
PROBABILISTIC PARSE SELECTION BASED ON 

SEMANTIC COOCCURRENCES* 

Eirik Hektoen Computer Laboratory, University of Cambridge Pembroke Street , Cambridge CB2 3QG, UK Eirik . Hektoen@cl . cam . ac .uk http : //www . cl . cam . ac . uk/users/eh101  
Abstract 

This paper present� c1 new technique for selecting the correct parse of ambiguous sentences hased on a probabilistic analy�, of lexical cooccurrences in semantic forms. The method is called "Semco" (for semantic cooccurrence analysis) and is specifically targeted at the differential distribution of such cooccurrences in correct and incorrect parses. It uses Bayesian Estimation for the cooccurrence probabilities to achieve higher accuracy for sparse data than the more common Maximum Likelihood Estimation would. It has been tested on the Wall Street Journal corpus (in the PENN Treebank) and shown to find the correct parse of 60.9% of parsea e sentences of 6-20 words. 
1 Introduction In recent years there have been many proposals for probabilistic natural language parsing techniques, t hat is, techniques which not only find the possible syntactic derivations for a sentence, but also attempt to determine the most likely parse according to some probabilistic model. A basic example is a probabilistic context free grammar (PCFG ) ,  in which each production rule is associated with t he conditional probability of it being applied when the left -hand non-terminal occurs in the generation of a sentence (e.g . ,  Baker ,  1982; Kupiec, 199 1 ;  Pereira and Schabes, 1992) . This effectively regards the derivation of a sentence as a top-down recursive stochastic process, starting with  t he sentence non-terminal and ending wit h  a random sentence in the language being modelled. While a PCFG is a pleasingly simple model, the fact t hat it assumes t he choice of production at each step is only conditional on the left-hand non-terminal is a limitation to its accuracy. Some variations have therefore been proposed, by which the probability of a rule ( or more generally, a parse derivation step) is made conditional on an extended view of the preceding derivation. For example, Briscoe and Carroll ( 1993) associate probabilities with transitions in an LR(l )  parse table (partly reflecting the left context and a one-word lookahead) , while Black et al. ( 1 993) present a model in which virtually any aspect of the partial parse at any point in a derivation may be taken into account. Both Briscoe and Carroll and Black et al. tie the probabilistic analysis to t he precise parsing algorithm being used, effectively shifting the emphasis from modelling sentence generation to parse selection as a goal in its own right. Others take this further by separating the parsing and t he parse S(

1 l ection completely. Hindle and Rooth (1993) , for example, propose a system for resolving PP attachment ambiguities by co�paring the degree of statistical association between the possible verb/preposition/noun triples after an arbitrary parser has produced a set of syntactically possible parses. This approach is attractive because it is based on lexical cooccurrences, which may reflect the acceptability of the meaning of a parse, but is less comprehensive than the other methods mentioned, since only a particular kind of ambiguity is covered.  
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Yet others have made the opposite move, and presented parsing methods where the probabilistic analysis 
is used as the main driving force for the parser independently of any linguistically motivated grammar. Both 
Magerman (1995) and Collins (1996) propose such systems, where complex statistical patterns extracted from 
a Treebank constitute both the (shallow) syntactic grammar and selectional criteria. The results are systems 
which are comprehensive in the types of ambiguities they can handle and designed to extract a highly detailed 
and wide ranging statistical data from the training corpus, but which do not take any advantage of the analytical 
syntactic rules encoded in a formal grammar, and which do not support the derivation of semantic forms. 

The system presented in this paper is essentially a specialised parse selector based on semantic forms derived 
from the parses found by a separate parser, and can therefore be used ,vith any grammar and parser supporting 
formal semantics. It is based on lexical cooccurrences in terms of the predicates in the semantic forms, but 
handles all predicates uniformly and is therefore generally comprehensive in the types of ambiguities covered. 
It uses a complex statistical analysis to extract a large set of probabilistic parameters from the training corpus, 
but does not abandon the use of a formal grammar. Significantly, the system uses Bayesian Estimation1 rather 
than simple Maximum Likelihood Estimation (MLE) for determining cooccurrence probabilities. This appears 
to be a sufficient response to the high degree of sparseness in the lexical cooccurrence data without the blurring 
associated with smoothing and clustering techniques (generally required for MLE). It seems reasonable to expect 
that a parse selection system should benefit from being trained on the same form of data that it is to be applied 
to-that is, specifically on the selection of the correct parse in sets of possible parses for different sentences 
rather than the unconditional probability of correct parses in isolation. The focus of the training in tb,is system 
is therefore the differential distribution of cooccurrences in correct versus incorrect parses. The system is called 
"Semco" ( for semantic cooccurrence analysis) , and has been trained and tested on ( separate parts of ) the Wall Street Journal corpus in the PENN Treebank. 

