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This paper describes a formalism and a parser for dependency g_rammars . The grammars writ
ten in this formalism are composed of elementary structures , called elementary trees , that are 
associated to lexemes. Elementary trees can combine together through an operation called at
tachment . The parser builds a structural description of a sentence by combining the elementary 
trees associated to its words. An exponential parser is described , based on a stack . The ineffi
ciency of this parser is studied , and another one, using a graph-structured stack , is proposed . 
Section 2 describes briefly the grammatical formalism: section 2 . 1  focuses on the structure of el
ementary trees , section 2 . 2  deals with word order: how to represent it in a dependency tree and 
how to constrain it in elementary trees, and section 2 .3  introduces the attachment operation. 
Section 3 is devoted to parsing . The parser is introduced and its performances are discussed in 
3 . 1 .  The graph-structured stack and its integration in the parser are described in 3 .2 .  

2 The Formalism 

In .this section , we introduce the grammatical formalism we shall be using for parsing. The 
grammars written in this formalism consist of finite sets of dependency trees called elementary trees. An elementary tree describes a possible syntactic environment of a lexeme. This lexeme 
is refered to as . the lexical anchor or simply anchor of the tree .· There is therefore no strict 
distinction , in· this framework, between the grammar and the lexicon. This is often the case 
in grammar formalisms proposed for dependency structures , as in (Hellwig , 1986] (Fraser, 1989] 
and (Starosta, 1986] .  The trees can combine together through an operation called attachment . 
This operation will be used by the parser to. build syntactic description of sentences . 

2.1  Elementary Trees 

An elementary tree is composed of the dependencies its anchor can be involved in, as governor 
or dependent when it occurs in a sentence. Such structures could include all the possible depen
dents and governors of an anchor , as it is dorie in [Fraser, 1 989] .  But such a description obliges 
the author of the grammar to anticipate in an elementary tree of a lexeme all of its dependents, 
modifiers as well as complements . Moreover, in a grammar composed of such elementary trees , 
each dependency is represented twice, once in the elementary tree of its governor and once in 
the elementary tree of its dependent . Another solution would be to represent in an elementary 
tree only the complements of the anchor while modifiers will have in their own elementary 
trees a description of their governor . This organisation can be compared with the factoring 
of recursion and dependencies achieved in Tree Adjoining Grammars (J�shi , 1987] . We have 1 The author wants to thank Anne Abeille, Farid Cerbah, Corinne Fournier and Owen Rambow for their fruitful comments on earlier versions of this paper. 
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represented in Figure 1 elementary trees corresponding respectively to a verb , a noun and an 
adjective . The lexical anchors are represented as black nodes . The labels of the dependencies 
are taken from [Mel 'cuk and Pertsov, 1987] .  

eat 

�-
apple • 

Figure 1 :  Some elementary trees 

Anchors may impose lexical , semantic or morphological restrictions on other words, these words 
are not always directly linked to the anchor by a syntactic dependency. In order to represent 
such restrictions in an elementary tree, we introduce these words as nodes in the elementary 
tree and state lexical , semantic or morphological constraints on them, causing, in some cases, 
the extension of the domain of locality. Elementary trees can hence have an arbitrarily extended 
domain of local ity and exhibit quite complex patterns, as shown in Figure 2 .  have 

to 

PREPOSIT _syntactic dependencies 

...... ,.Lexical restrictions 

N ___ semantic restrictions 

Figure 2: A complex elementary tree 

·2 . 1 ..� . , Tr��s as 9omp�e� Fea:ture S tructures 

The' elementary trees··are represented as complex feature structures and dependencies as corriplex 
att·ribtites. -The -elementary tree · of Figure 2 has been represented in Figure 3 as a complex 
feature · matrix·. ' . 
Such struttures- · can be combined together by means of unification . This representational means 
and · the ·unificci.ti6n operation impose that two attributes of a same structure cannot have the 
same label , preventing the- representation of repeatable dependencies . Several ways to overcome 
this problem by · tedefinirtg the u nification · operation are possible. But we will not develop this 
point in this paper . 

