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Abstract 

Many traditional TAG parsers handle ambiguity by considering all of the possible choices as they unfold during 
parsing. In contrast , D-theory parsers cope with ambiguity by using underspecified descriptions of trees. This paper 
introduces a novel approach to parsing TAG, namely one that explores how D-theoretic notions may be applied to 
TAG parsing. 

Combining the D-theoretic approach to TAG parsing as we do here raises new issues and problems. D-theoretic 
underspecification is used as a novel approach in the context of TAG parsing for delaying attachment decisions. 
Conversely, the use of TAG reveals the need for additional types of underspecification that have not been considered 
so far in the D-theoretic framework. These include combining sets of trees into their underspecified equivalents as 
well as underspecifying combinations of trees. 

In this paper, we examine various issues that arise in this new approach to TAG parsing and present solutions 
to some of the problems. ·we also describe other issues which need to be resolved for this method of parsing to be 
implemented. 

1 Introduction Ambiguity is a central problem in the parsing of natural languages. Within the framework of TAG, a number of approaches have been adopted in trying to  deal with this issue. Traditional approaches share the characteristic of exploring all of the choices in the face of ambiguity. To make such a scheme effective, techniques such as structure sharing and dynamic programming are commonly used. In contrast , we explore a different style of parsing that copes with ambiguity through the underspecification of tree structures. This style of parsing deals with descriptions of trees instead of trees themselves. Notable examples of such parsers include [Marcus, Hindle, and F leck, 1 983] , [Gorrell, 1 995] , and [Sturt and Crocker, 1 996] . We refer to these as D-theory parsers. Following them, we construct an underspecified representation that captures a set of parses for the input seen so far. The primitive of dominance is used in the descriptions that our parser manipulates. Its use in parsing has been pioneered by [Marcus, Hindle, and F leck, 1 983] , and further investigated by the others such as those listed above . It has also been used within the confines of TAG elementary trees, as stated by [Vijay-Shanker, 1 992] . Nevertheless, in our context of using domination to handle ambiguity in TAG parsing, we differ from both of these bodies of work. We differ from the latter because our use of domination is not limited to use within TAG elementary trees; it is crucially used here to underspecify ambiguity in the attachment of elementary t rees. Thus the domination statements that our parser makes· are domination statements between nodes in different elementary trees. We differ from prior work in D-theory parsing because our parser incorporates a specific grammatical formalism and grammar in order to specify syntactically well-formed structures. Moreover, it uses new kinds of representations that have not been considered in D-theory parsing in order to specify ambiguity. This paper discusses several novel issues and presents our solutions to many of the issues that arise in adopting the use of dominance to parsing TAGs. For example, there is considerable bookkeeping that is necessary to ensure whether a particular underspecified representation conforms to a possible legal TAG derivation. Furthermore ,  TAG's extended domain of locality presents a problem because it hinders the degree of underspecification 
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that is necessary in order to delay disambiguation decisions . ,ve therefore argue that sets of elementary trees need to be underspecified into single representations . An9ther problem is that the notion ofstandard referent, used in D-theory parsing as the default model of a. given underspecified representation, needs to be reconceptualized in order to accommodate the novel use of domination that is proposed here. This paper is organized as follows .  We first consider some broad distinguishing characteristics of our parser in Section 2. Subsequently, we define some terminology in Section 3 as a preparatory for the following sections, which delve into various aspects of of our parser. Section 4 gives a high level outline of our parser. Section 5 explicates the mechanism whereby descriptions of trees are combined. Section 6 deals with computing the standard referent . Section 7 discusses the issue of combining a set elementary trees into a single representation. Finally, concluding remarks are given in Section 8 .  
2 Parsing Framework Our parser draws on typical characteristics of D-theoretic parsers , such as [Marcus , Hindle, and Fleck, 1 983] and [Gorrell, 1 995] . Such characteristics , as well as their relation to our parser, are discussed in this section. A basic feature of D-theoretic parsers is that the input sentence is parsed strict ly from left to right and a description is constructed that captures a set of parse trees for the input seen . One of our goals, which is shared by many other D-theoretic parsers , is that of incremental interpretation. This means at each point in the parse, a partial semantic representation is constructed from the sentence prefix that has been input so far, as delineated by the underspecified representation . The notion of standard referent, as discussed in [Marcus , Hindle,  and Fleck, 1 983] and [Rogers and Vijay-Shanker, 1996] , is included in our parser. Recall that an underspecified representation specifies a set of parse trees, namely those trees which are consistent with every assertion that is embodied by the underspecified representation. The standard referent is that parse tree which is taken to be the default choice from the set of trees that are consistent with a particular underspecified representation. The need for a standard referent would arise from a requirement of incremental interpretation. However, here it is mainly used in determining how structures may be combined. Our parser subscribes to the notion of informational monotonicity. This means that , during parsing, the assertions that the parser makes are considered to be indelible. This is important because, at any point during parsing, we find that not all of the attachment possibilities that may be expressed by a dominance based description language can be incorporated into the underspecified representation that our parser constructs. Certain ambiguities , for example, may not be expressible in our underspecified representation. Therefore, there is the possibility that one of the assertions that the parser makes will turn out to be incompatible with evidence provided by later input . In that situation, the parser is forced to retract that assertion, leading to backtracking. In the literature on D-theory parsers , it has been commonly conjectured that such backtracking correlates with garden path effects. 
3 Terminology Our terminology borrows from TAG and D-Tree Grammar literature. From TAG, the grammar consists of a set of lexicalized trees. The frontier of each elementary tree is composed of a lexical anchor; the other nodes on the frontier will either be substitution or foot nodes . An interior node is commonly considered to be constituted of a top and bottom feature structure. In contrast, we use the terminology introduced by [Vijay-Shanker, 1 992] in that an interior node is considered as a pair of quasi-nodes. A domination link connects the top and bottom quasi-nodes . The path from the root to the lexical anchor of an elementary tree will be called the trunk. We now define the terms component and lowering node. The notion of component is borrowed from D-Tree Grammars , as defined in [Rambow, Vijay-Shanker, and "feir , 1 995] . A component is a maximal subpart of an underspecified representation that has the property that alt of its nodes are connected by immediate domination links. Consider eto in Figure 1 for example. It consists of two components :  the first contains the nodes S, .N Po , and the top VP quasi-node, while the second contains the bottom VP quasi-node ( V  P0 ) ,  the V node, and the 
N Pi node. A lowering node is the root of a component. It can either be the root of an elementary tree or a bottom quasi-node. We call such nodes lowering nodes be 1ause in D-theory, adjunction or substitution at these 1 9  
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Figure 1 :  A lexicalized TAG tree with two components and t,vo lowering nodes. 