2 Definitions 

The aim of the Semco analysis is to model cooccurrences of lexical predicates in semantic forms for the purpose of 
parse selection. A semantic form is here assumed to be a logical expression or description (including unscoped 
or quasi logical forms) derived in a compositional manner from a syntactic parse tree, and thus in general 
representing one of several possible interpretations of a sentence. A cooccurrence should represent the variable 
semantic linking of the predicates (generally representing lexical items from the sentence) in such expressions, 
and is therefore defined as the coincidence of two predicates being applied to the same element ( a quantified 
variable or a constant). More precisely, if the ith argument of the predicate Q and the jth argument of the 
predicate R are the same, the semantic form is said to include the cooccurrence (Q .i , R.j) understood as an 
unordered pair. 

To see how such cooccurrences can be used for sentence disambiguation, consider the following exchange 
(from Andy Warhol, 1975) :  
( 1 )  B :  Is that a female impersonator? 

A: Of what ? 
The expression female impersonator is so commonly used as a noun-noun compound ( "an impersonator of a 
female" ) ,  that it comes as a surprise here when A's reply requires an alternative reading in which female is 
used as an adjective (giving "an impersonator who is female" ). The difference between the two readings is 
represented by the semantic predicates and cooccurrences shown in Table 1. Note that the cooccurrences are 
concise representations of the facts that female and impersonator form a noun compound in Reading 1, while female is used as an adjectival modifier of impersonator in. Reading 2. 

The probabilistic analysis treats cooccurrences as elementary, atomic units, so that for a given grammar 
and lexicon there is a finite set C of possible cooccurrences. As far as this analysis is concerned, a _parse, or 

1 Note that Bayesian Estimation (following e.g. Freund, 1992) refers not merely to the use of Bayes's law, but to the particular 
technique of estimating unknown prol ,:-ihilities by integration over a continuous probability distribution applied in Section 4 .  
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Reading 1 Reading 2 
Categories femaleN impersonatorN femaleAdj impersonatorN 
Predicates (fema le x) (fema le x) 

(impersonator y) (impersonator x) 
(NCOMP y x) 

Cooccurrences (female .a NCOMP.1) (fema le .a impersonator.a) 
( impersonator.a  NCOM P.a) 

Table 1: Example predicates and co occurrences derivation, is regarded as a set of cooccurrences, with the set of all parses being V = {d I d � C} . Similarly, a 
sentence is regarded as a set of possible parses, such that the set of all possible sentences is S = { s I s � V}. 

For each cooccurrence, parse and sentence there is a corresponding event-conventionally represented by 
the corresponding capital letter-referring to the status of a random sentence. More precisely: 

• C is the event that the correct parse of the sentence includes the cooccurrence c. 
• D is the event that the correct parse is d. It can be expressed as the conjunction of the cooccurrence 

events for all the cooccurrences in d and the negated cooccurrence events for all other cooccurrences: 
D = f\ C A f\ -, C. 

cEd c(t_d 

(2) 

• S is the event that the correct parse is an element of s ,  and is simply the disjunction of the corresponding 
parse events :  

S =  V D. (3) 
dEs 

3 The Event Space 

Given the above definitions of cooccurrence, parse and sentence events, one's first reaction may be to regard 
the associated probabilities as the relative frequencies of the respective entities in the language-that is, in the 
correct analyses of the sentences in the training corpus. This is not the only possible definition, however, and 
would have serious disadvantages for the following analysis . For example, it would mean that the model should 
reflect the typical number of cooccurrences in an average sentence, making any assumption of independence 
between cooccurrences inappropriate (since the probabilities of any additional cooccurrence would diminish 
once the number has passed this average). It would also make it impossible for the training to be based on the 
differential distribution of cooccurrences in correct and other syntactically possible, but incorrect , parses of the 
training sentences, since such alternative parses would have no particular status in the model. 