2.2 Word Order 

The status of word order in dependency trees is not as clear as in phrase structure trees . and 
is sometimes not represented at all , as in [Mel 'cuk , 1988] . In our grammatical formalism, word 
order prescriptions, like all grammatical information ,  is represented in elementary trees. In this 
section , we propose some notational conventions for representing word order in dependency 
trees, in such a way that a tree is in correspondence with exactly one linear sequence of its 
nodes .  This notational system will then be used to state constraints on word order in elemen
tary trees. 
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lex=have 
cat=aux 
PREDIC=f"" cat=n 

J Lsem=hum 

AUXIL= lex=given cal=:J>ast-part anctior=y 
l sLCOMPL= [ cat=n J 
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lex=to 
] 

cat=prep 
PREPOS=[ cat=n J 

Figure 3 :  An elementary tree as a complex feature matrix 

A dependency · tree does not usually define a total order over its nodes: a single tree can 
correspond to many linear sequences of its nodes. Some enrichments of the trees have been 
proposed in [Hellwig, 1986] in order to represent linear order. These enrichments amount to 
indicating, for every node in the tree, its position , in the linear sequence, towards some other 
nodes of the tree . We shall call this information the linear coordinates of the node: 

LINEAR COORDINATES OF A NODE 

1 .  its position towards its governor . 

2 .  its position among its sister nodes .  

A tree enriched with the linear coordinates of its  nodes defines a total order among them, 
provided that every dependency respects the projectivity principle2 . 

THE PROJECTIVITY PRINCIPLE 

A dependency is projective if its dependent is not separated ,  in the linear sequence, from the 
governor by anything apart from descendents of the governor. 