nodes would mean that these nodes would be lowered, i.e . ,  later input causes some structure to be placed above 
them. The elementary tree ao contains two lowering nodes, S and V Po . 
4 Parsing Algorithm 

With the terminology so defined, the disquisition of our parsing algorithm can now proceed. At any given time 
during parsing, we assume that there is a single underspecified representation R corresponding to the sentence 
prefix which has been seen so far. It describes a set of trees that are obtained by combinations of structures 
anchored by the input encountered. For now, we assume that R is treelike except that some of the nodes may 
be connected by domination links instead of immediate domination links. The immediate domination links 
arise only from the immediate domination links that appear in the composed TAG trees. The domination links 
arise from either those that appear in elementary TAG trees or between nodes in different trees. At the start 
of parsing, R consists of a single substitution node S. 

A provisional description of the parsing process is outlined as follows. 

• The next word is input. There will usually be more than one elementary tree corresponding to this word. 

• Those elementary trees that are structurally incompatible with the current representation R are removed from 
consideration. This is addressed in Sections 5.1 and 5.2. 

• The remaining elementary trees must be incorporated into the current representation R to produce the new 
underspecified representation. If only one elementary tree corresponding to the current input word remained 
after the second step's filter, then this would be straightforward. On the other hand, there may be cases where 
more than one tree remains. We propose to address the latter situation by grouping such sets of elementary 
trees into one underspecified representation. This would allow us to delay the choice of elementary tree until 
later while still being consistent with informational monotonicity. Nevertheless, it may still be the case that 
the remaining set of elementary trees corresponding to the current word cannot be grouped together. In 
this case, we would have to make a choice. ·we propose that other sources of information would need to be 
recruited in order to further constrain the set of viable elementary representations, as well as their attachment 
sites. These sources may include semantics, or lexical frequencies as determined from a corpus. 