Alternative definitions of the basic probabilities are possible because all actual references to probabilities will 
be conditional on some given sentence. The only requirement of the probabilistic model is that it predicts the 
relative, conditional probabilities for different parses for any given sentence, while the unconditional probabilities 
of different sentences in the corpus are never directly relevant. 

To derive a suitable definition of the basic event space here, we will take the presumed indepeqdence of all 
cooccurrence events as the starting point , based on the view that the model ought to satisfy the following basic 
assumption: 
(4) Basic Assumption: The relative probabilities of any two parses depends only on the cooccurrences 

that distinguish between them, and not on any cooccurrence present in both of them, any cooccurrence 
absent in both of them, or any further possible parses of the same sentence. 
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The independence of the cooccurrence events follows by considering two parses, d1 and d2 , that are only 
distinguished by a single cooccurrence c, say c E d1 and d2 = d1 \ c. By the basic assumption, the ratio 
P(D 1 I S) : P(D2 I S) is invariant for any such d1 and d2 and s 2 {d1 , d2 } ,  and this ratio must be P(C) : P(,C) . 
From the independence of the cooccurrence events and (2 )  it follows that the unconditional probability of a 
parse event D is given by 

P(D) = II P(C) II P(,C). cEd c(/.d 
4 Cooccurrence Probability Estimation 

(5) 

The cooccurrence probabilities P( C) represent the basic parameters in the analysis and need to be estimated 
from the training corpus. In many other probabilistic analyses of corpus data the basic parameters are estimated 
as the observed relative frequencies of sentences displaying the relevant characteristics, but such a simple 
approach is not possible here. Instead, Bayesian estimation (see e.g. Freund, 1992) is used, by which the 
estimate is defined in terms of the distribution of the probability to be estimated regarded as a continuous 
probabilistic variable. 

More precisely, the unknown probability P( C) for a given c is regarded as the continuous probabilistic 
.variable e with a value 0 in the interval (0 , 1) . Let Si for i in 0, . . .  , t be all the sentences in the training corpus, 
and let di be the correct parse of each Si . Let also Si be the event corresponding to Si , and let Ci be the event 
associated with the cooccurrence c with respect to the sentence Si . The overall status of the corpus with respect 
to c can then be expressed as the conjunction of the events S = I\ Si and 

6 = f\ CJ, f\ , Ci .  cEd; c(/.d; (6) 

The distribution of e given the observed status of the corpus can then be expressed as the probability density 
function </>(0 16 ,  S), which according to Bayes's law is given by 

A.(0 16 S) = P(610 S) h(�IS} 
'f/ ' ' P(CIS) (7) 

Here h(0 IS) is the probability density function for the distribution of e given only the sentences in the corpus 
(i.e., not knowing the correct parses), and P(6IS) is the (discrete) probability of 6 not knowing 0. In other 
words, h(B IS) is effectively (for our purposes) the prior distribution of e (regarding S as fixed) , while </>(0 16 ,  S) 
is the posterior distribution of the same given the correct disambiguation of the sentences implied by 6.  

The probability P(610 ,  S), that is, the probability of  the correct (observed) parse selections in the corpus 
in terms of the cooccurrence c and given 0 = P(C), is given according to (6) and the fact that each sentence 
represents an independent draw in the event space by the product 

(8) 

To determine P(Ci l0 ,  S), let ni and mi be the number of parses of Si which do and do not, respectively, include 
c. Since the ratio of the probabilities of each of the former to each of the latter is 0 : (1 - 0), we get 

(9) 

Returning to equation (7) , the probability P(6 IS) can now be determined from P(610,  S) by the integral 

P(C' IS) = [ P(610, S)h(0 IS) d0. ( 10) 
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This leaves only the prior distribution, h (0 I S ) ,  which cannot be determined analytically, but which may be 
estimated empirically from a preliminary estimation of all the cooccurrences in the corpus (e.g . ,  using h (0 I S) = 1 
as a temporary simplification without seriously affecting the overall distribution) .  

