Chunlan Ma


2024

pdf bib
MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer
Haotian Ye | Yihong Liu | Chunlan Ma | Hinrich Schütze
Proceedings of the Fifth Workshop on Insights from Negative Results in NLP

Transformer-based pre-trained language models (PLMs) have achieved remarkable performance in various natural language processing (NLP) tasks. However, pre-training such models can take considerable resources that are almost only available to high-resource languages. On the contrary, static word embeddings are easier to train in terms of computing resources and the amount of data required. In this paper, we introduce MoSECroT (Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer, a novel and challenging task that is especially relevant to low-resource languages for which static word embeddings are available. To tackle the task, we present the first framework that leverages relative representations to construct a common space for the embeddings of a source language PLM and the static word embeddings of a target language. In this way, we can train the PLM on source-language training data and perform zero-shot transfer to the target language by simply swapping the embedding layer. However, through extensive experiments on two classification datasets, we show that although our proposed framework is competitive with weak baselines when addressing MoSECroT, it fails to achieve competitive results compared with some strong baselines. In this paper, we attempt to explain this negative result and provide several thoughts on possible improvement.

2023

pdf
Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages
Ayyoob ImaniGooghari | Peiqin Lin | Amir Hossein Kargaran | Silvia Severini | Masoud Jalili Sabet | Nora Kassner | Chunlan Ma | Helmut Schmid | André Martins | François Yvon | Hinrich Schütze
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The NLP community has mainly focused on scaling Large Language Models (LLMs) vertically, i.e., making them better for about 100 languages. We instead scale LLMs horizontally: we create, through continued pretraining, Glot500-m, an LLM that covers 511 predominantly low-resource languages. An important part of this effort is to collect and clean Glot500-c, a corpus that covers these 511 languages and allows us to train Glot500-m. We evaluate Glot500-m on five diverse tasks across these languages. We observe large improvements for both high-resource and low-resource languages compared to an XLM-R baseline. Our analysis shows that no single factor explains the quality of multilingual LLM representations. Rather, a combination of factors determines quality including corpus size, script, “help” from related languages and the total capacity of the model. Our work addresses an important goal of NLP research: we should notlimit NLP to a small fraction of the world’s languages and instead strive to support as many languages as possible to bring the benefits of NLP technology to all languages and cultures. Code, data and models are available at https://github.com/cisnlp/Glot500.