We will say indifferently that a dependency or its dependent is projective. A tree made of 
projective dependencies will be said projective and its linear sequence as well. The projectivity 
principle drastically limits the number of different linear sequences corresponding to a single 
dependency tree. We have represented in the left part of Figure 4 a dependency tree and 
its unique corresponding linear sequence, provided the projectivity principle is enforced. The 
linear coordinates of the nodes are not represented in the figure explicitly, but i_mplicitly, by 
the relative horizontal position of the nodes towards their governor and sisters. 
Unfortunately, it seems that non projective dependencies cannot be avoided in a grammar and 
thus must be taken into account. Without the projectivity principle, the knowledge of the linear 
coordinates of every node of a tree is no longer sufficient to define a total order over them. The 
tree of Figure 4, for example, enriched with the linear coordinates of its nodes, . does _not define 
anymore a total order over its nodes , if projectivity is not assumed . We have represented in the 
right part of Figure 4 the same tree with a non-projective dependency marked with a star and 
the three linear sequences that now correspond to the tree. In the example, knowing that an 
is situated to the left of its governor ( apple) is not enough to place it in the linear sequence, it 
can be placed between John and ate or to the left of John. 
We will relax the constraints imposed by the projectivity principle on word order and propose 
another , less restrictive, principle we will call pseudo-projectivity : a projective dependency · is 2The projectivity principle, also known as the adjacency principle, has been studied by several r�searchers. The definition given here is due to D.Hudson 
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an John ate apple Figure A: A projective and a non projective tree and their corresponding linear sequences pseudo-projective but all non projective dependencies are not pseudo-projective .  T H E  PSEUDO-PROJECTIVITY PRINCIPLE A dependency is pseudo-projective if its dependent D is not situated, in the linear sequence, between two dependents of a node that is not an ancestor of D .  This principle has been induced from the non projective linguistic examples appearing in [Mel 'cuk, 1988] and [Beringer, 1988] , all of which satisfy the pseudo-projectivity principle. The three linear sequences of the right part of Figure 4 are pseudo-projective .  Contrary to a projective dependency, the dependent D of a pseudo-projective dependency can be separated, in the linear sequence , from its governor by some ancestors of D .  We will call the highest of these ancestors the linear governor of D .  If the dependency is projective, the linear governor of D is its governor. A node having its governor as linear governor will be said to have a zero nonprojectivity level . When the linear governor is the governor 's governor, the node will have its non projectivity level equal to one, and so on. . .  We have represented in Figure 5 a tree with a pseudo-projective dependency and the linear sequences corresponding to the tree . To each sequence corresponds a level of non-projectivity of the marked dependency. Triangles hanging from some nodes represent the subtrees rooted by the nodes and the node labels between square brackets represent the linear sequences of the subtrees rooted by the node. By virtue of pseudo-projectivity, the node e cannot be situated in the sequence [a] or [c] . 
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non-proj.=0 non-proj.=1 non-proj.=1 non-proj.=2 non-proj.=2 Figure 5 :  A tree with several non projectivity levels assigned to its non projective dependency Linear governors will be used to represent the linear order of the nodes of a pseudo-projective tree. We shall define another coordinate system called pseudo-projective coordinates. 
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P SEUDO-PROJECTIVE COORDINATES OF A NODE 1 .  its non projectivity level (or its linear governor) .  2 .  its position towards its linear governor . 3 .  its position among its linear sisters (dependents of its linear governor) .  Enriched with this information , a pseudo-projective tree defines a total order over its nodes.  It is interesting to notice that a pseudo-projective tree can be transformed into a projective tree by attaching each node to its linear governor instead of its governor . This representation of word order will be used to represent word order constraints in elementary trees. But stating such constraints for a node N of an elementary tree might be a problem since they may refer to some nodes ( the · linear governor and the linear sisters of N )  that are outside the domain of locality of the elementary tree . We could decide to extend the domain of locality of the elementary trees and represent the refered node in the domain,  as we did for lexical ,  morphological and semantic restrictions in section 2 . 1 .  But such a solution will generate very extended and unnatural elementary trees . Instead we will indicate for some nodes, which of their linear sisters can separate them from their linear governor . More precisely, we shall indicate for the anchor of an elementary tree (when it is not the root of the tree) and for its dependents : 1 .  their non projectivity level. 2 .  their relative position towards their linear governor . 3 .  a list of their linear sisters that can separate them from their linear governor. The set of these three informations will be refered to as the positional constraints of a node. 2.3 Combining Trees The positional constraints we have defined in the preceding section are not checked during tree combining by unification . We define a tree combining operation we call tree attachment that is more specific than unification and takes into account positional constraints. Attaching a tree Tl in a tree T2 amounts to unifying the root of Tl with a node of T2. Two m0re conditions must be fulfilled by the tree "resulting from this operation : 1 .  The black domain3 of the resulting tree must be connected ( i .e during the attachmentoperation, the black domain of Tl must be linked to the black domain of T2 by a dependency) .  For example, the attachment of Figure 6 fails because i t  does not lead to a connected black domain. 
TI N 

�·� / (mod✓ 
a 

T2 N 

MOD1/0 
non-proj=O 

( )  
Attach(Tl ,  T2) 

nice Figure 6: An unsuccessful tree attachment 
J_ 

2 .  The positional constraints of the dependency linking the black domains of Tl and T2 must be _ satisfied . Figure 7 shows how the construction of a tree corresponding to the linear sequence · "nice a car" fails due to the non satisfaction of node nice positional constraints. These constraints prevent the existence of a determiner between a modifier and the modified noun , as indicated by the empty list attached to the dependency MOD IF .  3The black domain o f  a tree i s  the structure composed of all its black nodes and all the dependencies connecting two black nod�s. 
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nice a Figure 7 :  An unsuccessful tree attachment The attachment of Figure 8 succeeds since the root node of Tl unifies with the node ate, the black domain of the resulting tree is connected and positional constraints of the node with are satisfied: it is situated to the left of ate and separated from it by a 1 ST .COMP T2 ate -- Tl
�v ��� 

PRED ltOOMP (l� adv) Mary meal with 
PREPOSIT 

lFRM lier 
Attach(fl, T2) 