Having found the posterior distribution </>(0 16 , S) , a straightforward application of the Bayesian estimation 
method would be to estimate the unknown probability P( C) as the expected value of (9 ,  that is 

E( 0 1 6, 5) = [ <f,(0 16, 5) 0 d0. (11) 

A slight variation of this will be used here, however, based on the observation that the expected value operator 
in ( 1 1 )  essentially represents a continuous, arithmetic mean of the cooccurrence probability 0 weighted by the 
distribution function </>( 0 16 ,  S) . As such, it would represent a reasonable estimation of P (  C) if the result were to 
be used as a term in a sum of such results, but according to (5) the main use of a cooccurrence probability will 
be represented by a factor of either P( C) or 1 - P( C) in a parse probability. As the net effect of the presence 
or absence of the cooccurrence in a parse thus is to either multiply or divide the parse probability by 1�0 , a 
more suitable estimate of P(  C) is found by applying the expected value operator to ln 1 �0 , that is , defining the 
estimate as Pc given by the equation2 

Pc e 
I 

A A 1 1 
A A 0 

ln --_ = E ( ln --D C, S) = </>(0 IC , S) 1n -
0

d0. 1 - Pc 1 - o O 1 -
( 12) 

From (7) , (8) , ( 10) and ( 12) , noting that the integral in (10)' does not depend on 0 and can therefore be moved 
outside that in ( 12) , we then get the following overall expression for the cooccurrence probability estimate: 

- 1 A 
A 

A 0 
Pc fo P(Cl0 , S )h (0 I S) ln I=e d0 

ln 
1 - Pc 

= 
J; P(Cl0 , S )h (0 I S) d0 

( 1 3) 

To summarise, the effect of all this is that the posterior probabilistic distribution of the cooccurrence prob
ability is determined from the prior distribution of such probabilities and the observations relating to this 
cooccurrence in the corpus. The posterior distribution represents the full knowledge we have of the likelihood 
of different possible values of the cooccurrence probability, and the final estimate is defined as that which 
represents the best approximation (for our purposes) of this as a fixed value. 

5 Implementation Notes 

The previous section derived ( 13 )  in conjunction with (8) and an empirical estimation of h (0 IS )  as the main 
expression for the estimate Pc of a cooccurrence probability P(C) . In practice, only sentences with at least one 
parse that includes c and one that doesn't, that is, for which ni ,  mi > 0, have any effect on the result. For any 
such sentence, moreover ,  it is enough to record the ratio 

in the training data. Then, by defining 

and 

ni 
Ti = mi 

f (0) = [J:L 1, (0)] h (0 15) 

ri0/ (ri0 + 1 - 0) if c E di 

( 1  - 0)/ (ri0 + 1 - 0) otherwise, 

(14)  

( 15) 

( 16) 

2The convergence of the integral in ( 12) , although In 1�0 ➔ ±oo for 0 ➔ 0 and 0 ➔ 1, follows from the well-known convergence 

of f
0
1 

In 0 d0 = - 1  and the fact that the relevant probability distribution functions are finite. 
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(a) examples of /i (0)  for Ti = ½ , � ' % , f ,  f (for i = 1 ,  . . .  , 5, resp. )  and c E di 
h(0 IS)  

0 '-------'----'---'-------'----'-----''------'--.....____, _ __. 0 (c) the prior distribution h(0 IS) = ( l+�·.;�0 )2 in the Wall Street Journal ( found by manual curve fitting to the results of a preliminary analysis) 
1 

(b)  more examples of fi (0)  for the same Ti (for i = 6, . . .  , 10, resp . )  but with c (/:. di 

( d) possible posterior distributions based on the preceding functions: 
A: f(0)  = [IT�0 fi (0)] h(0 IS) , B :  f (0 )  = [IT2 , 7  /i (0 )] h(0 IS) 

Figure 1 :  Cooccurrence probability density functions. All functions are scaled to give a maximum 
value of 1 with no significance for the cooccurrence probability estimation. equation (13) is reduced to Pc fol f (0) In 1�0 d0 In -- = -------1 - Pc f0