In what follows, we begin a more detailed discussion of certain essential aspects of our parsing algorithm. 
We start by considering what structural possibilities the parser needs to consider when it tries to combine the 
current underspecified representation R with an elementary tree ry that is anchored by the next input word. 

5 Control Strategy 

This section describes how representations may be combined. Associated with each representation are expec
tation lists that encode how it expects to fit into a complete sentence structure. We first describe the nature 
of expectation lists. Next, we develop the control strategy that is used to check if two representations may be 
combined, through the use of expectation lists. We also consider what actions may take place if two expectation 
lists are incompatible. 
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5 . 1  Expectations At any given point in the parsing of the input sentence, subsequent input may clearly not be inserted into the part of R that is to the left of that path running from the root of R to the leaf l. Extending the notion of trunk, which has hitherto only been defined for elementary trees, we state that the trunk of an elementary representation R is the path from the root to the last input node. Thus, when inserting new structure into R, only the nodes and domination links on and to the right of the trunk need to be considered. These nodes are contained in ,vhat we call the right expec tation list of R. Analogous observations hold about the elementary TAG trees. Namely, at each point in parsing, an elementary tree f/, representing the next input word, is combined with R. When considering how rJ may be combined with R, it suffices to consider only those nodes and domination links that appear on or to the left of that path from the root to the anchor. These nodes are contained in the left expec tation list of 17 . Now we will consider how to compute the left expectation list of R and the right expectation list of rJ. In the relevant subparts of R and 'T/ ,  we need to examine nodes that can be involved in combinations: lowering nodes, substitution nodes ,  and foot nodes. In our expectation lists, we consider expectations of two types: substitution expectations or lowering expectations . A substitution expectation corresponds to a substitution node or a foot node. Conversely, a lowering expectation corresponds to a lowering node. Each expectation is characterized as optional or obligatory. Substitution expectations are always obligatory. Lowering expectations may either be optional or obligatory. Suppose there exists a domination link that states that node a dominates node b. The lowering expectation corresponding to node b is obligatory if the labels of a and b do not match. Expectation lists are ordered lists of expectations. The order of expectations for one representation corresponds to the sequence in which the parser will try to assemble it with the other representation. The algorithm that is presented in Figure 2 returns an ordered list of expectations when given an underspecified representation or elementary t ree and a direction d that specifies whether a left or right expectation list should be found. It first examines the anchor and then makes its way up the t runk of the representation, one node at a time. At each such node n, the algorithm sees if n corresponds to an expectation. If so, this is recorded. It also checks if n has any siblings in the dth direction. If so, each such sibling is scanned in a depth first fashion for any expectations . Consider the expectations in the right expectation list for cx0 in Figure 1 .  The algorithm starts at the anchor "hit" and then makes its way up to the V node. The V node has a sibling, N Pi ,  which is examined in a depth first fashion for any expectations . This yields the first expectation, N Pi ( obl ig , subst) . The algorithm continues up the trunk to the bottom VP quasi-node ( V P0 ) ,  which is associated with another expectation V P( opt ,low ) , which is duly recorded. Continuing further up the trunk, the algorithm finds one more expectation corresponding to the root S ,  which is S( opt ,l ow) · Similarly, the left expectation list of cxo would be < V P( opt ,low ) , N Po ( oblig , subst ) , S( opt ,low )  > . 
5.2 Combining Representations As the parser proceeds through the input sentence from left to right , the parser tries to combine the underspecified representation R with an elementary tree 'T/ corresponding to the current input word. Expectation lists encode how a representation to the left may be combined with an elementary t ree to the right . We say that the underspecified representation R can be combined with the elementary tree 17 when the right expectation list of R is compatible with the left expectation list of 'T/ · An outline of a proposed procedure to determine the compatibility of two expectation lists is delineated in this section. This procedure has two steps . First , one expectation is taken from the left expectation list of rJ and the right expectation list of R is searched for a matching expectation. Second, given that the two representations partially combine according to how these first two expectations match, it is seen whether the two representations can be fully combined. 

