PLCGs) . 1 Left -corner parsers simultaneously work top-down from a goal category and bottom-up from the 

1 This name may appear strange since the symbolic part of the grammar is unchanged and still context-free. But if we regard 
the probabilistic conditioning as part of the grammar, then we do have a different kind of grammar. We should then perhaps call 
the result a LCPG, but we place the P in initial position for reasons of tradition. 147 



Expansion % as Subj % as Obj 
NP ➔ PRP 13.7% 2 . 1% 
NP ➔ NNP 3.5% 0.9% 
NP ➔ DT NN 5.6% 4.6% 
NP ➔ NN 1.4% 2.8% 
NP ➔ NP SBAR 0.5% 2.6% 
NP ➔ NP PP 5.6% 14.1% Table 1 :  Selected common expansions of NP as Subject vs. Object 

left corner of a particular rule. For instance, a rule such as S ➔ NP VP has the left-corner NP and will be 
fired whenever an NP has been derived and an S would help toward the eventual goal category. In this paper , 
we present algorithms for PLCG parsing, present some results comparing PLCG parsing with PCFG parsing, 
and discuss some mechanisms for improving results. 

Why might one want to employ PLCGs? While the main perceived weakness of PCFGs is their lack 
of lexicalization, they are also deficient on purely structural grounds [Briscoe and Carroll, 1993]. Inherent to 
the idea of a PCFG is that probabilities are context-free: for instance, that the probability of a noun phrase 
expanding in a certain way is independent of where the NP is in the tree. Even if we in some way lexicalize 
PCFGs to remove the other deficiency, this assumption of structural context-freeness remains. But this context
free assumption is actually quite wrong. For example, Table 1 shows how the probabilities of expanding an NP 
node (in the Penn Treebank) differ wildly between subject position and object position. Pronouns, proper names 
and definite NPs appear more commonly in subject position while NPs containing post-head modifiers and bare 
nouns occur more commonly in object position (this reflects the fact that the subject normally expresses the 
sentence-internal topic [Manning, 1996]). J 

Another advantage of PLCGs is that parse probabilities are straightforwardly calculated from left to right , 
which is convenient for online processing and integration with other linear probabilistic models.2 

2 Probabilistic Left Corner Grammars 
Left corner parsers [Rosenkrantz and Lewis II, 1970, Demers, 1977] work by a combination of bottom-up and 
top-down processing. One begins with a goal category (the root of what is currently being constructed), and 
then looks at the left corner of the string (i.e. , one shifts the next terminal). If the left corner is the same 
category as the goal category, then one can stop. Otherwise, one projects a possible local tree from the left 
corner. The remaining children of this projected local tree then become goal categories and one recursively does 
left corner parsing of each. When this local tree is finished, one again recursively does left-corner parsing with 
this subtree as the left corner, and the same goal category. To make this description more precise, a Prolog 
version of a simple left corner recognizer is shown in Figure 1. This particular parser assumes a rule format for 
rule/2 that allows lexical material to appear on the right-hand side of a rule.3 

A common formulation of left corner parsers is in terms of a stack of found and sought constituents, the 
latter being represented as minus categories on the stack ( and represented as m (Cat) in the Prolog code). A left 
corner parser that uses a stack is shown in Figure 2. Shifting is now an explicit option on a par with projecting 
and attaching, but note that when to shift remains deterministic. If the thing on top of the stack is a predicted 
m (Cat) , then one must shift, and one can never successfully shift at other times. This second version of the 
parser more transparently corresponds to the probabilistic language model we employ. 

To produce a language model that reflects the operation of a left corner parser, we have to provide prob
abilities for the different operations (the clauses of process in Figure 2). For each step, we need to decide the 
probabilities of deciding to shift , attach, or project. The only interesting choice here is deciding whether to 
attach in cases where the left corner category and the goal category are the same. For the other two operations 
of the parser, we need to model the probability of shifting different terminals, and the probability of building a 

2Note however, that while the obvious way of calculating PCFG probabilities does not allow incremental processing, incremental 
calculation is possible, as d iscussed by [Jelinek et al . ,  1992] . 

3In general, empty categories can be accommodated by allowing a category to be introduced for completion without popping a 
word off the input stack. 
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'l. lc (List_of_words_to_parse) 
le (Ws) : - start (C ) , 

complete_list ( [CJ , Ws , [] ) . 

complete (C , C ,  Ws , Ws ) . 
complete (W , C ,  Ws , NewWs) 

rule (LHS , [W I Rest] ) ,  
complete_list (Rest , Ws , Ws2) , 
complete (LHS , C ,  Ws2 , NewWs ) .  

'l. attach 
'l. project le 
'l. lex / phrase 

complete_list ( [] ,  Ws , Ws) . 
complete_list ( [C I Cs] , [W I Ws] , NewWs )  : -

complete (W , C ,  Ws , Ws2 ) , 'l. shift 
complete_list (Cs , Ws2 ,  NewWs ) .  Figure 1 :  A Pro log LC parser 

slc (Ws ) : - start (C)  , 
s lc (Ws , [m (C) ] ) .  

slc ( [] , [] ) . 
slc (LO , StackO) 

process (StackO , Stack , LO , L ) , 

slc (L ,  Stack) . 

process ( [A ,  m (A) I Stack] , Stack , L ,  L) . 'l. attach 

process ( [Item l items] , Stack , L ,  L) 'l. project LC 

rule (LHS , [Item l Rest] ) ,  

predict (Rest , [LHS I Items] , Stack) . 

process (Stack , [L I Stack] , [L I Ls] , Ls)  . 'l. shift 

predict ( [] ,  L ,  L ) . 

predict ( [L I  Ls] , 12 , [m (L) I NewLs] ) 

predict (Ls , 12 , NewLs ) . 

Figure 2 :  A Pro log LC stack parser certain local tree given the left corner ( le) and the goal category (gc) . Under t his model, we have probabilities for t his last operation like this: 
P(SBar ➔ P S l lc = P, gc = S) 0.25 
P (PP ➔ P NPl lc = P, gc = S) 0.55 How to make probabilities out of t he above choices is made precise in the next section. 

2 . 1  The LC probability of a parse In t his section, we provide probabilities for left-corner derivations. These form the basis for a language model that assigns probabilities to sentences. For a sentence s, we have that the probability of a sentence according to a grammar G is: 
P (s l G) L P( s, t lG), t a parse tree of s 

L P(t lG) 
{ t :  yield ( t )=s}  The last line follows since the parse tree determines the terminal yield. It is therefore sufficient to be able to calculate the probability of a (parse) tree. Below we suppress the conditioning of the probability according to 
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the grammar. Now following the intuition of our model having been inspired by left corner parsing, we can express the probability of a parse tree in terms of the probabilities of left corner derivations of that parse tree: 
P(t) = P(

d

) 
d a LC derivation of t But under left corner parsing, each parse tree has a unique derivation and so the summation sign can be dropped from this equation. Now, without any assumptions, the probability of a derivation can be expressed as a product in terms of the probabilities of each of the individual operations in the derivation. Suppose that { C1 , . . .  , Cm } is the sequence of operations in the LC parse derivation d of t .  Then, by the chain rule, we have: 

In practice, we cannot condition the probability of each parse decision on the entire history. The simplest model, which we will explore for the rest of this section, is to assume that the probability of each parse decision is largely independent of the parse history, and just depends on the state of the parser. In particular, we will assume that it depends simply on the left corner and top goal categories of the parse stack. This drastic assumption nevertheless gives us a slightly richer probabilistic model than a PCFG, because elementary leftcorner parsing actions are conditioned by the goal category, rather than simply being the probability of a local tree. For instance, the probability of a certain expansion of NP may be different in sub ject position and ob ject p osition, because the goal category is different. Each elementary operation of a left corner parser is either a shift, an attach or a left corner projection. Under the independence assumptions mentioned above, the p robability of a shift will simply be the probability of a certain left corner daughter (le) being shifted given the current goal category (ge) , which' we will model by Pshift · Note that when to shift is deterministic. If a goal (i .e . , minus) category is on top of the stack ( and hence there is no left corner category) , then one must shift. Otherwise one cannot. If  one is not shifting, one must choose to attach or project, which we model by Patt · Attaching only has a non-zero probability if the left corner and the goal category are the same, b ut we define it for all pairs. If we do not attach, we project a constituent based on the left corner with probability Pte · Thus the probability of each elementary operation Ci can be expressed in terms of probability distributions Pshift , Patt , and Pie as follows: P(Ci = shift le) P(Ci = attach) P(Ci = project A ➔  'Y) 
{ �,hiJt ( lc lgc) if top of the stack is ge otherwise 
{ 
{ 

Patt (lc, gc) 0 if top of t he stack is not gc otherwise (1  - Patt (le, ge) )Pte (A ➔ "fi le, ge) 0 if top of the stack is not ge otherwise W here these operations obey the following: 
L PshiJt (le lge) 1 le If le # ge, Patt (le, ge) 0 

L P(A ➔ "f i le, ge) 1 
{.4➔-y:,=le,  . . .  } From the above we note that the probabilities of the choice of projections sums to one, and hence, since other probabilities are complements of each other, the probabilities of the actions available for each elementary operation sum to one. There are also no dead ends in a derivation, because unless A is a possible left corner . constituent of ge, P(A ➔ "f i le, ge) = 0. Thus we have shown that these probabilities define a language model.4 That is, L s P(s lG) = 1. It i s  p ossible to extend the PLCG model in various ways to include more probabilistic conditioning, as we discuss briefly later, but our current results reflect this model . 

4 Subject to showing that the probability mass accumulates in finite trees. 
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Rule Freq. PCFG Prob . Rule Freq. 

pp ➔ IN NP 7661 7  0 .81  NP ➔ PRP 17323 
NP ➔ NP PP 34965 0 . 1 1  ADVP ➔ RB 14228 
NP ➔ DT NN 2935 1 0 .09 NP ---+ NN 13586 
s ---+ NP VP 28292 0 .30 NP ---+ NNS 13318 
s ➔ VP 23559 0.25 VP ---+ TO VP 1 2900 
s ➔ NP VP . 17703 0 . 19  NP ➔ NNP 12575 

Table 2 :  Highest frequency CFG rules in Penn Treebank 

2-12  word sentences 

Grammar (rules) 
% sent. length < cutoff 
Test set size (sentences) 
Average Length (words) 
Precision 
Recall 
Labelled Precision 
Labelled Recall 
Labelled Precision + 1 
Labelled Recall + 1 
Average CBs 
Non-crossing accuracy 
Sentences with O CBs 

this paper Charniak 

14 971 10 605 
16.6% 

401 
8.3 8 .7  

89.8% 88.6 
90.7% 91 .7  
83.5% 
82.9% 
87. 1% 
85.2% 

0.27 
95.8% 97.9% 
84.5% 

Table 3 :  PCFG results 

3 Parsing experiments 

3 . 1  PCFG Experiment 

PCFG Prob. 

0 .06 
0 .72 
0 .04 
0 .04 
0 .09 
0 .04 

Training and testing were done on Release 2 of the Penn Treebank [Marcus et al. , 1993] , published in 1995. As 
in other recent work [Magerman, 1995, Collins, 1996] , training was done on sections 02-21 of the Wall Street 
Journal portion of the treebank (approximately 40,000 sentences, 780,153 local trees) and final testing was done 
on section 23, which contains 2416 sentences . Counts of how often each local tree occurred in the treebank were 
made, and these were used directly to give probabilities for rewriting each nonterminal. The highest frequency 
rules are given in Table 2. Local trees were considered down to the level of preterminals (i.e., part of speech 
tags) ; lexical information was ignored. 5 Every tree was given a new root symbol 'ROOT' ,  attached by a unary 
branch to the root in the tree bank. Empty nodes ( of which there are several kinds in the tree bank) were ignored, 
and nonterminals above them that dominated no pronounced words were also deleted.6 No attempt was made to 
do any smoothing. While in a few cases this would clearly be useful (e.g. , the training data allows a compound 
noun to be modified by four adjectives, but not a simple noun) , in practice the induced treebank grammar is 
hugely ambiguous ,  and greatly overgenerates . Thus, while the lack of smoothing in principle disallows some 
correct parses from being generated, the treebank grammar can always produce some parse for a sentence 
[Charniak, 1996] and adding unseen rules with low probabilities is unlikely to improve bottom line performance, 
because these added rules are unlikely to appear in the maximum probability parse. A better solution would 
be to use a covering grammar with fewer rules and a more deeply nested structure. 

Testing was done by chart-parsing the part of speech tags of the sentences (i.e. , ambiguities in part of 
speech assignment were assumed to be successfully resolved) .  An exhaustive chartparse was done and the 
highest probability (Viterbi) parse was selected, in the standard way [Charniak, 1993] . Results from such 
parsing are shown in Table 3 together with results from [Charniak, 1996] . The measures shown have been used 

5 Of course, we could easily integrate our model with a tagging model. 
6 Simply eliminating empties in the tree bank is dangerous because they are the only trace of unbounded dependency constructions. 

This leads to ridiculous rules like S -+  VP (with 23559 appearances in the treebank) stemming from S -+  NP VP where there is a 
trace subject NP. A purely context-free solution would be to introduce slash percolation . 
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2 / 4-40 word sentences PCFG Magerman Collins 

% sent. length < cutoff 92.9% 
Test set size (sentences) 1759 2416 
Average Length (words) 2 1 .9 22.3 
Precision 78.8% 86.3% 
Recall 80.4% 85.8% 
Labelled Precision 84.5% 86.3% 
Labelled Recall 84.0% 85.8% 
Average CBs 1 .33 1 . 14 
Non-crossing accuracy 87. 7% 
Sentences with 0 CBs 55.4% 57.2% Table 4 :  PCFG [Charniak, 1996] vs. [Magerman; 1995] / [Collins, 1996] comparison 

in various earlier works, and generally draw from the PARSEVAL measures [Black et al. ,  1991]. Precision is how 
many brackets in the parse match those in the correct tree (perhaps also examining labels), recall measures how 
many of the brackets in the correct tree are in the parse. The unmarked measures ignore unary constituents, the 
ones marked + 1 include unary constituents. 7 Crossing brackets ( CBs) measures record how many brackets in 
the parse cross bracketings in the correct tree, with the non-crossing accuracy measuring the percent of brackets 
that are not CBs. The '% sent. length < cutoff' says what percentage of sentences within the 2416 sentence 
test section were shorter than the cutoff and thus used in the test set for the current experiment. Our results 
are not directly comparable to Charniak's since he was using an earlier release of the Penn Treebank. Further, 
he used two strategies that aimed at increasing performance: recoding auxiliaries from their Penn tag ( which is 
undistinguished from other verbs) to special auxiliary tags, and adding a (crude) correction factor to the PCFG 
model so that it uniformly favored right-branching trees rather than being context free. Whether the former 
change was shown to be beneficial is not discussed, but the later correction factor improved results by about 
two percent . The fact that the results are mixed between the two systems suggests that the quality of the Penn 
Treebank has improved in the second release, and these gains roughly match the gains from these factors. It is 
useful that the results are roughly comparable since we can then use Charniak's results as a rough benchmark 
for PCFG performance on longer sentences, which we have not obtained.8 

Charniak's central contention is that purely structural parsing like this using treebank grammars works 
much better than community lore would have you believe. Indeed, as the comparison in Table 4 suggests, it 
does not work niuch worse than [Collins, 1996] , a leading recent parser that includes lexical content. That is, 
it seems one can score well in the PARSEVAL measures using purely structural factors, and that the use of 
lexical factors in other models is at present only adding a little to their performance.9 This is in part because 
the Penn treebank does not represent certain semantic "attachment" decisions, and the structure of the trees 
minimizes the penalty for other "attachment" errors, as we discuss in the last section of this paper. 

3 .2  LC parsing results 
The probabilistic left corner parser is implemented as a beam parser in C .  As a k-best beam parser, it is not 
guaranteed to find the best parse, unless the beam is effectively infinite. Space requirements depend on the 
size of the beam, and the length of the sentence, but are considerably more reasonable than those for the chart 
parser used above. Nevertheless, the branching factor in the search space is very high because there are many 

7The original PARSEVAL measures (because they were designed for comparing different people's parsers that used different theories 
of grammar) ignored node labels entirely, discarded unary brackets, and performed other forms of tree normalization to give special 
treatment to certain cases such as verbal auxiliaries. While such peculiarities made some sense in terms of the purpose for which 
the measures were originally developed, it is not clear they are appropriate for the use of these measures within the statistical NLP 
community. Thus people often report labelled measures, but it is often unclear whether the other rules and transformations of the 
standard have been employed (but this affects the results reported) . In this paper, unary nodes are deleted in  measures except 
those marked + 1 ,  but none of the special case tree transformations in th.e PARSEVAL standard are applied. All punctuation and all 
constituent labels (but not functional tags) are also retained. 

8 Our PCFG parser builds a. complete chart, which leads to unviable space requirements for long sentences. 
9 Again ,  results are not strictly comparable. The comparison is unfair to Magerman and Collins' systems since they are also 

doing part of speech tagging, whereas the PCFG is not .  But on the other hand, Magerman and Collins' parsers conflate the ADVP 
and PRT labels and ignore all punctuation, which improves their reported results. 
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Parser results 2-12 Error Sentence Lengths: 2-12 2-16 2-25 Reduction Beam size 50 000 50 000 40 000 % sent . length < cutoff 16.6% 28. 1% 60.2% Test set (sentences) 401 680 1454 Average length (words) 8.3 10.9 16.3 Precision 92.0% 90. 1% 84.6% 2 1 .6% Recall 92.3% 89.5% 83.2% 17.2% Labelled Precision 87. 1% 86.0% 81 . 1% 21 .8% Labelled Recall 86.7% 84.9% 79 .6% 22.2% Labelled Precision + 1 88.6% 87.7% 83.5% 1 1 .6% Labelled Recall + 1 88.3% 86.3% 81 .5% 20.9% Average CBs 0.21 0 .43 1 . 25  22 .2% Non-crossing accuracy 96.8% 94. 7% 89.6% 23.8% Sentences with 0 CBs 87.5% 76 .0% 52.0% 19.4% 
Table 5 :  Left Corner Parser results from n-ary grammar. 

rules possible with a certain left corner and goal category ( especially for a grammar induced from the Penn 
Treebank in the manner we have described) . Therefore, a huge beam is needed for good results to be obtained. 
A way of addressing this problem by binarizing the grammar is discussed in the next section. 

The parser maintains two beams, one containing partial LC parses of the first i words, and another in 
which is built a beam of partial LC parses of the first i + 1 words. The partial parses are maintained as pointers 
to positions in trie data structures that represent the list of parser moves to this point and the current parse 
stack. At the end of parsing, the lists of parser moves can be easily turned into parse trees for the n-best parses 
in the beam. 

Results are shown in Table 5. They reflect the same training and testing data as described above. The 
results show a small increase in performance for PLCGs. This is shown more dramatically in the right-hand 
column of Table 5, which shows that the extra information provided by the Left Corner goal category reduces 
parsing errors by about 20% over our PCFG results on 2-12  word sentences. 

4 Binarization 
For the parser above, use of a beam search is quite inefficient because, for a given left corner and goal category, 
there are often hundreds of possible local trees that could be projected, and little information is available at 
the time this decision is made, since the decision mainly depends on words that have not yet been shifted. 
Therefore the beam must be large for good results to be obtained, and, at any rate, the branching factor of the 
search space is extremely high, which slows parsing. One could imagine using various heuristics to improve the 
search, but the way we have investigated combatting this problem is by binarizing the grammar. 

The necessary step for binarization is to eliminate productions with three or more daughters. We carried 
this out by merging the tails , so that a rule such as NP ➔ Det JJ NN is replaced by two rules, NP ➔ Det NPDet 
and NPDet ➔ JJ NN. This is carried out recursively until only binary rules remain. As a result of this choice of 
binarization, n-ary rules that share the same mother and left corner category all reduce to a single rule. This 
greatly cuts the branching factor of the search space and allows decisions to be put off during parsing, until 
more of the input has been seen, at which point alternative continuations can be better evaluated. Furthermore, 
the weights for such rules all combine into a larger weight for the combined rule. 10 

It is important to note that the resulting model is not equivalent to our original model. While the straight
forward way of binarizing a PCFG yields the same probability estimc;ttes for trees as the n-ary grammar, this 
is not true for our PLCG model since we are now introducing new estimates for shifting terminals for each of 
our newly created non-terminals. Slightly different probability estimates result , and further work is needed to 
investigate what relationship exists between them and the probability estimates of the original grammar. 

10If we were to do this even for rules that start out binary, and eliminate unary rules downward rather than upward, then for 
every left corner C and mother G there will be a unique rule G ---+ C Ge . 
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Parser Results 2-25 Error 
Sentence Lengths: 2-12 2-16  2-25 2-40 Reduction 
Beam size 40 000 40 000 40 000 40 000 
% sent. length < cutoff 16 .3% 28. 1 %  60.2% 91 .8% 
Test set (sentences) 680 1454 2216 
Average length (words) 8.3 10.9 16.3 2 1 . 6  
Precision 93.5% 91 .4% 86.6% 83 .0% 13 .0% 
Recall 92.8% 89.9% 84.3% 80.7% 6 .5% 
Labelled Precision 89.8% 88. 1 %  83.4% 79.9% 12 .2% 
Labelled Recall 88.4% 86.3% 81 .0% 77.6% 6.9% 
Labelled Precision + 1 90.0% 89.0% 85. 1 %  81 .9% 9 .7% 
Labelled Recall + 1 89.5% 87.2% 82.6% 79.5% 5 .9% 
Average CBs 0 .17 0 .39 1 .09 1 .99 12 .8% 
Non-crossing accuracy 97.2% 95 .2% 90.9% 87.6% 12 .5% 
Sentences with 0 CBs 89.8% 78.2% 55 .8% 41 .5% 7.9% 

Table 6 :  Left Corner Parser results with binarized grammar 

Prior to the above binarization step, one might also wish to eliminate unary productions, much as we earlier 
eliminated empty categories. This can be done in two ways. One way is to fold them upwards. This preserves 
lexical tagging. That is , if there is a category A dominating only a tree rooted at B, then the category A is 
eliminated and the tree rooted at B moved upwards. This may cause the number of rules to increase, because a 
local tree that started with a daughter A will now show up with daughter B in the same place; The alternative 
is to eliminate B and replace it with A. This can also create a new local tree instance because the daughters 
of B now show up with a new mother A. In this way, lexical tags can be changed. For instance, consider a 
rule NP ➔ N NP for a noun phrase rewriting as a proper noun. In the context of eliminating empty categories 
upward, we get a new rule S ➔ N NP VP, whereas by eliminating empty categories downward we would have 
produced a new lexical entry NP ➔ Jones. Our current results do not reflect the elimination of unary rules, 
but we hypothesize that doing this would further improve the measures that do not consider unary nodes, while 
probably harming the results on measures that do include unary nodes . 

Table 6 shows that binarization brings a further modest improvement in results. The righthand column 
shows the percent error reduction on 2-25 word sentences between the n-ary grammar and the binary grammar. 

5 Extended Left Corner Models 

More sophisticated PLCG parsing models will naturally provide greater conditioning of the probability of an 
elementary operation based on the parse history. There are a number of ways that one could then proceed. 
From the background of work on LC parsing, a natural factor to consider is the size of the parse stack, and we 
will briefly investigate incorporating this factor. 

For left corner parsing, the stack size is particularly interesting. [Stabler , 1994] notes that in contrast to 
bottom-up and top-down parsing methods, left-corner parsers can handle arbitrary left-branching and right
branching structures with a finitely bounded stack size. Furthermore, left-corner parses of center embedded 
constructions have stack lengths proportional to the amount of embedding. This is not actually true for the stack
based LC parser presented earlier which has the stack growing without bound for rightward-branching trees. 
To gain the desirable property that Stabler notes, one needs to do stack composition by deciding immediately 
whether to attach whenever one projects a category that matches the current goal category, rather than delaying 
the attachment until after the left corner constituent is complete. If one decides to attach, the goal minus 
category and the mother category are immediately removed from the stack. This is implemented by replacing 
the predicate process in Figure 2 by the code in Figure 3, where composition is done by the predicate compose. 
All else being equal, this change makes no difference to the probabilistic model presented earlier. In practice 
though, this formulation makes a beam search less effective since we are bringing forward the decision of whether 
to attach or not, and often both alternatives must be tried which fills out the beam unnecessarily. 

Given human intolerance for center embeddings and ease of parsing left and right branching structures, we 
would expect the stack sizes to stay low. The general prediction (and empirical fact) is that the probability 
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process ( [Item l items] , Stack , L ,  L) 1/, le 

rule (LHS , [Item l Rest] ) ,  

compose (LHS , Items , Stack1 ) ,  

predict (Rest , Stack1 , Stack) . 
process (Stack , [L I Stack] , [L I Ls] , Ls) . 1/, shift 

compose (A , [m (A) I L] ,  L) . 1/, attach 

compose (A , L ,  [A I L] ) . 1/, don ' t  

Figure 3:  Altered code for a Prolog LC parser that does stack composition Stack Stack size change Size Total - 1  0 +1 8 23 20 ( 87%) 3 (13%) 0 7 160 86 (54%) 54  (34%) 20 (13%) 6 1291 987 (76%) 218 (17%) 86 ( 7%) 5 3745 1393 ( 37%) 1365 (36%) 987 (26%) 4 17000 12116 (71 %) 3491 (21%) 1393 (8%) 3 39105 12241 ( 31%) 14748 ( 38%) 12116 (31%) 2 108544 63160 (58%) 33143 (31  %) 12241 (11%) 1 71681 8521 (12%) 0 63160 ( 88%) 
Table 7: Changes in stack size for Penn Treebank of not attaching ( composing) decreases slightly with the size of the stack. The counts for the Penn Tree bank,  after binarization (including removal of unary rules) , are given in Table 7.  Once one looks beyond the odd-even effect in the data, the decreasing probability of not attaching can be clearly seen. To incorporate stack length into the model, we wish to more accurately predict : P(Ci lC1 , . . . , Ci_ 1 ) . Previously, histories of parse steps were equivalenced according to just the goal category and the left corner (if present) .  Now, we are going to additionally differentiate parse histories depending on e, the length of the stack after Ci - l  · As before, if the top of the stack is a predicted category, we will shift ; otherwise we cannot shift . In the latter case ,  we will predict P0 (b'lt' , ge, le) , the probability of various changes in the stack size, based on the stack size, the goal category, and the left corner. Let us  assume that rules are binary, as discussed above. Then the possible change in the stack length from a single elementary operation is between -2 and + 1. Given that we are not shifting, we have the following: Stack Delta -2  

-1 0 +1 
Rule Type unary left corner and attach binary left corner and attach unary left corner (no attach) binary left corner (no attach) The probability of each elementary operation will then be the probability of a certain stack delta (given the stack size, left corner and goal category) times the probability of a certain rule, given the left corner, the goal category, and the stack delta. Whether we attach (compose) or not is deterministic given the stack delta, and so we no longer need to model the Patt distribution. Under this model, the probability of different projection operations (given that we are not in a position to shift ) becomes: P(Ci = project A ➔  le, attach) P(Ci = project A ➔ le, do not attach) 
P( Ci = project A ➔ le e2 , attach) P(Ci = project A ➔  le e2 , do not attach) 

P5 (-2 lf , le, ge)Ptc1 (A ➔ le l le, ge, f, 6) Po (O lf, le, ge)Ptc ' (A ➔ Zelle, ge, e, 6) P5 ( - l lf , le, ge)Ptc1 (A ➔ le e2 lle, ge, f, 6) P0 (+l l f, le, ge)Ptc1 (A ➔ le e2 Jle, ge, f, 6) A variety of other extended models are possible. Note that the model does not need to be uniform, and that we can estimate different classes of elementary operations using different probabilistic submodels. In particu lar , 155 



at the level of preterminals, we can incorporate a tagging model. Given the structure of the Penn Treebank, a terminal wi is always dominated by a unary rule giving the terminal's part of speech Pi · In line with our basic model above, the choice of part of speech for a word ( where the word now counts as the left corner) will certainly depend on the current goal category. However, we can also condition it on other preceding parse decisions, in particular on the part of speech of the preceding two words, or, perhaps, in certain circumstances, on the particular word that preceded. Taking the former p ossibility, we can say, for cases where Ci involves predicting a preterminal ( through a left corner projection step) ,  
P(Ci lC1 , . . .  , ci_ i ) P (Pi lwi ,  gc, C1 , . . .  , ci_ i ) 

� P (Pi lwi , gc, pj-2 , PJ- l ) Assuming - perhaps rashly - independence between the conditioning variables that we have been using before (le, gc) and the new ones (Pi-l , Pi-2 ) ,  then we have that: P( I ) P(p1 lw1 , gc)P(p1 IP1-2 , P1- 1 ) 
Pi wi , gC, Pi-2 , Pi- l  � P(pj ) This is nice in part because we can calculate it using just the statistics previously gathered and a simple trigram model over POS tags. (An incidental nice property is that the probability is for the POS given the word, and not the other way round, as in the 'confusing' P(w l t) term of standard Markov model POS taggers.)1 1  

6 Comparison with previous work Previous work on non-lexicalized parsing of Penn Treebank data includes [Charniak, 1996] and [Schabes et al. , 1993] , but the work perhaps most relevant to our own is that of [Briscoe and Carroll, 1993] and [Carroll and Briscoe, 1996] , which also seeks to address the context-freeness assumption of PCFGs. They approach the problem by using a probabilistic model based on LR parse tables. Unfortunately, inany differences of approach make meaningful comparisons difficult, and a comparable study of using PLCGs versus Probabilistic LR parsing remains to be done. Briscoe and Carroll use their Probabilistic LR grammar to guide the actions of a unification-based parser which uses a hand-built grammar. While we are sympathetic with their desire to use a more knowledge-based approach, this means that: their language model is deficient, since probability mass is given to derivations which are ruled out because of unification failures; the coverage of their parser is quite limited because of limitations of the grammar used; and much time needs to be expended in developing the grammar, whereas our grammar is acquired automatically ( and quickly) from the tree bank. Moreover, while results are not directly comparable, our parsers seems to do rather better on precision and recall than the parser described in [Carroll and B riscoe, 1996] , while performing somewhat worse on crossing brackets measures. However, C arroll and Briscoe 's  inferior results probably reflect the fact that the parse trees of their grammar do not match those of their treebank more than anything else. 
7 Observations on why parsing the Penn Treebank is easy How is it that the purely structural - and context free even in structural terms - PCFG parser manages to perform so well? An important observation is that the measures of precision and recall (labelled or not) and crossing brackets are actually quite easy measures to do well on. It is important to notice that they are measuring success at the level of individual decisions - and normally what makes NLP hard is that you have to make many consecutive decisions correctly to succeed. The overall success rate is then the nth p ower of the individual decision success rate - a number that easily becomes small. But beyond this, there are a number of features particular to the structure of the Penn Tree bank that make these measures particularly easy. Success on crossing brackets is helped by the fact that Penn Treebank trees 

1 1  Below is a derivation of this equation, written in a simplified form with three variables. We assume b and c are independent, 
and the result then follows by using Bayes' rule followed by the definition of conditional probability: 

P(a lb  c) 
= P(a)P(b ,  c ia) = P(a)P(bl a)P(cla, b) = P(a)P(b la)P(c la) = P(a)P(b, a)P(c ,  a) = P(a lb)P(a l c) 

' P(b, c) P(b)P(clb) P(b)P(c) P(a)2 P(b)P(c) P(a) 156 



Penn VP attach (VP saw (NP the man) (PP with (NP a telescope) ) )  Penn N P  attach (VP saw (NP (NP the man) (PP with (NP a telescope) ) ) )  Another V P  attach (VP saw (NP the (N' man) ) (PP with (NP a (N' telescope) ) ) ) )  Another NP attach (VP saw (NP the (N' man (PP with (NP a (N' telescope) ) ) ) ) )  
Table 8 :  Penn trees versus other trees are quite flat .  To the extent that sentences have very few brackets in them,  the number of crossing brackets is likely to b e  small. Identifying troublesome brackets that would lower precision and recall measures is also avoided. As a concrete instance of this, one difficulty in parsing is deciding the structure of noun compounds [Lauer, 1995] .  Noun compounds of three or more words in length can display any combination of left - or rightbranching structure, as in [[cable modem] manufacturer] vs. [computer [power supply]] .  But such fine points are finessed by the Penn Treebank, which gives a completely flat structure to a noun compound (and any other pre-head modifiers) as shown below (note that the first example also illustrates the rather questionable Penn Treebank practice of tagging hyphenated non-final portions of noun compounds as adj ectives! ) .  (NP a/DT stock-index/ J J  arbitrage/NN sell/NN program/NN ) (NP a/DT joint/ JJ venture/NN advertising/NN agency /NN ) Another case where peculiarities of the Penn Treebank help is the (somewhat nonstandard) adjunction structures given to post noun-head modifiers, of the general form (NP (NP the man) (PP in (NP the moon) ) ) .  A well-known parsing ambiguity i s  whether PPs attach t o  a preceding N P  o r  V P  - o r  even t o  a higher preceding node - and this is one for which lexical or contextual information is clearly much more important than structural factors [Hindle and Rooth, 1993] . Note now that the use of the above adjunction structure reduces the penalty for making this decision wrongly. Compare Penn Treebank style structures, and another common structure in the examples in Table 8. Note the difference in the results: Error Penn VP instead of NP NP instead of VP Another VP instead of NP NP instead of VP 

Errors assessed Pree. Ree . CBs 0 1 1 2 
1 0 2 1 

0 0 1 1 The forgivingness of the Penn Treebank scheme is manifest . One can get the attachment wrong and not have any crossing brackets. 1 2  
8 Conclusions This paper explores a new class of probabilistic parsing algorithms for context-free grammars, probabilistic left corner grammars. The ability of left corner parsers to support left -to-right online parsing makes them initially promising for many tasks. The different conditioning model is slightly richer than that of standard PCFGs, and this was shown to bring worthwhile performance improvements over a standard PCFG when used to parse Penn Treebank sentences. B eyond this, the model can be  extended in various ways, an avenue that we have only just b egun exploring. Because the left-corner component of the grammar is purely structural, it can be  combined with other models that include lexical attachment preferences and preferences for basic phrasal chunking (both incorporated into Collins' parser) . 
References [Baker, 1979] Baker, J .  K. ( 1979). Trainable grammars for speech recognition. In Klatt,  D .  H. and Wolf, J .  J . ,  editors, Speech Communication Papers for the 97th Meeting of the Acoustical Society of A merica, pages 547-550. 

1 2 If one includes unary brackets (recall footnote 7 ) ,  then the contrast becomes even more marked, since there would be 2 precision 
and recall errors each under the alternative parse trees. 157 
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Abstract 

Vve show that for each context-free grammar a new grammar can be constructed that generates a regular 
language. This construction differs from existing methods of approximation in that use of a pushdown automaton 
is avoided . This allows better insight into how the generated language is affected. The new method is also more 
attractive from a computational viewpoint. . 

1 Introduction In [Pereira and \Vright , 1991] a method was presented that allows the construction of a .  finite automaton from a. context-free grammar . The ( regular ) language accepted by the finite automaton includes the strings generated by the original context-free grammar , plus a. set of additional strings . In this sense , the context-free grammar is approximated by the finite automaton . As intermediate result , an LR automaton is constructed from the context-free grammar . LR automata, which are special cases of pushdown automata ,  are representations of context-free languages. If one eliminates the pushdov-m stack of an LR automaton save the top-most element,  a finite automaton results. For obtaining a better approximation , this stage can be preceded by encoding into stack symbols some bounded a.mount of information concerning the stack lying underneath ; this information is given by a shorter stack resulting from omitting parts between multiple occurrences of LR states . This process is called 'Unfolding. In the context of error handling for programming languages , the approach from [Pereira and Wright , 1991] , without the concept of unfolding, has been conceived independently by [Heckert , 1 994] . Some aspects of this method have however not been clarified :  • \iVhy are LR automata. used , as opposed t o  any other kind o f  pushdown automaton? ( See for example [Nederhof, 1 994b] for a. whole range of different kinds of pushdown automaton . )  • \Vhat happens to the language in the approximating process? The second issue is partly a. consequence of the first issue: the structure of a. grammar and the structure of the corresponding LR automaton are two very different things, and how modifications to the automaton affect the language in terms of the grammar may be difficult to see . In this paper, we will somewhat clarify these two issues . Concerning the first issue , we simply state that any kind of pushdown automaton constructed from a grammar allows a. finite automaton to be derived that represents a regular approximation of the original language ; in other words, LR automata. do not have any special properties in this respect . However , in this communication , we will avoid the use of pushdown automata altogether , and perform the process of approximation on the level of the context-free grammar.  This also helps to clarify the second issue above , viz . how to monitor the approximating process. Our method is the fol lowing. We define a condition on context-free grammars that is a sufficient condition for a grammar to generate a. regular language. We then give a. transformation that turns an arbitrary grammar into another grammar that satisfies this condition . This transformation is obviously not language-preserving ; it adds strings to the language generated by the original grammar , in such a way that the language becomes regular .  1 59 
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Figure 1 :  ( a )  two spines in a parse tree , ( b )  the grammar symbols to the left and right of a spine immediately 
dominated by nodes on the spine . 