1 f (0) d0 ( 1 7) The functions fi ( 0) and f ( 0) represent scaled probability density functions of fJ :  h ( 0) is (proportional to) the apparent distribution based only on sentence i ;  f (0) is (proportional to) the posterior distribution based on all the relevant sentences as well as the prior distribution h(0 IS) .  Fig. 1 shows some t ypical examples of the Ji ( 0) functions, the h( 0 15') found to  represent the distribution of cooccurrence probabilities in the Wall Street 
Journal corpus, and two possible forms of f (0) derived from them. The actual computation of Pc will have t o  be by numerical integration of (1 7) based on the ri values extracted from the t raining corpus for each cooccurrence.3 This may seem rather costly in computational terms, but is feasible in practice  with a careful implementation. In particular, it is generally not necessary to compute Pc for all the cooccurrences in the t raining corpus, since in most cases only a small fraction of them will ever be 3To avoid arithmetic overflow at or near 0 = 0 and 0 = 1 ,  however, it is convenient to rewrite the nominator in ( 17) as 

f0

1 ( [!(0) - J(O)] ln 0 - [! (0) - J( l)] ln( l - 0)) d0 - f(O) + J ( l ) ,  and omit the logarithms when the preceding factors are 0 .  

118  



required. Instead, a practical implementation may compile indexed files with the Ti values extracted from the 
corpus for each cooccurrences and compute the small number of cooccurrence probabilities required for any 
sentence when the need arises. 

6 Test Results 
An implementation of the Semco analysis has been tested with a feature unification-based, medium-wide cov
erage, syntactic/semantic grammar and sentences from the bracketted form of the Wall Street Journal part of 
the PENN Treebank. Due to limitations in the grammar and parser, the corpus had to be restricted in different 
ways: It was first limited to sentences of 6-20 words (after the deletion of parenthetical material) which parsed 
successfully with at most 100 parses (as more ambiguous ones would add disproportionately to the overall cost 
of the computation) . It was further reduced by rejecting sentences for which no parse achieved a minimum 
threshold similarity with the corpus bracketting, or for which more than 30% of the parses achieved the same, 
maximal such similarity. 

The parse/bracketting similarity measure used was a weighted sum of different counts based on shared 
constituents (with or without matching labels) , crossing brackets ,  and the overall length of the sentence (for 
normalising the result) . The threshold was set to correspond, typically, to a parse including about three-quarters 
of the corpus constituents with no crossing brackets .  Multiple parses achieving the same, maximal score above 
this threshold ( within the limit mentioned above) were presumed "equally correct" for training and testing 
purposes. The number of sentenc�s left in the corpus after each step in the selection process were: 

Number of sentences of length 6-20 words 
. . .  which parsed successfully 
. . .  which had up to 100 parses 
. . .  ,vhich . met the similarity measure requirements 

20155 
12162 
10852 
7887 

The final set of sentences was shuffled and divided into five partitions, allowing a cycle of five training/testing 
iterations to be run with different splits of the corpus into i for training and ½ testing. 

Table 2 shows a detailed overview of the main test statistics. The main part of the table refers to a particular 
division of the corpus, and shows a breakdown by sentence length and ambiguity. This is followed in the last 
row by the mean results of the five training/testing rounds based on different divisions of the corpus. 

The Parseval measures in the table have become a frequently used, common standard for comparison of 
different systems, but are only partly relevant for a system such as this . The fact that they are taken at 
constituent level means that they primarily measure the ability of the system to reproduce the precise bracketting 
in the corpus rather than the correct selection of parses as such. As a result , fully correct parses receive reduced 
scores where the grammar used by the parser differs significantly from that assumed in the corpus, while 
incorrect parses are credited to the extent that some of their constituents coincide with those in the corpus. In 
this system the grammar generally produces much more detailed parses than the corpus (i.e. , with many more 
constituents,  e.g. at bar-1 level) ,  meaning that the precision rate is severely reduced and effectively rendered 
meaningless, while the recall rate is not similarly badly affected. This systematic imbalance between the corpus 
bracketing and the parses also prompted the inclusion of two crossing brackets rates : where four words are 
bracketed as " (w1 w2 ) w3 w4 " in the corpus but parsed as "w1 ( (w2 w3 ) w4 ) " , for example, it counts as one 
crossed bracket in the corpus ( "xb/c" ) but two in the parse ( "xb/p" ) .  Again, the generally greater number 
of constituents in the parses than in the corpus means that the latter is artificially high and a poor basis for 
comparison with other systems. 