1 If d is left (right ) ,  then not d is right (left) .  
2 Node p is a parent of a node c i f  p i s  connected to c by a domination or immediate domination link. For example, a top 

quasi-node is the parent of the corresponding bottom quasi-node. 
3The child relation is defined analogously to the parent relation in the previous footnote. For example, a bottom quasi-node is 

the child of its corresponding top quasi-node. 
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Order_expect(n:node, d:left or right) Case n lies on trunk If n is a lowering node Record n as a lowering expectation Loop through each sibling i · of n that appears to the d of n from not dI to d Order-expect( i ,  d) If n has a parent p2 Order_expect(p, d) Case n does not lie on trunk If n is a substitution node Record n as a substitution expectation Else ( n is an interior node) If n is a lowering node Record n as a lowering expectation Loop through each child3 i of n that appears to the d of n from not d to d Order-expect(i, d) If n is an adjoining node Record n as a lowering expectation 
Figure 2: Algorithm that returns an ordered list of left or right expectations. Finding the First Pair of Matching Expectations We take the first expectation eI from the left expectation list of 'T/ · eI may either be a substitution expectation or a lowering expectation. If it is the former, we look for a matching lowering expectation in R. Conversely, if it is the latter , we look for a matching substitution expectation. It may occur that, although e I  is an obligatory expectation, there is no expectation in R that matches. We need not consider this particular situation further, because the two representations are obviously incompatible. Alternatively, although there may be no matching expectation for e 1 , e I is an optional expectation. In this case, we can skip to the next expectation on the left expectation list of the elementary tree. Matching the Rest of the Two Expectation Lists Suppose that a matching expectation em (in R) for eI (in 'T/) is found. Now there are two tasks that must be accomplished. First it must be ensured that this matching expectation can indeed lead to a valid combination of the two representations that are under consideration. This is accomplished as follows. Suppose that nm and nI are the nodes corresponding to the expectations em and e I , respectively. Now let Pm be the path from the root of the underspecified representation R to nm . Conversely, let PI be the path from the root of the elementary tree 'T/ to nI . The task is to find out if the components along the path Pm can be interspersed with the components along the path PI . This is done by iteratively matching the expectations corresponding to the nodes that lie on path Pm v•.rith those that lie on the path PI , starting from those expectations corresponding to nodes that lie closest to em and e I . Second, any remaining unmatched obligatory expectations in 7J should be matched, in order of their appearance on the expectation list, by recursively calling the aforementioned procedure. Representing Ambiguity of Attachment Suppose e I is a substitution expectation and we find a matching lowering expectation em in R. That em must be the corresponding attachment site for e I  does not immediately hold. In Figure 3 (b) ,  for example, the auxiliary tree could be adjoined at either of the VP's in R. To capture such attachment ambiguity, rather than equating nI and nm ( the node corresponding to the first expectation in the expectation list for R that matches e I ) ,  we will say nI dominates nm . On the other hand, in Figure 3(a) , there is no ambiguity in attachment of the new elementary tree. In this case we can make a stronger statement by equating nI and nm . In general, the type of attachment ambiguity that we underspecify is where e I  is a substitution expectation that matches more than one lowering expectation and no obligatory expectations occur between the first and 22 
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Figure /'JI. Example of case 1 of the algorithm to match expectation lists. (a) is the subcase of unambiguous attachment . (b) is the subcase of ambiguous attachment . the last matching lowering expectations on the left expectation list of f/, inclusively. Whether such an ambiguity exists is determined as follows . Suppose e 1 is a substitution expectation. Furthermore suppose its combination with em , the first matching lowering expectation, does in fact lead to a valid combination of representations . \i\Te may find another valid combination by scanning further in the right expectation list of the underspecified representation R, starting from em , to find another matching expectation em ' (before encountering an obligatory expectation that does not match e 1 ) and verifying that it leads to another valid combination of structures, using the same method that we performed for the first matching expectation em . Our underspecified representation captures this ambiguity as follows. Notice that no matter where the elementary tree 7J is adjoined, it is the case that the node n1 will always dominate the lowest attachment site nm . Therefore, in cases of such ambiguity, we stipulate such a domination as shown in Figure 3 (b ) .  