The structure of the paper is as fol lows . In Section 2 we recall some standard definitions from language 
theory. Section 3 investigates a sufficient condition for a context-free grammar to generate a regular language . 

A1i algorithm to transform a grammar such that this condition is satisfied is given in Section 4. As Section 5 
shows, some aspects of our method are undecidable. A refinement of the approach for obtaining more precise 
approximations is presented in Section 6. Section 7 compares the new method to existing methods. 

2 Prelhninaries 
A context-free grammar G is a 4-tuple ( E, N, P, S) , where E and N are two finite disjoint sets of terminal and 
nonterminal symbols, respectively, S' E N is the start symbol , and P is a. finite set of rules . Ea.eh rule has the 
form A - a with A E N and a E V* , where V denotes N U E. The relation - on N x V* is extended to a. 
relation on V* x V* as usual. The transitive and reflexive closure of -.:, is denoted by -* .  

The language generated by a context-free grammar is given by the set { w E E* I S -* w} . By definition , 
such a set is a context-free language. By reduction of a grammar we mean the elimination from P of all rules 
A - 1 such that S -* o:A,8 - a,,8 -.* w does not hold for any a, ,8 E V* and w E E* .  

We generally use symbols A ,  B ,  C, . . .  to range over N, symbols a ,  b ,  c ,  . . .  to range over E, symbols X, Y, Z 
to range over V, symbols a ,  ,8, 1 , . . .  to range over V*, and symbols v ,  w ,  x ,  . . .  to range over E*. vVe write c to 
denote the empty string . 

A rule of the form A - B is called a 'ztnit rule. A grammar is called cyclic if A -.:,* A ,  for some A .  
A ( nondeterministic ) finite automaton :F is a 5-tuple ( K, E ,  � ,  s ,  F ) ,  where K i s  a finite set of states , of \\rhich s is the init ial  state and those in F � J( are the final  states ,  E is the input alphabet , and � is a finite subset 

of J{ x E* x J{ . 
vVe define a configuration to be an element of J{ x E* . vVe define the binary relation f- between configurations 

as : ( q ,  vw )  f- ( q' , w )  if and only if ( q ,  v, q' ) E �- The transitive and reflexive closure of f- is denoted by f-* . 
Some input v is recognized if ( s ,  v )  f-* ( q ,  c ) ,  for some q E F .  The language accepted by :F is defined to be 

the set of al l  strings v that are recognized .  By definition , a language accepted by a finite automaton is called a. regular language . 

3 The Structure of Parse Trees 
\Ve define a spine in a parse tree to be a path that runs from the root down to some leaf. Figure 1 ( a )  indicates 
two spines in a. parse tree for the string ( ( 0  + 0 )  * 0 ) ,  according to a simple grammar . 

Our main interest in spines l ies in the sequences of grammar symbols at nodes bordering on spines . Figure 1 
( b )  gives an example: to the left of the spine we find the sequence " (  ( "  and to the right we find "+S) * S)" . The 
way such pairs of sequences may relate to each other determines the strength of context-free grammars, and as 
we will see later , by restricting this relationship we may reduce the generative power of context-free grammars 
to the regular languages . 

A sim pier exam pie is the set of parse trees such as the one in Figure 2 ( a) ,  for a 3-line grammar of palindromes . 
It is intuitively clear that the language is not regular: the grammar symbols to the left of the spine from the 
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Figure 2: Parse trees for a palindrome : ( a. )  original grammar,  ( b )  transformed grammar ( Section 4 ) .  

root t o  E "communicate" with those t o  the right of the spine. More precisely, the prefix of the input u p  to 
the point where it meets the final node c of the spine determines the suffix after that point , in a. way that an 
unbounded collection of symbols from the prefix need to be ta.ken into account . 

A formal explanation for why the grammar may not generate a regular language relies on the following 
definition , due to [Chomsky, 1959b] : 
Definition 1 A grammar is self-embedding if th ere is some A E N . such that A -* exA{J, for some ex # c and 
/3 # f .  
In order to avoid the somewhat unfortunate term nonse lf- embedding ( or noncent er- ernbedding , as in [Langen
doen , 1975) ) we define a. strongly reg1tlar grammar to be a. grammar that is not self-embedding. Strong regularity 
informally means that when a. section of a spine in a parse tree repeats itself, then either no grammar symbols 
occur to the left of that section of the spine, or no grammar symbols occur to the right. This prevents the 
"unbounded communication" between the two sides of the spine exemplified by the palindrome grammar. 

Obviously, right linear and left linear grammars ( as known from standard literature such as [Harrison , 1978] ) 
a.re strongly regular . That right linear and left linear grammars generate regular languages is easy to show . 
That strongly regular grammars also generate regular languages will be proved shortly. 

First , for an arbitrary grammar , we define the set of recursive nonterminals as : 

N = {A E l'l I :lo , p[A -* exA/3] } 

\tVe determine the partition .N' of N consisting of subsets N1 , N3 , . . .  , N111 , for some rn � 0, of mutually recursive 
non terminals :  

N = { N1 ,  N3 , . . .  , Nm } 
N 1 U N '2 U . . .  U Nm = N 

Ni n Nj = © ,  for all i ,  j such that 1 :S; i < j ::S; m. 
:li [A E Ni I\ B E  Ni ) <=> 301 ,  /31 , 03 , {33 [A -* 0 1 B/J1 /\ B -* 03A/33 ] , for all A ,  B E N  

\Ve now define the function recursive from N to the set { left , right , s e lf , cyclic} :  

where 

recursive ( Ni )  left , 
right , 
s e lf , 
c:,;clic ,  

Left Generating ( Ni )  
Right Generating ( Ni ) 

if 
if 
if 
if 

,Left Generating ( Ni ) I\ Right Generating ( Ni ) 
LeftGene rating ( Ni )  I\ ,RightGe nerating ( Ni ) 
Left Generating ( Ni ) I\ Right Generating ( Ni ) 

,LeftGenerating ( Ni ) I\ ,RightGenerating ( Ni ) 

:l ( A - o B /3)  E P [ A E Ni I\ B E Ni I\ ex # c] 
:l (A  - oB{J) E P [A E Ni I\ B E  Ni I\ µ #  c] 
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VVhen recursive ( Ni )  = left , Ni consist of only left-recursive nonterminals , which does not mean it cannot also 
contain right-recursive nonterminals, but in that case right recursion amounts to application of unit rules . VVhen recm,sive( Ni )  = cyclic ,  it is only such unit rules that take part in the recursion . 

That 1·ecursive ( Ni )  = self ,  for some i, is a sufficient and necessary condition for the grammar to be self
embedding. We only prove this in one direction : Suppose we have two rules A 1  --;.. cx 1 B1 /31 ,  A 1 , B1 E Ni , and 
A2 ___. cx2B2/32 ,  A2 , B2 E Ni , such that 0: 1 -/= c and /32 -/= c. This means that A 1  _,_ ex 1 B 1 /31 ---* ex 1 ex� A2/3� /31 --
ex1  ex� cx2 B2/32/3� /31 -* 0: 1 ex� cx2cx;A1 /3b/32/3� /31 , for some ex� , /3� , ex� , /3b , making use of the assumption that B1 and A2 , and then B2 and A 1 are in the same subset Ni of mutually recursive non terminals. In the final sentential 
form we have 0: 1 ex� cx2cx; -/= c and /3� /32/3� /31 -/= c ,  and therefore the grammar is self-embedding. 

A set Ni such that recv.rsiv e ( Ni ) = self thus provides an isolated aspect of the grammar that causes self
embedding,  and therefore making the grammar strongly regular will depend on a solution for how to transform 
the part of the grammar in which non terminals from Ni occur. 

,ve now prove that a grammar that is strongly regular ( or in other words, for all i ,  recm·sive ( Ni ) E 
{ left , right , cyclic}) generates a regular language. Our proof differs from a proof of the same fact in [Chomsky, 
1 959a] in that it is fully constructive: Figure 3 presents an algorithm for creating a finite automaton which 
accepts the language generated by the grammar . 

The process is initiated at the start symbol , and from there the process descends the grammar in all ways 
until terminals are encountered , and then transitions are created labelled with those terminals. Descending the 
grammar is straightforward in the case of rules of which the left-hand side is not a recursive nonterminal : the 
groups of transitions found recursively for members in the right-hand side will be connected.  In the case of 
recursive nonterminals , the process depends on whether the nonterminals in the corresponding set from N are 
mutually left-recursive or right-recursive ; if they are both,  which means they are cyclic ,  then either subprocess 
can be applied ; in the code in Figure 3 cyclic and right-recursive subsets Ni are treated uniformly. 

,ve discuss the case that the nonterminals are left-recursive . ( The converse case is left to the imagination 
of the reader . )  One new state is created for each non terminal in the set . The transitions that are created 
for terminals and nonterminals not in Ni are connected in a way that is reminiscent of the construction of 
left-corner parsers [Rosenkrantz and Lewis I I ,  1 970] , and specifically of one construction that focuses on groups 
of mutually recursive nonterminals [Nederhof, 1 994a, Section 5 . 8] . 

An example is given in Figure 4 .  Four states have been labelled according to the names they are given 
in procedure make-fa .  There are two states that are la.belled qB . This can be explained by the fact that 
nonterminal B can be  reached by descending the grammar from S' in two essentially distinct ways . 

4 Approxhuating a Context-Free Language 
Now that we know what makes a context-free grammar violate a sufficient condition for the generated language 
to be regular , we have a good starting point to investigate how we should change a grammar in order to obtain 
a regular language . The intuition is that the "unbounded communication'' between the left and right sides of 
spines is broken . 

,ve concentrate on the sets Ni with rec1trsive ( Ni ) = self.  For each set separately, we apply the transformation 
in Figure 5. After this approximation algorithm, the grammar will be strongly regular . We will explain the 
transformation by means of two examples . 

The first example deals with the special case that each nonterminal can lead to at most one recursive call of 
itself. 1 Consider the grammar of palindromes in the left half of Figure 2 .  The approximation algorithm leads to 
the grammar in the right half. Figure 2 ( b )  shows the effect on the structure of parse trees . Note that the left 

sides of former spines are treated by the new nonterminal S's and the right sides by the new nonterminal S's . 
The general case is more complicated . A nonterminal A may lead to several recursive occurrences : A -;-* 

cxAj3A-y .  As before , our approach is to approximate the language by separating the left and right sides of spines , 
but in this case , several spines in a single parse tree may need to be taken care of at once. 

As a presentation of this case in a pictorial way, Figure 6 ( a) suggests a part of a parse tree in which all 
( labels of the) nodes belong to the same set Ni , where rernrsive( Ni ) = self .  Other nodes in the direct vicinity 
of the depicted part of the parse tree we assume not to be in Ni ; the triangles 6., for example, denote a mother 
node in Ni and a number of daughter nodes not in Ni . The dotted lines labelled pl , p3 , p5 , p7 represent paths 

1 This is the case for lin ear context-free grammars [Hopcroft and Ullman, 1979] . 
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let I{ = © ,  s = freslLState , .f = freslLStat e , F = { .f} ; make_fa ( s ,  S', .f ) .  procedure m ake_fa ( qo ,  et , q 1 ) :  if Q' = f then let � = � U { ( qo ,  f ,  q 1 ) }  elseif a = a ,  son1e a. E E then let � = � U { ( qo ,  a ,  q 1 ) }  elseif a =  X/3, some X E V ,  /3 E V *  such that I /J I > 0 then let q = freslutat e ; make-fa (qo , X, q ) ;  make_fa ( q ,  /3, q1 ) else let A = a ;  ( * a must consist of a single non terminal * )  if A E Ni , som.e ·,; 

end end. 

then for each B E Ni do let qB = fresh_state end;  if rernrsive ( Ni )  = left then for each ( C -;- X 1 . . .  Xm ) E P such that C E Ni I\ X 1 , . . .  , Xm tt. Ni do make_fa ( qo , X1 . . .  Xm , qc ) end; for each ( C -;- DX1 . . .  Xm ) E P such that C, D E  Ni I\ X1 , . . .  , Xm tt. Ni do 1nake_fa ( qD , X1 . . .  Xm , qc ) end; let .6. = � U { ( qA ,  f ,  q1 ) }  else ·'the converse of the then-pa.rt" ( *  re cursi ,ve ( Ni ) E { right ,  cyclic} * )  end else for each ( A  - /3 ) E P do make-fa ( qo ,  /3 , q i ) end ( *  A is not recursive * )  end 
procedure fresh_sta t e (  ) :  create some fresh object q ;  let J\.- = J\.- u { q } ;  return q end. Figure 3: Transformation from a. strongly regular grammar G = ( E, N, P, S')  into an equivalent finite automaton :F = ( 1{ , E, �, s, F ) .  
a.long nodes i n  Ni such that the nodes t o  the left o f  the visited nodes a.re not i n  Ni .  I n  the case o f  p2 , p4 , p6 , p8 the nodes to the right of the visited nodes a.re not in N; . The effect of our transformation on the stru cture of the parse tree is suggested in Figure 6 ( b  ) .  \Ve see that the left and right sides of spines ( e .g. pl and p2 ) a.re disconnected , in the same way as ''unbounded communication" between the two sides of spines was broken in our earlier example of the palindrome grammar.  For example, consider the following grammar for mathematical expressions :  S' A * B A ( A + B )  I a. 

B [A] I b We have N = {A ,  B} , N = {Ni } ,  N1 = {A ,  B } .  Note that rernrsi,v e ( N1 ) = self.  After applying the approximation algorithm to N1 we obtain : 163 



S --+ A a  
A SB 
A Bb 
B Be 
B d 

N = {S, A , B} N � {N1 , N2 }  N1 = {S, A} N3 = {B}  Figure 4 :  Application of  the code from Figure 3 on  a small  grammar. Assume the grammar is G = ( E ,  N, P, S) .  The fol lowing is to be performed for some fixed set Ni E N  such that recursive ( Ni ) = self .  1 .  If S E Ni , then augment the grammar with new non terminal st  and rule st  ---+ S and choose 5t  to  be the new start symbol of the grammar. 2. Add the following nonterminals to N: A1 , A1 , AB and A� for all A ,  B E  Ni , 3 .  Add the following rules to P,  for all A ,  B ,  C, D, E E  Ni : • AB ---+ X1 . . .  Xm CB , for all (A - X1 . . .  Xm C/3) E P ,  with X1 , . . .  , Xm (f. Ni ; • AB - CB X1 . . .  Xm , for all ( A  - aCX1 . . .  Xm ) E P,  with X1 , . . .  , Xm (f. Ni ; • AA -+ c ;  • AA -'- c ;  • 4 __._ AT . • . A '  • A1 - .4c X1 . . .  Xm Cb , for all ( C - X1 . . .  Xm ) E P ,  with X1 , . . .  , Xm (f. Ni ;  • Ai --'- CA X 1  . . .  Xm E1 , for all ( D - aCX1 . . .  Xm E/3) E P ,  with X1 , . . .  , Xm (f. Ni ; • Ak ---+B.4 . 4 .  Remove from P the old rules of the form A - a ,  where A E Ni . 5 .  Reduce the grammar .  
Figure 5 :  Approximation by  transforming the grammar , given a set Ni .  

s A * B  AA c A1 
A AA Al a A Al 

A AA ( AA BB - c l BA Al BJ BA a A A -BA [ AA AA - c BT BB b B 1 41 
A .A • B AA BA ) BB ---,- c Bl BA a Ai BJ  B ---+ B A l AB BB ) AA BT BB b BJ Al 

;- B l B B A BA AA ] BB BJ A BB AB ] Ak ---+ BI 
B 

AA + B 1 
A AB l + BA AA + B1 AB + BB AA AB BA BB If we compare this example to the general picture in Figure 6 ( b  ) ,  we conclude that a nonterminal such as BA derives paths such as p l ,  p3 , p5 or p7 , where B was the top label at the path in the original parse tree and A occurred at the bottom. A similar fact holds for nontermina.ls such as BA . Nonterminals such as B1 and 
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£ 

/ 
/ 

Figure 6 :  The general effect of the transformation on the structure of parse trees . £ 

B_i indicate that the root of the complete subtree was la.belled A ,  and that the last node of the tree that was treated is la.belled B; in the case of B_i that node is a.t the top of a. path such a.s p l ,  p3 , p5 or p7 in the original tree , in the case of B1 that node is at the bottom of a. path such as p2 , p4 , p6 or p8 . 

5 Lhuitations It is undecidable whether the language generated by a context-free grammar is regular [Harrison , 1 978) .  Consequently, the condition of strong regularity, which is decidable and is a. sufficient condition for the language to be regular , cannot also be a. necessary conditi on. This is demonstrated by the following grammar : 
s a .A. B a  I C 
A a .A.  C 
B B a  C 
C a. c a I e This (non-ambiguous) grammar generates the regular language a* ea* . Yet it is not strongly regular ,  due to the cycle corresponding to the rule C --+  a C a . Fortunately, our algorithm transforms this grammar into a strongly regular one which generates the same language a* ea* . However, in some cases a gra.nunar which is not strongly regular and generates a regular language may be transformed into one which generates a. strictly larger language. This pertains to a. claim ma.de by [Pereira and \rVright , 1991) that their method is always language-preserving when the original grammar already generates a regular language , which was refuted by a. revised paper by the same authors . 2 It turns out that tra nsforming a. context-free grammar generating a regular language into a. finite automaton accepting the same language is an unsolvable problem [Ullian, 1967) , and consequently, the method from [Pereira and Wright , 1991) cannot satisfy this property, nor can our new method .  A simple example where our method has this undesirable behaviour i s  the following: 

S aSa I aSb I bSa I bSb I f This grammar generates the regular language of all strings over { a ,  b }  of even length .  Our approximation however results in the exact same grammar as in the example of palindromes . This grammar generates the regular language of all strings over { a ,  b} - not only those of even length . 3 

2 Posted on the Computation and Language E-Print. Archive, as number 9603002. 
2· The met.hod from [Pereira and Wright , 1 991] does a little better: of the strings of odd length i t  excludes those of length 1; yet 

it does allow all strings of length 3,  -5, . . . .  The t.wo met.hods are compared more closely in Section 7. 165 



If we represent context-free languages by means of pushdown automata, we can define a subclass for which 
regularity is decidable, namely those that allow a deterministic pushdown automaton . If such a detetministic 
language is regular , we can furthermore construct an equivalent deterministic finite automaton [Stearns, 1 967] . 
It turns out that even for this restricted class of context-free languages, the construction of corresponding finite 
automata is quite complex: The ( deterministic) finite automata may require a number of states that is a double 
exponential function in the size of the original deterministic  push down automata [Meyer and Fischer , 1 971 ) ;  
[Valiant , 1975) has shown that the  'llpper  bound to  the number of  states i s  also a double exponential function . 

For arbitrary context-free grammars that describe regular languages , no recursive function in the size of 
grammars exists that provides an upper bound to the number of states of equivalent finite automata [Meyer 
and Fischer , 1 97 1) .4 

6 Refine1nent 

Our approximation algorithm is such that the two sides of spines are disconnected for all nonterminals that 
are involved in self-embedding ( i .e .  those in some fixed Ni with recursive ( Ni )  = se lf) .  One can however retain 
a finite amount of self-embedding by unfolding j levels of applications of nonterminals from Ni before the 
approximation algorithm is applied . This is done in such a way that in those j levels no recursion takes place 
and precision thus remains unaffected . 

More precisely, for each nonterminal A E Ni we introduce j fresh non terminals A[l ] , . . .  , A [j] , and we change 
the rules of the ( augmented)  grammar as follows. 

For ea.eh A - X1 • · · Xm in P such that A. E Ni , and h such that 1 ::;  h ::;  j. , we add A. [h] - X� · · - X�1 to P ,  
where 

XL Xdh + 1) , if X1.: E Ni I\ h < j 
X I.: , otherwise 

Further , we replace all rules A - X 1 · · · Xm such that A (f_ Ni by A - X � · · · X �
1-

, where 

Xf: Xk [l) , if X1.: E Ni 
X 1.: ,  othenvise 

If we take j = 3 ,  the ( augmented )  palindrome grammar becomes : 

st S[l) 
S[l ]  a S[2] a I b S[2] b I E 

5[2] a S[:3] a. I b S[3] b I E 

S[3] a S a I b S b I E 

S a. S a l b S b l E  

After applying the approximation algorithm , all generated strings up to length 6 are palindromes . Only gen
erated strings longer than 6 may not be pa.lfodromes : these are of the form wvv' wR , for some w E { a., b } 3  
and v , v '  E { a. ,  b}  * , where wR indicates the miiTor imagine of  w.  Thus the outer 3 symbols left and right do 
match , but not the innermost symbols in both " halves" . In  general , by choosing j high enough we can obtain 
approximations that a.re language-preserving up to a certain string length ,  provided the grammar is not cyclic .5 

A more complicated way of achieving such approximations, using refinement of the method from [Pereira and 
Wright , 1 99 1 ) ,  was discussed in [Rood,  1 996) . 

This language-preserving transformation in effect decorates nodes in the parse tree with numbers up to j 
indicating the distance to the nearest ancestor node not in Ni . The second refinement we discuss has the effect 
of indicatii1g the distance up to j to the furthest descendent not in Ni . 

For this refinement , we again introduce j fresh nontermina.ls A[l ] , . . .  , A (j) for each A E Ni . Each A -
X1 · · · Xm in P is replaced by a collection of other rules , which a.re created as follows . We determine the (possibly 
empty) list k 1 , . . .  , kp of ascending indices of members that are in Ni : { k 1 , . . .  , kp } = {k 1 1 ::; k ::;  m /\ X1.: E Ni } 4 This is equivalent to stating that transformation of such a context-free grammar into a finite automaton accepting the same language is an unsolvable problem, which we mentioned before. 5 This problem of cyclic grammars can be easily overcome, but this is beyond the scope of the present paper. 
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and k 1 < . . .  < kp . For ea.eh list of p numbers n 1 , . . .  , np E { 1 ,  . . .  , j, j + 1 }  we create the rule A' -;- Xf · · · X�1 , where Xf: Xk [nk] , if xk E Ni I\ nk :::; j X k ,  otherwise 
A' A [h + 1] , if A E Ni I\ h < j , where h = max n1.: 1 s 1.: sp 

A ,  otherwise \i\Te assume that h evaluates to O if p = 0 .  Note that j + 1 is an auxiliary number which does not show up in the transformed grammar ; it represents that the distance to the nearest ancestor node not in Ni is more than j .  For the running example ,  with j = 3 ,  we obtain : 
st s I S[3] I s[2] I s[1 ]  
S a S a I b S b I a S[:3] a I b S[3] b 

S[3] a S[2] a I b S[2] b S[2] - a S[l ]  a I b S[l] b S[l ]  ---- C Approximation now results in palindromes up to length 6 ,  but further in strings vwwRv' , for some w E { a ,  b }3 and v , v' E {a. , b} * , where it is the innermost , not the outermost , parts that still have the characteristics of palindromes . 
7 Co1nparison The main purpose of this paper is to clarify what happens during the process of finding regular approximations of context-free languages. Our grammar-based method represented by Figure 5 can be seen as the simplest approach to remove self-embedding, and as we have shown , removing self-embedding is sufficient for obtaining a regu lar language. Given its simplicity, it is not surprising that more sophisticated methods, such as the LR-based method from [Pereira and \i\Tright , 1 99 1] , produce strict ly more precise approximations , i .e .  regular languages that are smaller ,  in terms of  language inclusion � - However, our empirical experiments have shown that such sophistication sometimes deteriorates rather than improves practical usefulness of the method .  For example ,  the appendix of [Pereira. and Wright , 1991] contains a small grammar which is  already strongly regular . The authors of that paper report they obtain a finite automaton with 26 15  states and 4096 transitions before determinization and minimization . For our method however , no approximation at all is needed , and construction of the finite automaton by means of the algorithm in Figure 3 produces a finite automaton with only 957 states and 275 1 transitions. After determinization and minimization of course the same automaton results .  This example suggests that much of the "sophistication" of the LR-ba.sed method entai ls wasted computational overhead . We have also considered the grammar in Section 9 of [Church and Patil, 1 982] and the 4-line grammar of noun phrases from [Pereira. and Wright , 1991 ] .  Neither of the grammars are strongly regular , yet they generate regular languages. For the first grammar , the LR-based and the grammar-based methods give the same results. For the second grammar , the two methods give the same result only provided the second refinement from Section 6 is incorporated into our grammar-based method ,  taking j = 1 .  That the grammar-based method i n  general produces less precise approximations may seem a weakness : a d  hoe refinements such as those discussed in Section 6 may b e  needed to increase precision . Our viewpoint is that the LR-ba.sed method also incorporates ad hoe mechanisms of obtaining approximations that are more precise than ·what is minimally needed to obtain a. regular langu�ge, but that these are however outside of the control of the user . A case in point is the grammar of palindromes . In Section 6 we demonstrated how precision for our method can be improved in a controlled manner . However , the LR-ba.sed method forces a result upon us which is given by ( a {a , b } *a  <=> a( ba )* ) U ( b{ a. , b } * b  <=> b( ab)* ) ;  in other words, j ust the left-most and right-most symbols are matched , but alternating series of a. 's and b 's are excluded . This strange approximation is reached due to some intricate aspect of the structure of the LR automaton , and there is no reason to consider it as more natural 167 



or desirable than any other approximation , and although the LR-ba.sed method allows additional refinement as well, as shown by [Rood ,  1 996] , the nature of such refinement may be that even more of the same kind of idiosyncrasies is introduced . In addition , we point out that construction of an LR automaton , of which the size is exponential in the size of the grammar , may be a prohibitively expensive task in practice [Nederhof and Satta, 1996] . This is however only a fraction of the effort needed for the unfolding step of the LR-based method , which is in turn exponential in the size of the LR automaton . This became apparent when we tried to app ly two independently developed implementations of the LR-based method on a sub grammar for the J ava programming language. Both implementations crashed due to excessive use of memory, which is in keeping with our estimates that the number of LR stacks that need to be considered in this case may be astronomical . By contrast , the complexity of our approximation algorithm ( Figure 5 )  is polynomial. The only exponential behaviour may come from the subsequent construction of the finite automaton (Figure 3 ) ,  when the grammar is descended in all ways, a source of exponential behaviour which is also part of the LR-based method. Our implementation produced a nondeterministic finite automaton from the J ava subgrammar within 1 2  minutes . Recently, [Grimley Evans, 1997] has proposed a third approach , which I rephrase as follows. We consider a context-free grammar as a recursive transition network [Woods, 1 970] : for each rule A ---+ X1 • • • Xm we make a finite automaton with states qo ,  . . .  , qm and transitions ( qi- 1 ,  Xi , qi ) ,  1 :S i :S m. These automata are then joined : Each transition ( qi- 1 ,  B, qi ) ,  where B is a nonterminal, is replaced by a set of c-transitions from qi- l to the "left-most" states for rules with left-hand side B, and conversely, a set of c-transitions from the "right-most" states for those rules to qi . This essentially replaces recursion by c-transitions , which leads to a crude approximation . An additional mechanism is now introduced that ensures that the list of visits to the states q0 , . . . , qm belonging to a certain rule satisfies some reasonable criteria: a visit to qi , 0 :S i < ni , should be followed by one to qi+l or q0 .  The latter option amounts to a nested incarnation of the rule .  Similarly there is a condition for what should precede a visit to qi , 0 < i :S m. Since only pairs of consecutive visits to states from the set { qo , . . .  , qm } are considered , finite-state techniques suffice to implement such conditions.  If we compare that approach to our grammar-based method combined with e .g .  the second refinement from Section 6, we can roughly say that the difference is that while our approach provides exact approximations for trees up to a certain height,  the approach by [Grimley Evans, 1997] provides an exact approximation when no nested incarnations of individual rules occur . This emphasis on treating rules individually has the consequence that the order of terminals in a string can become mixed-up even when the approximation is still exact with respect to the number of occurrences of terminals ; in effect , distinct rules interact in a way that is not consistent ,vith the recursive structure of the original grammar . It seems that the approach by [Grimley Evans, 1997] always results in approximations that are more precise than our approach without the refinements from Section 6 .  An important difference o f  our grammar-based method with both the LR-based method and the one from [Grimley Evans , 1997] is that the structure of the context-free grammar is retained as long as possible as much as possible .  This has two advantages. First , the remnants of the original structure present in the transformed grammar, including the names of the nonterminals, can be incorporated into the construction of the finite automaton, in such a way that the automaton produces output which can be used to build parse trees according to the original grammar .  The algorithm from Figure 3 can be easily extended to construct such a finite 
transducer, using ideas from [Langendoen , 1 975 ; Krauwer and des Tombe, 1 98 1 ;  Langendoen and Langsam, 1990] . Secondly, the approximation process itself can be monitored easily :  The author of a grammar can still see the structure of the old grammar in the new strongly regular grammar, and can in this way observe what kind of consequences the approximation has on the generated language . Regarding other related work ,  I hesitate to mention [Langendoen and Langsam , 1987] , which seems to be concerned more with psycho-linguistic arguments than with any level of mathematical accuracy. As the LRbased method , this approach seems to be based on pushdown automata, which here implement a particularly incorrect variant of left-corner parsing, allowing ungrammatical sentences to be accepted, which seems to be unintentional. The manner in which finiteness of the automaton is achieved is by requiring a col lapse of a certain group of elements already in the parsing stack ( if such a group of elements is at al l present) into a smaller combination of stack elements, upon finding that some stack element has more than 2 occurrences . This collapse represents a forced attachment of previously unconnected subtrees in the parse tree. The effect is 168 



obviously a reduction of the language. However , clue to the in correctness of the variant of left-corner parsing , the resulting language may also contain sentences not in the original language . This makes comparison with other methods difficult , if not pointless . The intended purpose of the above work may however be to reduce , as opposed to extend ,  a context-free language to become an ( infinite ) reguiar language . Related to this is [Krauwer and des Tombe, 198 1) :  two kinds of pushclown automaton are presented that implement top-clown and left-corner parsing, respectively. The regular approximation results simply by putting an upper-limit on the size of the stack , thus restricting the language . Unpublished work by :Mark Johnson6 solves the task in the same vein. The idea is extended to feature grammars in [Black , 1 989) . Some theoretical limitations of these ideas have been investigated by [Ullian ,  1967) :  Given a context-free language , it is unclecida.ble whether an infinite regular subset exists ; yet , given that it exists , it can be computed . Note that for practical purposes one is interested in determining a "large" regular subset , not just any infinite subset of a context-free language as in the theorem from [Ullia.n , 1967) . Another way to obtain a finite-state approximation of a grammar _ is to retain only the information a.bout allowable pairs ( or triples , etc . )  of adjacent parts of speech ( cf. bigra.ms , trigra.ms, etc . ) .  This simple approach is proposed by [Herz and Rimon , 199 1) ,  and is reported to be effective for the purpose of word tagging in Hebrew . ( For extension to probabilistic formalisms, see [Stokke and Segal , 1 994) . )  
Acknowledge1nents  Special thanks go t o  Rene Deist for collaboration during my stay at the University o f  Bochum.  I thankfully acknowledge valuable discussions with Gertj an van Noord , l\tla.rk Johnson , Eberhard Bertsch , Anton Nijholt and Rieks op den Akker . This research was carried out within the framework of the Priority Programme Language and Speech Technology ( TST ) .  The TST-Programme is sponsored by NWO ( Dutch Organization for Scientific Research ) .  Further support was obtained from the German Research Foundation ( DFG ) ,  under grant Be1 953/ 1- 1 .  
References [Black , 1 989) A .vV.  Black . Finite state ma.chines from feature grammars. In International Workshop on Parsing Technologies, pages 277-285,  Pittsburgh , 1 989.  [Chomsky, 1 959a] N. Chomsky. A note on phrase structure grammars. Jnforrnation and Control, 2 :393-395 , 1 959 . [Chomsky, 1 959b] N .  Chomsky. On certain formal properties of grammars . Information and Control, 2 :  1 37-167 ,  1959 .  [Church and Patil , 1 982] K.  Church and R. Pati l .  Coping with syntactic ambiguity or how to put the block in the box on the table. American Journal of Computational Ling·u istics, 8 : 139-149 ,  1 982 .  [Grimley Evans , 1997] E .  Grimley Evans . Approximating context-free grammars with a finite-state calculus. In 35th Annual  Jvf eet-ing of the A GL ,  pages 452-459 , Madrid ,  Spain ,  .July 1997.  [Harrison , 1 978) M .A.  Harrison . Introduction to Formal Language Theory. Addison-Wesley, 1 978 . [Heckert ,  1 994) E. Heckert . Behandlung van Syntaxfehle rn fiir LR-Sprachen ohne 1( orrekforversuche .  PhD thesis ,  Ruhr-U niversitat Boch um, 1994 .  [Herz and Rimon , 199 1) .J .  Herz and M .  Rimon . Local syntactic constraints. In Proc. of the Second International Workshop on Parsing Technologies, pages 200-209 , Cancun , Mexico , February 1 99 1 .  [Hopcroft and Ullman ,  1 979) .J .E.  Hopcroft and .J . D .  Ullman .  Introduction to  A ,ut omata Theory, Languages, and Computation. Addison-Wesley, 1979 .  6 Left Corner  Transfo rms and  Fin it e'  Stat e A pp ro:rimat ions, draft , May 1 996. 169 



[Krauwer and des Tombe, 198 1 ]  S .  Krauwer and L .  des Tombe .  Transducers and grammars as theories of language. Theoretical Ling1tistics, 8 : 1 73-202 , 1 98 1 .  [Langendoen and Langsam , 1 987] D .T .  Langendoen and Y .  Langsam. O n  the design of finite transducers for parsing phrase-structure languages . In A .  Manaster-Ramer , editor, Mathematics of Language ,  pages 1 9 1-235 . . J ohn  Benj amins Publishing Company, Amsterdam , 1 987 .  [Langendoen and Langsam, 1 990] D .T .  Langendoen and Y.  Langsam . A new method of representing constituent structures . Annals New York A cademy of Sciences, 583 : 143-160 ,  1 990 .  [Langendoen, 1975] D .T .  Langendoen. Finite-state parsing of phrase-structure languages and the status of readjustment rules in grammar. Linguistic Inquiry, 6(  4 ) :533-554 , 1975 .  [Meyer and Fischer , 1 97 1] A .R.  Meyer and M . .J .  Fischer . Economy of description by automata, grammars, and formal systems. In IEEE Conference Record of the 12th A nnual Symposium on Switching and A 1ttomata Theory, pages 188-19 1 ,  1 97 1 .  [Nederhof and Sat.ta, 1 996] M . .J .  Nederhof and G .  Sat.ta. Efficient tabular L R  parsing. In 34th Annual  Meeting of the A GL ,  pages 239-246 ,  Santa Cruz , California, USA ,  .June 1996 .  [Nederhof, 1994a] M . .J .  Nederhof. Linguistic Parsing and  Program Transformations. PhD thesis , University of Nijmegen , 1994 .  [Nederhof, 1 994b] M . .J .  Nederhof. An optimal tabular parsing algorithm . In 82nd Annual Mee ting of the A GL ,  pages 1 1 7-124 ,  Las Cruces , New Mexico, USA,  June 1 994.  [Pereira and Wright , 1991] F .C .N. Pereira. and R.N. Wright . Finite-state approximation of phrase structure grammars . In 29th A nnual  Mee ting of the A GL,  pages 246-255 ,  Berkeley, California, USA,  June 1 99 1 .  [Rood ,  1 996] C . M .  Rood .  Efficient finite-state approximation o f  context free grammars . I n  A .  Kornai , editor , Extended Finite State  Models of Language, Proceedings of the ECAI '96 workshop , pages 58-64 , Budapest University of Economic Sciences , Hungary, August 1 996 .  [Rosenkrantz and Lewis II ,  1 970] D . .  J .  Rosenkrantz and P.M .  Lewis II .  Deterministic left corner parsing. In  IEEE Conference Record of the 1 1th An1rnal Symposium on Switching and A utomata TheonJ, pages 1 39-152 ,  1 970 . [Stearns, 1967] R .E .  Stearns . A regularity test for pushdown machines . Information and Control, 1 1 :323-340 , 1 967 .  [Stokke and Segal , 1 994] A .  Stokke and .J .  Segal . Precise n-gram probabilities from stochastic context-free grammars. In 32nd Annual  Meeting of the A GL ,  pages 74-79 ,  Las Cruces , New Mexico, USA ,  .June 1 994 . .  [U ll ian , 1967] J . S .  Ull ian . Partial algorithm problems for context free languages . Inform ation and Control, 1 1 : 80-10 1 ,  1 967 .  [Valiant , 1 975] L . G .  Valiant . Regularity and related problems for deterministic pushdown automata. Journal of the A CM, 22 ( 1 ) : 1-10 ,  1975 .  [Woods ,  1 970] W .A .  Woods. Transition network grammars for natural language analysis .  Communications of the  A CM, 1 3 ( 1 0 )  : 59 1-606 , October 1 970.  

