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Abstract

The symbol grounding problem—how to con-
nect a symbolic system to the outer world—is
a longstanding question in AI that has recently
gained prominence with the progress made in
NLP in general and surrounding large language
models in particular. In this article, we study
the emergence of semantic categories in the
communication protocol developed by neural
agents involved in a well-established type of
signaling game. In its basic form, the game re-
quires one agent to retrieve an image based on
a message produced by a second agent. We first
show that the agents are able to, and do, learn
to communicate high-level semantic concepts
rather than low-level features of the images
even from very indirect training signal to that
end. Second, we demonstrate that the introduc-
tion of an adversarial agent in the game fosters
the emergence of semantics by producing an ap-
propriate training signal when no other method
is available.

1 Introduction

How would it be possible to acquire and represent
the meaning of words, not simply their function
in language but also their connection to the outer
world? A cogent account of this question, known as
the problem of symbol grounding, is that of Harnad
(1990). In the case where all we ever have access to
is pure linguistic data, Harnad likens the question
of attributing meaning representations to a never-
ending chain of dictionary look-ups. Harnad’s ap-
proach to circumvent this problem is to require
agents to deal with iconic and categorical repre-
sentations, in addition to manipulating symbols.
Iconic representations are nonsymbolic representa-
tions of perceptual inputs; categorical representa-
tions are nonsymbolic representations of categories
or concepts. Together, they form the basis of the
interface between the agent’s symbolic system and
the outer world, and it is this interface that gives

meaning to, or grounds, the symbols manipulated
by the agent. Since Harnad’s article, researchers in
AI and NLP have often stressed supplementary re-
quirements beyond perceptual data for the develop-
ment of meaningful and grounded representations,
mentioning embodiment (e.g., Steels, 2008), intent
(e.g., Bender and Koller, 2020) or interactions with
other agents as well as the environment (Chandu
et al., 2021). In effect, there is a growing consensus
that meaningful representations can only emerge in
goal-driven interactive situations.

The study of emergent communication is the
study of how interacting agents (human or other-
wise) can successfully establish effective commu-
nication protocols (Kirby, 2002), and under which
conditions this is possible. Recently, much interest
has been devoted to emergent communication be-
tween neural agents involved in signaling games
(e.g., Lazaridou et al., 2017), in which the agents
have to cooperate through information exchange
in order to retrieve some target. Such setups have
the advantage that they can provide a very tight
control on experimental conditions. In the present
paper, we focus on a two-agents single-round sig-
naling game, in which the two agents, playing the
role of a sender and a receiver, are to cooperate by
exchanging sequences of arbitrary symbols so that
the receiver successfully retrieves an image based
on one that was shown to the sender. We propose
to study what conditions are necessary to the emer-
gence of semantic categories in neural agents in
this setting through two sets of experiments.

It has been shown that under certain circum-
stances, neural agents trained in similar setups
develop “trivial” strategies, describing low-level
features of their input (Bouchacourt and Baroni,
2018). Accordingly, we hypothesize that in the
absence of any form of pressure towards gener-
alization capabilities, the agents will not tend to-
wards conveying high-level information, but will
rather settle on exchanging about low-level image-
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specific information. We test this assumption in
our first set of experiments by contrasting emergent
communication protocols in three different envi-
ronments: in the first, agents have a direct training
signal towards learning to communicate categori-
cal information; in the second, an indirect signal is
given, but categorical information is not necessary
to solve the task at hand; in the third, agents have
no explicit information about categories. To our
surprise, we observe that, given enough (training)
time, the agents in the second type of environments
reliably pick up the indirect signal about the exis-
tence of categories and spontaneously shift from
communicating low-level features to high-level in-
formation (even though they are equally useful to
solve the training task). In the third type of envi-
ronments, semantic categories might be recovered
but to a much lesser extent.

This leads us to our second set of experiments,
where we study whether a category-level training
signal can be synthesized by introducing an adver-
sarial agent. This adversary aims to exploit the
message sent by the sender to fool the receiver,
and thereby implicitly guides the sender away from
communicating information that is too easily falsifi-
able. We observe that introducing such an adversar-
ial agent in the game can significantly bolster the
emergence of high-level semantics in the agents’
communication.

2 Related works

Grounding, viz., how to relate the symbols of a
symbolic system (e.g., a language) to other aspects
of the world, has been a fecund domain of research
over the past decades. In particular, Harnad (1990)
provides an insightful thought experiment, inspired
by Searle’s controversial Chinese Room argument,
and aimed at showing the necessity of grounding:
“Suppose you had to learn Chinese as a first lan-
guage and the only source of information you had
was a Chinese/Chinese dictionary! This is more
like the actual task faced by a purely symbolic
model of the mind” (pp.339–40). He also outlines
a cogent program towards practical implementa-
tions of grounded hybrid systems, involving trained
nonsymbolic input and categorical representations
interfacing a symbolic system with the outer world.