Figure 8 :  A successful tree attachment Figure 9 illustrates a successful attachment with a non projective dependency, the node than is situated directly to the right of node salary, its linear governor. T2 has 
PREDIC �st.COMP / � salary Mary Dl!nODIF a better 

T1 
ADJ 

cgf>°?=i Attach(fl,  T2) an 
. PRED-CONJUNCT 

N 

Figure 9 :  A non projective tree attachment 
3 Parsing 

N 

In our framework , parsing a sentence amounts to combining, by means of attachment, the elementary trees corresponding to each word of the sentence. The main task of the parser is hence to choose the trees that must be combined together and the order in which they will be combined to build a structural description of a sentence. We describe in this section a first algorithm based on a stack which will turn out to be inefficient. The reasons of this inefficiency are studied and a more efficient parser, that makes use of a graph-structured stack, is proposed. 
3.1- A Stack Parser The usage of a stack in a parser for dependency structures is not a novelty. It has b-een advocated in [Fraser, 1989] and [Genthial , 1991] ,  mainly to reduce the number of word pairs that must be checked for dependency. The parser processes a sentence from left to right , for each word Wi 
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read , its elementary trees n,i 4 are extracted from the lexicon and pushed on the stack. If Wi has N elementary trees , the stack is duplicated N times and each elementary tree is pushed on one stack, as shown in Figure 1 0 .  
IT(l , l )  I . Push(T(2,2), T'(2,2}, T"(2,2)) T(l ,l)  T(l , 1 )  T(l , 1)  Figure 10: Pushing three elementary trees on a stack After Wi has been pushed, the N stacks are checked for reduction. The reduction operation tries to combine the top element Tl of the stack with the next one down, T2. The combination is done by the attachment operation. During a stack reduction , two attachments are tested, the attachment of Tl in T2 and the attachment of T2 in T l .  If any of these -two operations succeeds, the stack height is reduced by · one. When the two attachments are successful , the reduction operation gives rise to two trees, in which case, the stack is duplicated, as shown in Figure 1 1 .  

T(3.3) 

T(2,2) 
T(l ,1)  

Re<iuce 
T(2.3) T'(2.3) 
T(l ,l )  T(l,l} Figure 1 1 :  Reducing a stack Then, each stack is checked again for reduction . When the reduction operation fails,  the stack is left unchanged, the next word is read and the whole process reiterated. The parsing algorithm stops after the last word Wn has been pushed and the stacks reduced. If at least one stack contains only one element (T1 ,n ) the parsing is successful. We have represented in Figure 12 a parse of the non ambiguous sentence "The man ate a red apple" . For sake of simplicity we have not represented trees in the stacks but the linear sequences of words. We have also assumed that each word is associated to a single elementary tree, avoiding stack duplication. 3 .1 .1 Performances of the Stack Parser The number of stacks during parsing, and hence the number of attachment operations done, grows exponentially with the number of words processed. There are two places where the number of stacks . .i s  increased : 1 .  During the push operation of a word Wi , the number of stacks is multiplied l:>y the number of elementary trees associated to Wi . 2 .  During the reduction of a stack , when the two attachment operations are successful,  the number of stacks is increased. This parsing algorithm is not satisfactory since a same attachment can be tested independently several times. Such a configuration is illustrated in Figure 13 where the attachments of T2,2 and T3 13 are tested twice. This problem is due to the fact that the same trees are represented several times in separate stacks and , during reduction, each stack is reduced independently, without any consideration of what has been done in the other stacks. 