1 70 



A LEFT-TO-RIGHT TAGGER FOR WORD GRAPHS 
Christer Sa111uelsson 

Bell Laboratories , L
l
ucent Technologies 

I -

600 l\1ountain Ave, Room 2D-339 
Murray Hill , N.J 07974, USA 
Email : christer@research . bell-labs . corn 

Abstract An algorithm is presented for tagging input word graphs and producing output tag graphs that are to be subjected 
to further syntactic processing. It is  based on an extension of the basic HIVIM equations for tagging an input wordstring that allows it to handle word-graph input , where each arc has been assigned a probabili ty. The scenario is that of some word-graph source, e .g. , an acoustic speech recognizer, producing the arcs of a word graph, and the tagger will in turn produce output arcs, labelled with tags and assigned probabili ties. The processing as done entirely left-to-right , and the output tag graph is constructed using a minimum of lookahead, facili tating real-time processing. 

1 Background 

Ever since [Church 1988) , HMM-based part-of-speech ( PoS ) tagging has been very popular. The task of the particular PoS tagger described in the current article is to act as a module for lexical lookup that is capable of performing some local pruning, and the output is passed on to subsequent syntactic processing. For this reason , it is desirable to retain some ambiguity in the output , namely that which cannot be accurately removed at this stage of processing . This is very similar in spirit to the lexical-lookup and lexical-pruning stages of the SRI Core Language Engine, see [Rayner & Carter 1996) , and the lexical-lookup phase and subsequent morphological disambiguation of the English Constraint-Grammar Parser of Helsinki, see [Karlsson et al ( eels . )  1 99.5] . The tagger is a component of a system employing a pipeline architecture with the design philosophy that at some processing level , a pruned search space, e .g . ,  a word graph , is the input of one module, which produces an output pruned search space , e.g. , a tag graph or preterminal chart,  at the next processing level , which in turn serves as the input of a subsequent module , thus closing the circle. It is also highly desirable ,  both for the goal of mimicking human behavior and for the more practical reason of achieving real-time processing that the tagger process the input left-to-right . This means that the tagger will continuously construct the arcs of the output tag graph as soon as enough input has been seen to do so. This in turn requires that the amount of lookahead employed by the tagger be kept to a minimum. The work described in the current paper is based on previous theoretical work by the author on extending the basic HMM equations for word-string tagging to handle word-graph input , as described in detail in [Samuelsson 1997) .  Section 2 below provides the final equations arrived at , together with some explanations ; the reader is referred to the above publication for the underlying theory and their formal derivations . Section 3 constitutes the new body of work , describing the new left-to-right tagging algorithm and motivating the simplification made to achieve it . The algorithm has been implemented and works satisfactorily. The implementation itself is a straight-forward realization of the described algorithm, and of little interest . No serious empirical evaluation has yet been attempted , partly due to the lack of appropriate test material . 
2 The Equations 

The following is an extension of the basic H:MIVI equations given in for example [Rabiner 1989] ,  pp. 272-27 4 ,  or [I{renn & Samuelsson 1997) ,  pp . 42-46,  to the case vd1ere the input is a word graph, rather than a word string .  
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By first producing a tag graph from the word graph , we reduce the problem of tagging an input word graph to that of applying an N-gram tag model to an input tag graph. This is done by defining 
P ( Lr t = lj I Gr ) = L P ( Lr t = lj I H�-t = k )  · P ( H�-t = k I Gr ) ( 1 ) 

k 

where P ( H7
r t  = k I Gr ) is the probability of word candidate k from node 1' to node t in the input word graph . The conditioning on Gr indicates that the probability distribution is the one of node 1' , i . e . ,  that over the outgoing arcs of node r. P ( Lr t = l1 I M1

r t = k )  is the lexical tag probability, a model parameter estimated from training data. Vve can thus recast the problem as that of applying an N-gram model to reestima.te the arc probabilities of a la.belled directed a.cyclic graph, where a probability distribution over the outgoing arcs has been associated with each node . \¥e require that there be unique globally minimal and maximal elements , the start and end nodes of the graph. This is often referred to as a lattice, although strictly speaking it is not , as we only require a unique global minimal element , not one for any given node pair . We introduce a(ny )  complete ordering < of the nodes of the graph which does not violate the topological ordering defined by the arcs . We refer to each node through its rank in this ordering , the node number, and we let O be the start node and T be the end node. \¥e recursively calculate the a, (3, ,, 6 and c variables for each node ( pair) { ( 1', t )  : 0 :::;  1' < t = l, . . .  , T} and each possible state i, j = 1 ,  . . .  , n. The states encode the N-gram model , and each state corresponds to a label sequence . In the bigram case, each state is a label, in the trigram case, a label pair ,  etc . 
a(t , j ) 

r 

This is the probability of being in state j at node t ,  given that you start from the start node . 
(3( r, i )  P ( (end) I Sr = i ;  G 2'. r ) � L q ( 1', t ,  i, j )  · j3(t ,  j )  t ,j 

This is the probability of reaching the end node , given that you start in node 7' and that you a.re in state i .  
,( r, t , j ) P(St = j; ( end) I Sr = • ;  G )  � c( r, t ,  j )  • f3( t , j )  

L c ( 1', t ,  j )  · /3 ( t ,  j )  
t ,j 

( 2 ) 

( 3 )  

(4 )  

This i s  the joint probability of  transiting from node 1 ·  to  node t ,  being in  state j at node t ,  and reaching the end node , given that you start in node 1' . 

6(t , j )  ( 5 )  

This i s  the joint probability o f  being i n  state j at node t and reaching i t  through the most likely node-state sequence , given that you start from the start node . 
c ( r, t , j) ( 6 )  

This i s  the j oint probability o f  transiting from node r t o  node t and being i n  state j at node t ,  given that you start in the start node . 
q ( 1', t , i , j ) P (  C' • I C . G ) P ( L  l I ---. . G ) Pij . br tj J t = J Jr = z ; r = rt = j /::Jr = i ; r � PJ 

This is the j oint probability of transiting from node r to node t and being in state j at node t ,  given that you start in node r and that you are in state i .  Note that for N-grams with N > 2, li may equal lj for distinct i and j .  
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This is the input arc probability of Eq . ( 1 )  as explained above. 

This is the N-gram transition probability, a model para.meter estimated from training data. 
P.i P ( L  • •  = l:i ) 

This is the label unigram probability, a model para.meter estimated from training data . We also need the initializations 
a(O , j )  o ( O ,  j )  { 1 if j is the initial state 0 otherwise 

J3(T, i )  { 1 if i. is a final state 0 otherwise 
Here G is the input graph,  G <r is the portion of the input graph from nodes 0 to 1•-l ,  G� t is the portion of the input graph from nodes t to T, and Gr is the portion of the graph associated with node 1· , referring to the input probability distribution over the outgoing arcs of node 1·. St = j is the event of being in state j at node t, vi'l1ich will uniquely determine the label of the previous 1V-l arcs leading to node t ,  and Sr = • is the event of being in some state at  node 1· , i .e . , of  visiting node 1· . If in some expression P( . . .  Sr = . . .  St = . . .  ) or P( . . .  St = . .  - I . . . 5,. = . . .  ) , where 1· < t ,  there is no node s :  1· < s < t ,  we will interpret this as implying a n  immediate transition from node 1 ·  to node t . 1 

The o variables are used to find the most probable node and state sequence i , the latter which uniquely determines the most probable node and label sequence: 
argmax P( S I G )  

s 

This can be obtained by t racing the nodes and states for ,vhich the maximum was obtained in ea.eh application of the recurrence equation for the J variables : 
(+m , im)  = (T, lm ) argma.x o( T, j )  j argma.x [0 ( 1· , i ) · q ( r, Tz, , ·i ,  ip ) ]  r, i 

In practice, the a.rgma.x will be constructed during the maximization procedure , and retained as a back pointer for each o variable. In the interest of clarity and brevity, we have omitted these back pointers from Eq. ( 5 ) .  The '"'/ variables are used to estimate the probability of a particular label being assigned to a particular node pair: 
P ( Lrt  = lj I G) L p ( s,. = • ;  St = i I G)  I: 1( 1·, t , i ) ( 7) 

i :l , =11 i : l ; =l_1 

This is the sum over all states whose last label is l:i . The ''l variables allow us to retain ambiguity in the output , while pruning low-probability labels. A similar strategy is adopted for word-string input in [de Marcken 1990] . It is easy to verify, that using the above equations, the optimal label sequence and the reestimated arc probabilities can be constructed in O (LN T3 ) time, where L is the cardinality of the label set , N is the "N'' in "N-gra.m" , and T is the number of input graph nodes . This is because in the worst case we have to scan to the beginning or end of the graph in the recurrence step, while constructing accumulators for each node pair. However, if there is a maximum arc length , which is a common situation , ,ve recover the 0( L 1v T) time complexity of the input-string case. 
1 H there is no arc from r to t in G, the probability in question is simply zero . 
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3 The Algoritlun The problem with the traditional approach, i .e . , using the J variables to find the most likely tag sequence, is firstly that it is geared towards a single best tag sequence, and secondly requires scanning to the end of the current input before producing its output . A third problem is that of assigning probabilities to the arcs of the output tag graph . The first two problems can certainly be amended for example by maintaining multiple best candidates at each node and state, and start tracing back from the best candidates already before the end of the input is reached .  The third problem can perhaps be solved by determining the output probabilities from the value of the relevant J accumulators . We will however choose another approach based on the , variables, from which the output arc probabilities can be directly estimated. These variables too , a.s the equations stand, require that the input be processed in its entirety before any output arcs can be produced . The key observation here is that the ;3 variables can be approximated with a reasonable degree of accuracy without scanni1ig the entire input . We realize that without taking the N-gram model into account, the ;3 variables will a.11 be 1 ,  if the input graph is consistent . A first , crude approximation ,vould simply set them to 1 ,  and only use the c variables to calculate the , variables. An improvement on this ,  that costs little, is to set them to 1 in the ;3-variable recurrence equation: 
/3(1', i) P( (end) I Sr = i ;  G2: r ) � L q (r, t, i , j ) · ;3(t , j ) � L q ( r, t , i , j) · 1 ( 8 )  t ,j t ,j This is exactly what the tagging algorithm does. When devising the tagging algorithm, we capitalize on the requirement that lexicographical ordering respect the topological one, and on the complete ordering introduced in Section 2 .  The status of any node i s  one o f  EM PTY, PARTIAL ,  FULL ,  P E N D I N G  o r  F I N ISH ED :  • EM PTY means that no  inbound or outbound arcs have yet been seen. • PARTIAL means that a.t least one inbound or outbound arc has been seen , but not all outbound arcs. • F U LL means that a.11 outbound arcs have been seen , but that the ;3 and c accumulators have not yet been constructed . • P E N D I N G  means that the ;3 and c accumulators have been· constructed, using Eq. ( 8 )  and Eq. ( 6 )  respectively, but not the , accumulators . Also , the contributions from the outgoing arcs to the n accumulators of their end nodes have been recorded according to Eq. ( 2 ) .  • F I N IS H E D  means that the , accumulators have been constructed using Eq. ( 4 ) ,  and the reestimated a.re probabilities of Eq. ( 7 )  have been passed on to the next processing step. By the Last Node of some node r ,  we mean the greatest node t for which there exists an a.re from node r to node 

t .  
\Ne define two distinguished nodes Front and Back with the following properties : • All nodes prior to Front are either F I N I SHED  or PEN D ING  (or EM PTY but discarded) .  • All nodes prior to Back a.re F I N ISH ED (or E M PTY but discarded ) .  • Back i s  prior to Front .  If a.II nodes prior to some FU LL  node t are PEND ING  or F I N I SHED ,  then the a accumulators for node t a.re completed , and we can construct the c accumulators for node t .  This is also a. convenient time to construct the ;3 accumulators for node t ,  and to update the a accumulators for the end nodes of the arcs from node t .  1 .  Since all nodes prior to Front a.re PEN D I N G  or F I N IS H E D ,  we can advance Front until a PARTIAL node is encountered, in the process converting the FULL  nodes into PEN D ING  nodes by constructing the c and 
;3 accumulators , and updating subsequent a, accumulators . Any E M PTY nodes encountered in the process can be discarded, since they are unreachable from the start node, due to the relationship between the node numbering and the topological ordering. 174 



2. Since all nodes prior to Front have completed ;3 accumulators and all PEN D I N G  nodes have completed E accumulators, any P E N D I N G  node whose Last Node is prior to Front can be converted into a F IN IS H E D  node by constructing its , accumulators and outputting the reestimated arc probabilities. \Ve can thus scan to Front for such nodes, taking this action . Since all nodes prior to Back are F I N I S H E D ,  we can start the scan from Back.  
3 .  We now advance Back over all  F I N I S H E D  nodes , again discarding E M PTY nodes, and await the arrival of more incoming arcs, converting E M PTY nodes to PARTIAL nodes and PARTIAL nodes to F U L L  nodes. \iVhenever Front becomes FU LL ,  we goto 1 .  
V>/e also need t o  know the start node to initialize Front ,  Back and the a variables. And we need t o  know the end node to allow breaking the recursion and proceeding to the next input graph,  when the current one has been completely processed .  The algorithm allows the input arcs to  arrive in any order they wish, and passes them on , appropriately processed, as quickly as the mathematical model allows . The mathematical model in question is the basic set of HMl'vl equations found everywhere , extended to word-graph input , as described in [Samuelsson 1997] ,  with the extra approximation in the ,8-variable recursion Eq. ( 8 ) .  The key i ssue is to introduce a complete node ordering that respects the topological ordering of the arcs of the input word graph. By doing this ,  the nodes can be processed in number order as soon as enough of the remaining input has been seen . The Back pointer indicates how far complete processing has progressed . The Front and Last Node pointers indicate how far sufficient information has been seen to complete processing. 
4 Sununary 

The algorithm presented in the current article is based on an extension of the basic HMM equations for tagging an input vvord-string that allows it to handle word-graph input,  where each arc has been assigned a probability. The produced output is a probabilistic tag graph, or chart , that is further processed in subsequent syntactic parsing steps . The processing is clone entirely left-to-right , and the output tag graph is constructed using a minimum of lookahead , facilitating real-time transduction of the input arcs of a word graph , generated by some word-graph source , e .g . , an acoustic speech recognizer, into output arcs labelled with tags and assigned probabilities. There are points of similarity with the presented approach and that of using weighted transductions to transduce a probabilistic word graph into a probabilistic ( lexical) tag graph , and in a subsequent transduction step apply a probabilistic N-gram model , see [P�reira et al 1994] .  There , the resulting tag graph is effectively the ( probabilistic ) intersection of the lexical tag graph with the tag N-gram model ,  where the nodes of the output graph encode the set of possible predecessor tags , thus changing the topology of the lexical tag graph, and generally drastically increasing its size. Their implementation allows realtime processing mimicking the behavior of the method presented · in the current article. However, the method of the current article retains the topology of the lexical tag graph , and merely readjusts the arc probabilities , thus limiting the size of the output graph . Future and ongoing work includes extending the scheme in both directions, i . e . , to handle preceding phonemeto-word transduction and subsequent phrasal parsing respectively. 
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Abstract It is proposed to parse feature structure-based grammars in several steps. Each step is aimed to eliminate as 
many invalid analyses as possible as efficiently as possible. To this end the set of feature constraints is divided 
into three subsets, a set of context-free constraints, a set of filtering constraints and a set of structure-building 
constraints, which are solved in that order. The best processing strategy differs: Context-free constraints are solved 
efficiently with one of the well-known algorithms for context-free parsing. Filtering constraints can be solved using 
unification algorithms for non-disjunctive feature structures whereas structure-building constraints require special 
techniques to represent feature structures with embedded disjunctions efficiently. A compilation method and an 
efficient processing strategy for filtering constraints are presented. 

1 Introduction 

The efficiency of context-free parsing is well known [Younger, 1967]. Since many featured structure-based 
grammars either have a context-free backbone or can be transformed into a grammar with a context-free 
backbone, it is possible to take advantage of the efficiency of context free parsing if the parser proceeds in two 
steps : First a context-free parser builds the context-free part of the syntactic analysis which is then extended 
by the calculation of feature structures. Maxwell and Kaplan [Maxwell III and Kaplan, 1994] experimented 
with variants of this strategy in their LFG parser. One result of their experiments was that their grammar is 
processed more efficiently by their parser if the rather broad context-free categories chosen by the grammar 
writers are replaced by more specific categories. To this end some relevant features have been compiled manually 
into the context-free grammar. Of course one would prefer to have a compiler perform this task automatically. 
This would enable the grammar writer to use the categories which he considers appropriate, without loosing 
efficiency. How this can be done is shown in section 3. 

Often it is useful to split the second part of processing, the evaluation of feature constraints,  into two 
steps as well. Feature constraints which are likely to eliminate analyses (filtering constraints) are evaluated 
first whereas the evaluation of other constraints (structure-building constraints) which mainly serve to build 
some (e.g. semantic) representation is delayed. The ALEP system (Advanced Language Engineering Platform 
[Simpkins, 1994]) allows the user to explicitly specify features whose constraints are to be delayed. Kasper and 
Krieger [Kasper and Krieger, 1996] present a similar idea for HPSG parsing. 

Separating filtering constraints and structure-building constraints has two advantages: Since many analyses 
are eliminated by the filtering constraints,  the parser does not waste time on the - usually costly - evaluation 
of structure-building constraints for analyses which will fail anyway. As another advantage, it is possible to 
choose the most efficient processing strategy for each of the two constraint types independently. 

Structure-building features tend to reflect the syntactic structure of a constituent. The semantic feature 
of a VP node e.g. would encode the attachment side of an embedded PP if there is ambiguity. In order to 
avoid such local ambiguities multiplying out in the semantic representation, it is necessary to have means to 
represent ambiguity locally; i .e. the feature structure representation must allow for embedded disjunctions . A 
representation in disjunctive normal form (i.e. as a set of alternative non-disjunctive feature structures) would be 
inefficient because the number of feature structures would grow too fast as local ambiguities multiply out. More 
efficient algorithms for processing disjunctive feature constraints have been presented e.g. in [Kasper, 1987] , 
[Dorre and Eisele, 1990] , [Maxwell III and Kaplan, 1996] , and [Emele, 1991] . 
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Filtering constraints, on the other hand, can be processed with standard unification algorithms and a dis
junctive normal form representation for feature structures if the feature values restricted by these constraints 
have limited depth and therefore limited compexity. The SUBCAT and SLASH features in HPSG e.g. have 
· this property whereas e.g. the SUBJ and OBJ features in LFG do not. Even if the depth of a feature value 
is unbounded it is still possible to limit the complexity of the feature structures artificially by pruning feature 
structures below some level of embedding. Little of the restrictive power of the constraints is lost thereby, since 
constraints seldom refer to deeply embedded information. However, in order to ensure the correctness of the final 
result, the filtering constraints have to be evaluated again in the next step together with the structure-building 
constraints. 

In this article a parser is presented which implements the first two steps of the parsing strategy outlined 
above. Currently it is assumed that the grammars do not contain structure-building constraints which would 
require the third processing step (see also seGtion 4.3). Section 2 provides an overview of the grammar formalism 
used by this parser. Section 3 describes the compilation of the grammar. Details of the parsing strategy and 
its current limitations are given in section 4. Section 5 presents results from experiments with the parser and 
section 6 closes with a summary. 

2 The Grammar Formalism 
The parser employs a rule-based grammar formalism. Each grammar rule has a context-free backbone. One of 
the daughter nodes in a rule is marked as the head with a preceding backquote. Trace nodes are marked with an 
asterisk after the category name. At least one daughter node has to be non-empty because rules which generate 
empty strings are not allowed. Associated to each node in a rule is a set of feature constraint equations which 
restrict the values of its features. Variables are used to express feature unification: Two features are unified by 
assigning the value of the same variable to both of them (e.g. f1 = v; f2 = v ;). Feature structures are totally 
well-typed, i.e. they are typed and each feature which is appropriate for some type is present and has a value 
of an appropriate type. Equality is interpreted extensionally, i.e. two feature structures are considered equal if 
they have the same type and all of their feature values are equal. Feature structures have to be acyclic. Type 
hierarchies are not supported currently. 

Two predefined feature types and three classes of user-defined types are available to the grammar writer. 
Features of the predefined type STRING accept any character string as value. Features of the predefined type 
FS_LIST take a list of feature structures of the class cat egory (see below) as value. The user defines his own 
feature types of the class enumeration type by listing the corresponding set of possible values which have to 
be atomic. Another class of user-defined feature types are the stru ctured types which are defined by listing 
the set of attributes appropriate for this type with the types of their values. Cat egori es are the last class of 
user-defined feature types. Their definition is analogous to that of a structured type. Each node of category X 
has an associated feature structure of type X. 

To simplify the grammar writer's task, the grammar formalism supports templates, default inheritance be
tween the mother node and the head daughter of a rule ( the value of a feature of the head daughter of a rule 
is inherited from the mother node if it is undefined otherwise and if the feature structure of the mother node 
contains a feature with the same name and type - and vice versa), automatic handling of the two features 
Phan and HeadLex (lexical head), and special variable types called "restrictor" types which define a subset of 
features which are to be unified when two cat egory feature structures are (partially) unified by assigning the 
same variable to both of them. The last feature is needed e.g. to exclude the Phan feature from unification 
when the feature structure of a trace node is unified with the feature structure of a filler node which has been 
threaded through the tree. 

The grammar formalism allows disjunctive value specifications in the case of features of an enumeration type 1 . 

A simple toy grammar written in this formalism is shown in the appendix. 

3 Compilation 
A compiler transforms the plain text representation of the grammar into a form which is appropriate for the 
parser and provides error reports. Compilation aims to minimize the computations required during parsing. 

1 Using a bit-vector representation, such disjunctions are easy to store and process efficiently. 
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The compiler expands templates , adds constraint equations for automatic features and for inherited features, 
flattens feature structures by replacing structured features with a set of new features corresponding to the 
subfeatures of the structured feature, and infers in some cases additional constraints. E.g. while compiling the 
rule2 

VP {Subcat= [*] ; Subcat=r ; }  -> ' V  {Subcat= [ NP{}=np I r ]  ; }  NP {}=np ; 
the follmving constraint equations are obtained3 (among others) : 

r O.VP.Subcat x = O.VP.Subcat . cdr ( 1 )  
r = 1.VP.Subcat.cdr ( 1 ) x = [] 

From these constraints the compiler infers the additional constraint: 
x = 1.VP.Subcat.cdr (2)  

These inferences are necessary for the constraint evaluation algorithm presented in section 4 . 1. 
Finally, the compiler replaces unified variables with a single variable, merges equations of the form x=constantl; x=constant2 into a new equation x=constant3, eliminates redundant equations and generates fixed assignments for equations with a feature path expression on the right hand side if the variable on the left 

hand side is unified with an unambiguous constant in some other equation. This is e.g. the case for the third 
equation and the inferred equation above. The fixed assignments derived from these equations are: 

O.VP.Subcat. cdr ( 1 )  : = [] 1.VP.Subcat.cdr (2)  : = [] 
The three equations involved are removed at this point. For each of the remaining equations with a path 
expression on the right hand side, the compiler generates a variable assignment : 

O . VP . Subcat : = r 1 . VP . Subcat . cdr ( 1 )  : = r 
Equations with the same variable on the left hand side are then grouped together: 

r: r = O.VP.Subcat r = 1.VP.Subcat.cdr ( 1 ) 

The variables representing these groups are sorted so that variables which depend on the values of other variables 
will follow these other variables4 . This ordering is required by the constraint evaluation algorithm presented in 
section 4.1. 

3 . 1  Generation of Context-Free Rules 

The compiler supports compilation of feature constraints into the context-free backbone of the grammar in the 
case of features of the class enumeration type. Features of other types cannot be compiled because the number 
of possible values is infinite. The user has to specify which features are to be incorporated - i.e. compiled - for 
each category, and the compiler automatically generates all valid context-free rules with the refined categories. 

The following algorithm is used for the generation of the context-free rules: First the compiler orders the 
incorporated features of all nodes of a given grammar rule. A sequence ii , h ,  . . .  , fn is obtained. Then the set 
of permitted values for the first feature Ji is determined. To this end, the compiler checks whether there is a 
fixed assignment for this feature. If one exists, the corresponding value is the only permitted value. Otherwise, 
the compiler checks whether there are two constraint equations of the form v = ii and v = (c1 ; c2 ; . . . ; cm) where 

. ( c1 ; c2 ; . . .  ; cm ) is a disjunction of constant values . In this case the set of permitted values is { c1 , c2 , . . . , Cm }.  
Otherwise all values appropriate for feature ii are permitted features. The compiler chooses one of the permitted 
values and switches to the next feature. 

While assigning a value to feature Ji, the compiler first checks whether fi is unified with some feature f k 
where k < i. This is the case if there are two equations y = Ji and y = fk .  If ther� is such a feature fk ,  
which already got a value since it has a smaller index, then its value is assigned to feature Ji .  Otherwise the 
set of permitted values is computed as described above and one value is selected. After the value of the last 

2The notation NP{ }=np means "unify the feature structure of the node NP with the feature structure denoted by the variable np 
according to the definition of the restrictor type of the variable np," i .e .  unify the subset of features listed in the restrictor definition. 
The list notation is similar to that in Prolog, but an asterisk rather than an underscore is used to mark dummy arguments. 

3The number in front of a path expression refers to the position of the node in the rule. The expression cdr{l} refers to the rest 
list at position 1 of a list, i .e. the list minus its first element. 

4 Dependencies arise when a feature value of type STRING is defined as the concatenation of the values of two other STRING 
features. The value of the Phan feature e.g. is defined in this way. 
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feature has been fixed, the corresponding context-free rule is output. The other context-free rules are obtained 
by backtracking. 

Assuming that the feature Number is to be incorporated into the categories NP, DT, and N, the parser will 
generate in case of the rule 

NP {Number=n ; } -> DT {Number=n ; }  ' N  {Number=n ; } ;  

the following two context-free rules: 
NP_sg -> DT_sg N_sg 
NP_pl -> DT_pl N_pl 

3.2 Compression of the Lexicon 

For a parser to be able to process arbitrary text it is essential to have a large lexicon with broad coverage. 
In order to reduce the space requirements of such a large lexicon, the compiler checks for redundancies. Most 
information is stored in the form of linked lists and if two lists are identical from some position up to the end, 
the common tail of the lists is stored only once. Also if two list elements (not necessarily of the same list) are 
identical, only one copy is stored. With this technique it was possible to compress a lexicon with 300,000 entries 
to about 18 MBytes , which is about 63 bytes per entry. 

4 Parsing 

The parser proper consists of two components. The first component is a context-free parser which generates 
a parse forest , i.e. a compact representation of a set of parse trees which stores common parts of the parse 
trees only once. The BCKY parser developed by Andreas Eisele5 is used for this purpose. It is a fast bit
vector implementation of the Cocke-Kasami-Younger algorithm. The second component of the parser reads the 
context-free parse forest and computes the feature structures in several steps. In each step the parse forest is 
traversed and a new parse forest with more informative feature structures is generated. Parsing is finished when 
the feature structures do not change anymore. The first step is the most expensive one computationally since 
most analyses are typically eliminated in this step. The goal is therefore to make the first step as efficient as 
possible, rather than minimizing the number of steps. 

The recomputation of the parse forest proceeds bottom-up and top-down in turn. During bottom-up process
ing, the parser first computes the feature structures of terminal nodes by evaluating the constraints associated 
with the lexical rules. Since the number of lexical rules for a terminal node can be larger than one, there may be 
more than one resulting feature structure. The new nodes with their feature structures are inserted into a new 
chart. If a node with the same category and feature structure already exists in the new chart, the parser just 
adds the new analysis (i.e. the rule number and pointers to the daughter nodes) to the list of analyses at this 
node. Otherwise, a new node is generated. In both cases, the parser stores a link from the old node to the new 
one. When the feature structure of a nonterminal node is computed, the parser checks all alternative analyses 
of this node one after the other. For each analysis it has to try out all combinations of the new nodes which 
are linked to its daughter nodes ( cp. figure 1). For each consistent combination, the parser builds an updated 
feature structure for the mother node and inserts it into the new chart as in the case of terminal nodes. This 
method is analogous to the chart parsing techniques used in context-free parsing. 

During top-down processing, the parser first copies all top-level nodes which cover the whole input string to 
the new chart and inserts them into a queue. Then the first node is retrieved from the queue and its daughter 
nodes are recomputed. The recomputed daughter nodes are inserted into the new chart and, if new, also inserted 
into the queue for recursive processing. After a traversal of the parse forest is completed, it is checked whether 
any node has changed. If not , parsing is finished. Otherwise the old chart is cleared, the charts are switched 
and the next processing step begins. 

Why is it necessary to traverse the parse forest more than once? In contrast to formalisms like LFG and HPSG 
it is not assumed that the feature structure of the root node of a parse tree contains all relevant information6 • 
Hence it is necessary to compute the feature structures of all nodes in a parse tree. If there were only one 
unambiguous parse tree, it would be sufficient to traverse the parse forest once. By means of value sharing it 

5 Andreas Eisele, IMS-CL, University of Stuttgart, andreas@ims:uni-stuttgart.de 
6 It is even assumed that this is not the case (cp. section 4 .3) . 
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old chart new chart 

Figure 1 :  Recomputation of the parse forest 

would be possible to update the values of unified features of different nodes in the parse tree synchronously. 
This is not possible in the case of parse forests, however, because cross-talk would result whenever two analyses 
have a common node, unless such a shared node is always copied before it is modified which is expensive and 
to no avail if the analysis later fails. Instead the parse forest is traversed again to update the feature structures 
of the non-root nodes. 

The presented parser has to traverse the parse forest even more often because value sharing between different 
features of the same feature structure is not used, in order to keep data structures and algorithms as simple as 
possible. By repeated recomputation, information is properly propagated within the parse forest so that the 
correct result is obtained. This strategy might seem inefficient, but it turns out that the first two passes which 
are necessary in any case account for about three quarters of the total processing time and the number of passes 
seldom exceeds five. As mentioned earlier, it seems more important to speed up the first pass than to reduce 
the number of passes. 

4 .1  Constraint Evaluation 

The recomputation of feature structures is carried out in four steps. First the input feature structures are 
specified. During top-down processing, the mother node is a node in the new chart and the daughter nodes 
are from the old chart. During bottom-up processing it is the mother node which is contained in the old chart 
and the daughter nodes are from the new chart. The parser then checks whether the fixed assignments are 
compatible with the input. feature structures. If this is the case, the parser computes the values of the variables 
used in this rule by non-destructively unifying the values specified in the constraint equations for this variable 
(cp. section 3). The values to be unified are either values of feature paths , or constants7 , or results of string 
concatenation operations. 

Once the values of the variables have been computed, the new feature structures are built by modifying the 
old feature structures according to the set of fixed assignments and variable assignments. The assignments have 
been sorted by the compiler so that assignments to less deeply embedded features are carried out first. A lazy 
. copying strategy is used: Before the value of a feature is changed, all levels of the feature structure above this 
feature are copied unless they have been copied before. After all assignments have been made, the resulting 
feature structure is inserted into a hash table. If an identical feature structure is already contained in the hash 
table, a pointer to this feature structure is returned. Otherwise, the new feature structure is inserted. The 
hashing is done recursively: All embedded feature structures (i.e. elements of feature structure lists) , are hashed 
before an embedding feature structure is hashed. Hashing simplifies the comparison of feature structures to a 
mere comparison of pointers. 

4.2 Optimization 

The parsing scheme presented so far has been modified in several ways in order to improve the speed of the 
parser. 

1. The compatibility check for fixed assignments can be done for each node independently of all the other nodes. 
It is not necessary to repeat it for all combinations of daughter nodes. If a feature structure turns out to be 
7 Such constants are necessarily disjunctive values because otherwise a set of fixed assignments would have been generated. 
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incompatible, the number of combinations is reduced. 

2. The probability that a constraint fails is not identical for all constraints in a rule. Therefore the constraints 
are sorted so that those constraints which are more likely to fail will be checked first. Inconsistent analyses 
are therefore eliminated earlier on average. The statistics are collected during parsing. 

3. Sometimes it is known in advance that a recomputation of a feature structure will not change its content. 
This is the case if all input feature structures remained unchanged when they were recomputed the last time. 
In this case it is sufficient to copy the feature structures to the new chart without recomputing them. 

4. Expensive computations are sometimes done repeatedly during parsing, e.g. feature structure unifications. In 
order to avoid this redundancy, the parser stores each unification operation with pointers to the argument 
feature structures and the resulting feature structure in a hash table. Before a unification of two feature 
structures is carried out it is checked whether the result is already in the hash table. Other expensive 
operations like string concatenations are stored as well. 

5. The parser generates a large number of data structures dynamically. In order to avoid the overhead associated 
with memory allocation calls to the operating system, the parser uses its own simple memory management 
system which allocates memory from the operating system in large chunks and supplies it to other functions 
in smaller chunks as needed. Once a sentence has been parsed the allocated memory is freed in one step. 

The parser and the compiler have been implemented in the C programming language. 

4.3 Limitations 

Only the first two processing steps discussed in section 1 - context-free parsing and processing of filtering 
constraints - have been implemented in the parser so far. In order to be able to build a semantic representation, it 
would be necessary to add another step which processes structure-building constraints efficiently. The algorithm 
presented in [Maxwell III and Kaplan, 1996] could be used for this purpose. An even better alternative is 
Dorre's algorithm [Dorre, 1997] which has polynomial complexity but only works if the constraints never fail. · 
If alternative parse trees are scored after parsing, e.g. with a probabilistic model, semantic construction could 
also be confined to the best analyses. 

The presented parsing method cannot immediately be used to process other grammar formalisms like LFG 
or HPSG. LFG has no feature typing which is essential for the compilation of the context-free grammar. A 
separation of filtering constraints and structure-building constraints is difficult in LFG because the SUBJ and 
OBJ features are used to check subcategorization and to build a simple semantic representation at the same 
time. The pruning strategy outlined in section 1 might help, but an additional module for the processing of 
structure-building constraints would still be needed. Of course, other modifications would also be necessary. 

The main problem when parsing HPSG with the presented method is to obtain a rule-based grammar from 
the principle-based representation. Apart from this it would be necessary to emulate the type hierarchy with 
features. The head features could be partially compiled into the context-free grammar. It is not necessary 
to compute the DAUGHTERS feature because the tree structure is already represented in the chart. The 
computation of the features which store the semantic information would have to be done by an additional 
module. 

5 Experimental Results 

An English grammar with 290 phrase structure rules8 has been written for the parser. A lexicon of 
about 300,000 entries with subcategorization information was extracted from the COMLEX lexical database 
[Grishman et al., 1994]. The parser has been used to parse 30,000 sentences from the Penn Treebank corpus 
[Marcus et al. ,  1993]. Missing lexical entries were automatically generated from the part-of-speech tags in the 
tagged version of the corpus. However, the part.:of-speech tags were not used for parsing itself. Quotation 
marks were ignored during parsing. More than 7 words per second were parsed on average with a Sun Ultra-2 

8 About 90 rules only deal with coordination, quotation and punctuation . 

182 



workstation. Three times the parser stopped prematurely due to memory exhaustion. The calculation of the 
feature structures was the most time-consuming part of parsing. 

For 80 percent of the sentences the parser produced at least one analysis. For 54 percent of the sentences there 
was at least one analysis which was compatible with the Penn Treebank analysis. An analysis was considered 
compatible if there were no crossing brackets. However, analyses without crossing brackets are not necessarily 
acceptable analyses. 100 sentences have been parsed and inspected manually to estimate how often there was 
an acceptable analysis. For 57 of these sentences the parser had produced a Treebank-compatible analysis, but 
for only 48 an acceptable one. Interpolating these results, the portion of sentences with an acceptable analysis 
is probably around 45 percent in the larger corpus. 
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Figure 2: Empirical parsing complexity 

Figure 2 shows .the empirical parsing complexity which is close to n3 (the dashed line in the diagram) where 
n is the sentence length9 . 

strategy 25 sentences 1 complex sent. 
all optimizations 65 .9 180 
no hashing of unifications 67.4 193 
no hashing of string concatenations 79.3 244 
recomputing always 67.3 236 

Table 1: Parsing times for 25 randomly selected sentences and a single complex sentence 

Another experiment was carried out to check the influence of some of the optimization strategies described 
in section 4.2 on parsing time. A randomly selected set of 25 sentences was parsed with different variants of 
the parser in the first part of the experiment. In the second part a single complex sentence was parsed. In 
each variant of the parser one optimization was switched off. Table 1 shows the results. Hashing of unifications 
only showed minor effects on parsing speed. Hashing of string concatenation operations was more effective. 
Presumably string concatenation operations are more likely to be repeated than feature structure unifications. 
A voiding unnecessary recomputation of feature structures had a bigger influence on the parsing of the complex 
sentence than on the parsing of the simpler sentences. 