The table includes three variant Parseval measures. The "non-crossing precision" , which is like the standard 
precision rate except that any constituent in the parse that does not actually cross brackets with the corpus form 
is assumed to be correct, is intended as an illustration of a possible way to deal with the problem discussed above. 
The labelled precision and recall rates are the common variations of the Parseval measures ,vhere constituents 
are required to have matching syntactic labels. 
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Parseval measures Variants Correct parse ranked in top n 
prec rec xb/c xb/p nxpr lpre lrec 1 2 3 4 5 

Results with the origin al partitioning of the corpus for training/testing : 
All sents 61.3 87.2 0.40 0.79 93.1 58.0 82 .5 60.8 75.1 81.3 85.6 89.2 
Length 

6-10 70.0 94.3 0.12 0.20 97.2  67.7 91.2  82.4 91.2 94.2 97.0 98.7 
11-15 61.5  87.1 0.41 0.76 93.5 58.2 82 .5 58.9 75.3 82 .7 87.2 90.6 
16-20 57.2 83.7 0.67 1.45 91.0 53.5 78.4 41.2  57.9 65.7 71.3 77.1 

Ambiguity 
1-20 62.8 89.9 0.31 0.53 95.1 59.8 85 .6 69.3 83.1 88.6 92.9 95.6 

21-40 59.0 83.1 0.63 1.20 90.9 55.3 77.9 42 .5  60.2 69.2 74.7 80.1 
41-60 58.1 81.4 0.69 1.47 89.6 54.2 75.8 37.9 56.0 64.7 67.2 71.6 
61-80 56.8 78.7 0.59 2.12 85 .0 53.4 73.9 35 .1 45 .9 51.4 55.4 63.5 

81-100 58.2  83.2  0.44 1.40 90.1 54.5 78.0 38.5  46.2 51.9 55.8 61.5 
The mean results over a cycle of five different partitionings of the corpus: 

All sents 61.3 87.4 0 .41 0.77 93.4 58.0 82.7 60.9 74.7 82 .2 85.9 89.3 
All entries are in %, except xb/c and xb/p which are per sentence. Definitions: 

prec 
rec 
xb/c, xb/p 
nxpr 
lpre, lrec 
1-5 

precision, the proportion of the constituents in the parses also found in the corpus 
recall, the proportion of the constituents in the corpus also found in the parses 
crossing brackets rate, counted in the corpus form or selected parse, resp. 
non-crossing precision, constituents in the parse that don't cross any brackets in the corpus 
labelled precision/recall, where the syntactic labels in the parse and the corpus must match 
n best correct selection rate, sentences for which the correct parse ( i .e . ,  the best match with 
the corpus bracketting) is ranked in the top n parses by the selection algorithm Table 2: Parse selection accuracy test results 

The measures that most directly reflect the practical accuracy of the Semco system in my opinion are those 
headed "Correct parse ranked in top n" , as these show the relative frequencies of fully correct, sentence-level 
disambiguations (n = 1) and near-misses (n in 2-5). In the compilation of these figures, the "correct" parse of 
each sentence was identified by comparison with the corpus bracketting using the same similarity formula that 
was used for the training of the system. 

The table shows, as one would expect, that the selection accuracy tends to diminish as sentences increase in 
length or ambiguity, but the differences in the three higher bands of ambiguities are relatively minor (indeed, 
for many measures the sentences with 81-100 parses do better than those of 41-60 parses). This indicates that 
the decision to omit sentences of more than 100 parses from the testing is not likely to have affected the overall 
performance of the system greatly. 

7 Conclusions 

The results in Table 2 show that the Semco technique achieves relatively high levels of parse selection accuracy, 
and that it therefore may represent a good practical method of sentence disambiguation. This is reflected in 
the · Parseval recall rate of 87.4%, the average of only 0.41 crossing brackets per sentence (with respect to the 
corpus bracketting), and in the correct disambiguation of 60.9% of the sentences (with this figure increasing to 
74.7% and 82 .2% if near-misses ranked 2nd or 3rd are included). 