4 Ti,j is a tree corresponding to the segment of the sentence [wi , w3J with i � j. Tz,z is an elementa.,y tree 
corresponding to Wz , 
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k ....... l--
red 
a 

the man ate 

1�_ ... I--
apple 
red 
a 

the man ate 

red apple 
a 

the man ate 

--I� ....... I 
red apple 
a 

the man ate 

a red apple 
the man ate 

a red apple 
the man ate ----- the man ate a red apple .__ ___ _. Figure 12 :  Parsing the sentence "The man ate a red apple" 3.2 Using a Graph-structured Stack In order to prevent the same work from being done several times, we have used the graphstructured stack described in [Tomita, 1988] .  A graph-structured stack can be seen as a factoring of several stacks having some elements in common, as shown in Figure 14 .  With such a device, any tree is represented once and the attachment of identical pairs of tree is tried once. The introduction of the graph-structured stack does not change the overall schema of the algorithm. Changes affect only the push and the reduction operation. Pushing N elementary trees on a graph-structured stack does not duplicate anymore the stack but adds to it N new extremities and creates a link between every former extremity and every new one, as shown in Figure 15 .  The reduction operation amounts to  trying to  combine each extremity of  the stack with all its predecessors. When an attachment operation between an extremity of the stack and one of its predecessors succeeds , the number of extremities of the stack can be increased. In the example . of Figure 16 the attachment of extremity T;+I ,i+l and its predecessor 1i,j produces two trees : 

T(2,2) T(2,2) 
T(l ,1 )  T'(l , 1 )  

Push(T(3,3)) 
T(3,3) T(3,3) 
T(2,2) T(2,2) 
T(l , 1 )  T'(l , 1 )  

Reduce Attachment tested during reduction: 2 * Attach(T2,2 , Ta,3) ; 2 * Attach(T3 13 , T2 ,2) Figure 1 3 :  Same operations repeated twice 
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T(l , 1 )  T'(l , 1)  



T(3,3) T(3,3) 
T(2,2) T(2,2) 
T(l , l )  T'(l , 1)  

<
T(l , 1)

> 
T'(l , 1 )  

T(2,2) � T(3,3) 

Figure 14 :  Factoring two stacks into a graph-structured stack 
. T(l , 1 )  

LT'(l, 1) 

�T"(l ,1)  

Push(f(2,2), T'(2,2)) 
T

�
l , 1 ) 

�

T(2,2) 

T (1 , 1 )  

"(1 , 1) T'(2,2) Figure 15 :  Pushing two elementary trees on a graph-structured stack 1i ,Hl and Tf,i + 1 , increasing by one the number of extremities. 
Reduce(f G+ 1 , j+ 1 )) 

-T(ij) - T(j+l , j+l )  Figure 16 :  Reducing an extremity of the graph-based stack <
T(� j+I) 

T'(i, j+l) 

The repetition of the same operations that occurred in Figure 13 will not happen with the graph-structured stack , as shown in Figure 17 .  < T(l , l ) \ 

/
T(2,2) 

T'(l , 1 )  

Reduce Push(f(3 ,3)) 
< T( l , l ) 

\ -----� . I 
T(2,2) � T(3 ,3) 

T'(l , 1 )  

< T(l , 1 ) \ 

-------3� I T(2,3) 

T'(l, 1 ) Attachment tested during reduction : 
Attach(T2 ,2 , T3 13) ; Attach(T3,3 , T2 , 2 )  Figure 17 :  A voiding repetition of similar operations The adoption of a graph-structured .stack improves the time complexity of the parser. This improvement is mainly due to the fact that the number of extremities of the graph stack does not grow exponentially with the number of words proces�ed , and hen,ce the number of attachment operations carried out .  As predicted by Tomita, the time complexity of the parser is polynomial. 
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4 Conclusions and Future Work We have described in this paper a formalism and a parser for dependency grammars, focussing on the representation of word order in dependency trees and the advantages of using a graphstructured stack for parsing. This work is part of a larger project of sentence paraphrasing. Paraphrasing, in this framework, is based on substitution of elementary trees in. syntactic description of sentences. After a sentence has been parsed and a dependency tree built , some of the elementary trees forming the dependency tree of the sentence will be replaced by other elementary trees to which they are linked. The modified syntactic description gives rise to a paraphrase of the inital sentence. Future work will concern the relations between elementary trees and the replacement of an elementary tree by another in a larger tree . 
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