Notice that while the example in Figure 3 (b) corresponds to adjoining, a similar situation arises even if n 1 is a substitution node. Representing the ambiguity in this way has various repercussions . For example, if the elementary tree that is being ambiguously added is an auxiliary tree, then we should make sure that if disambiguation should subsequently occur, an additional assertion should be made in order to guarantee a proper TAG adjunction. In detail, suppose that "I is the auxiliary tree, and n 1 is the foot node of 'Y · When disambiguation occurs, n1 is equated with some bottom quasi-node nb . In that case, an additional stipulation should be made that the top quasi-node nt that corresponds to n6 dominates the root of "I. Another consequence is that an underspecified representation R that encodes such ambiguities is no longer the treelike structure that was assumed earlier. This necessitates alterations in our algorithm for computing expectation lists ,  as will be discussed in Section 6 .  Details Behind Matching the First Two Expectations As noted previously, matching one expectation list against another entails finding a sequence of pairs of corresponding substitution and lowering expectations. Whether two expectations match depends upon various factors , such as whether the substitution expectation occurs in R or 77, and whether the nodes corresponding to the expectations are substitution nodes, foot nodes, or quasi-nodes. 
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Let e1 be the first expectation from the left expectation list of the elementary tree T/ · The expectation e1 may either be a substitution expectation (corresponding to a substitution node or a foot node) or a lowering expectation ( corresponding to a lowering ·node) . We handle the tests for satisfaction of these two kinds of expectation as case 1 and case 2, respectively. In the following we take em to be the first expectation in the right expectation list of R that matches e 1 . Furthermore, let nm and n 1 be the nodes corresponding to the expectations em and e 1 , respectively. Case 1 :  e 1 is a Substitution Expectation. As stated previously, nodes n1 and nm are equated if there is no ambiguity in the placement of n 1 • Otherwise, the ambiguity is encoded into the representation with node n1 dominating nm . Now consider the situations where n 1 is either a substitution node (Case la) or a foot node (Case lb) .  Case la: n1 is a Substitution Node. If n 1 is a substitution node, then nm must be the root of some elementary tree. This follows because the TAG operation of substitution requires that the root of an elementary tree be equated with a substitution node and that entire tree must have already been integrated into R. Node nm may be dominated by another node nn in R. nn may be a substitution node (Case la-i) or a foot node (Case la-ii) . We proceed to consider the cases where n 1 is to be equated with nm . Case la-i: nn is a Substitution Node. Let nr be the root of 'T/· We can say that it is dominated by nn if nr E LC(nn ) 4 • See a 1 3  of Figure 4 for an example . Otherwise, our original assertion of equality between n1 and nn was in error. The use of domination of nr by nn is to allow for further material to the right to be inserted between these two. Case la-ii: nn is a Foot Node. Suppose nn is a foot node. If nr (/. LC(nn ) then nn does not dominate nr . Otherwise, nn may or may not dominate nr ; the rest of the expectation lists would have to be checked in order to find out if there is the possibility of ambiguity in the placement of nr . See a1 4  of Figure 4 .  Case lb :  n 1 i s  a Foot Node. I f  n1 is a foot node, then nm must be a bottom quasi-node. Analogous to Case la, this follows because the TAG operation of adjoining requires that the foot node be equated with a bottom quasi-node. Again, where there is no ambiguity in the placement of n1 , we consider whether nn is a foot node (Case lb-i) or a top quasi-node (Case lb-ii) . Note that node nn cannot be a substitution node because a substitution node cannot occur along the path between a top and bottom quasi-node. Case lb-i: nn is a Foot Node. This case is similar to Case la-ii. Case lb-ii: nn is a Top Quasi-node. If nn is a top quasi-node, then it dominates nr . This is to ensure that a valid TAG adjunction is performed. See Figure 3(a) for an example. Case 2: e 1 is a Lowering Expectation. Again suppose that nm and n1 are the nodes corresponding to the expectations em and e 1 , respectively. This time em must be a substitution expectation. Note that the possible attachment of nm to more than one node in TJ does not occur .  Because n1 is a lowering node, it can only be a bottom quasi-node (Case 2a) or a root of an elementary tree (Case 2b) . Case 2a: n1 is a Bottom Quasi-node. If n1 is a bottom quasi-node, then nm must be a foot node. It cannot be a substitution node because that would mean that a substitution node exists along the path between 
4 LC(v) stands for left corner, by which we include anything that can appear in the left periphery of a tree whose root is v. 24 
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Figure 5: (a) Representations that are selected when the input "\Vho does . . .  " is encountered. (b) The same representations combined with domination. a top and bottom quasi-node. Node n1 is dominated by another node n1,., in elementary tree TJ, which can only be a top quasi-node. Because nk is a top quasi-node, it dominates the root of the auxiliary tree that has nm as a foot node. This follows from the fact that we want to preserve TAG adjoining. 
Case 2b: n1 is the Root of an Elementary Tree. If n1 is the root of the elementary tree TJ, then nm can either be a substitution node or a foot node. In this situation, node nm is made to dominate n1 . Equality is not asserted because it may be possible for material from the right to be inserted between nm and n1 . 