The impact of the incorporation of features into the context-free grammar has also been examined. We 
observed in contrast to Maxwell and Kaplan (Maxwell III and Kaplan, 1994] , only a marginal speedup of about 
3 percent from feature incorporation. The incorporation of some features let to disastrous results because the 
parse forest generated by the context-free parser became very big, slowing down both context-free parsing and 
the calculation of the feature structures. A close relationship between the number of nodes in the context-free 
parse forest and parsing time has been observed. 

9There is an outlier at ( 48, 36. 7) which is not shown in the diagram. 
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The parser was also compared to a state-of-the-art parser, the XLE system developed at Rank Xerox which 
was available for the experiments. A corpus of 700 words which both parsers have been able to parse completely 
was used in this experiment. The XLE system parsed this corpus in 110 seconds whereas our parser needed 
123 seconds. Of course it is very difficult to compare these figures since the parsers are too different wrt. the 
grammar formalisms used, the information contained in the analyses, the degree of ambiguity and other criteria. 

6 Summary 

A parsing strategy has been outlined which splits parsing into three steps: context-free parsing, evaluation 
of filtering constraints and evaluation of structure-building constraints. A parser has been presented which 
implements the first two of these steps. A compiler is used to transform grammar descriptions into a form 
which the parser is able to process efficiently. The compiler automatically refines the context-free backbone of 
the grammar by compiling a user-defined set of feature constraints into the context-free backbone. An iterative 
procedure is used to compute feature structures in disjunctive normal form after a context-free parse forest has 
been built. As long as the feature structures are not used to build representations which encode the structure 
of constituents, this parsing strategy works very well: Wall Street Journal data has been parsed at a speed of 
7 words per second. 
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A A Toy Grammar 

% comments start with a percent s ign 

%%%%%% declarations %%%%%%%%%%%%%%% 

% definit ion of the automat ic 
% feature ' Phon ' 
auto Phon ; 

% enumerat ion type features 
enum PERSON {1st , 2nd , 3rd} ; 
enum NUMBER {sg ,pl} ; 
enum CASE {nom , acc} ; 
enum VFORM {f in , inf ,bse , prp , pap , pas} ;  
enum BOOLEAN {yes , no} ; 

% def init ion of a structured feature 
struct AGR { 

} ;  

NUMBER Number ;  
PERSON Person ; 
CASE Case ; 

% category def init ions 
category TOP { 
} ;  

category COMP { 
} ;  

category SBAR { 
BOOLEAN Wh ; 

} ;  

category s { 
FS_LIST Slash ; 

} ;  

category VP { 
VFORM VForm ; 
BOOLEAN Aux ; 
FS_LIST Subcat ; 
FS_LIST Slash ; 

} ;  

% Definition of the features which 
% are to be compiled into the context 
% free grammar . 

VP incorporates {VForm , Aux} ; 

category VBAR { 
VFORM VForm ; 
FS_LIST Subcat ; 
FS_LIST Slash ; 

} ;  

VP incorporates {VForm} ; 

category V { 
VFORM VForm ; 
BOOLEAN Aux ; 
FS_LIST Subcat ; 

} ;  

VP incorporates {VForm , Aux} ; 
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category NP { 
BOOLEAN Wh ; 
AGR Agr ; 

} ;  

NP incorporates {Wh} ; 

category N { 
AGR Agr ; 

} ;  

category DT { 
BOOLEAN Wh ; 
AGR Agr ; 

} ;  

DT incorporates {Wh} ; 

category pp { 
} ;  

category p { 
} ;  

% def init ion of restrictor types 
restrictor+ NP_R(NP) {Phon , Wh , Agr} ; 

% In the next definit ion , the Phon 
% feature is exempted from unification . 
restrictor+ NP2_R(NP) {Wh , Agr} ; 
restrictor+ SBAR_R(SBAR) {Phon , Wh} ; 

% variable declarations 
BOOLEAN wh ; 
AGR agr ; 
NP_R np ; 
NP2_R np2 ; 
SBAR_R sbar ; 
FS_LIST r ,  r2 ; 

%%%%%% grammar rules %%%%%%%%%%%%%%% 

TOP {} -> 
' S  {Slash= [] ; } ;  

s {} -> 
NP {Agr . Case=nom ; }=np 

' VP {Subcat= [NP{}=np] ; } ;  
% The subj ect-NP i s  unified with the 
% single element of the Subcat list . 

VP {} -> 
' VP {} 
pp {} ; 

VP {} ->  
' VBAR {} ; 

% 
% 
% 

All features of the two 
VP nodes are unif ied due 
to feature inheritance . 

VBAR {} ->  
' VBAR {} 
pp {} ; 

VBAR {Subcat=r ; }  -> 
' VBAR {Subcat= [NP{}=np l r] ; }  
NP {Agr . Case=acc ; }=np ; 

% All features of the VBAR nodes are 
% unif ied by default feature inheritance 



% excepted the Subcat features . 

VBAR {Subcat=r ; }  -> 
' VBAR {Subcat= [SBAR{}=sbar l r] ; } 
SBAR {}=sbar ; 

VBAR {Slash= [] ; } -> 
'V {} ; pp {} -> 
'P {} 
NP {Agr . Case=acc ; } ;  

NP {Wh=wh ; }  -> 
OT {Wh=wh ; Agr=agr ; }  

' N  {Agr=agr ; } ;  

SBAR {Wh=no ; }  -> 
COMP {} 

'S {Slash= [] ; } ;  

SBAR {Wh=yes ; }  -> 
NP {Wh=yes ; }=np2 

' S  . {Slash= [NP{}=np2] ; } ; 
% All features of the NP node and the 
% element on the Slash list are unif ied 
% excepted the Phon feature. 
% See the definition of NP2_R . 

VBAR {Subcat=r ; Slash= [np l r2] ; }  -> 
' VBAR {Subcat= [NP{}=np l r] ; Slash=r2 ; }  
NP* {Agr . Case=acc ; }=np ; 

% An NP trace is generated. Information 
% from the filler node is threaded via 
% the Slash feature . 

%%%%%% template def init ions %%%%%%%%%% 

N_sg 
PRO 

NPRO 
WHPRO 

N {Agr . Number=sg ; } ;  
NP {Agr . Number=sg ; 

Agr . Person=3rd ; } ;  
PRO {Wh=no ; } ;  
PRO {Wh=yes ; } ;  

%%%%%% lexical entries %%%%%%%%%%%%%%% 

"the" OT {Wh=no ; Agr . Person=3rd ; } ;  
"a" OT {Wh=no ; Agr.Number=sg ; 

Agr . Person=3rd ; } ;  
"which" : OT {Wh=yes ; Agr.Person=3rd ; } ;  
"man" N_sg {} ; 
"pizza" : N_sg {} ; 
"restaurant" :  N_sg {} ; 
"he "  NPRO {Agr . Case=nom ; } ;  
"him" NPRO {Agr . Case=acc ; } ;  
" it "  NPRO {} ; 
"what " WHPRO {} ; 
"eat s "  V {Subcat= [ 

"at "  
"that " 

NP{} , 
NP{Agr . Number=sg ; 

Agr . Person=3rd ; }] ; } ;  p {} ; 
COMP {} ; 
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Abstract In previous work we introduced the idea of supertagging as a means of improving the efficiency of a lexicalized grammar parser. In this paper, we present supertagging in conjunction with a lightweight dependency analyzer as a robust and efficient partial parser. The present work is significant for two reasons. First, we have vastly improved our results; 92% accurate for supertag disambiguation using lexical information, larger training corpus and smoothing techniques. Second, we show how supertagging can be used for partial parsing and provide detailed evaluation results for detecting noun chunks, verb chunks, preposition phrase attachment and a variety of other linguistic constructions. Using supertag representation, we achieve a recall rate of 93.0% and a precision rate of 91 .8% for noun chunking, improving on the best known result for noun chunking. 

1 Introduction A number of grammar formalisms such as HPSG [Pollard and Sag, 1987] ,  CCG [Steedman, 1987] ,  LexiconGrammars [Gross, 1984] ,  LTAG [Schabes et al. , 1988] , Link Grammars [Sleator and Temperley, 1991] fall into the class of lexicalized grammar formalisms. Lexicalized grammar formalisms associate increasingly rich and complex descriptions with each lexical item. Typically, a lexical item in these frameworks is associated with more tl�an one description. The task of a parser for such formalisms can be viewed as first selecting the appropriate description for individual words given the context of the input and then combining them to arrive at a description for the entire input. In [Joshi and Srinivas, 1994] , we introduced the idea of supertagging as a means of selecting the appropriate descriptions for each word given the context of a sentence, even before parsing begins, so as to improve the efficiency of a lexicalized grammar parser. In this paper, we present supertagging in conjunction with a lightweight dependency analyzer as a robust and efficient partial parser. We provide detailed evaluation results of using supertag representation for detecting noun chunks, verb chunks, preposition phrase attachment, appositives and parenthetical constructions. Using supertags, we achieve a recall rate of 93.0% and a precision rate of 91 . 8% for noun chunking, improving on the best known result for noun chunking [Ramshaw and Marcus, 1995). We also present vastly improved supertag disambiguation results from previously published 68% accurate to 92% accurate, a significant result keeping in mind that the supertags contain richer information than part-of-speech tags. The outline of this paper is as follows. In Section 2, we present a brief introduction to Lexicalized TreeAdjoining Grammars. In Section 3 ,  we review the notion of supertags and in Section 4, we discuss the details of the trigram model for disambiguating supertags and the results of evaluation on the Wall Street Journal corpus. In Section 5, we introduce the lightweight dependency analyzer. A detailed evaluation of the supertag and lightweight dependency analyzer system is presentecl in Section 6. In Section 7, we briefly discuss two new models for supertagging. 
2 Lexicalized Tree-Adjoining Grammars Each elementary tree of Lexicalized Tree-Adjoining Grammar (LTAG) [Joshi, 1985, .Schabes et al., 1 988] is associated with at least one lexical item called the anchor of that tree. All the arguments of the anchor are realized 187 



as substitution or adjunction slots within an elementary tree. Thus an elementary tree serves as a complex 
description of the anchor and provides a domain of locality over which the anchor specifies syntactic and se
mantic (predicate-argument) constraints. Elementary trees are of two types: initial trees ( o: trees in Figure 2) 
that represent non-recursive linguistic structures such as NPs, PPs and auxiliary trees (/3 trees in Figure 2) that 
represent recursive structures which are adjuncts to basic structure ( e.g. relative clauses, sentential adjuncts, 
adverbials). 
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Figure 1: (a): Derived tree (b): Derivation structure (c): Dependency tree for the sentence the purchase price includes two ancillary companies 
Elementary trees are combined by two operations, substitution and adjunction. The result of combining the 

last row of elementary trees of Figure 2 is the derived tree (Figure l (a)). But the more important structure in an 
LTAG parse is the derivation tree (Figure 1 (b)) which represents the process of combining the elementary trees 
to yield a parse. The derivation tree can also be interpreted as a dependency tree (Figure l (c)) with unlabeled 
arcs between words of the sentence. A wide-coverage English grammar called XTAG has been imp�emented 
in the LTAG framework. This grammar has been used to parse sentences from the Wall Street Journal, IBM 
manual and ATIS domains. A detailed description of this system and its performance results are presented in 
[Doran et al. , 1994]. 

3 Supertags 

The elementary trees of LTAG localize dependencies, including long distance dependencies, by requiring that 
all and only the dependent elements be present within the same tree. As a result of this localization, a lexical 
item may be ( and almost always is) associated with more than one elementary tree. The example in Figure 2 
illustrates the set of elementary trees assigned to each word of the sentence the purchase price includes two ancillary companies. We call these elementary trees supertags, since they contain more information (such as 
subcategorization and agreement information) than standard part-of-speech tags. Supertags for recursive and 
non-recursive constructs are labeled with {3s and o:s respectively. 

The task of a lexicalized grammar parser can be viewed as a two step process. The first step is to select 
the appropriate supertags for each word of the input and the second step is to combine the selected supertags 
with substitution and adjunction operations. We call the first step as Supertagging. Note that, as in standard 
part-of-speech disambiguation, supertagging could have been done by a parser. However, just as carrying out 
part-of-speech disambiguation prior to parsing makes the job of the parser much easier and therefore run faster, 
supertagging reduces the work of the parser even further. 

More interesting is the fact that the result of supertagging is almost a parse in the sense that the parser need 
'only' link the individual structures to arrive at a complete parse. We present such a simple linking procedure (Lightweight Dependency Analyzer) in Section 5. This method can also be used to parse sentence fragments 
where it is not possible to combine the disambiguated supertag sequence into a single structure. 
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Figure 2: A selection of the supertags associated with each word of the sentence the purchase price includes two ancillary companies 
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4 Trigram Model for Supertagging The task of supertagging is similar to part-of-speech tagging in that, given a set of tags for each word, the objective is to assign the appropriate tag to each word based on the context of the sentence. Owing to this similarity of supertagging to part-of-speech tagging, we use a trigram model [Church, 1988,  Weischedel et al. , 1993] to disambiguate supertags. The objective in a trigram model is to assign the most probable supertag sequence . for a sentence given the approximation that the supertag for the current word is only influenced by the lexical preference of the current word and the contextual preference based on the supertags of the preceding two words. Although it is quite evident, owing to the rich information present in supertags, that the dependencies between supertags can easily span beyond the trigram context, one of the goals of this work is to explore the limits of the trigram tagging approach. It appears that a CKY style dynamic programming model that takes advantage of the dependency requirements of each supertag may perform better for supertag disambiguation. However, such an approach is too much like parsing and the objective here is to see how much disambiguation can be done without really parsing. The lexical and contextual preferences for the trigram .model are estimated from a corpus of sentences where the words are tagged with the correct supertag. The estimates for unseen events are arrived at using a smoothing technique. We use Good-Turing discounting technique [Good, 1953] combined with Katz's back-off model for smoothing. We use word features similar to the ones used in [Weischedel et al. , 1993] , such as capitalization, hyphenation and endings of words, for estimating the unknown word probability. In conjunction with the word features, we exploit the organization of the supertags. T he supertags are organized so that transformationally related supertags (indicative, passives, relative clauses, extraction supertags) are grouped into a single "family" . Using this notion, if a word wi in the training material appears with a supertag ti which belongs to a tree family 
T, then Wi is associated with all the other members of the tree family T. 

Experiments and Results As reported in the COLING'94 paper [Joshi and Srinivas, 1994] , we experimented with a trigram model for supertagging that was trained on (part-of-speech, supertag) pairs collected from the LTAG derivations of 5000 WSJ sentences and tested on 100 WSJ sentences produced a correct supertag for 68% of the words in the test set. We have since significantly improved the performance of the trigram model by making the model lexically sensitive, using a larger training set and incorporating smoothing techniques. Table 1 shows the performance of the trigram model that was trained on two sets of Wall Street Journal data, 200K words1 and 1000K words2 and tested on 50K words3 . The Tree bank parses for the training and test sentences were converted into supertag representation using heuristics specified over parse tree contexts (parent, grandparent, children and sibling information)4 • A total of 300 different supertags were used in these experiments. Supertag performance is measured as the percentage of words that are correctly supertagged by the model when compared against the supertags for the words in the test corpus. Size of Training Size of % Correct training set test set Unigram 200K (Baseline) 50K 75. 3% Trigram 50K 90. 9% Unigram 1000K (Baseline) 50K 77.2% Trigram 50K 92. 2% Table 1: Performance of the supertagger on the WSJ corpus As mentioned earlier, the supertagger can be used as a front-end to a lexicalized grammar parser so as to prune the search space of the parser even before parsing begins. Alternatively, the dependency information 
1 Sentences in wsj_l5 through wsj_l8 of Penn Treebank. 
2 Sentences in wsj_00 through wsj-24, except wsj_20 of Penn Treebank. 
3Sentences in wsj-20 of Penn Treebank. 
4 An example of the heuristics is given in [Srinivas, 1997] 190 



encoded in the supertagger can be used in conjunction with a simple linking procedure as a robust, fast and 
efficient partial parser. Such an approach can also be used to parse sentence fragments where it is not possible 
to combine the disambiguated supertag sequence into a single structure. 

5 Lightweight Dependency Analyzer 

Supertagging associates each word with a unique supertag. To establish the dependency links among the words 
of the sentence, we exploit the dependency requirements encoded in the supertags. Substitution nodes and 
foot nodes in supertags serve as slots that must be filled by the arguments of the anchor of the supertag. A 
substitution slot of a supertag is filled by the complements of the anchor while the foot node of a supertag is 
filled by a word that is being modified by the supertag. These argument slots have a polarity value reflecting 
their orientation with respect to the anchor of the supertag. Also associated with a supertag is a list of internal 
nodes (including the root node) that appear within the supertag. Using the structural information coupled 
with the argument requirements of a supertag, a simple algorithm such as the one below provides a method for 
annotating the sentence with dependency links. 
Step 1 :  For each modifier supertag s in the sentence 

Compute the dependencies for s 
Mark the words serving as complements as unavailable for step 2. 

Step 2 :  For the non-recursive supertags s in the sentence 
Compute the dependencies for s 

Compute Dependencies for Si of Wi : 

For each slot dij in Si do 
Connect word Wi to the nearest word Wk to the left or right of Wi depending 
on the direction of dij , skipping over marked supertags if any , such that 
dij E internal...nodes (sk) 

An example illustrating the output from this algorithm is shown in Table 2. The first column lists the word 
positions in the input, the second column lists the words, the third lists the names of the supertags assigned to 
each word by a supertagger. The slot requirement of each supertag is shown in column four and the dependency 
links among the words, computed by the above algorithm, is shown in the fifth column. The * and the . beside 
a number indicate the type of the dependency relation, * for modifier relation and . for complement relation. 

Position Word Supertag Slot req. Dependency 
links 

0 The /31 +NP* 2* 
1 purchase /32 +N* 2* 
2 price a2 -
3 includes au -NP . +NP . 2 .  6 .  

4 two /33 +NP* 6* 
5 ancillary /34 +N* 6* 
6 companies 013 -

Table 2: An example sentence with the supertags assigned to each word and dependency links among words 

6 Evaluation of Supertag and LDA system 
Due to the fact that our system produces a dependency annotated sentence as the output of the parsing 
process, parsing evaluation metrics that measure the performance of constituent bracketing such as Parse
val [Harrison et al., 1991) are unsuitable. Although the supertags contain constituent information, and it is 
possible to convert a dependency linkage into a constituency based parse, the parseval metric does not have 
provision for evaluating unrooted parse trees since the output of our system can result in disconnected depen
dency linkages. 
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In contrast, we evaluate the performance of our system in terms of its ability to identify certain . linguistic structures such as noun groups, verb groups, preposition attachments, appositive and parenthetical constructions. We compare the performance of our system to the performance of other systems specifically designed to identify these structures, when available. The results presented in this section are based on a trigram supertagger trained on 200K words of wsj_l 5 through wsj_l8 and tested on 50K words from wsj_20. 
6 . 1  Text Chunking using Supertags We have applied the supertag and Lightweight Dependency Analyzer (LDA) system for text chunking. Text chunking, proposed by Abney [Abney, 1991] involves partitioning a sentence into a set of non-overlapping segments. Text chunking serves as a useful and relatively tractable precursor to full parsing. Text chunks primarily consist of non-recursive noun and verb groups. The chunks are assumed to be minimal and hence non-recursive in structure. 
Noun Chunking: Supertag based text chunking is performed by the local application of functor-argument information encoded in supertags. Once the head noun of the noun chunk is identified, the prenominal modifiers that are functors of the head noun or functors of the functors of the noun are included in the noun chunk. The head of a noun phrase is identified as the· noun with a particular initial (non recursive) supertag (a) in the grammar. Based on that simple algorithm, we can identify noun chunks, for example, shown in (1) and (2). ( 1) its increasingly rebellious citizens (2) two $ 400 million real estate °:1-ortgage investment conduits Ramshaw and Marcus [Ramshaw and Marcus, 1995] present a transformation-based noun chunker that uses a learning scheme presented in [Brill, 1993] . The performance of this noun chunker using rules defined with and without rules incorporating lexical information is shown in Table 3. System I Training Size Recall Precision R&M Baseline 81.9% 78.2% R&M 200K 90.7% 90.5% (without lexical information) R&M 200K 92.3% 91. 8% (with lexical information) Supertags Baseline 74.0% 58. 4% Supertags 200K 93.0% 91.8% Table 3: Performance comparison of the transformation based noun chunker and the supertag based noun chunker Table 3 also shows the performance of the supertag based noun chunking, trained and tested on the same texts as the transformation-based noun chunker. T he supertag-based noun chunker performed better than transformation-based noun chunker with lexical templates Moreover, the supertag-based noun chunking not only identifies the extents of the noun chunks but by the virtue of the functor-argument information, provides internal structure to the noun chunks. This internal structure of the noun chunks could be utilized during subsequent linguistic processing. 
Verb Chunking: We also performed an experiment similar to noun chunking to identify verb chunks. We treat a sequence of verbs and verbal modifiers, including auxiliaries, adverbs, modals as constituting a verb group (shown in (3) and (4)). Similar to noun chunking, verb chunking can be performed using local functor-argument information encoded in supertags. However, for verb chunks, the scan is made from left to right starting with a verbal modifier supertag, either an auxiliary vetb or an adverbial supertag and including all functors of a verb or a verb modifier. The verb chunker performed at 86.5% recall and 91.4% precision. (3) would not have been stymied ( 4) just beginning to collect 192 



Preposition Phrase Attachment 

Supertags distinguish a noun-attached preposition from a verb-attached preposition in a sentence, as illustrated 
by the two different supertags in (5) and (6). Due to this distinction, the supertagging algorithm can be 
evaluated based on its ability to select the correct supertag for the prepositions in a text. 

(5) sell 500 railcar platforms to/B_vxPnx Trailer Train Co. of/B_nxPnx Chicago 

(6) begin delivery of/B_nxPnx goods in/B_vxPnx the first quarter 

The task of preposition attachment has been worked on by a number of researchers in the past. Humans 
perform only at an accuracy of 88% accuracy [Ratnaparkhi et al., 1994] which gives an indication of the com
plexity of the task. Table 4 presents a comparative evaluation of various approaches in the literature against 
the supertag based approach, for the preposition attachment task. 

System Accuracy 
Ratnaparkhi, Reynar & Roukos 81.6% 

Hindle & Rooth 78-80% 
Brill & Resnik 81.9% 

Collins & Brooks 84.5% 
Supertags 81.1% 

Table 4: Performance comparison of the supertag based preposition phrase attachment against other approaches 
to preposition phrase attachment 

It must be pointed out that the supertagger makes the preposition attachment decision ( choosing between 
B_vxPnx and B_nxPnx) based on a trigram context. Most often than not the preposition is not within the same 
trigram window as the noun and the verb due to modifiers of the noun and the verb. However, despite this lim
itation, the trigram approach performs as well as Ratnaparkhi, Reynar & Roukos [Ratnaparkhi et al., 1994] 
and Hindle and Rooth [Hindle and Rooth, 1991] , and is outperformed only by methods (Brill and Resnik 
[Brill and Resnik, 1994], Collins and Brooks[Collins and Brook, 1995]) that use four words: the verb, the object 
noun, the preposition and the complement of the preposition in making the attachment decision. 

Other Constructions 

In this section, we summarize the performance of the supertagger in identifying constructions such as appositives, 
parentheticals, relative clauses and coordinating conjunctions. 
Appositives: In the XTAG grammar, the appositive construction has been analyzed using a Noun Phrase 
modifying sup·ertag that is anchored by a comma which takes the appositive Noun Phrase as an argument; for 
example, the comma in (7) and the second comma in (8) anchor appositive supertags. Thus, a comma in a 
sentence could either anchor an appositive supertag or a set of coordination supertags, one supertag for each 
type of coordination. Further, a comma also anchors supertags that mark parentheticals as in (9). The task 
of the supertagger is to disambiguate among the various supertags and assign the appropriate supertag to the 
comma, in the appositive context. In Table 5, we present the performance results of the supertagger on such a 
task. The baseline of assigning the most likely supertag to comma results in zero percent recall. 
Parentheticals: Propositional attitude verbs such as say and believe can not only appear in the canonical word 
order of subject-verb-complement, but can also appear at other positions in a sentence, as in (8) and (9). Also, 
the relative order of the subject and the verb can also be reversed as in (8). The XTAG grammar distinguishes 
such adverbial constructions from the sentence complement construction by assigning different supertags to the 
verb. A detailed analysis of this construction is presented in [Doran, 1996]. The task of the supertagger is to 
disambiguate among the sentence complement supertag and the various adverbial supertags for the verb given 
the context of the sentence. Table 5 presents the performance results of the supertagger on this task. Once 
again the baseline of selecting the most likely supertag of the verb results in zero percent recall. 

(7) Van Pell , 44 

(8) " The U.S. underestimated Noriega all along , " says Ambler Moss , a former Ambassador to Panama 
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(9) Mr. Noriega 's relationship to American intelligence agencies became contractual in either 1966 or 1967 , 
intelligence officials say . 

Construction # of # identified # correct Recall Precision 
occurrences 

Appositive 362 491 306 84.5% 62.3% 
Parentheticals 225 200 170 75.5% 85% 
Coordination 1886 1750 1329 70.5% 75.9% 

Relative Clauses 297 269 116 39.0% 43.2% 
Relative Clauses 297 269 156 52.5% 58% 

(ignoring valency) 

Table 5: Performance of the trigram supertagger on Appositive, Parentheticals, Coordination and Relative 
Clause constructions. 

Coordination Conjunctions: In Table 5, we also present the performance of the supertagger in identifying 
coordina�ion constructions. Coordination conjunctions anchor a supertag that requires two conjuncts, one on 
either side of the anchor. There is one supertag for every possible pair of conjunct types. We not only have 
supertags that coordinate like types but we also include supertags that coordinate unlike types amounting to 
about 30 different supertags for coordination. 
Relative Clauses: Due to extended domain of locality of LTAGs, verbs are associated with one relative clause 
supertag for each of the arguments of the verb. The task of the supertagger in LTAG is not only to identify 
that the verb is in a relative clause structure but also to identify the valency of the verb and the argument that 
is being relativized. The performance of the supertagger with and without the valency information being taken 
into account is present in Table 5. 

We are unaware of any other quantitative results on WSJ data for identifying these constructions, for com
parative evaluation. It is interesting to note that the performance of the supertagger in identifying appositives 
and parenthetical construction is better than for coordination conjunctions and relative clause constructions. 
We believe that this might in part be due to the fact that Appositives and Parentheticals can mostly be disam
biguated using relatively local contexts. In contrast, disambiguation of Coordinate constructions and Relative 
clauses typically require large contexts that are not available for a trigram supertagger. 

6.2 Performance of Supertag and LDA system 

In this section, we present results from two experiments using the supertagger in conjunction with the LDA 
system as a dependency parser. In order to evaluate the performance of this system, we need a dependency an
notated corpus. However, the only annotated corpora we are aware of, the Penn Treebank [Marcus et al., 1993] 
and the SUSANNE corpus [Sampson, 1994], annotate sentences with constituency trees. In the interest of time 
and the need for a dependency annotated corpus, we decided to transform the constituency trees of the two 
corpora using some rules and heuristics. It must be · noted that the resulting corpora is only but an approx
imation to a manually annotated dependency corpus. However, although the annotation resulting from the 
transformation does not conform to a standard dependency annotation, it is nevertheless an invaluable resource 
for performance evaluation of dependency parsers. 

For each constituent of a parse a head word is associated using the head percolation table introduced in 
[Jelinek et al., 1994, Magerman, 1995]. The head percolation table associates with each possible constituent 
label an ordered list of possible children of the constituent whose head word is passed to the parent. The 
annotation of a parse tree with head word information proceeds bottom up. At any constituent, the percolation 
information is consulted to determine which of the constituent's children would pass the head word over to their 
parent. Once the head words are annotated, the dependency notation is generated by making the head words 
of non-head constituents to be dependent on the head of the head constituent. In a similar manner to the WSJ 
conversion process, we converted the subset of the LOB annotation of the SUSANNE corpus into a dependency 
notation. 

In the first experiment, we use the dependency versions of the Penn Treebank annotation of the WSJ corpus 
and the LOB annotation of the SUSANNE corpus as gold standards. However, in the second experiment, we 
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use derivation structures of WSJ sentences that were parsed using the XTAG system as the gold standard. The derivation structures serve as dependency structures that are closest in conventions to those assumed by the LDA system. 
Experiment 1 :  The trigram supertagger trained o n  200,000 words o f  the WSJ corpus was used in conjunction with the LDA to provide a dependency analysis for 2000 sentences of Section 20 of the WSJ corpus. The Penn Treebank parses for these sentences were converted into dependency notation which was used as the gold standard. A dependency link produced by the LDA was regarded to be correct if the words being related by the link were also present in the gold standard. However, to account for the differences in the annotation, the dependency relations among words in a noun group were treated as equivalent to each other. So also, dependency relations among words in a verb group were treated as equivalent to each other. There were 47, 333 dependency links in the gold standard and the LDA produced 38 ,480 dependency links correctly, resulting in a recall score of 82. 3% .  Also, a total of 41,009 dependency links were produced by the LDA, resulting in  a precision score of 93 . 8% .  We conducted a similar experiment using the SUSANNE corpus. Using the same trigram supertagger trained on the 200,000 words of the WSJ corpus in conjunction with the LDA, we provided a dependency analysis for the sentences in the SUSANNE corpus (125,000 words) . The gold standard was created by converting the phrase structure annotations for these sentences into dependency notation using the procedure described above. As in the case of WSJ corpus, to account for the differences in the annotation, the dependency relations among words in a noun group were treated as equivalent to each other. So also, dependency relations among words in a verb group were treated as equivalent to each other. There were a total of 126, 493 dependency links in the output of the LDA of which, 112,420 also present in the gold standard, resulting in a precision score of 88 .8%.  There were a total of 140,280 links in the gold standard, resulting a recall of 80. 1%.  It is  interesting to note that although the trigram model was trained on the WSJ corpus, the performance of the LDA on SUSANNE is comparable to the performance of the LDA on the WSJ corpus. On analyzing the errors, we discovered that several of the errors were due to the approximate nature of the dependency corpus created by the conversion process. A second source of errors was due to the differences in the notion of dependency produced by the LDA system and that resulting from the conversion of the Tree bank. This is largely due to a lack of a standard dependency notation. Corpus System # of # produced # correct Recall Precision dependency links by LDA Brown LDA 140,280 126,493 112,420 80.1% 88 .8% WSJ LDA 47, 333 41,009 38 ,480 82. 3% 93. 8% Table 6: Comparative Evaluation of LDA on Wall Street Journal and Brown Corpus 
Experiment 2 In this experiment, we used the correct derivation structure produced by XTAG for 1350 WSJ sentences5 as the gold standard. These sentences were supertagged using the supertagger trained on 8000 sentences of WSJ and dependency annotated using the LDA system. Table 7 shows the performance of the system. Although, the derivation trees produced by the XTAG system are closest in terms of conventions used in the dependency output of the LDA system; there are a few points of divergences, a major one being the annotation for sentence complement verbs. While in the LDA system, the embedded verb depends on the matrix verb the reverse is the case in an LTAG derivation structure. Also, since the XTAG system, as it is implemented does not permit two auxiliary trees to be adjoined at the same node, certain valid derivation structures are not possible in XTAG. A precise formulation of possible derivation structures in LTAG framework is presented in (Schabes and Shieber, 1992] . Table 8 tabulates the percentage of sentences that have zero, one, two and three dependency link errors. In contrast to evaluation against a skeletally bracketed treebank, evaluation against LTAG derivation trees is much more strict. For example, an LTAG derivation contains detailed annotation in terms of the internal structure of the nominal modifiers in Noun Phrases and verbal modifiers in Verb groups. Also, a derivation structure has 

5sentences of length less than 16 195 



Training Size Test Size Recall Precision 
(words) (words) 
200,000 12,000 83.6% 83.5% 

Table 7: Performance of LDA system compared against the XTAG derivation structures 

% sentences % sentences with % sentences with %sentences with 
with O errors with ::; 1 error with ::;2 errors with ::;3 errors 

35% 60.3% 78% 89.8% 

Table 8: The percentage of sentences with zero, one, two and three dependency link errors. 

a stricter imposition of the argument-adjunct distinction and distinguishes readings that have similar phrase 
structure trees such as predicative and equative readings and idiomatic and non-idiom readings of a sentence. 
Further, the derivation structure is much more closer to semantic interpretation of a sentence than the phrase 
structure. Hence, the performance figures that are shown in Table 7 and Table 8 are more strict and hence niore 
significant than the crossing bracket, precision and recall figures measured against skeletally bracketed corpora. 

7 New Models for Supertag Disambiguation 
7. 1 Head Trigram Model 

As is well known, a trigram model is inadequate at modeling dependencies that appear beyond a three word 
window. One method of allowing supertags beyond the trigram window to influence the selection of a supertag 
is to allow it to be "visible" in the current context. This can be achieved in one of two ways. First, the size of 
the windo� could be increased to be more than three words. One major drawback of this method is that since 
an a priori bound is set on the size of the window, no matter how large it is, dependencies that appear beyond 
that window size cannot be adequately modeled. 6 Also, by increasing the size of the window, the number of 
parameters to be estimated increases exponentially and sparseness of data becomes a significant problem. 

An alternate approach to making head supertags "visible" in the current context is to first identify the head 
positions and then percolate the supertags at the head positions through the preceding context. Once the 
positions of the head supertags are identified, the contextual probability in a trigram model is changed so as 
to be conditioned on the supertags of the two previous head words instead of the two immediately preceding 
previous supertags. Thus, the contextual probability for the head trigram model is given as: 

(10) Pr(T1 ,T2 , • . .  ,TN) � Il�1 Pr(Ti l TH; _2 , TH; _J 
where 
TH; _

1 
and TH; _

2 
are the supertags associated with the two previous head words. 

The head positions are percolated according to the following equations. 

Initialize: 
(11) Update : 

(head positions at i + 1) 

(H-2,H_i ) 
(Hi-1 ,Hi) 

= (-2,-1) 
= (Hi-2 ,Hi-1 )  if Wi is not a head word 
= (Hi-i ,i ) if Wi is a head word 

The head trigram supertagger has two passes. In the first pass, the words are annotated for heads and in 
the second pass the head information is used to compute the appropriate contextual probability. For the first 
pass, the head words can be identified using a stochastic trigram tagger that uses two labels and tags words 
either as head words or as non-head words. The training and test material for the head-word tagger was created 
from the Penn Treebank parses of WSJ sentences using head percolation rules presented in [Jelinek et al., 1994, 
Magerman, 1995]. The tagger was trained on 1,000,000 words of WSJ corpus and tested on 47,000 words from 
Section 20 of WSJ. The tagger assigned the correct head-tag for 91.2% of the words, improving on the baseline of 
81.4%. Most of head-word tagging errors were mistakes of tagging modifier nouns as head words in nouns group 
sequences. Using the head information provided by head-word tagger, the head trigram supertagger, trained 

6 An interesting approach of incorporating variable length n-grams in a part-of-speech tagging model is presented 
in [T.R. Niesler and P.C.  Woodland, 1996] . 
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on the 1,000,000 words of WSJ corpus and tested on 47,000 words, assigned the correct supertag for 87% of 
words. We suspect that since local constraints are not modeled by the head trigram model, the performance of 
the trigram model is better than this model. We are working towards integrating the two models to produce a 
mixed model that takes into account both local and non-local constraints. 

7.2 Head Trigram Model with Supertags as Feature Vectors 

As previously mentioned, supertags contain subcategorization information and localize filler-gap dependency 
information within the same structure. As a result, for example, there are not only supertags that realize the 
complements of a transitive verb in their canonical position, but there are supertags that realize complements 
in passives, supertags for wh-extraction and relative clause for each of the argument positions. These various 
supertags are present for each subcategorization frame and are transformationally related to one another in a 
movement-based approach. The supertags related to one another are said to belong to a "family" . The supertags 
for verbs can be organized in a hierarchy as shown in Figure 3. It must be noted that just as the hierarchy in 
Figure 3 is organized in terms of the subcategorization information, similar hierarchies can be organized based 
on transformations such as Relative Clause or Wh-extraction. The supertags for other categories such as nouns, 
adjectives and prepositions can also be organized in similar hierarchies based on features such as modifiers, 
complements and predicates. 