Comparison with other published work is made difficult by the problems with the Parseval measures discussed 
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Sentence Precision Recall Labelled Labelled Crossing lengths precision recall brackets Semco 6-20 61.3 87.4 58 .0  82 . 7  0 .41 11-20 59.8 85 . 8  56 .3  80 .9  0 .51 Magerman (1995) 10-20 90. 8  90. 3  89.0 88 .5 0 .49 (SPATTER) 4-40 86 .3  85 . 8· 84.5 84.0 1.33 Collins (1996) 1-40 86.3 85 . 8  1. 14 
Entries are in %, except the crossing brackets rate, which is per sentence. Note that the precision and 
labelled precision rates are poor measures of the Semco system's accuracy because of the more detailed 
parses produced by the grammar compared to the corpus annotations. The crossing brackets rate included 
for Semco is that counted against the corpus bracket ting ( "xb / c" ) .  

Table 3 :  Parseval measures of parse accuracy of different systems above and by other incompatibilities between the different systems and the precise corpora used. Table 3 shows, however, the main figures from the Semco system and results published by Magerman (1995) (for his "SPATTER" system) and Collins (1996) .  Considering the strong relationship between sentence length and accuracy shown in Table 2, the most comparable figures in Table 3 are those for Semco with 11-20 words and Magerman's  SPATTER system with 10-20 words. Disregarding the precision rates, which are severely biased against Semco, the table shows that while SPATTER performs somewhat better in terms of recall, the difference in the crossing brackets  rates is insignificant . (Collins only includes results for sentence of  1-40 words, making any direct comparison with Semco dubious, but the results are broadly similar to Magerman's  for 4-40 words. ) To be fair, the Semco results are based only on a subset of suitable, parseable sentences in the corpus (about 39% of the original sentences within the length range) , but this is an inevitable consequence of the major differences between the systems. Magerman's  and Collins' s systems are both based on extracting local syntactic structures along with their statistical distribution direct ly from the corpus annotation, and are therefore independent of any linguistic analysis of the corresponding syntax. This robustness can be an important advantage-it is very hard to write a formal grammar with something approaching full coverage of naturally occurring languages-but has several disadvantages too. In particular, the lack of a linguistic analysis means that there is no guarantee that a parse generated by these systems represents a meaningful sentence-wide syntax, and the models cannot support interpretation through compositional semantics. The Semco system is compatible with any parsing technique capable of supporting formal semantics, making it potentially much more useful in a wider, practical NLP system where any form of interpretation is required. The lack of robustness in the experimental set-up discussed in this paper is not a consequence of the Semco technique, but a reflection of the limited coverage of the grammar used. In future developments of this work, it is intended that the Semco system will be used with a fully wide-coverage natural language grammar and an n-best parser that includes mechanisms for handling undergeneration. To conclude, the main novel aspect of the Semco analysis is the way the probabilistic model is based on the differential distribution of cooccurrences in correct and incorrect parses. This requires an analysis in which probabilities don't represent direct frequencies in the data, but rather correspond to a hypothetical event universe of which real sentences are only a small fragment. Simply put , the event universe includes sentences with any number of cooccurrences-whether they require a million words or ten-but this is no problem for the practical application of the system which is always conditional on a concrete,  given sentence. There is no need for normalisation of the probabilities of parses with different numbers of cooccurrences in this analysis, sine the presence and absence of any cooccurrence are regarded as complementary events. The use of Bayesian estimation for the basic cooccurrence probabilities is part ly a requirement from the probabilistic model, but is also a means of dealing with the highly sparse data in a theoretically motivated manner. Where MLE tends to be highly inaccurate for very sparse data-requiring clustering or smoothing-121 



and directly inappropriate for unseen data, Bayesian estimation finds the result theoretically expected to represent 
the best approximation of the true probability based on a full analysis of the latter's continuous probability 
distribution. The result is unable to distinguish between different cooccurrences with the same observations 
(e.g. , unseen) ,  as smoothing or clustering might , but are statistically unbiased such that the random errors 
in the probability estimates for a set of cooccurrences will tend to cancel out and lead to improved accuracy 
in the parse probabilities. More detailed experiments by Hektoen (1997) show, moreover, that clustering the 
cooccurrence data in combination with Bayesian estimation reduces the accuracy of the parse selection. 
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