When the Relationship between Two Representations is Locally Unknown It is also possible that there is no expectation e 1 in the left expectation list of the elementary t ree TJ which might suggest how to combine it with the underspecified representation R to its left . Furthermore, the expectations in that list may have all been optional. In this situation, although no assertion of domination can combine R and TJ, it is possible that subsequent input may be able to combine them. Call this Case 3. It occurs for example in the context of the sentence "Who does J ohn annoy?" After the prefix "\Vho does . . .  " has been seen, the parser considers combining the two representations that are shown in Figure 5 (a) , only to find that it is impossible. As a general strategy for case 3, we will assume that the disparate representations are combined using dominance where both of the representations are dominated by the lowest node which we know for certain will dominate both. An example is shown in Figure 5(b) . This strategy would entail complications to the procedure of building expectation lists and checking for the compatibility of expectations. Notice that this strategy is akin to buffering the uncombinable items. There is therefore the problem of determining what , if anything, is the proper buffer size. 
6 Computing the Standard Referent In D-theory, the notion of standard referent plays an important role. The standard referent is a minimal model (tree) of a description. It is usually obtained by minimizing the path lengths of all of the domination links. Such a tree would be useful in incremental interpretation. For us the method for obtaining the standard referent is also useful in determining the order in which the components of the current underspecified representation are to  be  combined with new additional input . Recall that the underspecified representation that our parser produces allows for non-treelike forms in order to describe some forms of attachment ambiguity. On the other hand, the algorithm that was given to compute expectation lists requires a treelike description as input . Consider the description o:8 in Figure 6. The problem here is that obtaining the expectation list for o:8 is not possible because an expectation list requires a unique ordering of domination. In particular, whether X P3 dominates X P4 depends on whether or not X P3 is placed above X P4 . If the standard referent is implicitly assumed to be the default structure, the question arises as to ·what the standard referent of o:8 is. Such cases have never arisen in previous work on D-theory. 5 In defining the notion of standard referent here, we have 

5 See [Rogers and Vijay-Shanker, 1996] for discussion on the determinism hypothesis in D-theory parsing and the uniqueness of 
the standard referent . 25 
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y Figure 6: An example of our parser's underspecified representation (as ) ,  its standard referent (a9 ) ,  and another representation compatible with as (a10 ) .  t o  consider disambiguating the attachment ambiguity that is expressed in  structures such as a8 • Because the standard referent is usually taken to be the default structure, its definition could also be used to give an ordering for the expectation list . The basic strategy that we would like to use in order to determine the standard referent is to minimize the lengths of the domination links. This strategy, however, does not always yield a single standard referent , as seen in a8 of Figure 6 .  In this case, there is no unique standard referent because the sum of the lengths of the domination links d1 and d2 does not vary with the placement of the auxiliary tree that is rooted by node X P3 . 6 The difficulty arises when two domination links reach the s·ame node. We call such pairs of domination links ambiguous. In as the pair of domination links d1 and d2 are ambiguous because they both dominate the same node X P3 . In order to guarantee that a single standard referent is obtained, the process of determining a standard referent is divided into two stages. First ,  all of the ambiguous domination links are disambiguated by minimizing their lengths sequentially according to a predetermined order, yielding an unambiguous representation R' . Second, a single standard referent is determined from R' by minimizing the sums of the lengths of the domination links. Suppose d1 and d2 are any ambiguous pair of domination links in R. d1 and d2 state that certain nodes U and V dominate a node X .  Clearly, U and V must come from different elementary trees, say f3u and /3v . There must have been an order in which f3u and /3v were introduced into R. This is the order in which the ambiguous domination links d1 and d2 are ordered. Each domination link is assigned a value that specifies the time at which the elementary tree in which the link's parent node resides was introduced into R. In defining the order for an expectation list , the domination link with the higher value is ordered before one with a lower value. Consider for example the underspecified representation as of Figure 6. There are two ambiguous domination links d1 and d2 with value(d1 ) < value (d2 ) . Consequently, d2 's length is minimized before d1 's length. The resulting underspecified representation is a9 . There are two motivations behind our method. First ,  computing the expectation list of the result of computing the first step of the standard referent yields a sequence of expectations that does not omit any possible attachment points. For example, the expectation list of a9 encodes the possibility of material being inserted between X Pi and X P3 , something that would not happen had X P3 been postulated to dominate X P4 , as in a10 • Second, this strategy typically corresponds to right association, as described in [Frazier, 1995] . Specifically, minimizing more recently created domination links first means that more recently added subtrees will be attached as low as possible. For example, the standard referent for the representation in Figure 3(b) has the adverb "today" modifying the lower verb "left ." Insofar as right association has been postulated as a 