Vab 

6� �-z-· 
Deel Imperative Wb•Subj Wb·Obj •·· ·Passive 

Figure 3: Supertag hierarchy 
The representation of supertags as labels, as was done in the previous models, does not exploit the relationship 

among supertags. Instead, supertags can be viewed as feature vectors where each feature represents a dimension 
along which the supertags can be clustered. We are currently working on implementing a trigram model with 
appropriate back-off strategies. A more appropriate model, we believe, for such a distributed encoding of 
supertags is a model that has the flexibility to select the best back-off strategy as in maximum entropy model. 
We plan to implement a maximum entropy model for supertagging by the final version of this paper. 

8 Conclusions 
We have presented the trigram model for supertagging in conjunction with a lightweight dependency analyzer as 
a robust and efficient partial parser. One of the goals of this work is to explore the limits of the trigram tagging 
approach and to see how much supertag disambiguation can be done without really parsing. A significant 
result of the current work is that a trigram model can achieve 92% accuracy for supertagging. Second, we have 
shown how the disambiguated supertags can be used for partial parsing, detecting noun chunks, verb chunks, 
preposition phrase attachment, appositives and parenthetical constructions. Using supertags, we have achieved 
a recall rate of 93.0% and a precision rate of 91.8% for noun chunking, improving on the best known result for 
noun chunking. 
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Abstract 
We describe an extension of Earley' s algorithm which computes the decoration of a shared forest in a generic domain. At

tribute computations are defined by a morphism from leftmost derivations to the generic domain, which leaves the computations 
independent from ( even if guided by) the parsing strategy. The approach is illustrated by the example of a definite clause grammar, 
seen as CF-grammars decorated by attributes. 

1 Introduction 

Computational linguistics offers a variety of grammatical formalisms, such as DCGs (Pereira and Warren [ 1 3]) ,  LFGs 
(Kaplan and Bresnan [9]) ,  FUGs (Kay [ 1 1 ]), PATR (Shieber [ 14]) ,  . . .  They often rely upon a context-free backbone, on 
which contextual information is grafted. Such information amounts to a collection of attributes of different types: first
order terms, numerical data, probabilities, feature structures, etc. Hence a parser has to perform context-free and attribute 
operations, but essentially we think that the algorithmics is not radically different accross linguistic formalisms. Of course 
the computation details differ but we show that it is possible to abstract sufficiently to see many attribute domains in a 
unified framework. 

In a non-deterministic parser, Lang [ 12] showed the independence between the strategy (expressed by a non
deterministic pushdown automaton) and the dynamic programming interpretation, which handles non-determinism. The 
present paper can be seen as a proposal to consider the attribute decoration independently from the two previous aspects. 

1 .  Provided the attribute domain respects some algebraic structure (namely a semiring), 

2. given both a strategy for attribute computation, and a dynamic programming interpretation, 

the decoration of the parse forest can be computed abstractly, i.e. relying entirely on the algebraic structure. 
Our goal is modularity: Earley' s algorithm is used to show that a parser can be designed independently from the attribute 

domain and can be applicable to several linguistic formalisms. 
Our extension of Earley' s algorithm computes the abstract decoration of a parse forest, and we show that abstract 

computations are applicable to a variety of interpretations: from probabilities to unification grammar formalisms. 

Dynamic programming techniques were introduced by Bellman [3] to reduce the complexity of operational research 
problems from exponential to polynomial (e.g. the knapsack problem), Cocke, Kasami [ 10] ,  Younger [ 17] as well as 
Earley [8] applied them to non-deterministic context-free parsing. They are applicable on recursive problems for which 
each sub-problem can be identified by an index and they consist in tabulating the computations, ensuring the solution of 
each sub-problem is computed only once. 

In [ 15] ,  we presented computations of stochastic information in parallel with the parsing process, taking adv�tage of 
dynamic programming techniques. We attempt to apply them to attribute augmented context-free grammars in such a 
way that the following algorithm appears as a generalization of the stochastic Earley' s  algorithm in [ 15] .  In this paper, 
probabilities are defined with respect to leftmost derivations and the so-called recognition probability corresponds to the 
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classical inside probability (Baker [2]). We propose to abstract away from probabilities and to compute a recognition 
decoration, defined with respect to the (abstract) decoration of leftmost derivations, in the same way the recognition 
probability is in [ 15] .  

We described in [ 16] a formalism for generic decoration, generalizing the probabilities. The sum and the product 
between positive real numbers are replaced by an abstract sum and product. The sum models non-determinism, or am
biguity, i.e. the fact that a set of leftmost derivations can be associated with a single sentence. The order in which the 
set of possible leftmost derivations is built is not relevant, neither is the order of evaluation of the associated attributes; 
therefore, the abstract sum must be commutative. 

The product models the construction of a single leftmost derivation from two others (by plugging the second one into the 
yield of the first one, which is equivalent to parse-tree construction). When considering a sequence of three derivations, the 
associated semantics must be the same with a bottom-up and a top-down construction, meaning that the abstract product 
must be associative. The same holds for the sum. 

A last condition expected for the abstract operations is distributivity of the product w.r.t. the sum, in order to factorize 
and expand whenever needed. 

As a consequence, the abstract domain must have a semiring structure, which justifies the use of the algebraic power 
series formalism in [ 16] ,  where we specify in which conditions and how dynamic programming techniques can be used 
to compute the abstract decoration of a shared forest, from the definition of an abstract decoration on the grammar. 

The theory of algebraic power series, introduced by Schiltzenberger and Chomsky [6] , allows not only to generalize 
many attribute domains with the semiring structure, but also the context-free structure itself; indeed, the computed values 
can be probabilities, or first order terms (i.e. classical attributes), but also leftmost derivations or shared forests. Therefore, 
the decoration of a syntactic construction by attributes can be seen as a morphism from the context-free backbone to the 
attribute domain: a semiring morphism. So, any parsing algorithm can be extended by a morphism in order to compute 
attribute decorations. 

In many cases however, the semiring structure is too strong: the product might be a partial function rather than an 
application. For instance, we describe leftmost derivations in an algebraic manner and naturally, composing (multiply
ing) two derivations is possible only if the second one can actually be applied after the first one: consider for exam
ple A==,,a(J)B==;,(3 (where 0 denotes the composition of leftmost derivations) then such a product is defined only if 
a = wB1, in which case the composition yields A==;,a==;,w/31. 

Hence the partial semiring of leftmost derivations is defined and attribute computations are defined as a partial semiring 
morphism from derivations to the attribute domain. As parse trees are equivalent to leftmost derivations, any syntactic 
algorithm only has to apply the decoration morphism to compute the decoration. 

The sequel is organized as follows: section 2 defines the algebra of leftmost derivations, the attribute algebra, and the 
decoration (which is a semiring morphism) of the leftmost derivations in the attribute domain. Then, after the presentation 
of shared forests, section 2 introduces the adaptation of Earley items in order to carry attributes. Section 3 describes the 
algorithm with attribute computations. Section 4 applies our approach to DCGs, which are presented as CFGs decorated 
in a semiring. Section 5 runs the algorithm on an example of DCG. 

2 Analysis material 

2.1 Grammar and decoration 

• Consider: a context-free grammar G = (�, N, R, S), the vocabulary V = � U N, the relation leftmost derive is 
==;, = { (xAw, XTJW) I xAw==;,xrJw } .  From this relation, a leftmost derivation is defined as a sequence s.t. each 
element derives the following one, more formally: (ai ) i �i:SL E V N s.t. l � 0 and if l > l then Vi � 1: 0'.(7'0'.i+1 
-for l = 0, the empty sequence corresponds to the empty derivation denoted by (E) . For example, the derivation 
denoted by A==;,a==;,w /31 in the introduction corresponds to the sequence ( A, a, w /31) .  
The set of  all leftmost derivations of a into (3 i s  denoted by o:'7 (3, and for n E N, the subset of  the latter, restricted to 

n derivations of length n, is o:'7 (3 = { d E o:'7 (3 I d is a sequence of length n + l } .  Note that for n = 0: a = (3 and the 
derivation is (a) .  

• Attribute decoration of G in an abstract domain A 
- First, we define a partial monoid (this unusual algebraic structure has already been introduced by Arbib and Manes 

[l]) :  (A, xA , IA) is a partial monoid iff xA is a partial function over A x A, IA is a neutral element for xA (Va E A: 
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a xA lA = lA xAa = a), and xA is partially associative (Va, b, c E A: a xAb and b xAc are defined implies (a xAb) xAc 
and a xA ( bxAc) are defined and equal). Naturally, if xA is a mapping then (A, xA , lA) is a monoid, and in addition, if 
xA is commutative then so is the monoid. 

- Then ( A, +A , xA , OA , lA ) is a partial semiring iff (A, xA , lA) is a partial monoid, (A, +A , OA ) is a commutative 
monoid, OA is absorbent for xA (i.e. V c E A: c X.4 Q4 = O,1. = O,1. X,1. c ), and xA is distributive with respect to +A. 

- The decoration of G in the partial semiring ( A, +A , xA , OA , lA ) is represented by the mapping <PA : R ---+ A. 

We want to see the syntactic constructions from an algebraic point of view, in order to present the decoration as a (partial) 
semiring morphism. Before the operations, the ground set must be defined. 
Definition 1. The set of leftmost derivations is 

U 1l D.e = (c) U a.7(3 
n E N 

For short, the composition between leftmost derivations d' (J)d" is defined if the first element of d" occurs in the last 
element of the d' , and it consists in continuing the derivation d' by using d" . 
Definition 2. The composition of leftmost derivations is the function (J): D. e x b.e ---+ D.e  such that Vd' , d" E D.e :  

1 d

' 

d" 

d' (J)d" = l ' +l" 
d E a  7 x-y8 
undefined 

if d" = ( c) 
if d' = (c) l' l" { if d' E a.7xf38, and d" E f37-Y such that 
otherwise 

where di denotes the i-th element of the sequence d. 

Vi :S l' : di = d� 
Vi > l ' :  di = xd�'_ t ' 8 

For instance, the example of composition in the introduction can be rewritten: (A, a.)(J)(B,  /3) = (A, a ,  w/3-y) .  
In order to deal with non-determinism, sets of leftmost derivations are considered and the function (J) i s  naturally 

extended on p(b.c)  (the power set of D.e)  in such a way that Ve E p(b.e ) :  0(J)e = 0 = e(J)0. Then one easily checks that 
(p(b. e ) ,  U ,  (J), 0,  (c)) is a partial semiring. 

We consider derivations starting from the axiom, or more generally, from a non-terminal. At parse time, dealing with a 
V* string always comes from the derivation of a non-terminal. Therefore, consider the set iY'{ of leftmost derivations of 
which first element is a non-terminal. Clearly, (p(N'{),  U, 0, 0, (c)) is a partial semiring. This partial semiring is going 
to be the starting point to compute the abstract decoration. 
Definition 3. The function <PA is extended as a partial semiring morphism of p(N'{) to A, i.e., <PA (0) = OA , <PA ( ( c ) )  = lA , 
<PA ( e1 U e2 ) = <PA ( e i )+A <PA ( e2 ) ,  and <PA ( e 1 (J)e2 ) = <PA· ( e 1 )  xA <PA ( e2 ) ,  for all e 1 , e2 E p(df ). 

Grammar rules can be considered as elementary leftmost derivations. If a set s of leftmost derivations is represented 
with the help of an algebraic expression involving only U and (Das only operations, and with R as only constants, then it is 
possible to associate any decoration in A with s: only by substituting U by +A , (J) by xA and elements of R respectiveley 
by elements of (j)A (R ) , i.e. by a semiring morphism. 

In fact, our algorithm computes such a symbolic expression. 

2.2 Shared forest 

The following notation is used to describe substrings of any w E �* :  for O :S i :S j :s; lw I :  w ] ·i , j] stands for the substring 
of w comprised within the index interval ] i ,  j] (if i = j, the empty string is intended). 

Billot and Lang [4] represent the set of all parse trees for x with respect to G by mean of a context-free grammar Y:c • 
This grammar is called the shared forest of x with respect to G and has a polynomial size ( cubic if G is in Chomsky 
normal form). Classically, the nodes of a parse-tree are instances of G, which justifies the grammatical form of Yx · 
In addition, a suitable choice of the names of these instances leads to the polynomial complexity. Indeed, new non
terminals are introduced: Ai ,j is such that A E N and A⇒x] i , j] " The (finite) set of such non-terminals is N = 
N x {O ,  · · · ,  lx l } x {O ,  · · · , I x ! }. A labelling mapping is defined from instances to original symbols of G: consider lab: 
N ---+  N such that VA i ,j E N: lab(Ai ,j ) = A; consider V = N U �. then lab is extended first as the identity mapping on 
� and naturally as a morphism of v* to V* . A new (finite) set of rules is defined: R is the biggest subset of N X v* such 
that lab can be extended as a morphism of R to R. 
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Definition 4. The shared forest 9x for x with respect to (E, N, R, 5) is the context-free grammar obtained after 
reduction of (:E, N, R, 5° ,n). 

Note that <PA (A'7x
] i , j] ) = <PA (Ai ,j7x

] i , j] ) (the first derivation uses G, the latter uses 9x )-

Exemple 1 Let G be defined by the rules S � 5 5 and 5 �a. The sentence aaa has two parse-trees which can be repre
sented in a grammatical form in the following way: 

5
1 � 52 53 5' 1 � 5' 2 

5' 
3 

52 � a 5� � 5� 5� 
S3 � 54 5

s and 5� � a 
54 � a 5� � a 
Ss � a 5' 5 � a 

but with a more suitable choice of the instance names, these can be represented in a single grammar: the shared forest 

□ 

2.3 Earley items and decoration 

50,3 

50,3 

50,2 

5 1 ,3 

50, 1 

5 1 ,2 

52,3 

� 
� 
� 
� 
� 
� 
� 

50, 1 5 1 , 3 

50,2 52 ,3 

50 , 1 5 1 ,2 

5 1 , 2 52 ,3 a a a 
At parse-time, we rename the non-terminals of the items incrementally in the following manner: when a non-terminal N E N is shifted in a completion step of Earley' s algorithm, it is renamed by some Ni ,j E N. 
Definition 5. An Earley item is an element of I(G, x) = N x v* x V* x {O ,  · · · ,  l x l } x {O ,  • • • , lx l } , denoted by 

* - * 
[A�w•8, i ,  j] and satisfying: A�wo E R, i:J==;>x1 . .  1 , and w = aBP,qf3 implies BP,q==;>x

1 1 . e i, J e P, q 

Definition 6. The 4-tuple < A�ci•,B, i , j, R> is a decorated item iff I =  [A�a•,B, i, j] is an Earley item such that 
<f>J..(I) = R, where </>l is defined below. 

The recognition decoration corresponds, for an item [A---+a•,B, i ,  j] . to the decoration of the recognized part: a. In 
general, it is a vector because the respective decoration of a elements might not be composable, i.e. , their product in A 
may be undefined (A is a partial semiring). This explains that the yield of </>l is A* .  Note that if A is a semiring then the 
recognition decoration is a scalar: the product ( xA) of all components of the vector. 
Definition 7. The recognition decoration is the function <f>J..: I(G, x) � A* such that 'i/a 
woAP1 ,q1W1 . .  ·Wm,- l APm ,Qmwm : 

</>l( [A---+a•,B, i, j] ) 
such that 'ii k E { 1 ,  · · · ,  m}  : v k 

Note that the recognition decoration is a bottom-up information. 

V E  Am 

ck (APk ,Qk'vtx ) :'A 
f ]Pk , Qk ] 

When a right-hand side is entirely recognized, e.g. [A---+a•, i ,  j] , the whole rule is recognized and the decoration of 
A---+a must be composed to the decoration of a. Hence, the product xA is extended on A x A* . 

Definition 8. The function xA :  A x  A* ---+ A is such that 'ila E A, v E Am : 

i.e. the product from left to right of a and elements of v. 
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3 Earley-like algorithm with attribute valuation 

Our dynamic programming interpretation consists in destroying the stack of the pushdown automaton: all stack elements 
(i.e. decorated items) are stored in a set £.  The name of these items ensures the correctness of (context-free) computations. 

Because of non-determinism, attribute computation cannot be performed immediately: symbols are introduced at each 
level and they are evaluated after each level is complete. 

3.1 Symbolic decoration: recognition of A between i and j 
<PA ( A_i,j ) is introduced because a subtree rooted in A i ,j and spanning x

]i , j] 
may be produced more than once. This symbol 

represents the decoration of all derivations starting from A and ending with xl . ·i · The index j is assumed fixed, there is 
i , J 

one such symbol for each pair ( A, i ) :  

hence <PA (Ai ,j ) = 

<PA (A'7x
] i , j]

) 

I: 
r=A ---t woA1 w1 · · ·wp - 1 Ap wp 

s . t .  x
] i

, j] = Wo YI WI . . " Wp - I Yp Wp 

( 1 )  

(2) 

L <PA (r) x.A <PA (Ai i + l wo l , i + l wo y1 I ) x.A . . .  X.A <P.A (Api + l wo · · · Wp - 1  I , j - l wp I ) (3) 
r=A---two A 1 w1 · · · wp - 1 Ap wp 

s . t .  x
] i

, j
]
=wo y 1 w 1 · · · wp - I Yp Wp 

The symbols 1>.A (Aj ,j ) form an independant equation system. Let us assume that for all A, 1>.A (Aj ,j ) = 1>.A (A'7E) is 
known. Note that it can be statically computed. 

Now, consider i =p j and assume that for all k1 ::; k2 < j :  <P.A (Ak 1 ,k2 ) is known. The system is then reduced to the 
variables <PA (A k ,j ) s.t. k < j .  Moreover, in the equation (3), and in each term of the right-hand side, there is at most one 
variable <PA (A k ,j ) (i ::; k < j), hence the system is linear. 

Let us solve this system by substitution. 
Applying the substitution method to solve the system leads to cyclic (linear) equations: the same variable occurs in 

both the right-hand side and the left-hand side. Indeed, some cycles appear in equations of the form 

with a and b independent from <PA ( A k ,j ) .  
Let the Kleene star *:  A ---t A be defined by Va E A:  

.A 

a* = lim � ai 
k -+ oo  L 

i E {O , ·  · · , k }  

then the solution of ( 4) is a* b,  if this limit exists in A. More generally, cycles look like 

<P.A (Ak ,j ) = a1 x.A1>.A (Ak ,j ) x.Aa2 +.A b 

(4) 

(5) 

with a1 , a2 and b independent from 1>.A (Ak ,j ) .  This amounts to the equation (4) only if A is commutative (then a = 
a 1 x.Aa2 ).  Otherwise let the limit function be defined by Jim.A : A x A x  A ---t A, s.t. Va, b, c E A: 

.A 

lim.A (a, b, c) = lim � (a-i x.A b x.Aci ) 
k -+ oo  L 

i E { O , ·  · · ,k }  

then the solution of 5 is  lim.A (a1 , b, a2), provided that this limit exists. 
The definition domains of these functions are such that the limits above exist in A with respect to an appropriately 

chosen notion of convergence in A. 
Note that in non-commutative semirings, Jim.A cannot be defined from a* . But a* = limAa, I.A , �)  and if A is 

commutative, then the limit function amounts to the Kleene star: lim.A (a1 ,  b, a2 ) = (a1 x.A a2 ) *  x.A b. 
Therefore, for a given j, the system <PA ( A_i,j ) has a computable solution assuming 
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l .  <PA (AJ,J)  is known; 2. limA is well defined and always used in its definition domain; the Kleene star is enough if A is commutative. 
3.2 Algorithm Vectors of A* are denoted between ( and ) . A concatenation, denoted by o, is defined on A* . The empty vector is denoted by ( ) .  The mapping <f>A : R -t A is a decoration mapping introduced during parsing because it offers a decoration of the shared forest, hence more precise than <PA : R -t A. £:= { < S'-t•S$, 0, 0, i4 > } ; for j := 0 to lx l  loop loop (intra-level) 

(Prediction) i f  < A-tci•B8, i ,  j, R> E £ then add <B-t•TJ,  j, j, ( )  > to £; end i f; ( Completion) i f  < A-tci•, i ,  j, R' > E £ and <B-trj•Af3, k ,  i ,  R> E £ then add < B-trjA i ,j •f3,  k, j, Ro(<j>A (Ai ,j)) > to £;  output (Ai ,j-tci, <PA (Ai ,j-ta) xA R'); end i f; un t i 1 no more item is added to £; loop (Scan) i f  <A-tci•Xj(3,  i ,  j, R> E £ then add <A-taXj •f3, i ,  j + 1, R> to £;  end i f; un t i 1 no more item is added to £; end l oop; The complexity depends on the semiring under consideration. If A is so that the cost of each operation is 1 then the time and space complexities are the same as the original syntactic parser, i.e. O(nL+ l ), where L is the size of the longest right-hand side. For example, the semiring (Jlls.+ , +, x ,  0, 1 )  respects such a constraint. If <PA is qefined so that to describe a probabilistic grammar, then we get a probabilistic parser which computes at each node N of the shared forest, the probability of the whole shared forest dominated by N (see [ 15]) .  Another interesting computation is the selection of the best tree, which is achieved by taking the semiring (Jlls.+ , max, x ,  0, 1 )  and memorizing only the nodes corresponding to the best probability. 
4 Application to DCGs Naturally, DCGs have a context-free backbone. We just have to find a semiring structure which describes computations with first order terms. This is done in two steps: first, section 4. 1 presents Herbrand' s domain in a (sup-semi-) lattice framework (which is very close to a semiring) and then, section 4.2 puts first order terms together with the CF information, to form the (partial) semiring of DCGs. 
4.1 Herbrand's domain Consider: a set of variables Var, a set of function symbols :Fonc, a set of (first order) terms T, constructed over Var and 
:Fonc (by definition Or is a term called inconsistent term), a set Subst of substitutions. The application of a substitution O' to a term t is conventionally denoted by tO'. By definition Osubst is a substitution called inconsistent substitution and verifies Vt E T: tOsubst = Or. Substitutions are used to define a partial pre-order over terms, for whic� small means precise. 
Definition 9. Vt, r E T :  t�r iff there exists a substitution O' verifying t = rO'. Note that Or is the least element of T w.r.t. �-To get a partial order, terms which are alphabetical variants are collapsed in a single term. From the (partial) pre-order, an equivalence relation between terms is defined: Vs , t E T: s = t iff s �t and t�s.  Consequently, two quotient terms in TI= always have a greatest lower bound n in TI= : (TI= , n, 07, �/ = )  is a complete sup-semi lattice. 204 



The unification between two terms is then defined as their greatest lower bound. 
Definition 10. For two (quotient) terms s and t, the unification of s and t is snt. 
The unification is extended elementwise to vectors of terms -the only vector with which the empty vector (the vector 
with no components: E) is unifiable is ?, the result is the substitution lsubst · 

4.2 The partial semiring 

Definite clause grammars 

A definite clause is seen as a pair composed by a context-free rule r = A0 ----+x0 A1 x 1 . . .  A1.: x1.: (in which terminal and 
non terminal symbols respectively correspond to extensional and intentional predicates) and a mapping {O,  · · · , k}  ----+ T* 
(where T* is the set of finite vectors over T) that associates each non-terminal of r with a vector of first order terms. The 
collection of definite clauses over R is C (R) = R x ( T* ) N . 

A definite clause grammar is a set of definite clauses. 

Domain 

The domain V is the subset of (N x (N U I: ) * )  x (T* ) N U  {Cb, 1v }  such that for any d = ( (A, a) , 0) E V: (A, a) 
verifies A⇒a, and Dom(0) = {O, · · · , k }  iff a contains k non-terminals. e I 

The domain of the semiring is the power set of 'D: FP(V), denoted by H. The sum +rt is the union in H. Now we need 
a product. 

Product First, we define xv : V x V ----+ V 

• 'efd E V: Jv xvd = d = d xv lv 

• 'efd E V: (b xvd = (b = d xv(b 

• Vd1 = ( (A, wA'a) , 0, er) E V, d2 = ( (B ,  7J) , n, p) E V: let ke = max(Dom(0)), kn = max(Dom(O)) .  Then 

{ 
undefined 

d1 xvd2 = (b 
( (A, wlla) , 0 u n) 

if A' -=fa B (context-free mismatch) 
if 0 ( 1 )n0(0)  = 07 (unification failure) 
otherwise (the product succeeds) 

where 0 u n:  N ----+  T* s.t. Dom(0 u 0) = {O ,  • • • ,  ke - 1 + kn } and 

0 U O(v) = O(v )  if O < v :s; kn { 
0 ( 1  ) nO(O)  if v = 0 (unification at grafting point) 

0 ( v - kn + l ) if v > kn 

Note that this operation is not commutative, and partially associative: take three elements d1 , d2 , d3 of H s .t. their 
respective first component is A----+aB/3C-y, B----+8, C----+w. Then (d1 x'Hd2 ) x1-id3 is not necessarily undefined whereas 
d2 xvd3 is. 

The product xv is extended as a function H x H ----+ H being the natural extension of xv in the usual (distributive) way. 
Then 11-i = { lv} and � = 0. Finally, (H, +H , x'H,  � .  11-l ) is a partial semiring, because of x'H partial associativity. 

The decoration mapping 

Consider the CF-grammar G and a definite clause grammar DG. 

<t>H (A----+a) = { ( (A, a) , 0)  I (A----+a,  0) E DG} 
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5 Example 

Notations are simplified to improve readability: clauses are represented in the usual way, without splitting the context-free 
backbone from the terms. The vectors of terms are noted between square brackets: e.g., [c, f(X ) ,  g (a, f (Y) ) ] .  

This example shows both how our algorithm works and how operations are performed in the definite clause semiring. 
The following grammar DG recognizes trivial sentences, verifying that the number of the subject matches the number of 
the verb. We have Fonc = { sg, pl} ,  both functions are constants so T is reduced to Fonc and Var. 

s ---t NP[Nb]VP[Nb] 
NP[Nb1 ] ---t DetN[Nb1 ] 
NP[Nb2] ---t Pron[Nb2] 
VP[Nb3] · ---t V [Nb3] 
VP[Nb4] ---t V [Nb4]NP[X] 

Det ---t the 
N[sg] ---t ' man I apple 
N[pl] ---t men I apples 
V [sg] ---t eats I sings 
V [pl] ---t eat I sing 

Pron [pl] ---t you 

It corresponds to the context-free grammar G: 

S---tNPVP NP---tDetN I Pron VP---tVNP I V  
Det---tthe N ---tm,an I men I apple I apples V -teats I sings I eat I sing 

with the decoration mapping q>:  

q; (S---tNPVP) 
q; (N P---tDetN) 
q; (N P---tPron) 
q; (V P---t V NP) 

<t>W P---t V) 
</> (Det---tthe) 
<j> (N---tman) 
q> ( N ---tmen) 

</> (N ---tapple)  
<j> (N---tapples) 

<j>(V -teats) 
</> (V -teat) 

cp (V---tsing)  
<j> (V ---tsings) 

{ ( S, NP[ Z]V P[ Z] ) } 
{ (N P[X2 ] ,  DetN[X2 ] ) } 
{ (N  P[l2] , Pron [Y2] ) } 
{ (VP[X3] , V [X3] NP[Y] ) } 
{ (V P[Z3 ] ,  V [Z3 ] ) } 
{ (Det, the) } 
{ (N [sg] , man) } 
{ (N [pl] , men) } 
{ (N [sg] , apple) } 
{ (N[pl] , apples) } 
{ (V [sg] , eats ) } 
{ (V [pl] , eat) } 
{ (V [pl] , sing) } 
{ (V [sg] , sings) } 

We parse the sentence "the man eats the apples". 
The decorated items < r, i, j, R> computed by the algorithm are given below, ranked with respect to the index (level) 

J . 
Level 0 

< S' ---t•S$, 0, 0 ,  ( ) > 
< S---t•NPVP, 0, 0 ,  ( ) > 
< N  P---t•DetN, 0 , 0 , () > 

< Det---t•the , 0, 0 , 0 > 
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Level 1 
<Det--dhe•,  

<N P----tDet0 • 1 •N, 
<N----t•man, 
<N----t•apple ,  
<N----t•men, 

<N----t•apples ,  

Recognition symbol: 
cp (Det0 • 1 ) 

Level 2 
< N----tman•,  

<N P----tDet0 • 1 N1 ·2•, 
< S----tNP0 •2•VP, 
<VP----t•VNP, 

< V----teeats , 
< V----t•sings , 
< V----t•eat, 

< V----t•sing, 

Recognition symbols: 

0, 1 ,  
0 ,  1 ,  
1 ,  1 ,  
1 ,  1 ,  
1 ,  1 ,  
1 ,  1 ,  

1 ,  2 ,  
0 ,  2 ,  
0 ,  2 ,  
2 ,  2 ,  
2 ,  2 ,  
2 ,  2 ,  
2 ,  2 ,  
2 ,  2 ,  

{ (S, Det N[Z] VP[Z] )  }> 
( )o(cp (Det0 · 1 ) ) > 
.o >  
o >  
o >  
o >  

<$(Det0 • 1 ----tthe) 
{ (Det0 · 1 , the) } 

{ (S, the man V P[sg] ) } > 
(cp(Det0 • 1 ) )o(cp (N1 ·2 ) )  > 
( )o(cp (N po ,2 ) )  > 
o>  
o>  
o>  
o>  
o>  

cp(N1 ,2 ) = <$(N1 ,2----tman) 
{ (N 1 •2 [sg] , man) } 

cp (N po ,2 ) = <$(N po ,2----tDeto , 1 N1 ,2 ) x'H.<$(Deto , 1 ) x'H.<$(N1 ,2 ) 
= { (N P0·2 [X1 ] ,  Det0 • 1 N1 •2 [X1 ] ) } x'H. { (Det0 • 1 , the) } X1-f.4>(N1 ·2) 
= { (N P0·2 [X1 ] ,  the N1 ·2 [X1 ] ) } x'H.{ (N1 ·2 [sg] , man) } 
= { (N P0 •2 [sg] , the man) } 

As a consequence, the 2 last items disappear while computing their prediction decoration: the unification of s g and pl 
fails. 

Level 3 

Recognition symbol: 

Level 4 

Recognition symbol: 

< V----teats•, 2, 3 ,  { (S, the man eatN P[Y] ) } > 
< V  P----t V2 ·3•NP, 2, 3 ,  ( )o(cp (V 2 •3 ) )  > 
< NP----t•Det N, 3, 3 ,  0 >  
< Det----t•the, 3, 3 ,  ( )  > 

<$(V2 •3----teats) 
{ (V2 ·3 [sg] , eats) } 

< Det----tthe•, 3 ,  4 ,  { (S, the man eats the N[Y] ) } > 
< N  P----tDet3 •4•N, 3, 4, ( )o(cp (Det3 ·4 ) )  > 

<N----t•man, 4, 4, ( ) > 
<N----t•apple, 4, 4, () > 

< N  ----t•men, 4 ,  4, ( )  > 
<N ----teapples, 4 ,  4, ( )  > 

cp (Det3 •4 ) 
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Level 5 

Recognition symbols': 

then 

< N-4apples•, 4, 5 ,  { (S ,  the man eats the apples ) } > 
< N  P-4Det3 '4N4 '5• ,  3 ,  5 ,  (cp (Det3 '4 ) )o(cp (N4 ,5 ) )  > 
< V  p-4 v2 ,3 N p3 ,s• ,  2 ,  5 ,  (cp (V 2,3))o(cp (N p3 ,s) )  > 
< S-4NP0 ,2VP2 '5• ,  0 , 5 ,  (cp (NP0 '2 ) )o(cp(VP2 '5)) > 

cjj(N4 '5-4apples )  
{ (N4 ' 5 [pl] , apples) } 
cjj(N P3 '5-4Det3 '4N4 '5 ) x 'H.cjj(Det3'4) x'H.cjj(N4 '5) 
{ (N P3 '5 [X4 ] ,  Det3 '4N4 '5 [X4 ] ) }  x'H. { (Det3 ,

4
, the) } x'H.cjj(N4 '5) 

{ (N P3 '5 [X4 ] ,  the N4 '5 [X4 ] ) }  x'H. {  (N4 '5 [pl] , apples) } 
{ (N P3

'
5 [pl] , the apples ) } 

cf W p2 ,s-4 v2 ,3 N p3 ,s) x'H.c1>(v2 ,3) x'H.c/>(N p3 ,s ) 

{ (V P2
'
5 [sg] , eats N P3 ,5 [Y]) } Xrf. { (N P3

'
5 [pl] , the apples ) 

{ (V P2 ,5 [sg] , eats the apples) } 
cjj(so ,5 -4N po,2v p2 ,5 ) Xrf.cp(N p0 ,2) Xrf.cp (V p2 ,5 ) 

{ (S0 ,5 , N p0 ,2 [Z] V P2 '5 [Z]) }  x'H. { (N P0 ·2 [sg] , the man) } = { (s0 ,5 , the man V P2 '5 [sg] ) } 
then 

{ (s0 ,5 , the man V P2 '5 [sg] ) } Xrf. { (V P2 '5 [sg] , eats the apples) } 
{ (s0 ,5 , the man eats the apples ) } 

One remarks that the last substitution is the identity. It can be any substitution because there are no free variables. If 
the axiom was associated with the variable Z then the substitution would be ( Z � s g) .  

6 Conclusion 

The presentation of first-order terms in a semi-lattice frame suggests the extension to feature structures, especially for 
hierarchies of types which are distributive lattices (see Carpenter [5]) because they are equivalent to a semiring structure. 

In case of cyclic grammars and if limit computations cannot be provided to solve the encountered equation systems, 
one can think of approximating the solution with the help of abstract interpretation (Cousot and Cousot [7]) :  instead of 
( A, +A , xA , OA , IA ) ,  one can consider (AU , +An , XA n , OA n ,  IAn ) with an abstraction function 0: A -4 AU which must be 
a semiring morphism. Naturally, A U must be chosen so that limit computations are possible in Att . Recall that cyclic 
grammars are usually proscribed by formalisms from computational linguistics, however introducing cycles may be an 
elegant manner to cope with ill-formed sentences, and then, an approximation just injures the error recovery. 

Earley' s algorithm is essentially bottom-up (the final information is synthesized) but the search space is reduced by a 
top-down phase (prediction), and we claim that each syntactic operation can be performed (by morphism) in the decoration 
domain. In Left Corner, these predictions are statically performed. This suggests that prediction computations could also 
be performed in the decoration domain, allowing to prune some wrong parses earlier, and possibly statically. 
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A CASE STUDY IN 
OPTIMIZING PARSING SCHEMATA 

BY DISAMBIGUATION FILTERS 
Eelco Visser Programming Research Group University of Amsterdam visser@acm.org 

Abstract 
Disambiguation methods for context-free grammars enable concise specification of programming languages by 

ambiguous grammars. A disambiguation filter is · a function that selects a subset from a set of parse trees
the possible parse trees for an ambiguous sentence. The framework of filters provides a declarative description of 
disambiguation methods independent of parsing. Although filters can be implemented straightforwardly as functions 
that prune the parse forest produced by some generalized parser, this can be too inefficient for practical applications. 

In this paper the optimization of parsing schemata, a framework for high-level description of parsing algorithms, 
by disambiguation filters is consider�d in order to find efficient parsing algorithms for declaratively specified dis
ambiguation methods. As a case study the optimization of the parsing schema of Barley's parsing algorithm by 
two filters is investigated. The main result is a technique for generation of efficient LR-like parsers for ambiguous 
grammars disambiguated by means of priorities. 

1 Introduction The syntax of  programming languages is  conventionally described by context-free grammars. Although programming languages should be unambiguous, they are often described by ambiguous grammars because these allow a more natural formulation and yield better abstract syntax. For instance, consider the following grammars. The first, ambiguous grammar gives a clearer and more concise description of arithmetic expressions than the second unambiguous one. 
l l

a
1 1  -> E l l

a
1 1 -> V T -> E 

E 1 1 + 11  E -> E E 1 1 + 11  T -> E V -> T 
E l l * I I E -> E T l l * I I V -> T 
II ( I I  E I I

) 
I I  -> E II ( I I  E I I

) 
I I  -> V To obtain an unambiguous specification of a language described by an ambiguous grammar it has to be disambiguated. For example, the first grammar above can be disambiguated by associativity and priority rules that express that E 11 * 1 1 E -> E has higher priority than E 1 1 + 1 1  E -> E and that both productions are left associative. In the second grammar these disambiguation rules have been encoded in the grammar itself by means of extra non-terminals. In Klint and Visser (1994) we have set up a framework for specification and comparison of disambiguation methods. In this framework a disambiguation method is described as a filter on sets of parse trees. A disambiguation filter is interpreted by parsing sentences according to the ambiguous context-free grammar with some generalized parsing method, for instance Generalized LR parsing (Tomita, 1985, Rekers, 1992 ) ,  and then prune the resulting parse forest with the filter. Because this method of specification of disambiguation is independent of parsing, a language definition can be understood without understanding a parsing algorithm and it can be implemented by any generalized parser. Although filters provide a uniform model for the description of disambiguation, they are too inefficient for several applications because all possible parse trees for a sentence have to h e  built before the intended ones are selected. (The number of possible parse trees for the first grammar above grows exponentially with the length of strings. ) The optimization problem for filters is to find an efficient parser for the combination of a context-free grammar and a disambiguation filter. The filter can be used to prevent parse steps that lead to 
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parse t rees t hat would be removed by the filter after parsing. Parsing schemata, introduced by Sikkel (1993, 1994) , are high-level descriptions of parsing algorithms t hat abstract from control- and data-structures and provide a suitable framework for the study of the interaction between filters and parsers. Since it is not clear how to solve the optimization problem in general, if that is possible at all, an instance of the problem is studied in this paper, i . e . ,  the optimization of the underlying parsing schema of Earley's ( 1970) parsing algorithm by a filter for disambiguation by priorities. This method, which is the disambiguation method of the formalism SDF (Heering et al. , 1989) , interprets a priority relation on context-free productions as two consecutive filters. The first selects trees without a priority conflict. The second selects trees that are minimal with respect to a multi-set ordering on t rees induced by t he priority relation . The main result of t his paper is a parsing schema for parsing with priorities. The schema specifies a complete implementation of parsing modulo priority conflicts and a partial implementation for t he multi-set order. The schema can be implemented as an adaptation of any parser generator in the family of LR parser generators. The resulting parsers yield parse t rees without priority conflicts. The method of specifying a disambiguation method by a filter and applying it to optimize the parsing schema of some parsing algorithm appears to be fertile soil for growing new parsing algorithms from old ones. The rest of the paper is structured as follows. In §2 some preliminary notions are defined .  In §3 disambiguation filters are defined. In §4 parsing schemata are informally introduced. In § 5  priority rules and the notion of priority conflict are defined and a parsing schema optimized for the priority conflict filter is derived. In §6 t he relation between Earley parsing and LR parsing is discussed and it is shown how optimization results can be translated from the former to t he latter. Furthermore, the results are extended to SLR(l)  parsing. In §7  the multi-set filter induced by a priority declaration is defined and a partial optimization of the Earley schema for t his filter is derived. The two optimizations can be combined in a single schema, obtaining an efficient implementation of disambiguation with priorities. 
2 Preliminaries 

Definition 2.1 (Context-free Grammar) A context-free grammar 9 is a t riple (VN , Vr , P) , where VN is a finite set of nonterminal symbols ,  Vr a finite set of terminal symbols ,  V the set of symbols of 9 is VN U Vr , and P(Q) = P � V* x VN a finite set of productions. We write a ----+ A for a production p = (a, A) E P. □ The a ----+ A notation for productions (instead of the traditional A ----+ a) is a convention of the syntax definition formalism SDF to emphasize the use of productions as mixfix function declarations. The string rewrite relation ----+g induced by a context-free grammar is therefore also reversed ,  from a generation relation to a recognition relation. Repeated application of productions rewrites a string to its syntactic category. The statement w ----+ * A means that the string w can be reduced to the symbol A. Observe t hat we do not distinguish a start symbol from which sentences are derived. Each nonterminal in VN generates a set of phrases as is defined in the following definition. 
Definition 2 .2  (Parse Trees) A context-free grammar 9 generates a family of sets of parse trees T(Q) (T(9) (X) I X  E V) ,  which contains the minimal sets T(Q) (X)  such that 

X E V  X E T(Q) (X)  Ai . . .  An ----+ A E P(Q) ,  t 1 E T(9) (A1 ) ,  . . .  , tn E T(Q) (An ) [t1 . . .  tn ----+ A] E T(Q)(A) We will write to: for a list t 1 . . .  tn of t rees where a is t he list of symbols X1 .. . Xn and ti E T(Q) (Xi ) for 1 :s; i :s; n. Correspondingly we will denote the set of all lists of t rees of type a as T(9) (a) . Using this notation [t1 . . .  tn ----+ A] can be written as [to: ----+ A] and the concatenation of two lists of t rees to: and t13 is written as to:t/3 and yields a list of t rees of type a(3. The yield of a tree is the concatenation of its leaves . The language L(Q) defined by a grammar 9 is the family of sets of strings L(Q) (A) = yield(T(Q) (A) ) .  □ 
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Definition 2.3 (Parsing) A parser is a function II that maps each string w E Vy to a set of parse trees . A 
parser II accepts a string w if III ( w) I > 0. A parser II is deterministic if III( w) I ::; 1 for all strings w. A parser 
for a context-free grammar 9 that accepts exactly the sentences in L(Q) is defined by 

II(Q) (w) = {t E T(Q) (A) I A E VN , yield(t) = w }  Example 2 .4  A s  an example consider the ambiguous grammar 
l l

a
1 1  -> E 

E 1 1 + 1 1  E -> E 
E l l * I I E -> E 
II ( I I  E I I ) I I  -> E 

from the introduction. According to this grammar the string a +  a *  a has two parses: II(Q) (a + a * a) = { [ [ [a -+ E] + [a -+  E] -+  E] * [a -+  E] -+  E] [ [a -+ E] + [[a -+ E] * [a -+  E] -+  E] -+  E] } 

3 Disambiguation Filters 

□ 

□ 

Definition 3. 1 (Disambiguation Filter) A filter F for a context-free grammar 9 is a function F :  p(T) -+ 
p(T) that maps sets of parse trees to sets of parse trees, where F( <I>) � <I> for any <I> � T. The disambiguation 
of a context-free grammar 9 by a filter F is denoted by 9 / F. The language L (Q / F) generated by 9 / F is the 
set L(Q IF) = { w E v,; I :3<I> � T(Q) : yield ( <I>) = { w} A F( <I>) = <I> }  

The interpretation of a string w by 9 / F is the set of trees F(II(Q) ( w)) .  A filter F2 is also applicable t o  a 
disambiguated grammar 9 / F1 , which is denoted by ( 9 /Fi ) /  F2 and is equivalent to 9 / ( F2 o F1 ) .  □ 
Several properties and examples of filters are discussed in Klint and Visser ( 1994) . In §5 and § 7  two examples of 
disambiguation filters will be presented. The optimization problem for disambiguation filters can be formulated 
as follows. Definition 3.2 ( Optimization by Filter) Given a context-free grammar 9 and a filter F, a parser 1r is an 
optimization of II(Q) if for any string w 

F(II(Q) (w) )  � 1r(w) � II(Q) (w) 

We say that 7r approximates F o II(Q) . 7r is an optimal approximation if 1r(w) = F(II(Q) (w) )  for any w. □ 

4 Parsing Schemata 

Parsing schemata (Sikkel, 1993, 1997) abstract from the details of control- and data-structures of full parsing 
algorithms by only considering the intermediate results of parsing. A parsing system is a deduction system that 
specifies how from a set of hypotheses ( the tokens of a sentence) assertions ( the intermediate parser states) can 
be derived according to a set of deduction rules for some context-free grammar. A parsing schema is a parsing 
system parameterized with a context-free grammar and a sentence. Below parsing schemata are introduced 
informally by means of an example. A formal treatment can be found in Sikkel (1993, 1997) . A related 
approach is the deductive parsing method of Shieber et aL ( 1995) , where inference rules describing parsing 
algorithms much like parsing schemata are interpreted as chart parsers in Prolog. 

Definition 4 . 1  defines a parsing schema for Earley's ( 1970) parsing algorithm. Its specification consists of 
an implicit definition of the set of hypotheses H, the definition of a set of items I and the definition of a set 
of deduction rule schemata. For each string a1 . . .  an the set of hypotheses H is the set containing the items 
[ai , i - 1, i) for 1 :::; i :::; n. The set of items I is the domain of the deduction system, i.e . ,  the items are the 
subject of deductions. According to this definition, Earley items are of the form [cu f3 -+ A, i, j] , where a.{3 -+ A 
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is a production of grammar Q .  The indices refer to positions in the string a1 . . .  an . The intention of this definition is that an item (a • /3 ➔ A, i , j ]  can be derived if ai+l . . .  aj -+g a and a1 . . . aiA, -+g B, for some non-terminal B and string of symbols , . The deduction rules ( I )  through (C) describe how these items can be derived. Rule (I) , the initialization rule, specifies that the item [ •a ➔ A, 0, 0] can always be derived. The 
predic t rule (P ) , states that a production 1 ➔ B can be predicted at position j ,  if the item [a • B/3 ➔ A, i ,  j ]  has already been derived. Finally, the rules (S) and (C) finalize the recognition of a predicted and recognized token or nonterminal-witnessed by the second premise-by shifting the • over the predicted symbol . Definition 4.1  (Earley) Parsing schema for Earley's parsing algorithm (Earley, 1970) . 

a/3 ➔ A E P (Q) , 0 ::; i ::; j [a • /3 ➔ A., i , j ]  E I  
[•a ➔ A, 0 , 0] [a • B/3 ➔ A, i , j ]  [•, ➔ B, j , j ]  [a • a/3 ➔ A, i , j ] ,  [a, j , j + l] 

[aa • /3 ➔ A, i , j + 1) [a • B/3 ➔ A, h, i] , b• ➔ B, i , j] 
[aB • /3 ➔ A., h, j ]  

(I) 
(P) 

(S) 
(C) 

□ 

A derivation according to a parsing schema is a sequence 10 , • . .  , Im of items such that for each i (0 ::; i ::; m) 
Ji E H or there is a J � {10 , . . .  , Ii- d such that J f-- Ii is (the instantiation of) a deduction rule. (Observe that if J is empty this corresponds to the case of using a rule without premises, such as the initialization rule . )  A string w = a1 . . .  an is in the language of  context-free grammar 9 if  an item [a• ➔ A, 0 ,  n] i s  deri�able from the hypotheses corresponding to w in the instantiation of the parsing schema in Definition 4 . 1  with Q. An item of the form [a• ➔ A, 0, n] is called a final item and signifies that the entire string is recognized as an A phrase. The predicate w f--� I expresses that there is a derivation 10 , . . .  , Im = I of the item I from the hypotheses generated from string w in the instantiation of parsing schema P with grammar 9 .  The schema in  Example 4 . 1  only defines how strings can be recognized. Since disambiguation filters are defined on sets of trees and not on items, a way to relate items to trees is needed. Definition Definition 4 .3 gives an extension of the schema in Definition 4 . 1  that describes how trees can be built as a result of the deduction steps . First we need a definition of partial parse tree Definition 4.2 (Partial Parse Tree) A partial parse tree is a tree expression of the form [ta ➔ A] where 
ta E T(Q) (a) and such that the tree can be _ completed to a normal tree by adding a list of trees t13 , i .e . , [ta t,a ➔ A] E T(Q) (A) . (which requires a/3 ➔ A E P (Q) . )  □ 

The items in the schema have the form [a • /3 ➔ A., i, j] ⇒ [ta ➔ A] and express that from position i to position j a phrase of type a has been recognized and the partial parse tree [t0 ➔ A] has been built as a result . The set of hypotheses H is changed such that token items are annotated with trees, i .e . , for each token ai in the string [ai , i - 1 ,  i) ⇒ ai E H. Note how the shift and complete rules extend partial parse trees. Definition 4.3 (Earley with Trees) Parsing schema for Earley's algorithm with construction of parse trees. 
a/3 ➔ A E P (Q) , 0 :::; i :!; j ,  ta E T(Q) (a) [a • /3 ➔ A., i, j] ⇒ [ta ➔ A] E I 

[•a ➔ A, 0, 0] ⇒ [➔ A] [a • B/3 ➔ A, h, i] ⇒ [ta ➔ A] 
[•1 ➔ B, i , i] ⇒ [➔ B] [a • a/3 ➔ A, h , i] ⇒ [ta ➔ A] , [a, i , i + 1) ⇒ a 

[aa • /3 ➔ A., h, i + 1) ⇒ [ta a ➔ A] 
[a • B/3 -+ A, h , i] ⇒ [ta ➔ A] , [,• ➔ B, i , j ]  ⇒ tB 

[aB • /3 ➔ A, h, j ]  ⇒ [tatB ➔ A] 
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( I )  
(P) 

(S) 
(C) 



[a , 0, 1] 
[+ , 1, 2] 
[a , 2 , 3] 
[•E + E ➔ E, 0, 0] 
[•a ➔ E, 0, 0] 
[a• ➔ E, 0, 1] 
[E • +E ➔ E, 0, l] 
[E + •E ➔ E, 0 ,  2] 
[•a ➔ E, 2 , 2] 
[a• ➔ E, 2 , 3] 
[E + E• ➔ E, 0, 3] 

⇒ a 
⇒ + 
⇒ a 
⇒ [➔ E] 
⇒ [➔ E] 
⇒ [a ➔ E] 
⇒ [ [a ➔ E] ➔ E] 
⇒ [ [a ➔ E] + ➔ E] 
⇒ [➔ E] 
⇒ [a ➔ E] 
⇒ [ [a ➔ E] + [a ➔ E] ➔ E] Figure 1 :  Derivation with the parsing schema in Definition 4.3 and the grammar from Example 2.4. 

□ Figure 1 shows the derivation of a parse tree for the string a +  a with the grammar from Example 2.4. The following theorem states that parsing as defined in Definition 2.3 and derivation with Earley's parsing schema in Definition 4.3 are equivalent. Theorem 4.4 ( Correctness) Parsing schema Earley with trees derives exactly the trees produced by a parser, 
i. e . ,  { t  I A E VN , w  �i-3 [a• ➔ A, 0, n] ⇒ t} = Il(Q)(w) The following proposition states that the decoration of items with partial parse trees makes no difference to what can b e  derived. Items in a parsing schema can b e  annotated with trees as long as they do not affect the deduction. Proposition 4.5 Parsing schema Earley with trees preserves the derivations of parsing schema Earley, i. e . ,  w �i- 1 [a • (3 ➔ A, i ,  j] � :3t0 E T(Q) (a) : w �i-3 [a • (3 ➔ A, i ,  j] ⇒ [ta ➔ A] The optimization problem can now be  rephrased as : Definition 4.6 ( Optimizing Parsing Schemata) The optimization of a parsing schema P by a disambiguation filter :F constitutes in finding a derived parsing schema P' such that 

F(IT(Q) (w) ) � {t I w �r I ⇒ t} � { t  I w �t I ⇒ t }  where I is some final item. □ 

5 Priority Conflicts We consider the optimization of parsing schema Earley by two disambiguation filters that are used to interpret the priority disambiguation rules of the formalism SDF of Heering et al. (1 989). This disambiguation method is also used in the generalization of SDF to SDF2 presented in Visser (1997a) . The sub ject of this section is a filter that removes trees with a priority conflict. This filter is similar to the conventional precedence and associativity filter. The declaration of priority rules will also b e  used in the definition of the multi-set filter in §7 .  Definition 5 .1  (Priority Declaration) A priority declaration Pr(Q) for a context-free grammar Q is a tuple (L, R, N, >) , where E9 � P x P for E9 E {L, R, N, >} ,  such that L, R and N are symmetric and > is irreflexive and transitive. □ 

214 



The relations L ,  R and N declare left- , right- and non-associativity, respectively, between productions . The relation > declares priority between productions. A tree with signature PI can not be a child of a tree with signature p2 if p2 > PI · The syntax of priority declarations used here is similar to that in Earley ( 1975) . In SDF (Heering et al. , 1989) a formalism with the same underlying structure but with a less Spartan and more concise syntax is used . In SDF one writes left for L ,  right for R and non-assoc for N .  We will use both notations. Definition 5 .2  (Priority Conflict) The set conflicts(Q) generated by the priority declaration of a grammar 
g is the smallest set of partial trees of the form [a [,6 ➔ Bh ➔ A] defined by the following rules. 

aB'Y ➔ A > ,6 ➔ B E Pr(Q) [a [,6 ➔ Bh ➔ A] E conflicts(Q) 'Y -::J E ,  ,6 ➔ B (right U non-assoc) B"'( ➔ A E Pr(Q) [[,6 ➔ Bh ➔ A] E conflicts(Q) a -::J E ,  ,6 ➔ B (left U non-assoc) aB ➔ A E Pr(Q)  [a[,6 ➔ B] ➔ A] E conflicts(Q) 
This set defines the patterns of trees with a priority conflict. 

Using the definition of priority conflict we can define a filter on sets of parse trees . 
D 

Definition 5 .3  (Priority Conflict Filter) A tree t has a root priority conflict if its root matches one of the tree patterns in conflicts(Q) . A tree t has a priority conflict, if t has a subtree s that has a root priority conflict. The filter ;:Pr is now defined by ;:Pr (<I>) = { t E <I> I t has no priority conflict} .  The pair (9 ,  Pr) defines the disambiguated grammar g /;:Pr . □ Example 5 .4 Consider the following grammar with priority declaration 
syntax 

" a" -> E E " * "  E -> E {left} E " + "  E -> E {left} priorit ies  E " * "  E -> E > E "+ "  E -> E 
Here the attribute left of a production p abbreviates the declaration p L p. The tree 

[[ [a ➔ E] + [a ➔ E] ➔ E] * [a ➔ E] ➔ E] 

has a priority conflict over this grammar-it violates the first priority condition since multiplication has higher priority than addition. The tree 
[ [a ➔ E] + [ [a ➔ E] * [a ➔ E] ➔ E] ➔ E] 

does not have a conflict. These trees correspond to the (disambiguated) strings (a + a) * a and a +  (a * a) , respectively. The implication operator in logic is an example of a right associative operator: a ➔ a ➔ a should be read as a ➔ ( a ➔ a) . Non-associativity can be used to exclude unbracketed nested use of the equality operator in expressions using the production E " =" E -> E. □ 
The priority conflict filter induced by a priority declaration can be used to optimize the Earley parsing schema. By the following observation a more general optimization problem can be solved. Definition 5 .5  {Subtree Exclusion) A subtree exclusion filter based on a set Q of excluded subtrees is defined by 

where t <1 Q (t is excluded by Q) if t has a subtree that matches one of the patterns in Q. □ 
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The optimized parsing schema should not derive trees that contain a subtree contained in Q. As is shown in definition 4. 3 such patterns are constructed in the complete rule and predicted in the predict rule. The construction of trees with priority conflicts can be prevented by adding an extra condition to these rules . This leads to the following adaptation of the Earley parsing schema. Definition 5.6 (Earley modulo Q) Parsing schema Earley modulo a set Q of parse trees of the form [a{-y ➔ B],B ➔ A] , which are excluded as subtrees . The set of items I and the deduction rules (H), (I) and (S) are copied unchanged from Definition 4. 3.  [a • B,B ➔ A, h , i] ⇒ [ta ➔ A] , [a ['Y ➔ B],B ➔ A] � Q 
[•-y ➔ B, i , i ] ⇒ [➔ B] [a • B,B ➔ A, h ,  i ] ⇒ [ta ➔ A] , ['Y• ➔ B, i , j] ⇒ tB , [a ['Y ➔ B],B ➔ A] � Q 

[aB • ,6 ➔ A, h, j] ⇒ [tatB ➔ A] 

(P) 
(C) 

□ The following theorem states that parsing schema in Definition 5.6 is an optimal approximation of the composition of a subtree exclusion filter (with trees of the form [a[-y ➔ B],B ➔ A]) and a generalized parser. Theorem 5.7 ( Correctness) Parsing schema Earley modulo Q derives exactly the trees produced by the com
position of a parser and a subtree exclusion filter for Q, i.e. , {t E T(Q) (A) I A E VN , w 1-l'b [A ➔ a• , O, n] ⇒ t} = FQ (II(Q) (w) )  This is proved using two lemmas. The soundness lemma asserts that no intermediate parse tree derived with the deduction rules has an excluded subtree (i. e. , a priority conflict). The completeness lemma states that every parse tree without a priority conflict can be derived. The completeness lemma is obtained by reverting the implication of the soundness lemma. In these lemmata we use the notion of a context tB [•] that represents a tree context of type B with one subtree that is a hole • · The instantiation tB [tA ] of a context tB [•] is the tree obtained by replacing the • subtree by the tree tA . Lemma 5.8 (Soundness) For all context-free grammars 9,  strings w = a1 . . .  an E v,; , symbols A E VN and 
a, ,6 E V* , natural numbers i � j E N, and trees ta E T(Q) (a) such that a,B ➔ A E P(9) , and Q a set of parse 
tree patterns of the form [a ['Y ➔ B],B ➔ A] we have that 

w �t-6 [a • ,6 ➔ A, i , j] ⇒ [ta ➔ A] yield(tA = [ta,6 ➔ A] ) = ai+l . . .  aj,6, :3tB [•] E T(Q) (B) : ,tB [tA ] <l Q I\ yield(tB [A] ) = a1 . . .  aiA8 
6 From Earley to LR There is a close correspondence between Earley's algorithm and LR parsing (Knuth, 1965). In fact, parsing schema Earley in Definition 4.1 can also be considered the underlying parsing schema of an LR(O) parser. The main difference between the algorithms is that in LR parsing the instantiation of the parsing schema with a grammar is compiled into a transition table. Definition 6 .1  defines a parsing schema for 'compiled' LR(O) parsing. The intermediate results of an LR parser, the LR states , are sets of LR items closed under prediction, defined by the function closure .  The function goto computes the set of items that results from a state by shifting the dot in the items over a symbol X. The schema defines three deduction rules. Rule (I) generates the initial state consisting of the set of all items [•a ➔ A] predicting all productions of the grammar. Rule (Sh) obtains a new state from a state by shifting a terminal. Rule (Re) reduces a number of states to a new state upon the complete recognition of a production B1 . . .  Em ➔ B.  It is clear that the function closure corresponds tq the predict rule (P) in Earley, that (Sh) corresponds to (S) and that (Re) corresponds to (C). A goto-graph is a precomputation of the goto function. Figure 2 shows a goto-graph for the grammar of Example 2 . 4. 216 



Definition 6 . 1  (LR(0) Parsing) LR items are Earley items without indices .  The items used in LR parsing are sets of LR-items with a pair of indices .  
LLR = { [a • ,6 ➔ A] I a,6 ➔ A E P(Q) } I = { [<P ,  i ,  j] I <P � LLR } The closure of a set of items <P is the smallest set of items containing <P and closed under prediction, i . e. ,  

<P � closure( <P )  [a • B,6 ➔ A] , 1 ➔ B E P(Q) [ •1 ➔ B] E closure( <P) Given a symbol X the goto function maps a set of items to the closure of the set obtained by shifting all items with X.  goto(X, <P)  = closure( { [a.X • ,6 ➔ A] I [a • X ,6 ➔ A] E <P } )  Given these functions an LR parser i s  defined1 by the following deduction rules. [ { [•a ➔ A] I a ➔  A E 9} , 0 , 0] 
[<P , h, i] , [a, i, i + 1] [goto(a, <P) , h, i + 1] [,:r,. [a•B,8--+A] h ,;] [,:r,. [B1 • . . .  B1., --+ B] . . ] 'l' ' ' � ' 'l' 1 , 1, ,  i 1  , · · · [goto(B, <P) , h, ik ]  

(I) (Sh) (Re) 
□ In the same way that an LR parser is derived from the Earley schema an LR parser can be derived from the optimized parsing schema of Definition 5 . 6  by adapting the closure and goto functions. Definition 6.2 (LR(0) parsing modulo Q) Items are only predicted if they do not lead to a conflict . [a • B,6 ➔ A] , 1 ➔ B E P(Q) , [a [, ➔ B],6 ➔ A] � Q [ •1 ➔ B] E closure( <P)  Given a production 1 ➔ B the goto function maps a set of  items to the closure of  the set obtained by shifting all items with 1 ➔ B for which that does not lead to a conflict . goto(, ➔ B,  <P) = closure( { [aB • ,6 ➔ A] I [a • B,6 ➔ A] E <P /\ [a [, ➔ B]/J ➔ A] � Q} )  
□ Note that the goto function has to b e  parameterized with the production that is recognized instead of with just the symbol. (For the (Sh) rule the old goto function is used. )  Figure 3 shows the goto-graph for the disambiguated grammar from Example 5 .4 .  

6.1 SLR(l )  Parsing The LR(0) goto graph in Figure 3 contains conflicts that are easy to prevent with the SLR(l )  (Simple LR(l ) )  extension of  LR(0) parsing due to  DeRemer (1971) . The SLR algorithm i s  based on  the  observation that a reduction is only useful if the next symbol in the string can follow the symbol that is recognized by the reduction, i . e. ,  the right hand-side of the production that is reduced. This is expressed in the following adaptation of the LR(0) parsing schema of Definition 6 .1. The function first (a,  \JI) yields the set of symbols that can start a phrase derived from a string of symbols a followed by a symbol from the set \JI .  The expression follow(B ,  \JI)  denotes the  set of  symbols that can follow symbol B in  a phrase that i s  followed by a symbol from the  set \JI .  The reduce rule now only applies i f  a production has been recognized and the  next symbol in  the  string can follmv the right-hand side of the production. 
1 This definition gives the intermediate results of an LR parser, not its exact control flow. 
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•E + E ➔ E  • E * E ➔ E __ E_ • a  ➔ E  

E * •E ➔ E ➔ E --- E * E• ➔ E * 

Figure 2: LR(O) goto graph for the grammar of Example 2.4 

E * E ➔ E  �---� �---� •E + E ➔ E  a ➔  E • E * E➔ E 1----• a ➔ E  
E * •E➔ E a ➔  E E * E•➔ E ➔ E 

• E *  E➔ E 
Figure 3: LR(O) goto graph for the _ grammar of Example 5.4.  

Definition 6.3 (SLR(l)  Parsing) The set of first symbols of a phrase generated by a string a followed by an 
element from \[I ,  is the smallest set first ( a, w) such that 

first ( E, \[I )  = \[I 

first(aa, w )  = {a} 
first (Aa ,  w )  = U,e➔AEP(9 ) first (,Ba, w )  

The set o f  symbols that can follow a symbol B i n  a phrase generated by 9 followed b y  a symbol from \[I i s  the 
smallest set such that 

aB,6 ➔ A E P (Q) 
follow(B,  w) 2 first (,8,  follow(A,  w) )  
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state II a I * 
0 s 1 1 r 1 3 s 8 4 5 s 1 7 s 8 8 s 1 9 r 2 

+ r 1 s 5 s 5 r 3 r 2  

$ 11 1 2 3 4 3 3 4 2 r 1 ace ace 7 7 r 3 9 r 2 

(1) a ➔ E (2) E *  E ➔ E (3) E + E  ➔ E (4) E $ ➔ S (2) > (3) 
(2)  L (2) (3) L (3) Figure 4: SLR(l) table for the grammar of example 5 .4 .  s n denotes shift to state n, r n denotes reduce with production n, ace denotes accept. The right part of the table contains the goto entries for the productions .  This parse table corresponds to the goto graph of figure 3 .  The reduce rule of  the schema in  Definition 6 .1  i s  restricted by  requiring that the next symbol in the string is an element of the follow set of B.  [,:r,. [a•B.6➔A] h "] [,:r,. [B1 e . . .Bk ➔ B] · · ] [,:r,.[B1 . - -Bk •➔B] . .  ] 

'±' , , z , '±' 1 , z , z 1 , . . .  , '±'1,; , z , z 1., , 
[a , i1,; , i1,; + 1] , a E follow(E, { $} ) [goto(E, <I>) ,  h, i,.,] 

□ The SLR(l ) schema can be adapted in the same way as the LR(O) schema to account for priority conflicts (or subtree exclusion) . However,  the definition of follow above is too weak for this extended schema. For instance, in the grammar of Example 5 .4 ,  the token * is an element of the follow set of E. However, * can not follow an 
E if it is a E + E ➔ E, i .e . , if a reduction is done with E + E ➔ E, no action for * is possible.  The following parsing schema optimizes the SLR(l) parsing schema by defining the follow set for a production instead of for a symbol and adapting the reduce rule accordingly. Figure 4 shows the SLR(l) table for the grammar of Example 5 .4 .  Definition 6.4 (SLR(l ) Parsing Modulo Q) This schema defines SLR(l ) parsing modulo a set Q of parse trees of the form [o: [,B ➔ Eh ➔ A] using the definition of the closure and goto functions from the parsing schema in Definition 6 .2  and the definition of first from Definition 6.3 .  o:E-y ➔ A E P(9) , [o: [,B ➔ Eh ➔ A] � Q follow(,B ➔ E, \JI) ;;;? first(,B, follow(o:E-y ➔ A, \JI) )  The reduce rule i s  adapted t o  the new definition of follow. 

6 .2  Discussion 

[,:r,. [a•B,6➔A] h ·] [,:r,. [B1 • - - -Bk -+B] • • ] [,:r,. [B1 . . .  Bk •-+B] . .  ] 
'±' , , z , '±' 1 , z , z 1 , . .. , '±'1,; , z , z 1,; , 

[a , i 1., ,  i 1., + 1] , a E follow(E1 . . .  E1., ➔ E,  {$} ) [goto(E1 . . .  E,., ➔ E,  <I>) ,  h, i 1.,] 
(Re) 

□ 

Conventional methods for disambiguating grammars that apply to LR parsing disambiguate the grammar by solving conflicts in an existing LR table.  The classical method of Aho et al. (1975) uses associativity and precedence information of a limited form-a linear chain of binary operators that have non-overlapping operator syntax-to solve shift/reduce conflicts in LR tables . The method is based on observations on how such conflicts should be solved given precedence information, without a real understanding of the cause of the conflicts. Aasa (1991, 1992) describes filtering of sets of parse trees by means of precedences. Thorup (1994a) describes a 219 



method that tries to find a consistent solution for all conflicts in an LR table starting from, and producing a set of excluded subtrees . All these methods fail on grammars that are inherently non-LR(k) , i .e . ,  for whi'ch there is no complete solution of all conflicts in any LR table for the grammar. An example is the grammar 
syntax 

-> L 
L [\ \t\n] -> L 
"a" -> E 
E L " * "  L E  -> E {left} 
E L "+"  L E  -> E {left} 

priorities 
E L " * "  L E  -> E > 
E L "+"  L E  -> E that models arithmetic expressions with layout. The tokens of expressions can be separated by any number of spaces , tabs or newlines, which requires unbounded lookahead. Such grammars are the result of integrating the lexical syntax and context-free syntax of a language into a single grammar as is proposed in Visser ( 1997b) . Parsers for such grammars are called scannerless parsers because the tokens they read are the characters from the input file. This grammar is disambiguated completely (it has no ambiguous sentences) with priorities , resulting in an LR table that contains some LR-conflicts ,  but that does not produce trees with priority conflicts. In combination with a nondeterministic interpreter, e.g. , Tomita's generalized LR algorithm (Tomita, 1985) , of the parse tables this gives an efficient disambiguation method for languages on the border of determinism. Thorup ( 1994b) describes a transformation on grammars based on a set of excluded subtrees to disambiguate a grammar. This method could be used to generate conflict free parse tables as far as possible. Because such a transformation introduces new grammar symbols , more states and transitions are needed in the parse table than for the original grammar. Since the method defined above also introduces some extra states ,  it would be interesting to compare the LR tables produced by both methods . 

7 Multi-set Filter 

The multi-set ordering on parse trees induced by a priority declaration solves ambiguities not solvable by priority conflicts. A certain class of ambiguities solved by the multi-set order does not need the full power of multi-sets, only a small part of both trees are actually compared. Based on this observation an optimization of the Earley schema that partially implements the multi-set filters can be defined. Definition ·7 .1  (Multi-sets) A multi-set is a function M : P (Q) ➔ N that maps productions to the number of their occurrences in the set . The union Ml±JN of two multi-sets M and N is defined as (Ml±JN) (p) = M (p)+N(p) . The empty multi-set is denoted by f/J ,  i .e. , f/J (p) = 0 for any p. We write p E M for M(p) > 0. A multi-set with a finite number of elements with a finite number of occurrences can be written as 1\1 = {P1 , P1 , . . .  , P2 , . . .  } , where 
M (p) is the number of occurrences of p in the list. A parse tree t is interpreted as a multi-set of productions by counting the number of times a production acts as the signature of a subtree of t ,  where a ➔ A is the signature o� [ta ➔ A] . □ 

The following definition due to Jouannaud and Lescanne ( 1982) defines an ordering on multi-sets .  
Definition 7.2 (Multi-set Order) Given some priority declaration Pr(9) , the order -<Pr( Q ) on multi-sets is defined as 

l\ll -<Pr(9 ) N � 

M =/:- N A Vy E M : M (y) > N(y) ⇒ 3x E N : y >Pr( Q ) x A M (x) < N(x) 

□ 

Definition 7.3 (Multi-set Filter) Given a priority relation Pr(9) , the multi-set filter p-<
P

,( Q l is defined by 
P r( Q ) p ( r! ) :F-< (<I>) = { t E <I> I ,3s E <I> : s -< r � t}  
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R + •R --+ R • R + R --+ R  R • +R--+ R + • r  --+ R  R R + R•--+ R • N  --+ R  R • +R--+ R • N + N--+ N  • n  --+ N  •N + N --+  N r•--+ R 
• R + R--+ R N • n  --+ N  N• --+ R  • r  --+ R  N • +N--+ N • N  --+ R n•--+ N 

n N • +N--+ N • N + N--+ N  N + N•--+ N N• --+ R  + N N • +N--+ N • n  --+ N  Figure 5 :  Goto graph for the grammar of Example 7 .4  The motivation for this filter is  that it prefers parse t rees that are constructed with the smallest possible number of productions of the highest possible priority. Example 7.4 Consider the grammar syntax "n"  -> N N "+"  N -> N N -> R 
"r"  -> R R "+ "  R -> R that describes the language of 'naturals' and ' reals' with an overloaded addition operator. The sentence n + n can be parsed as [ [n --+ N] + [n ➔ N] ➔ N] and as [ [ [n ➔ N] ➔ R] + [ [n ➔ N] --+ R] ➔ R] . This ambiguity can be solved, choosing either the first or the second tree, by declaring one of the priority rules N "+ "  N -> N > R "+ "  R -> R or R "+" R -> R > N "+" N -> N Note that with the sec"and priority rule, the production N + N ➔ N is only used as a parse tree in a context where no R is allowed. Therefore, the first priority rule is assumed in further examples. □ The multi-set order is too strong for this kind of disambiguation. To solve the ambiguity there is no need to compare the complete t rees, as the multi-set order does. Comparing the patterns [[ N + N ➔ N] ➔ R] and 

[ [N ➔ R] + [N ➔ R] ➔ R] is sufficient . The goto graph corresponding to the Earley parser for the example grammar (Figure 5) shows that the partial phrase n+ causes a conflict ( in the left-most state at the bottom row) after completing the production [n ➔ N] . The parser can either shift with + or complete with the chain rule of N ➔ R. However, only after having seen what follows the + a decision can be made. In the following adaptation of the Earley parsing schema the cause of these early decision problems is solved by not predicting and completing chain production, but instead storing them in items. Definition 7.5 (Earley modulo Chain Rules) Let Ve be the set containing all chain symbols [C ➔ B] , where B and C are nonterminals in context-free grammar 9 and B = C or C ➔ g  B1 ➔g · · · ➔g Bm ➔g B, (m 2:: 0). Symbols [A ➔ A] and A are identified .  A production with chain symbols [C ➔ B] in its left-hand side is identifiable (member of grammar, priority relation) with a production where the chain symbols are replaced 221 
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R + R•--+ R 
R • +R--+ R 

[N ➔ R] + R•--+ R 
R • +R ➔ R  

N + N• ➔ N 
IE--------l [ N ➔ R] + 

1--------=� [N ➔ R]• ➔ R 
N • +N --+ N  
[N ➔ R] • +R--+ R 

Figure 6: Goto graph for grammar of Example 7.4 corresponding to parsing schema in Definition 7 .5 .  The item 
[ [N ➔ R] + [N ➔ R]• ➔ R] is present if the negative premise of rule (C2) is absent. 
with their heads B. The (I) and (S) rules are as usual. 

aJ3 --+ A E 9, lnJ3 1 # 1 V a/3 = a E Vr , O � i � j  
[a • J3 ➔ A, i ,  j] E I 

[a • B/3 ➔ A, h, i] , [C ➔ B] E Ve [•, ➔ C, i , i] [a • B/3 ➔ A, h, i] ,  b• ➔ C, i , j] ,  l/3 1  > 0 [a[C ➔ B] • J3 ➔ A, h, j] [a • B ➔ A, h, i] , b• ➔ C, i , j] ,  ,[a' • ➔ A' , h, j] , a' ➔ A' > aB ➔ A [a [C ➔ B]• ➔ A, h, j] 

(P) 

(Cl) 

(C2) 
□ 

The negative premise ,[a• ---t A, i, j] in combination with the condition A' ➔ a:1 > A ➔ a:B is used in rule (C2) to express that an item [a [C ➔ B]• ➔ A, h, j] can be derived from [a • B ➔ A, h, i] and b• ➔ C, i , j] only if no item [a'• ➔ A' , h, j] can be derived such that A' ➔ a' has higher priority than A ➔ aB. With the introduction of negative premises we leave the domain of parsing schemata as defined in Sikkel ( 1993) and this deserves a more thorough investigation than is possible in the scope of this paper. However, two points about this feature can be observed: ( 1 )  As used here the notion has a straightforward implementation in an LR-like compilation scheme: first construct the complete set of items and then choose the maximal items from it . (2) The priority relation > on productions is irreflexive by definition, which entails that rule (C2)  has no instantiation of the form 11 , h ,  ,[3 f- I3 that would make the schema inconsistent . 
Example 7.6 Figure 6 shows the goto graph for the grammar of Example 7.4 according to the parsing schema in Definition 7.5 .  The shift/reduce conflict between the items [N • +N ➔ N] and [N• ➔ R] is changed into a reduce/reduce conflict between the items [N + N • ➔ N] and [[N ➔ R] + [N ➔ R]• ➔ R] . If the negative premise of rule (C2) is taken into account the item [[N ➔ R] + [N ➔ R]• ➔ R] can not be derived, and is not present in the goto-graph. The conflict is solved. □ 

The method does not help for grammars where the ambiguity is not caused by chain rules , for instance consider the following example due to Kamperman ( 1992) 
syntax 

E E  -> E 
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" - "  E -> E 
E " - "  E -> E 

priorit ies 
E E -> E > 
" - "  E -> E > 
E " - "  E -> E It defines expressions formed by concatenation, prefix minus and infix minus. The methods developed in this paper can be combined into a parsing schema that handles both priority conflicts and the partial implementation of multi-set filters by adding the subset exclusion conditions to the (P), (Cl) and (C2) rules of the parsing schema in Definition 7 .5 .  As a bonus this combined parsing schema handles priority conflicts modulo chain rules. 