6 Another possible standard referent of as would be found by equating the two pairs of nodes X P1 and X P2 , and X P3 and X P4 , 

which would result in a parse tree where, for example, ZP1 and ZP2 are siblings. Nevertheless, it docs not result in a tree obtained 
by any sequence of TAG operations, assuming that the component that is rooted at X P4 and the component that is rooted at 
X P3 come from different elementary structures. We avoid this undesirable result by never attempting, in computing the standard 
referent , to equate two nodes simply because they both happen to be asserted as parents of a single node. 
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(a) (b) Figure 7: (a) Elementary representation corresponding to two elementary TAG trees. (b) Elementary trees that require underspecification in order for parser to avoid backtracking. general strategy for human parsing, modulated perhaps by semantic and discourse factors , it corresponds with this strategy of computing the standard referent , which may be used as the baseline structure for semantic interpretation. 

7 Elementary Representations Underspecification plays an important role in reduced commitment parsing. Too great an underspecification means that few constraints are placed on what the final structure of the sentence will look like. It diminishes the predictive ability of the parser and enlarges the range of potential structures that are considered at any given time. Conversely, too little an underspecification leads the parser into making incorrect predictions and reduces the number of sentences that can be parsed without backtracking. The enlarged domain of locality that TAG provides causes the latter sort of problem in this context . Let us select the strategy of choosing only one elementary tree at each step in the parse. Consider the problems it raises when trying to parse the following pair of sentences: "I know the answer" and "I know the answer is wrong." Crucially, after having seen the word "know" the parser cannot predict which elementary tree to select because the extended domain of locality of TAG requires two different elementary trees for "know," each corresponding to a different subcategorization. In order to alleviate this problem, it is useful to coalesce different elementary trees into a single representation because at this point , there is no way to t ell which is the correct tree to choose. ·we merge the two elementary trees for the verb "know" by having the substitution node corresponding to its obj ect ambiguously specified as NP or S. See Figure 7(a) . We call a single set of assertions with the added proviso of node label underspecification (which represent a set of elementary TAG trees) an elementary representation. The expedient of node label underspecification is also useful in avoiding backtracking in several other situations. Another example is the ambiguity that is associated with PP attachment . Suppose that a PP may either attach at the N' level or the VP level. The problem is that there is a separate elementary tree for each case . ..  With node label underspecification, these separate elementary trees may be coalesced into one elementary representation. Using such elementary representations, we can delay the PP attachment decision until all of the necessary disambiguating information is encountered, as in Figure 8. Other situations require underspecification of structure in addition to node label underspecification. In general, such cases occur when there is an optional argument or an optional modifier. For example, the verb "wash" optionally subcategorizes for an NP. Another instance occurs with the sentence prefix "The wedding marked . . .  " There is ambiguity in whether the reduced relative or the main verb tree for ''marked" ought to be chosen. Notice that parsing free word order languages also introduces this problem of tree selection. The ambiguity · in selection of tree structure may even cross part of speech boundaries. This is exhibited in the sentence pairs "Fruit flies like an orange" and "Fruit flies through the air."  The relevant trees for the word "fruit" are shown in Figure 7 (b) . 
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T/ Figure 8: Node label underspecification allows us to represent PP attachment ambiguity. We are exploring various possibilities for representing this structural ambiguity. One possibility is to license only those parts of an elementary tree up to a certain proj ection. Take the trees in Figure 7(b) for example. Recall that in the case of seeing the word "know," we underspecified the argument label because it was unavailable. Similarly, upon encountering the word "fruit" we underspecify the set of two elementary trees because only projection up to the N level is licensed. The method suggested by [Evans and Weir, 1997] can perhaps be used to coalesce these structures. 