8 Conclusions In this  paper two disambiguation methods specified as a filter on sets of parse trees were considered. These filters were used to optimize parsers for context-free grammars by adapting their underlying parsing schema. The first optimization uses priority conflicts to prevent ambiguities. The resulting Earley parsers modulo priority conflicts are guaranteed not to produce trees with priority conflicts, even for grammars with overlapping operators, layout in productions or other problems that need unbounded lookahead. In combination with a GLR interpreter of the parse tables this gives an efficient disambiguation method for languages with unbounded lookahead. The second optimization covers a subset of the ambiguities solved by multi-set filters. Together these optimizations can be used in the generation of efficient parsers for a large class of ambiguous context-free grammars disambiguated by m eans of priorities. Parsing schemata provide a high-level description of parsing algorithms that is suitable for the derivation of new algorithms. The introduction of negative items was needed to express the optimization for the multiset filter and needs more research. This first experiment in implemenation of disambiguation methods from formal specifications encourages research into a fuller optimization of multiset filters and application of this approach to other disambiguation methods. The deductive parsing approach of Shieber et al. ( 1995) and its implementation in Prolog could be  used to prototype such optimized schemata. Deductive parsing consists in computing the closure of a set of axiom items under the inference rules of a schema, resulting in all items derivable for a sentence. Compiling the inference rule of a schema into a parse table for a specific grammar increases the efficiency of an algorithm,. since work is shifted from the parser into the parser generator. It seems feasible to generalize the compilation of Earley rules into LR tables to other schemata, thus obtaining a very declarative method for creating new parser generators. 
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Abstract ,,,----- _ This paper presents a new parsing method using statistical information extracted fre_m corpu� , especially for 
I{orean . The structural ambiguities are occurred in deciding the dependency relation between words in l{orean. 
\iVhile figuring out the correct dependency, the lexical associations play an important role in resolving the ambi
guities . Our parser uses statistical cooccurrence data to compute the lexical associations. In addition,  it can be 
shown that sentences are parsed deterministically by the global management of the association. In this paper, the 
global association t able( GAT ) is defined and the association between words is recorded in the GAT. The system is 
the hybrid semi-deterministic parser and is controlled not by the condition-action rule . but by the association value 
between phrases . \Vhenever the expectation of the parser fails ,  it chooses the alternatives using a chart to remove 
the backtracking . 

1 Introduction 
The association of words takes an important role in finding out the dependency relation among them . The associations among words or phrases are indicators of the lexical preference. :tvlany works have shown that the association value computed with statistical information makes good results in resolving structural ambiguities[·Hindle, 1 993 ;  :rviagerman , 1995 ;  Collins , 1 99(5 ) .  Statistical information has led recent researches for syntactic ana ysis not to the problem of recognizing sentences by given grammar but to that of finding the correct one in multiple parse trees . A chart parser has been used to produce all possibilities when a sentence is analysed .  However, it generates too many structures trying to find a correct one . vVhile reading a sentence, in many cases , a reader can make decisions without examining the entire sentence . A deterministic parser has been worked with the determinism hypothesis for natural language parsing( Marcus , 1980 ;  Faisal et al . ,  1 9�)4 ) .  The deterministic parser makes errorneous results because of the limited lookahead , however. This paper presents a new parsing method that uses the lexical association for parsing sentences semideterministically. First ,  a global association table( GAT)  is defined to record and manage the association . As all the associations can be globally observed through the CAT, the parser can obviate the error caused by the limited lookahead . The associations among words are estimated on the basis of lexical association calculated using data acquired from corpus. Next , a parsing algorithm is described using the G AT. The parser selects the action according to the association among the nodes presented by the C AT. That is , the parser is controlled not by condition-action rules, but by the associations between phrases . It merges one phrase with another phrase that has the highest association value, or will wait until it meets the most probable candidate indicated by the G AT. To recapitulate ,  our system is the parser with the lookahead buffer of sentence length . Experiments show that it doesn 't lose accuracy as well as it is as efficient as the deterministic parser. 
2 The Characteristics of Korean 
2 . 1  Structures of Korean sentences 

Korean is an agglutinative language and has different features from an inflect ional language such as English . A sentence consists of a sequence of eojeols composed of a content word and functional words. A content ,vord 
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Sa-t-da 

Na-neun Chaek-eul ➔ 

Sae 

C H 

VP 

c/;/\ 
Na-neun sae chaek-eul sa-t-da Figure 1 :  the dependency tree and the binary tree for ex 1 )  

determines the characterization of a phrase. For instance, au eojeol whose content word is a verb , an adjective, or a copula, functions as a predicate. A functional word directs the grammatical function of an eojeol. For examples, ' eu l/re-ul' is the postposition(functional vmrd ) that makes a nominal eojeol an object . 'Seupn ika' is the sentential ending for a question and ' t/eot' converts a predicate to the past tense in Korean. 
/41))va-n e-un sae chaek- eul sa-t- da. (___;/- I new book bought . - I bought a. new book. ' Na-11 em1 '  is the subject of the above sentence, and ' chaek- e-ul' , the object . Second , Korean is an SOV( ' Subject Object Verb' order ) language, where the head always follows its complements . In Korean , a head eojeol follows its complement eojeols. A new phrase is generated when one or more eoj,eols are merged , and the head of the phrase is always the last eojeol of the phrase . - gf(eu-ga n orae-reul  boore'll-myu hakkyo- e ga-t-da. He a. song singing to school went � He went to school singing a. song. Both ' booreu-my·u' and ' ga-t- da' have verbs as their content words . Predicative eojeols a.re the heads for nominal 

eojeols and follow the eojeols , ' keu-ga ' ,  ' n orae-reul' , and ' h akkyo-e '  , respectively. Third , the grammatical dependency relation is determined decisively by functional words. For example,  ' in the box' in English can modify both a. noun and a. verb . In contrast , in order that ' sangja' ,  which means box, modifies a. noun , it has to have the post.position , ' 1ti' in Korean. ·whenever it has another postpositions , it is the complement of a. verb . There is syntactic levels in Korean , and the dependency relation of an eojeol is fixed according to the level. 
2 .2  Syntactic analysis The dependency tree of a. sentence is built up through parsing . For the operation of the deterministic parser such as CREATE, the dependecy tree is represented by the binary tree for phrase structure that has two children nodes for a. complement and a head. The complement node is the dependent node of the dependency tree and the head node is the head of the dependent node. Consequent ly, the parser uses binary grammar described with the feature structure about the morphemes that constitute an eojeol. The parent node inherits the feature of its head node. Since the head follows its co111plement in Korean , the root node of the parse tree inherits the feature of the last eojeol in the sentence. ( Figure 1 )  shows the dependency tree and our parse tree of the sentence given in example 1 .  ' Na-n eun(I ) ' is a nominal eojeol and dependent on the predicative eojeol, ' sa- t-da( bought ) ' .  The feature of ' sa-t-da' is placed in the root node of the parse tree because it is the head of the sentence . 
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saengsan/NN( production ) dambae / NN ( tobacco ) sooyo/N N (  demand)  france/NN( France ) 
soodan/NN ( method ) nongsa/N N ( farming ) byunhwa/ NN ( variation ) moonhak/NN ( literature ) 

Figure 2 :  Examples of co-occurrence pairs of two nouns 
3 Global Association Table 

T\1e global associaJ,ion ta�le( C A'r )  has the association between words or _eojeols that have dependency relation . The assoc�a.tion can be estii:na.ted in various ways; for example , if it is l ikely that a word depends on the word nearest to i t ,  the estimation function would be given as follows. 
Assoc( e i , e_; ) = 1 /  d 

Let the, row and the column of the C AT represent eojeols occurring to the left-hand side and to the right-hand side, respectively, in the parsing process. The left-hand side eojeol is a complement , and the right-hand side , the candidate for its head . G'AT(i ,  j )  indicates the degree of association in case the ith eojeol is dependent on the jth eojeol . Because the head follows its complement in I�orean, and the table is a. triangular matrix . 
3. 1 Estimation function for association 
Two kinds of co-occurrence dc\ta were extr;:t.cted from 30 million eojeol corpus. OQ.e i� fo.r compound noun an�lysis, the oth.er i$ for dependency analysis of verb and noun. Ti1e assoc_iations of mod.ifier-head relati<?ns su�h as an adverb and a. verb,  or a. pre-noun and a no\m, are estimated by dista:µce . Distance measure is also used for the case. there is no co-occurrence dat;1., which is . ea.used by . data sparseness. The distance has be�n shown to be the most plausible estimation method without any linguistic knowledge( Collins , 1996; I�urohashi et al . ,  1 994 ) .  F irst of all, co-occurrence pairs of tv,10 nouns were collected by the method presented in ( Pustejovksy et al . ,  1 99:3 ) .  Let iV be the set of eojeols consisting of only a. noun and ]VP the set of eojeols composed of a. noun with a post.position . From e 1  , e 3  ,e3 ( e 1 (/:. N, 1:3 E JV , e3  E N P ) ,  we can obtain complete noun compounds, ( n3 , n3 ) such that 113 and 113 a.re the nouns that belong to the eojeols, e 3  and e 3 ,  respectively. The parser analyzes compound nouns , based on the complete noun compounds. ( Figure 2 )  shows an example of compound noun pa.us. The association between nouns is computed using the co-occurrence data. extracted by the above method.  Let 

1V = { n 1 , . . .  , n111 } 
N be the set of nouns. G iven n 1 , n3 E N ,  association score , Assoc, between n1 and n3 is defined to be 

AssocN N ( n 1 , n3 ) P (n 1 , n3 )  ( 1 )  
.freq ( n1 , n3 ) 

L i L_; f1·eq ( ni , n_; ) 
As mentioned above , the distance measure is suggested without any cooccurrence data. Therefore, these estimators are sequentially applied for two eojeols in the following way. Here, ei and e_; are the ith and the jth nominal eojeols, and ni and n_; the nouns that belongs to the nominal eojeols. 

I.f AssocN N ( ni , n.i ) =f. 0 Assoc( e i , e_; ) = AssocN N ( ni , n.i ) else Assoc( e i , e_; ) = l/d  
Because the  associations a.re calculated and compared for all e.i on  which e i  have the  possiblity to  be dependent , the compound noun analysis is based on the dependency model rather than the adjacency model( Koba.yasi et a.I . , 1 994 ; Lauer , 1 995 ) .  Because the two estimate funct ions a.re used, the extra-comparison routine is required. It will  be explained in the next section . Second ,  the co-occurrence pairs of nominal eojeols and predicative eojeols were extracted by the partial parser from a. corpus. ( Figure 3) sho"vs an example of the triples generated from the text . In ( Figure 3 ) ,  the triple, 
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gada/VB(go )  gada/VB(go )  gada/VB( go ) masida/VB( drink ) masida/VB( drink ) masida/VB( drink ) 

gaj ok / N N (family ) keu/PN ( he )  ka.ng/N N (river ) maekjoo /NN ( beer ) mool/N N  ( water ) neo/PN( he )  

ga( SUB.J )  ga( SUB.J ) e (TO )  reul ( OB.J ) reul ( OB.J ) ga( SUBJ ) 
Figure 3 :  Examples of triples extracted from the text 

( masida/VB, mool/NN, reul/OBJ) indicates that the verb , ' masida ' ,  and the noun ,  'moo/' which mean 'drink ' and '"vat.er ' respectively, ·co-occur under the grammatical circumstance , ' reul' which is the post.position tha.t makes a noun an object . The association between a verb and a noun is evaluated based on the triples obtained by the above method.  Let 
V = { v 1 , . . .  , v 1 } ,  1V = { n 1 ,  . . .  , nm } 
S = {ga ,  re ·ul ,  e ,  . . . } 

V, N, S be the sets of predicates, nouns and syntactic relations respectively. G iven v E V, s E S, n E N,  association score , Assoc, between v and n with syntactic relation s i s  defined t o  b e  
Assocv N ( n , s ,  v )  >-.1 P ( n , s j v )  + >-.2 P ( s l v )  ( >-. 1  � >-.2 ) ( 2 ) 

The conditional probability, P (  n, s j v ) measures the strength of the statistical association between the given verb , v, and the noun ,  n, with the given syntactic relation , s. That is, i t  favors those that have more cooccurrences of nouns and syntactic relations for verbs.  However ,  the above formula, including the maximum liklihood estimator , suffers from the problem of data sparseness. To back off the estimation , it is introduced the probability, P( s j v )  that means how much the verb requires the given syntactic relation. The association measure based on the distance between two eojeols is used without any co-occurrence data. These estimators are applied sequentially in the following way. Let us suppose that ei be the ith eojeol and ej the jth eojeol .  In addition, ni and Si are the noun and the post.posit ion in the nominal eojeol, ei , and v.i the verb in  the predicative eojeol , e_; , respectively. 
If Assoc" N ( ni , Si , Vj ) =J=. 0 Assoc( e i , e.i )  = AssocvN ( ni , Si , V_j ) e lse Assoc( e i , e_; ) = 1 /  d 

3.2  Making GAT 
The association value of two eojeols is recorded in the G AT only when the eojeols have dependency relation . Above a.ll, the dependency relation of two eojeols is checked ,  therefore. For two eojeols to have dependency relation indicates that they have a possib ility to be combined in parsing process. For example, a nominal eojeol with the post.position for case mark depends on a predicative eojeol that follows them . Second, if a dependency relation can be  assigned to tvw eojeols, the association value is calculated using the estimators described in the previous section . The association is represented by a pair , (rnethod, association-value ) . If a sentence consists of n eojeols, the GAT used is the n x n triangular ma.tri.x. As mentioned in the previous section, each eojeol has its own syntactic level in Korean , and an eojeol can be combined "vith either a predicate or a noun. This follows that an eojeol doesn't have dependency relation to the nominal eojeol , whenever it is dependent on the predicat ive eojeol, 'Vice 
·versa. Because the different esti�nators a.re applied for the analysis of compound noun and predicate-argument , any collision doesn't  take place in the comparison of the association . A.ssoCNN is used as the estimator for compound noun and A.ssocv N ,  for predicate-argument . The G AT is sorted by the association to look up the most probable phrase in the parsing process . Thus, the global associa.tion table is  implemented by the global association l ist . The algorithm to generate the C AT is represented in ( Figure 4 ) .  
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for each eojeol ei 0 <= i <= n - 2 1 .  for each eojeol e_7 i + 1 <= j <= n - l if ( depend_on ( ei , e_7 ) )  compute [Ji ( j )  = < method, Assoc( e i ,  ej ) > 2 .  sort gi ( i  + 1 ) , . . . , g.i ( n  - 1 ) and refer it to G( i )  
Figure 4 :  The algorithm for making GAT 

0 1 2 3 4 5 6 0 - ( 2 ,0 . 1 )  ( 1 , 1 /2 )  - ( 1 , 1 /:3 )  - -1 - - ( 1 , 1 )  - ( 1 , 1 /2 )  - -2 - - - ( 2 , 0 . 1 1 )  - ( 1 , 1 / 2 )  ( 2 , 0 . 02 )  
:3 - - - - ( 2 , 0 . 1 5 )  - -4 - - - - - ( 1 , 1 )  ( 2 , 0 . 52 )  5 - - - - - - ( 1 , 1 ) 6 - - - - - - -

Table 1 :  The global association table( G AT )  for the example sentence, ex 3 
The following example is represented by (Table 1 ) ,  

ex 3 )  ( 0 )  computer  ( 1 ) hwamyon-ui ( 2 ) gusuk- e ( 3 ) n atan a-n ( 4)s -utja-ga ( 5 )parn-ge ( 6 )  olaga- t-da. ( 0 ) computer ( l )of screen ( 2 ) in the corner ( :3 )appeared ( 4 )the number ( 5 )fast ( 6 )scrolled up ----- The number to appear in the corner of computer screen scrolled up fast . 
In (Table 1 ) ,  '- ' mark means that two eojeols have no dependency relation . The first element of the pair is the method of the measurement and the second is the association value. The pair , ( 1 ,  1 / 2 )  in GAT( 0 , 2 ) ,  indicates that the measure by distance is 1 /2 .  The pair ( 2 ,  0 . 1 1 )  in G AT(2 , 3 )  means that the association value is 0 . 1 1  and estimated with co-occurrence relation . The met hod has the priority for the comparsion of the association. Therefore, ( 2 , 0 . 0 2 )  is greater than ( 1 ,0 . 5 )  because m et hod of the first is greater than that of the second. Since the row of the table is sorted for parsing , G AT[2] can be represented in the form of a list of eojeols as follows . 
G AT[2] ----- (3 , ( 2 , 0 . 1 1 ) ) ----- (5 , ( 2 , 0 . 02 ) ) ----- (6 , ( 1 , 1 /2 ) ) 
The association list in the above lets the parser know that the eojeol e '.!  has the possibility to merge with the eojeol , e3 , es  or eG , and the most probable one is e3 . The function , rnax ( G( i ) )  is defined to return the most probable candidate for the head of the ith eojeol , e ; ,  in the G AT. 

4 Parsi6g.A.7�m 
4.1  PZng algorit 1 

The pars� eel here consists of a stack and a buffer . A two-item lookahead buffer is enough to make decisions in regard to Korean . The grammatical structures lie in the parsing stack and a set of actions are operated on the buffer. Unlike the deterministic parser where the set of rules directs the operation , this system parses by the association value of the GAT. Since a head follows its complement in Korean , the head of a phrase is the last eojeol of the phrase. A phrase is generated when hvo eojeols or two phrases are merged . In this case, Head Feature Inheritance takes care of the assignment of the same value as the head feature. Suppose an eojeol, e 1 , and an eojeol, e2 , merge and a new phrase Pi be generated, as shown in ( Figure 5 ) .  As the head of Pi is e2 , the parser uses the subscription of f '.!  as the index to the G AT, that is ,  2 .  Basic operations are CREATE, ATTACH, and DROP. However , its operation i s  conditioned not by  rule matching but by the value of the G AT as shown in the following description . The function, posit ion ( max ( G ( i ) ) )  returns the sentential position of the most probable candidate for the head of the ith eojeol , e i . 

CREATE If the most probable candidate for the head of the eojeol , e i ,  is ej , that is, j = posit ion ( max ( G( i ) ) ) , 
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Figure 5 :  the index to which the parent node refers 
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bubun-.eul byeonhyungsiki-myeonseo program- .eul iyongha-nda 
cases are the same 

Figure 6 :  example of failure of the prediction 
then merge ei ( or the phrase where the last eojeol is ei ) with e.i ( or the phrase where the last eojeol is e_i ) ,  and genera.t.e a. new phrase . 

ATTACH If the phrase where the e.i is the last eojeol is not the most probable candidate for the head of the eojeol e i , that is ,  e . i  =/=- rnax( G( i ) )  then wait until e i  meets the most probable candidate indicated by the G AT. 
DROP DROP operation is accompanied with CREATE operation in  our system because the complement precedes the head and thus the top node of the stack must be dropped and checked for dependency immediately after a new node is generated . 

The G AT provides the parser with the prediction of the best candidate for the head of the ith eojeol , ei . This is easy because the G AT is already sorted; however , the expectation is not always correct because the value of the GAT is calculated whenever there is a possible dependency relation between one eojeol and another. That is ,  the parser constructs the G AT as preparsing and it may happen that the two eojeols or phrases which have the possiblity to have dependency relations cannot be merged in parsing. The violation of the ' on e  case per clause' principle, is the case. 
ex 4) b ,ubun-eul( part/OB.J ) byeonhyeongsiki-myeonseo (  change ) progmm-rnl(program/OB.J )  iyongha-n da( use ) .  The part being changed, the program i s  used. 
In (F igure 6 ) ,  e 1 and e3  are nominal eojeols, and e2 , e4 are predicative eojeols apiece. The phrase P1 consists of e 1 , and the phrase P2 consists of three eojeols, e2 , e3 , e4 .  Let the most probable candidate, suggested by the G AT, for both e1 and e3  be e4. However , e1 and e3 have the same grammatical case because they contain 
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Pl (e l )  P2(e2) P3(e3) P4(e4) 

P5(e4) 

P6(e4) 

Figure 7 :  the content of chart and selection for the next candidate 
For phrases Pi and Pj , let their heads ei and e_; respectively. if ( lookahead = nil and there is one parse tree in the stack ) return SUCCESS else if ( G AT(O )  = NULL)  
else return FAIL 

if (posit ion ( G( i ) _)  = j )  begin 

end 
if ( isunifiable( h  P_; ) = TRUE )  CREATE;  else ALTER; 

else ATTACH ;  
Figure 8 :  The parsing algorithm using the CAT 

the postpositions marking the same case . The phrase Pi and the phrase P2 cannot be merged because of the violation of ' on e  case per c/a ,use '  principle. This means the prediction of the G AT is incorrect , and consequently an analysis with the alternatives is required.  If the next candidate is e 2 , the grammatical structure in the buffer must be erroneous .  The chart presents the phrase suitable for the alternative execution into the buffer. The chart aHo,'Vs the parser to store the partial structure to remove the backtracking. ALTER operation occurs in this case . 
ALTER is required if an eojeol ei cannot be merged with the eojeol e_7 which is the prediction of the candidate for the head of ei . 

The operation being executed , the structure in the lookahead buffer is backed up into the chart . When ALTER operation is needed, another candidate taken from the chart , has to be put in the buffer. The next candidate, C( e i ) is chosen in the following way. Let i be the left-hand position and k the right-hand position of the errorneous prediction in the GAT. C( e i ) = the phrase that the left-hand position is i and the right-hand position is ma:r ( i  + l s; j s; k )  i n  nodes i n  the chart. Then , the phrase A including e2 is the next candidate in ( Figure 7 ) .  The parsing algorithm with the G AT is described in (F igure 8 ) .  
4.2  Parsing 

The complexity of making the GAT is O ( N3 log2 ( N ) ) , where N is the number of eojeols. This is due to the sorted n x n table. The average complexity of the parser is l inear, according to the experiments . 
23 1 



OP Stack Top First Lookahead Constituents Head Constituents Head 
1 A ( computer ) computer ( lnvamyon-ui ) hwamyon-ui  
2 B ( computer hwamyon-ui ) hwamyon-ui ( han ) ha.n 3 A ( han ) han ( gusuk-e ) gusuk-e 
4 A ( computer hwamyon-ui ) hwamyon-ui ( ha.n gusuk-e ) gusuk-e 5 A ( ( computer hwamyon-ui ) gusuk-e ( natana-n ) natana-n ( han gusuk-e) ) 
6 A ( ( ( computer hwamyon-ui ) natana-n ( sutja-ga )  sutja-ga ( han gusuk-e) )  natana-n ) 
7 B ( ( ( ( computer hwamyon-ui ) sutja-ga. ( paru-ge ) pa.ru-ge ( han gusuk-e ) )  na.tana.-n) sutja.-ga.) 8 A (pa.ru-ge ) pa.ru-ge ( olaga-t-da. ) olaga.-t-da. 
9 A ( ( ( ( computer hwamyon-ui ) sutj a.-ga. ( paru-ge olaga-t-da) olaga-t-da. ( ha.n gusuk-e) ) natana-n ) sutja-ga) 

Figure 9 :  an example of analyzing the sentence in ( ex 3 ) .  ( A )  Create & Drop operation ( B )  Attach operation 
Chart Parser first S found Parser Using G AT The Total Number of G enerated Nonterminals 2 ,56 1 , 6 1 3  10 , 582  The Average Number of  G enerated Nonterminals 6404 26 .5  

Table 2 :  The number of  nodes generated by test parsers 
( Figure 9 )  represents the analysis steps of the sentence in ( ex :3 ) .  The head on the stack top is the complement , and the candidate for the head of it lies in the head part of the buffer. In the seventh row of the figure , the ATTACH operation is executed by the GAT in (Table 1 ) ,  because the lookahead is not the best candidate for the head of the complement on the stack top . The eojeol , 'sutja-ga' , has to wait until it meets its best candidate. A new phrase a.re created in the row ( 9 ) .  The eojeol, 'olaga.-t-da' is the best candidate for the eojeol ,  'sutja.-ga ' ,  which was estimated by the G AT. ( Figure 1 0 ) represents the parse tree of ex 3 ) .  The sentence is written in Korean . 

5 Experimental Results 

For testing purposes , 400 sentences were randomly extracted from 3 million corpus. First , our parser is compared to the chart parser to show the efficiency of our algorithm.  The number of the nodes generated by each parser is represented in ( Table 2 ) .  Because of ths size of the searching space, the results from the cha.rt parser a.re calculated whenever the first S is found. The average number of the prediction failure is 0 . 26  per sentence . That is ,  The parser has to search for the alternative in the chart once in four sentences . This makes the complexity of the parser a. constant .  ( Figure 1 1 )  shows the occurrence of ALTER operation over the number of words. The average number of ALTER is a.bout 0 .36 for the sentences with more than 20 words, which means our parser is efficient . Second ,  the precision is given in ( Table 3 ) .  The precision is defined as the ratio of the precise dependency relation between eojeols in parse trees . No label is attached because the final output is the tree that represents the dependency relation among words. Thus , the number of erroneous and correct relations is considered, which can be estimated by the number of crossing brackets (Table ;3 ) . 

Crossing Brackets number of constituents which violate constituent boundaries with a. constituent in the correct parse . 
The cause of the incorrect analysis can be largely classified by two reasons. One of the failures is ea.used by stat istical information . We collected the data from 30 million eojeol corpus . The total number of the data is 2 
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VP 

VP 

)\ l\  I\ 
computer screen in the comer appeared number fast scrolled up 

Figure 10 :  the parse binary tree for ex 3 )  ( in Korean ) 

a. 
0 
a: w 

0 o3 
lH ·· ... . . . . . 

· · · · · · · · · · ·� · � 

<==1 0 <=20 >20 
n u mbe r of w o r d s  

Figure 1 1 :  The number of  the ALTER operation for words 

CBs 0 CBs :::; 2 CBs 
( a )  ( b )  ( C ) ( d )  ( c )  ( cl )  378 0 . 95 176 44 .0  323 80 .8  

Table 3 :  The precision of the parser ( a) the number of crossing brackets (b )  the average number of crossing brackets per sentence ( c )  the number of sentences ( <l ) the percentage 



million and the average frequency of the co-occurrence data. is 2 .5 .  The triples to have frequencies greater than 2 are 400,000.  The frequency of most data. is 1 ,  which was the ea.use of the errorneous results . In addition , the association value of adjuncts and subordinate clauses is estimated by distance. The distance estimator was good but not the best . Semantic information such as thesaurus will help reduce the space of parameters. Second,  liguistic information is needed , e .g . ,  such as light verbs or the lexical characteristics of individual words. Our parser is the hybrid system which uses both rules and statistical information . The linguistic research is prerequired for this, even if these can be partially resolved by statistical methods . However, the parser is satisfactory in spite of some erroneous results in that the association value can be computed in various ways, and the parser can be extended using this. 
6 Conclusion We have shown that it is possible to make decision semi-deterministically using the global association table. The G AT is a. very effective structure in that it is triangular matrix because Korean is an SOV language and the dependency relations between words is important . It would have to be transformed for parsing English , because phrase structure grammar is needed for parsing English . There a.re many possiblities for improvement . The method described for calculating the lexical association in the C AT can be modified in various ways. The GAT and the parser can be extended if the distance measure and the coordinate conjunctive structure a.re considered . 
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Constraint-driven Concurrent Parsing 
Applied to Romanian VP 

Liviu Ciortuz * 
Dept . of Computer Science 

University of Iasi , ROMANIA Email: ciortuz@infoiasi.ro 
Abstract We show that LP constraints ( together with language specific constraints) could be interpreted as metarules in (an extended) head-corner parsing algorithm using weakened ID rule schemata from the theory of HPSG [Pollard and Sag, 1994) . We present a refinement of the head-corner algorithm [van Noord, 1996] , suitable for grammars containing ID /LP rules , as naturally used for high free-order languages. 1 We show that the ID schemata in the standard framework of the HPSG theory can be "weakened" /decomposed into subcomponents to allow for a fine-tuning of the ID rule application, according to the language specificity, on one hand, and - if desired - for concurrent parsing, on the other hand. The concurrent-constraint programming (CCP) paradigm [Saraswat , 1993] lead to a powerful model [Smolka, 1995] , which allows for the integration of logic (constraint) ,  functional, and obj ect-oriented programming, and also for smoothly passing from sequential to distributed programming, as this model adapts nicely to both these types of implementations [Mehl et al. , 1995] [Haridi et al. , 1997] .  We use the CCP "metaphor" - 'fair interleaving of constraint-based computation processes '  - and the logic characterization of attribute-value matrices [Smolka, 1992] to decompose the HPSG ID schemata into quasi-independent components .  For instance, the ID schema 3 - eventually combined with the ID schema 5 - decomposes into the following "weakened" ID schemata:2 0.  Head - Argument Composition 1. Head - ACC Specifier 1' . Head - Direct Complement 2. Head - DAT Specifier 2' . Head - Indirect Complement 3. Head - Subj ect 4 .  Head - Modifier 

(H-AC) 
(H-Sl ) 
(H-Cl) (H-S2) (H-C2) (H-Subj ) (H-Mod) Such a decomposition is perfectly adapted for (LP) constraint-driven (concurrent) parsing of partially free� ordered phrases. For instance, the Romanian VP is characterized by - free order up to the SUBJECT + COMPLEMENTS component list 

strict order inside the SPECIFIERS bloc (finite verb form + clitics) as given by LP constraints like: (Nu) < CLoAT < CLAcc,~3sf < AveaAux+ < Participle < CLACC, 3sf Decomposing/weakening the HPSG ID schemata would not b e  needed in case i. we adopt for Romanian the fully lexicalized account of clitics introduced for Italian [Monachesi, 1995] [Monachesi, 1997] and French [Sag and Miller, 1997] , or ii .  one is not interested in exploring concurrent/distributed constraint parsing. Concerning the first point , we argued [Ciortuz , 1997] that in our opinion this is a hardly t enable position in case 
* The author is engaged now with the LT Lab at DFKI - Saarbrilcken, Germany. Email :  ciortuz@dfki.de. 

1 This is the case of many human languages like Italian , Romanian, Slavic languages, etc .  
2We restrict ourselves to what 's needed to parse the Romanian transitive verbal complex. Recovering the general case is a 
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of highly inflected languages (like Romanian) , because it leads to exploding with 1-2 orders of magnitude the size of the lexicon, and - independent of this argument - because clitic combination is not so arbitrary ( at least for Romanian) as supposed by the papers previously mentioned, so it lacks encoding a certain generality. Otherwise, i .e .  assuming that clitics encode their ( conditional) combination capacity as verb's specifiers (cf. [Ciortuz, 199 7] ) ,  and exploring (the possible benefits of) concurrent parsing, one could see the application of weakened ID schemata as driven by the LP constraints and, possibly, some constraints specific to the language like (CP.C)  - Clitic  Pronouns Constraint, and (PA.C)  - Fe-Accusative Constraint in Romanian. Example for Romanian VP decomposition using the above weakened ID schemata: the sentence Cheia, i -am dat-o ieri lui Ion. = The key ,  I gave it to John yesterday . is parsed as: Cheia, i - am dat -0 ieri lui Ion. • H+AC (LP) ➔ • < HS2 < < HSI < (CP.C )  ➔ • HCl HC2 • HMod 
Conclusion We exploit the LP constraints and the possibility of (logic) "atomization" of HPSG ID schemata in order to - account for the (partial) free-orderness inside the verbal complex in Romanian and - explore the benefit of (as much as possible) concurrency in the VP parsing. This approach aims to smoothly adapt HPSG head-driven parsing design primarily for a strict-order language like English to a partially free-order language like Romanian. It was elaborated while trying to provide for a clean explanation of clitics' behavior in Romanian. 

References [Ciortuz, 1997] Ciortuz, L. (1997) .  Mastering clitics' (dis)order. In Informal Proceedings of The GL&GE 
Workshop ,  Tu§nad, Romania. [Haridi et al. , 199 7] Haridi , S. , Roy, P. V . ,  and Smolka, G. (July 1997) .  An overview of the design of Distributed Oz. In Proceedings of PAS CO '97, Maui, Hawaii. [Mehl et al. , 1995] Mehl, M. , Scheidhauer, R. , and Schulte, C .  (1995) . An Abstract Machine for Oz. In Hermenegildo, M. and Swierstra, S. D . ,  editors, Programming Languages: Implementations, Logics and Pro
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The Condorcet project is an information retrieval project carried out at the Knowledge-Based Systems Group at the University of Twente, The Netherlands, and funded by the Dutch Technology Foundation (STW). The objective of Condorcet is to build a prototype information retrieval system that will ultimately be able to handle titles + abstracts of 30,000 documents. The system is mostly concerned with indexing of documents within two specific domains: mechanical properties of engineering ceramics and epilepsy. For an elaborate discussion of the system, the reader is referred to the Condorcet Annual Reports, available through the Condorcet home page: http : /  /wwwis .  cs . utwente . nl : 8080/kbs/ condorcet/ .  Assignment of indexing concepts to documents is done by means of a syntactic parser ( CONSTRUCTER) and a semantic analyzer. As the documents contain numerous misspelled words, ill-formed constructions and new words, not all input can be parsed according to the underlying grammar. Since achieving robustness by constantly adding rules to the grammar is laborious and may be even impossible, an extra robustness device is needed in order to parse all documents. However, approaches that can be found in the literature such as [1] , imply in most cases adjustments of the underlying parsing strategy: problematic fragments are skipped or completely deleted. Within Condorcet however, a knowledgebased approach is preferred, as handling ill-formed sentences with robust grammars rules would allow for more flexibility and expandability. By employing a knowledge-based approach, it is possible to develop a solution to the robustness problem that is not based on ad hoe approaches, but that acknowledges the linguistic nature of the problem. It also allows for more control over the quality of the output: in cases of an unsatisfactory result, the robust rules can be easily adapted so as to tune the ultimate parser. Robustness is thus accomplished by the linguist instead of the programmer, and by means of writirig specific grammar rules rather than writing computer programs. The AGFL formalism, developed at the University of Nijmegen (http : //www. cs .kun.nl/agfl) is used because it allows for elegantly expressing a knowledge-based approach to robustness and because of its efficient implementation. 
Affix Grammars over a Finite Lattice Affix grammars over finite lattices (AGFLs) are a restricted form of affix grammars in which Context Free production rules are extended with affixes (or features) for expressing agreement between parts of speech, [2) .  Like i n  PROLOG with DCGs, these are passed as parameters to the rules of the grammar. Each affix expression at a parameter position denotes a set of features associated with the nonterminal in a certain context. In rewriting, all occurrences of a certain affix in a rule obtain the same value, being any subset of the (finite) domain of the affix, but not the empty set. Feature ambiguity is distinguished from structural ambiguity by decorating parse �rees with sets of affix values, rather than with single valued affixes. As a result, multiple parses with the same structure are combined. Although Tomita or Earley are the preferred parsing algorithms for CF grammars, in parsing according to a grammar with features, the (exponential) determination of features may well overwhelm the parsing process, so that the efficiency of the parsing by itself is not the main issue. Therefore AGFL is implemented using Recursive Backup Parsing (RBP), a generalization of Recursive Descent Parsing to ambiguous grammars. The main drawback of RBP is that parsers exhibit exponential behavior, but by applying the optimizations described below, large-scale parsers show quasi-linear behavior for sentences of reasonable length; their exponential character becomes apparent for only a fraction of the sentences. Furthermore, topdown backtrack parsers are easy to extend with affixes, allow top-down filtering of values, [3) , and parser 
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generation for RBP is a straightforward transcription from the grammar. Fast parser generation makes AGFL suitable for development and prototyping and finally, RB parsers are small and use memory efficiently. Factoring out common left-factors of alternatives for the same nonterminal, possibly in combination with repeated unfolding of nonterminals, can be used for improving the time complexity of RBP, as it eliminates duplicate parsing effort. Top-down RBP by itself is not capable of dealing with left-recursion, but it is possible to remove left-recursion from a grammar, e.g. by goal-corner transformation. Applying look-ahead is another classical technique for improving the run-time behavior of parsers, although the time complexity of the parsing algorithm remains within the same complexity class. Memoization is a technique for optimizing repeated computations of a function by remembering a table of values for certain arguments. However, since tuples of parameters do not have a total ordering, it is hard to search 
a table in which calls of parameterized nonterminals are memoized. Therefore, negative memoization is used, preventing the repetition of unsuccessful computations. In the mapping memo : pos x nonterminal ➔ bool x bool the first boolean (known) indicates whether this nonterminal has been tried at this position, and the s econd boolean ( blocked) indicates whether the non terminal will fail at this position, and should be blocked. In applying this technique, each call of a nonterminal at a position where it has not been called before is first generalized to a call with all parameters generalized to their full domains; if the rule fails it is known that the rule will fail for all possible combinations of affixes and this fact is recorded for future use. If the call succeeds, the parameters are restricted to their original values. This optimization improves the efficiency of RBP dramatically. 
Robust Parsing in Practice For achieving knowledge-based robustness without ambiguity, the most important features in AGFL are the s emi-predicate PENALTY and the commit operator. They can be used to indicate a preference of clear syntactic forms over doubtful ones. By using these features, alternatives can be ordered in such a way that graceful degradation is ensured, providing as much of an accurate analysis as possible: instead of failing in returning a highly structured analysis, a reliable shallow analysis is returned. This is accomplished by means of an ordered s et of alternatives, in which the level of underspecification in order to describe problematic parts of the input is decreasing. If the parsing process is aborted, or the parser reaches a pre-defined time limit, the current parse (which is the best  parse for that particular moment) is returned. However, if the input is not problematic, only the parse according to the last alternative will be returned, because of penalties in previous alternatives. If the input is extremely complex and the time-limit is exceeded, minimal information will at least be returned. This strategy yields a rule set that is divided into a core grammar and a peripheral grammar and it allows for full control over the quality of the output, depending on the grammar writer's intentions. The linguist only needs . to express ideas with respect to robustness; computational complexity, efficiency or speed are irrelevant from the grammar writer's point of view. Within the Condorcet parser, a robustness device has been developed according to this knowledge-based strategy. This has resulted in a parser that is capable of analyzing 100% of its input, providing information on the syntactic subject, the finite verb and all noun phrases and prepositional phrases. For now, it seems that this is useful enough but if more information were needed, the rules could simply be adjusted. CONSTRUCTER is a parser for English, generated from an AGFL grammar that consists of 68  rewrite rules extended with 14 robust rules. We report on a test involving a corpus of 84 documents (30 documents on epilepsy, 30 documents on ceramic materials and a randomly selected corpus of 24 in order to test the parser on unseen material). Most sentences in the corpus are very complex: the average sentence length is 23.8 words per sentence. 60 documents were parsed in 11 seconds , which is equal to parsing 40' sentences per second or 950 words per second ( on a SUN/SPARC station). The shortest parse took 0.01 seconds, the longest 0.46 s econds. 61% of the s entences were parsed according to the core grammar and 39% were parsed robustly. The parser needed relatively more robustness (37% vs. 63%) when analyzing unseen texts, which is not surprising. 
References [1] T. Strzalkowski. Robust Text Processing in Automated Information Retrieval. In Proceedings of the Fourth A GL Conference 

on Applied Natural Language Processing. Association for Computational Linguistics, 1994. [2] C.H.A. Koster. Affix Grammars for Natural Languages. In H. Alblas and B. Melichar, editors, Attribute Grammars, Applications 
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LANGUAGE ANALYSIS IN SCHISMA 

1 Introduction 

Danny Lie, Joris H ulstijn, 
Hugo ter Doest , Anton Nijholt* 

SCHISMA is a research project that is concerned with the development of a natural language accessible theatre information and booking system. In this project two research approaches can be distinguished. One approach is devoted to theoretical research in the areas syntax, semantics and pragmatics.Research on syntax has been conducted on a unifying parsing approach [7] ,  left and head corner grammars [6] , on stochastic context-free grammars [1] and on unification grammar parsing [2] [4] . Research on semantics and pragmatics has been conducted on dialogue act classification [3] and from a logical point of view [5] .  The other approach is more practically oriented in that it is more focused on the realisation of a fully functional prototype of the SCHISMA system. To this purpose, in the past, the interface development system Natural Language™ has been used for implementing a SCHISMA prototype, a Wizard of Oz environment has been developed (with which a corpus of dialogues has been collected), an attempt has been made to develop a SCHISMA prototype for the WWW, and a prototype has been developed for education purposes1 . Our most recent achievement is a fully functional SCHISMA system (implemented in Java) based on a context-sensitive string rewrite mechanism. Although the system is primitive in nature and not necessarily built on linguistic principles (rather on intuitions), we believe its performance is such that the majority of users will be satisfied. Users will adapt to the system rather than reject it because of poor performance (when compared to humanhuman dialogues). In the development of a spoken telephone service for the Dutch Public Transport Service a similar position is taken. In this short paper we will give an overview of the two approaches distinguished here as far as parsing is concerned. Section 2 presents work on classical unification-based parsing, section 3 discusses the rewrite and understand approach in some detail. Section 4 considers future developments and concludes the paper. 
2 Unification-based Approach In [2] a head corner parser for typed unification grammars is designed and implemented in C++;  for description of the lexicon and the grammer a specialised specification language TFS is developed. It is argued that typed unification grammars and especially the newly developed specification language are convenient formalisms for describing natural language use in dialogue systems. The system comprises a compiler that compiles TFS specifications into C++ and some specification-independent libraries (input/output, parsing and unification algorithms). After a TFS specification is developed and compiled into C++,  the libraries and the specificationdependent parts of the system can be linked together. Another, more sophisticated system for unification-based parsing is currently under development.2 Type hierarchies, disjunctive feature structures and productions all are represented by means of DAGs. Other advan-

) tages of the system include the optional weighting of disjunctions with probabilities, flexible behaviour in case of conflicts and an incremental type hierarchy that may grow during parsing depending on type conflicts leading to new types. 
* Parlevink Language Engineering, Dept. of Computer Science, University of Twente, PO Box 217  7500 AE, Enschede, The 
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1 By Joris Hulstijn ;  it can be downloaded from wwwseti . cs . utwente . nl/~j oris/  11, 
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3 The Rewrite and Understand Approach As mentioned in the introduction, there have been several attempts to design a SCHISMA dialogue system with the aim to end up with a system that is certainly not perfect but that can nevertheless be accessed by users willing to adapt themselves to the system. Our most recent achievement is a system that consist of two subsequent processes: a rewrite process in which natural language utterances are mapped via a sequence of context-sensitive string-to-string transformations onto some semantical normal form, and an understanding process, in which the interpretation of the semantic form is made dependent on the current dialogue state. We concentrate on the rewrite process here. Two basic operations underly the rewrite process: deletion of semantically irrelevant words, and substitution of words by standard synonymous words or expressions. If we abstract from syntactic sugar of the specification language, deletions and substitutions are defined by context-sensitive rewrite rules of the form x 1 . . .  Xn ➔ YoXk1 Y1 .• . Ym- 1Xk"' Ym where m E 1 ... n and ki E 1 .... n for all i E 1 ... m where X1 . . • Xn are regular expresions3 and y1 . . .  Ym are arbitrary strings. So rewrite rules are potentially context-sensitive. A rewrite rule is applicable to a sentence if its left hand side matches a substring of the sentence; application of the rewrite rule means that the matched part of the sentence is rewritten, the surrounding parts are left as they are. A rewrite specification consists of a sequence of rewrite rules. Given a rewrite specification and a sentence s, a complete rewrite of s means that the sequence of rewrite rules is run through in the order specified applying each rule applicable in the sense described: s � s1 � . . .  � Sn . The complete rewrite process consists of two phases: a global phase and a local phase, respectively. The global phase is the same for all sentences; after the global rewrite a keyword filter decides on what local grammar(s) to apply to the sentence. If more than one local grammar applies, all of them are executed; a score accompaning the rewritten strings helps the understanding process decide on what interpretation to continue with. We developed one global grammar and 20 local grammars by closely examining the aforementioned Wizard of Oz corpus. Each of the local grammars cover a part of the semantic functions sentences may have in the SCHISMA domain. Each local grammar finally rewrites its input into a list of feature value pairs accompanied by the name of the action the system should take. The understanding process then interpretes the list in the context of the dialogue. 
4 Future Work and Conclusion In the near feature a combination of the two approaches is foreseen: the rewrite and understand approach will be adapted such that it can be applied as a preprocessor that rearranges input such that difficult problems like discontinuity and embedded sentences no longer burden the unification-based parsing process. Also the rewrite parser will be applied as a backup mechanism in case conventional parsing fails. 
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Reducing the Complexity of Parsing by a Method of 
Decomposition 

Caroline Lyon and Bob Dickerson* 
School of Information Sciences , University of Hertfordshire ,UK 

A method of automatically locating the subject of a sentence has been developed, and ,ve may be able to take 
advantage of this to reduce the complexity of parsing English text. Declarative sentences can almost always be 
segmented into three concatenated sections: pre-subject - subject - predicate. The pre-subject segment may be 
empty; for imperative sentences the subject section is empty. Other constituents, such as clauses, phrases, noun 
groups, are contained within these segments, but do not normally cross the boundaries between them. Though 
a constituent in one section may have dependent links to elements in other sections, such as agreement between 
the head of the subject and the main verb, once the three sections have been located, they can then be partially 
processed separately, in parallel. 

The tripartite segmentation can be produced automatically, using the ALPINE parser. This is a hybrid 
processor in which neural networks operate within a rule based framework. Readers are invited to access a 
prototype via telnet , to use on their own text (for details contact the authors) . 

Figure 1 :  Decomposition of the sentence i nto syntactic constituents 

A sentence is represented like this: 

If a cooler is fitted to the gea rbox, [ the p ipe connections of the cooler ] must be regu larly checked for corrosion .  

ALPINE has been trained and tested on text of technical manuals ( "Perkins" ) ,  and also run on other technical 
manuals ( "Dynix" and "Trados" ) ,  see Tablel. The first parsing step applies the neural processor to tag sentences 
and place the hypertags marking the subject. For more information see [Lyon and Frank, 1997] and other papers 
at ftp : //www . cs . herts . ac . uk/pub/caroline. 

This tripartite decomposition of sentences is supported by an argument from information theory 
[Lyon and Brown, 1997] , derived from Shannon's original work with letter sequences [Shannon, 1951) . His ideas 
can be extended to other linguistic entities. Shannon showed that the entropy of letter sequences declines, the 
degree of predictability is increased, as information from more adjacent letters is taken into account. 

The entropy can also be reduced if an extra character representing a space between words is introduced, 
producing a 27 letter alphabet. "A word is a cohesive group of letters with strong internal statistical influences" 
(Shannon) , and the introduction of the space captures some of the structure of the letter sequence. A similar 
technique can be applied to text mapped onto part-of-speech tags. 

* email : {C .M.Lyon ,R.G.Dickerson }@herts.ac.uk Tel :  +44 (0) 1707 284266/4355 
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Text Number of % tags + hypertags % hypertags 
sentences correct correct 

Perkins 42 92.9 100 
59 91.4 100 
63 89.2 100 
67 84.4 95.5 

Dynix 114 - 92. 1 
Trados 134 - 85. 1 

Table 1 :  Results on declarative sentences in technical manuals. From test data in Perkins corpus (2% sentences 
omitted) used for development , and from other texts. 

Now, language can be represented at a primary level as a regular grammar, and we can apply Shannon's 
analysis to tag sequences. However, this is an inadequate representation: the patterns of tag sequences may 
be disrupted at clause and phrase boundaries. "Unlikely" tag combinations such as noun - pronoun and verb -auxiliary verb may occur at constituent boundaries in sentences like The shirt he wants is in the wash. 

In a similar manner to the insertion of a space between words, the embedded clause is delimited by inserting 
hypertags, like virtual punctuation marks. The sentence is represented as 

The sh i rt [ he wants ] is i n  the wash . 

The part-of-speech tags have relationships with adjacent hypertags in the same way that they do with each 
other. Using this representation, one level of embedding ·has been modelled. We can thus represent sequences 
higher in the Chomsky hierarchy than regular grammars, though not fully context free. 

Since the boundaries of clauses and phrases often coincide with the boundary of the subject , we expect that 
the insertion of hypertags to demarcate the subject will lower the entropy. If their insertion has captured some 
of the structure of language the bipos and tripos entropy should be reduced. This is indeed what was found on 
the data from the Perkins corpus. See Table 2. A tagset of 32 was used, including the hypertags. 

Ho H1 H2 H3 
plain tag string 5.0 3.962 2.659 2. 132 
tags + subject markers 5.0 4. 135 2.472 1.997 

Table 2: Entropy measures for text with and without subject boundary markers. Hn is the entropy when 
information is taken from n adjacent tags. 

This type of system could be used as a pre-processor to facilitate the processing of longer sentences by other 
NLP methods. Though there are arbitrary limits on the length of constituents that can be processed by ALPINE 
( 15 words in the pre-subject , 12 words in the subject), these bounds are comparatively wide, and of course we 
plan to extend them. In the Trados data 9 sentences out of 134 fell outside these limits. 

One of the advantages of this approach to parsing is that it lends itself to the extraction of predicate/argument 
structure. After the subject has been located the main verb will be found in the predicate, and then the object 
or complement. With the head of the subject found, we then have the raw material from which we can begin 
to extract the predicate/argument structure. 

References 

[Lyon and Brown, 1997] C Lyon and S Brown. Evaluating Parsing Schemes with Entropy Indicators. In MOL5, 5th 
Meeting on the Mathematics of Language, August 1997. [Lyon and Frank, 1997] C Lyon and R Frank. Using Single Layer Networks for Discrete, Sequential Data: an Example from Natural Language Processing. Neural Computing Applications, 5 (4) , 1 997. To appear. [Shannon, 1951] C E Shannon. Prediction and Entropy of Printed English. Bell System Technical Journal, pages 50-64, 195 1 .  

246 



Formal tools for separating syntactically correct and 

incorrect structures * 
Martin Platek, Vladislav K ubon, Tomas Holan platek@kki .ms.mff.cuni .cz , vk@ufal .ms .mff.cuni .cz , hola.n@ksvi .ms .mff.cuni .cz Faculty of l\fathematics and Physics Charles University, Prague, Czech Republic 

Abstract 
In this paper we introduce a class of formal grammars with special measures capable to describe typical syntactic 

inconsistencies in free word order languages. By means of these measures it is possible to characterize more precisely 
the problems connected with the task of building a robust parser or a grammar checker of Czech . 

1 RFODG This paper i s  actually an abstract of [3] . The main topic of [3] i s  the introduction of a formalism called RFODG 
(Robust Free- Order Dependenc:i; Grammar) . This formalism was developed as a tool for the description of syntactically ill-formed sentences of a language with high degree of word-order freedom . The RFODG serves for the description of surface syntax; it provides the base of the parsing with subsequent evaluation of syntactic 
inconsist encies ( violation of a syntactic rule ) and localization of errors (message ) .  Every symbol of RFODG belongs to terminals or other symbols ( nonterm inals) , to deleta ble or nondeletable symbols and to positive or negative symbols .  The terminals of RFODG a.re the lexical categories of the morpholexica.l analysis , next pairs of sets serve for the classification and localization of syntactic inconsistencies . [3] contains the definition of a DR-tree by G. The DR-tree  should map the essential pa.rt of history of deleting dependent symbols,  and rewriting dominant symbols, performed by the rules applied while ( bottom to up) analysis .  

DR-tree is similar to a standard derivation tree of CFG ff but a node (constituent ) of a DR-tree may cover a discontinuous subsequence of the input sentence , the terminals can be used to create any type of nodes , not only the leaves and each node has a fixed horizontal position , which is shared by exactly one leaf. This property of DR-trees is used to localize syntactic inconsistencies in a.nalyzed sentences . \Ve say that a sentence w is posifrve ly parsed, if there exists DR-tree for w containing positive symbols only. Sentence w is robustly parsed, if i t  is parsed , but not positively parsed . The properties of RFODG allow to define three complexity measures , namely lo cal and global  number of 
gaps, the size of gaps and the degree of rob 'ustnes .  First three measures are defined on DR-trees by means of a notion of coverage .  The coverage of a node T may be intuitively described as a set of horizontal indices ( the index of a terminal node is in fact its position in the sentence counted from left to right ) of terminal nodes , which a.re derived from the node T. If the DR-tree  is projective, the local  number of gaps, glo bal  nmnber  of gaps and of course also the si::es of gaps a.re all equal to zero . Nonprojective DR-tree contains at least one gap . The degree of robustness equals the number of negative symbols in a DR-tree .  The processing of the main phase of the system , so called grammar-checking analysis ,  is carried in three phases . The first phase checks whether the set of projective positively parsed trees is empty. If it is ,  then the second phase using and extended grammar containing also error anticipating rules and rules with relaxed constraints tests if exists a positively parsed nonprojective tree· or a negatively parsed projective tree ( with some limitations formulated via mentioned measures ) .  The third phase checks the existence of a negatively parsed 

* This work is supported by the Grant Agency of the Czech Republic ,  Grant-No. 201 /96/019.5 and by the RSS/HESP grant 
No.8-5 / 199.5 .  
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nonprojective trees . If any of the three phases finds a nonempty set of trees , the grammar checking ends and the evaluation module is called . 
2 Evaluation of parses The negative symbols can be classified into a number of groups (see [3] ) ,  the most interesting of which are the negative nonterminals signalizing an agreement inconsistency or some other type of inconsistency which can be corrected by some morphological changes of the word forms in the analyzed sentence . Vve denote such nonterminals as mf-syrnbols. It is clear that there is a path leading up to the node which is assigned a pertaining mf-syrnbol from all nodes which contribute to the inconsistency signaled in that node. In order to be able to locate the source of this inconsistency we divide the set of rules into two subsets: the rules which transfer ( these rules are called 
mf-sensitive or do not transfer the morphemic information mf-insensit-ive .  The report ( [3] )  introduces an exact definition of  a notion of  an mf-cornponent. For the purpose of  this paper it is possible to describe this notion informally as a smallest subtree of a DR-tree ,  which contains a particular 
mf-symbol and from which leads an mf-insensitive edge ( such an edge was created by the application of an 
rnf- insensitive rule) . The evaluation phase is part of the system following the grammar-checking analysis. If the grammar-checking analysis ends in the first phase , the evaluation module is not invoked because the string being analyzed is considered correct . If the grammar-checking analysis ends after the second phase, the evaluation receives the sets of trees T R2 . In this case the first task of the evaluation module is to check whether the non-projective positive trees may be also considered as an expression of an error in agreement in the projective readings of the analyzed string w .  From the set T R2 the  evaluation selects the  subset of  those trees which do not contain other negative symbols than mf-symbols . This set is denoted as TR-mf The dependency trees corresponding to TR-mf with marked 
mf-components will be enumerated ( by the contraction of DR-trees) . These trees contain possible agreement errors . In case TR-mfis empty, the evaluation will not return any warning which means that the string being analyzed is considered to be correct (and nonprojective) . If the grammar-checking analysis ends in its third phase, it issues the set of trees T R:3 for the evaluation . If the set T R3 is not empty, the evaluation returns dependency trees containing negative nodes in order depending on number of negative nodes and number of mf-components . 
3 Conclusion In [3) we have summarized the current stage of our research concerning grammar-checking of Czech language. Its main result is the development of the formalism capable of localization and classification of syntactic inconsistencies in languages with a high degree of word order freedom . It also provides a base for future exact research in the field of grammar checking and robust parsing and opens a number of questions requiring further investigations . 
References [l] A .V. Gladkij :  Formalnyje gramatiki i jazyki , Iz . :  NAUKA,  Moskva, 1 973 [2] D .T.Huynh:  Commutative Grammars: The complexity of Uniform word Problems, Information and Control 57 ,  1 983 ,  pp. 2 1-39 [3] T.Holan ,V.Kubon , M .Platek : Formal tools for separating syntactically correct and incorrect structures . Technical report MFF UK,  in press , Charles University Prague 
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Parsers Optimization for Wide-coverage Unification-Based 
Grammars using the Restriction Technique 
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Horacio Rodriguez 
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Abstract 

This article describes the methodology we have followed in order to improve the efficiency of a parsing algorithm for wide
coverage unification-based grammars. The technique used is the restriction technique (Shieber 85), which has been recognized 
as an important operation to obtain efficient parsers for unification-based grammars. The main objective of the research is how 
to choose appropriate restrictors for using the restriction technique. We have developed a statistical model for selecting 
restrictors. Several experiments have been done in order to characterise those restrictors. 

1.  Background and Tools used 

The use of linguistic material associated to the features of unification-based grammars, for guiding the parsing 
process may give a problem, as Shieber pointed out in (Shieber 85). This is, certain unification grammars present an 
infinite nonterminal domain, leading to inefficiency or even non-termination of the algorithms if standard methods of 
parsing are used. At the same time, Shieber proposed a solution to this problem with the restriction technique. 
However, there is an open question using restriction. It is not clear how to choose an appropriate restrictor (subset of 
the feature structures owned by the complex categories of the grammar), which assures to obtain the greatest efficiency. 
An inadequate choice of restrictors affects the efficiency of parsing algorithm. The research presented in this article deals 
with this problem i.e, what we present here is a methodology for choosing adequate restrictors with wide-coverage 
unification-based grammars. 

In our study, a Patr-II grammar has been generated from the object grammar of the system ANLT (Alvey Natural 
Language Tools; Grover et al. 93 & Carroll 93). The Alvey grammar defines a wide-coverage of syntactic grammatical 
constructions of English; only 350 rules and 5008 entries of the grammar and lexicon respectively have been converted. 
We have also used the UNICORN parser developed by Gerdemann and Hinrichs (Gerdemann 91 ). It is an Earley-style 
chart-parser for unification grammars that incorporates the restriction technique. 

Restriction is defined as follows: Let R be a restrictor, and D a dag of a unification grammar. RD is the restricted dag for D relative to R if RD subsumes D, and for every path p in RD, there exists a path q in R such that p is a prefix 
of q. 

2. Methodology and Experiments Developed for Selecting Restrictors 

The method we have used for selecting adequate restrictors with the wide-coverage grammar is based on the criterion 
of instantiation of the features. So, a statistical model for estimating the probabilities of being instantiated of the 
different features of the grammar along a parsing process was defined. Two important reasons justify the model: 1) each 
rule of the grammar has different application probability; 2) instantiation can be achieved by appearing explicitly 
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instantiated in the rule or by percolating through mother or sister categories. Formally, we present the model as 
follows: 

Pinst (Ci, Rj) = L ( P(fk) * (instantiated (Ci, Rj , fk) + 
k 

( P(Cmk, Rj) + L P(Chk, Rj) ) * un_instantiated (Ci, Rj , fk) )  
p 

In the formula, Pinst (Ci, Rj) is the probability that the feature j , of the category i, appears instantiated; rk is the 
kth rule; Cm is the mother category; and Ch is the brother category. For each rule of the grammar where the feature j , 
of the category i is defined, the following can be done: 1 )  If the feature mentioned is instantiated, the matrix 
instantiated (Ci, R_j, rk) will contain the value one, and zero otherwise; 2) If the feature mentioned is uninstantiated, the 
matrix no _instantiated ( q, Rj, rk) will contain the value one, and zero otherwise. In this step, the value of the feature 
can be inherited from the mother or brother categories. 3) If the feature analyzed is uninstantiated, and the value of the 
feature can not be inherited, then the Pinst (Ci, Rj) is zero in the rule. Finally, the model generates a regular linear 
equations system, where the variables are the probabilities of being instantiated. 

In order to prove our criterion for choosing appropriate restrictors we have performed several types of experiments 
(La Serna 96). The aim of them was to observe which of the proposed restrictors are adequate. The experiments consist 
of the analysis of a set of 30 phrases (selected randomly from the corpus) with different restrictors, basically change in 
length and grades of instantiation (high, intermediate, and uninstantiated). The selected measure of evaluation is the 
number of predictive states, so the apropriate restrictors are those which have the lowest number of states. 

The experiments have been planned with two classes of restrictors: static and dynamic. In the first class, the 
restrictor is the same for all the categories of the grammar, as established in the original definition of restriction. In the 
second class, we have proposed that the restrictor can be different for each category of the grammar, because certain 
features make up adequate restrictors in some categories, but are not good candidates for others. 

From the analysis of the results of all the performed experiments, we can point out the following: 1) Features that 
have established appropriate restrictors, which are instantiated in all the grammar rules. For restrictors with 
uninstantiated features in at least some rule, the results· have not been better, in general. 2) Any combination of features 
of appropriate restrictors form again appropriate restrictors; however, any combination of non-appropiate restrictors 
makes non-efficiency process parsing. 3) In the experiments with static restrictors, the features established as 
appropriate restrictors have been obtained from the intersection of the best features of each category in the dynamic 
restrictors. 4) Finally, we observed that with the dynamic restrictors, there are more possibilities for choosing 
appropriate restrictors. 
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Massively Parallel Parsing in DmDialog: Integrated Architecture for Parsing Speech Inputs Hiroaki Kitano, Teruko Mitamura, Masaru Tomita Parallel Parsing Strategies in NLP Anton Nijholt Complexity and Decidability in Left-Associative Grammar Roland Hausser The Selection of a Parsing Strategy for an On-line Machine Translation System in a Sublanguage Domain. A New Practical Comparison Patrick Shann Finite State Machines from Feature Grammars Alan W. Black An Effective Enumeration Algorithm of Parses for Ambiguous CFL Tadashi Seko, Nariyoshi Yamai, Noboru Kubo, Toru Kawata A Morphological Parser for Linguistic Exploration David Weber The Parallel Expert Parser: A Meaning-Oriented, Lexically-Guided, Parallel-lnteractive Model of Natural Language Understanding Geert Adriaens Chart Parsing for Loosely Coupled Parallel Systems Henry S. Thompson Parallel LR Parsing Based on Logic Programming Hozumi Tanaka, Hiroaki N umazaki The Relevance of Lexicalization to Parsing Yves Schabes, Aravind K. Joshi A Framework for the Development of Natural Language Grammars Massimo Marino An Efficient Method for Parsing Erroneous Input Stuart Malone, Sue Felshin Analysis Techniques for Korean Sentences Based on Lexical Functional Grammar Deok Ho Yoon, Yung Taek Kim Learning Cooccurrences by Using a Parser Kazunori Matsumoto, Hiroshi Sakaki, Shingo Kuroiwa Parsing, Word Associations and Typical Predicate-Argument Relations Kenneth Church, William Gale, Patrick Hanks, Donald Hindle An Efficient, Primarily Bottom- Up Parser for Unification Grammars Neil K. Simpkins, Peter J. Hancox PREMO: Parsing by Conspicuous Lexical Consumption Brian M. Slator, Yorick Wilks Parsing Algorithms 2-Dimensional Language Masaru Tomita A Broad-Coverage Natural Language Analysis system Karen Jensen Pseudo Parsing Swift-Answer Algorithm S. Pal Asij a A Dependency-Based Parser for Topic and Focus Eva Hajicova Parsing Generalized Phrase Structure Grammar with Dynamic Expansion Navin Rudhiraj a, Subrata Mitra, Harish Karnick, Raj eev Sangal 
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IWPT'91 

13-15  February 1991  - Cancun (Mexico) Parsing without Parser Koiti Hasida, Hiroshi Tsuda Parsing = Parsimonious Covering? Venu Dasigi The Valid Prefix Property and Left to Right Parsing of Tree-Adjoining Grammar Yves Schabes Preprocessing and Lexicon Design for Parsing Technical Text Robert P. Futrelle, Christopher E. Dunn, Debra S. Ellis, Maurice J. Pescitelli, Jr. Incremental LL{1) Parsing in Language-Based Editors John J. Shilling Linguistic Information in the Databases as a Basis for Linguistic Parsing Algorithms Tatiana A. Apollonskaya, Larissa N. Beliaeva, Raimund G. Piotrowski Binding Pronominals with an LFG Parser Radolfo Delmonte, Dario Bianchi A Hybrid Model of Human Sentence Processing: Parsing Right-Branching, Center-Embedded and Cross-Serial Dependencies Theo Vosse, Gerard Kempen Using Inheritance Object-Oriented Programming to Combine Syntactic Rules and Lexical Idiosyncrasies Benoit Habert An LR{k) Error Diagnosis and Recovery Method Philippe Charles Adaptive Probabilistic Generalized LR Parsing Jerry Wright, Ave Wrigley, Richard Sharman Phonological Analysis and Opaque Rule Orders Michael Maxwell An Efficient Connectionist Context-Free Parser Klaas Sikkel, Anton Nijholt Slow and Fast Parallel Recognition Hans de Vreught, Job Honig Processing Unknown Words in Continuous Speech Recognition Kenji Kita, Terumasa Ehara, Tsuyoshi Morimoto The Specification and Implementation of Constraint-Based Unification Grammars Robert Carpenter, Carl Pollard, Alex Franz Probabilistic LR Parsing for General Context-Free Grammars See-Kiong Ng, Masaru Tomita Quasi-Destructive Graph Unification Hideto Tomabechi Unification Algorithms for Massively Parallel Computers Hiroaki Kitano Unification-Based Dependency Parsing of Governor-Final Languages H yuk-Chul Kwon, Aesun Yoon Pearl: A Probabilistic Chart Parser David M. Magerman, Mitchell P. Marcus Local Syntactic Constraints Jacky Herz, Mori Rimon Stochastic Context-Free Grammars for Island-Driven Probabilistic Parsing Anna Corazza, Roberto Gretter, Giorgio Satta, Renato De Mori 
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Substring Parsing for Arbitrary Context-Free Grammars Jan Rekers, Wilco Koorn 
Parsing with Relational Unification Grammars Kent Wittenburg 
Parsing 2-D Languages with Positional Grammars Gennaro Costagliola, Shi-Kuo Chang 
IWPT'93 

10-13  August 1993 - Tilburg {The Netherlands) ,  Durbuy {Belgium) 

Monte Carlo Parsing Rens Bod 
Transformation-Based Error-Driven Parsing Eric Brill 
Parsing as Dynamic Interpret ation Harry Bunt, Ko Van der Sloot 
Compiling Typed Attribute-Value Logic Grammars Bob Carpenter 
{Pictorial} LR Parsing from an Arbitrary Starting Point Gennaro Costagliola 
A New Transformation into Deterministically Parsable Form for Natural Language Grammars Nigel R. Ellis, Roberto Garigliano, Richard G. Morgan 
A Principle-Based Parser for Foreign Language Training in German and Arabic Joe Garman, Jeffery Martin, Paola Merlo, Amy Weinberg 
An Algorithm for the Construction of Dependency Trees Gerrit van der Hoeven 
Integration of Morphological and Syntactic Analysis Based on the LR Parsing Algorithm Tanaka Hozumi, Tokunaga Takenobu, Aizawa Michio 
Structural Disambiguation in Japanese by Evaluating Case Structures based on Examples in Case 
Frame Dictionary Sadao K urohashi, Maka to Nagao 
An Efficient Noise-Skipping Parsing Algorithm for Context-Free Grammars Alon Lavie, Masaru Tomita 
T he Use of Bunch Notation in Parsing Theory Rene Leermakers 
Chart Parsing of Attributed Structure-Sharing F lowgraphs with Tie-Point Relationships Rudi Lutz 
T he Interplay of Syntactic and Semantic Node Labels in Partial Parsing David D. McDonald 
Increasing the Applicability of LR Parsing Mark-Jan Nederhof, Janos J. Sarbo 
Reducing Complexity in a Systemic Parser Michael O'Donnell 
Generalized LR Parsing and Attribute Evaluation Paul Oude Luttighuis, Klaas Sikkel 
A Proof-Theoretic Reconstruction of HPSG Stephan Raaijmakers 
Stochastic Lexicalized Context-Free Grammar Yves Schabes, Richard C. Waters 
Predictive Head- Corner Chart Parsing Klaas Sikkel, Rieks op den Akker 
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Parsing English with a Link Grammar 
Daniel D. Sleator, Davy Temperley Evaluation of T T T  Parser: A Preliminary Report 
Tomek Strzalkowski, Peter G .N. Scheyen Frequency Estimation of Verb Subcategorization Frames Based on Syntactic and Multidimensional Statistical Analysis 
Akira Ushioda, David A. Evans, Ted Gibson, Alex Waibel, Handling Syntactic Extra-Grammaticality 
Fuliang Weng Adventures in Multi-Dimensional Parsing: Cycles and Disorders 
Kent Wittenburg Probabilistic Incremental Parsing in Systemic Functional Grammar 
A. Ruvan Weerasinghe, Robin P. Fawcett 

IWPT'95 

20-24 September 1995 - Prague, Karlovy Vary ( Czech Republic) 

* is a short paper Acyclic Context-sensitive Grammars 
E. Aarts * Parsing in Dialogue Systems Using Typed Feature Structures 
R. op den Akker, H. ter Doest, M. Moll, A. Nijholt * Parallel Parsing: Different Distribution Schemata for Charts 
J. Amtrup A Fuzzy Approach to Erroneous Inputs in Context-free Language Recognition 
P. Asveld Parsing Non-Immediate Dominance Relations 
T. Becker, 0. Rambow Yet Another O{n6} Recognition Algorithm for Mildly Context-sensitive Languages 
P. Boullier Developing and Evaluating a Probabilistic LR Parser of Part-of-Speech and Punctuation Labels 
T. Briscoe T, J. Carroll An Abstract Machine for Attribute- Value Logic 
B. Carpenter, Y. Qu A Chunking-and-Raising Partial Parser 
H. Chen, Y. Lee Distributed Parsing With HPSG Grammars 
A. Diagne, W. Kasper, H. Krieger * Chart-based Incremental Semantics Construction with Anaphora Resolution Using >..-DRT 
I. Fischer, B. Geisert, G. Gorz Term Encoding of Typed Feature Structures 
D. Gerdemann Generic Rules and Non-Constituent Coordination 
J. Gonzalo, T. Solias A Robust Parsing Algorithm for Link Grammars 
D. Grinberg, J .  Lafferty, D. Sleator An Implementation of Syntactic Analysis of Czech 
T. Holan, V. Kubon, M. Platek Analyzing Coordinate Structures Including Punctuation in English 
S. Kurohashi 
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* On Parsing Control for Efficient Text Analysis 
A. Lavelli, F. Ciravegna * A Practical Dependency Parser 
V. Lombardo, L. Lesmo A Labelled Analytic Theorem Proving Environment for Categorial Grammar 
S. Luz-Filho, P. Sturt A Unification-based ID /LP Parsing Schema 
F. Morawietz Parsing Without Grammar 
S. Mori, M. Nagao A Formalism and a Parser for Lexicalised Dependency Grammars 
A. Nasr Error-tolerant Finite State Recognition 
K. Oflazer A Novel Framework for Reductionist Statistical Parsing 
Ch. Samuelsson A Corpus-based Probabilistic Grammar with Only Two Non-terminals 
S. Sekine, R. Grishman Heuristics and Parse Ranking 
B. Srinivas, Ch. Doran, S. Kulick Stochastic Parse- Tree Recognition by a Pushdown Automaton 
F. Tendeau * An HPSG-based Parser for Automatic Knowledge Acquisition 
K. Torisawa, J .  Tsujii Parsing D-Tree Grammars 
K. Vijay-Shanker D. Weir, 0. Ram bow The Influence of Tagging on the Results of Partial Parsing in German Corpora 
0. Wauschkuhn * Partitioning Grammars and Composing Parsers 
F. Weng, A. Stokke Parsing with Typed Feature Structures 
S. Wintner, N. Francez. 
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