8 Conclusions and Future Work In this work, we consider parsing TAG using underspecified descriptions of trees featuring dominance and underspecified node labels. The prediction component of an Earley parser corresponds to our assertion of domination. The completion component of an Earley parser does not have an analogue in our parser; it is 
a manifestation of how an Earley parser considers all possible parses while our parser leaves the situation underspecified. Specifically, in order to underspecify the attachment ,  we find that in most of the cases in Section 5.2, our parser does not immediately perform TAG operations of substitution and adjoining. That would require equating nodes from two different trees. Instead, our parser asserts domination that leaves us uncommitted to a particular attachment site. Nevertheless, when our parser recovers a parse tree from the underspecified representation, it is necessary for our parser to ensure that the resulting tree corresponds to one derived using substitution and adjoining. In contrast with traditional work in TAG parsing, we envision our parser to be one that delays attachment decisions. However, we would not like our parser to leave the situation completely underspecified, but to reduce the search space through the judicious use of extra information. This is our notion of reduced commitment ,  the  idea that the  underspecified representation that the parser constructs encodes only those relations that the parser strongly believes must hold for the entire sentence. This extra information may include semantics, information about thematic roles, selectional restrictions, or frequency data that are collected from a parsed corpus. It is a subject for future work. While our parser draws elements from D-theory, this work also extends beyond current work on D-theory. Current work on D-theory parsers do not use any explicit grammar formalism or grammar. Our choice of TAG was motivated by several factors. First, TAGs in general have the desirable properties of factoring recursion and localizing dependencies, which provide argument and structural requirements that are needed by D-theory style parsers for making its assertions regarding structures. Second, TAGs encode linguistic knowledge in a declarative format, making it easier to develop and modify than a more procedural design. Third, extensive TAG grammars have already been developed which could be quickly adapted to the deterministic parser that is proposed here. 
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Our use of TAG notwithstanding, we use dominance in a qifferent manner than is customary with D-theory parsers . D-theory parsers usually construct a treelike description. On the other hand, some of the descriptions that our parser constructs are not necessarily treelike. This was necessary to capture attachment site ambiguity. In these cases, a statement is made that the tree which may be ambiguously placed dominates the lowest possible attachment site . Consequent ly, this site ,vould be dominated · by two structures ,  each of which is ambiguously ordered with respect to domination. This ambiguous representation had a direct impact on our computation of the standard referent , another area where we deviate from normal D-theory parsers. We have provided a means of determining a standard referent under these exceptional circumstances. Our solution appears to produce a structure that conforms to right association, which is not the case for all other D-theory parsers. Not only may our standard referent aid in incremental interpretation but in our case it also aids in deciding how representations may be combined. ,ve have also discussed how representations may be combined ·through the use of expectation lists .  We have provided a taxonomy of expectations. These help define a number of cases that illustrate when domination may be postulated between components of different elementary trees . ,ve have enumerated many of these cases and given examples of their application. Finally, we have argued that in incorporating TAG into D-theory style parsing, the assumptions that are standardly made about TAG trees can interfere with the goal of delaying attachment decisions. To alleviate this situation, we have suggested how several TAG trees should be coalesced into one elementary representation. An elementary representation represents elementary TAG trees that differ only in their node labels. This underspecification essentially allows the parser to delay the choice of the specific elementary TAG tree until further information can be obtained. We have also enumerated other cases where node label underspecification is insufficient. We have postulated a solution based on limiting how much of a projection of an elementary tree that we would license in a given situation. This is another subject for further investigation. 
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