More recent discussions on this concept have
been written by Bender and Koller (2020), who
emphasize the role of speakers’ intent, or Steels
(2008), who stresses the importance of embodied

usages of symbols. Note, however, that it has been
shown that some structures of the outer world can
be found in the topology of the embedding space
of ungrounded language models (e.g., Abdou et al.
2021 with color terms). There is now sustained in-
terest in establishing if and how symbol grounding
can occur within modern large language models,
and to what extent their productions match our
expectations for situated, intentional and semanti-
cally coherent communication (Patel and Pavlick,
2022; Tenney et al., 2019; Hwang et al., 2021;
Ghaffari and Krishnaswamy, 2023). Many works
focus on harnessing the boons that come with sys-
tems handling multiple channels of inputs, be it
to create generalist agents (e.g., Reed et al., 2022;
Ni et al., 2021), to enrich their inputs (e.g., Jia
et al., 2021), or to facilitate human-robot interac-
tions (e.g., Shichman et al., 2023).

However, practitioners of NLP rarely study the
multi-agent aspects of grounding (Chandu et al.,
2021), despite them being outlined as a crucial
component; Steels (2008) goes as far as stating
that standard supervised learning alone, possibly
involving multiple modalities but without proper
agent-agent or agent-environment interaction, can-
not solve the symbol grounding problem. At the
same time, there is also a growing interest in using
multimodal neural networks as models of how per-
ceptual information is used in humans (esp. Khor-
rami and Räsänen, 2021; Nikolaus and Fourtassi,
2021); this line of work could therefore benefit
from developments on multi-agents NLP system.

In that respect, previous works that include sim-
ulations of how language and communication can
emerge (Kirby, 2002) is especially useful in that
they provide data and define a framework to test hy-
potheses related to symbol grounding. These works
generally involve multiple agents negotiating the
use of symbols in order to solve a task through
the interaction with nonlinguistic data. While
prior work has studied multi-turn communication
(a.o., Jorge et al., 2016; Evtimova et al., 2018),
populations and generations of agents (e.g., Kirby
et al., 2014; Foerster et al., 2016; Ren et al., 2020;
Chaabouni et al., 2022) or nonsymbolic communi-
cation channels (e.g., Mihai and Hare, 2021), we
focus on a straightforward signaling game (Lewis,
1969) involving multiple agents communicating
through a symbolic channel (Sukhbaatar et al.,
2016; Havrylov and Titov, 2017; Lazaridou et al.,
2017, 2018). More precisely, our starting point is
the setup of Bernard and Mickus (2023), where
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we introduced a computer-generated image dataset,
studied the impact of many design choices of the
learning process (pertaining to the loss function and
regularization, the selection of training instances,
and pretraining methods) on a two-agent signaling
game, and defined several metrics used to study the
properties of the emergent languages.

The work of Mu and Goodman (2021) is close
to ours in that they study how the choice of train-
ing instances in a signaling game can improve the
systematicity of the emergent languages. How-
ever, they mainly do so by explicitly strengthening
the training signal pertaining to semantic classes
(through the use of sets of images instantiating
these classes), while we try to achieve similar ef-
fects without relying on a priori known semantic
classes.

One novelty of the present work is the introduc-
tion of an adversary agent in the signaling game.
Relevant precedents in the literature include non-
cooperative language games, such as the compet-
itive setup of Noukhovitch et al. (2021). To our
knowledge, the present work is the first to intro-
duce a GAN-like agent (Goodfellow et al., 2014)
in an emergent communication setting.

3 Signaling game definition

We start by presenting the basics of the signaling
game that we study in this section. We document
departures from this base setup where relevant.

Data. Our dataset (see Bernard and Mickus,
2023) consists of images each depicting an object
on a gray background (with varying shade); the ob-
jects varies in shape (cube or sphere), size (large
or small), color (red or blue), and vertical (top or
bottom) and horizontal position (left or right).
Two images are considered to be of the same cate-
gory if and only if they agree on these five object
features.1

We use only 22 of the 32 categories during train-
ing (base categories), the 10 remaining ones are
only used during evaluation (generalization cate-
gories).2 Evaluation involves only images not seen

1Two images from the same category may not only differ
on background color but also on the position of the light source
used to render the scene, and the specific shade of blue/red,
vertical and horizontal position, and 3D orientation, of the
object.

2In Bernard and Mickus (2023), we partitioned the set
of categories in such a way that two distinct base categories
never differ on just a single feature. This makes it possible
for the agents to achieve perfect performance during training
while ignoring entirely one of the five features; a possibility

during training. More precisely, 20% of each base
category is reserved for evaluation; these images
plus all images from generalization categories are
used during evaluation.

Game definition. We study a signaling game in-
volving a sender, who sees one original image Io
and then produces a message mIo ; and a receiver,
that receives this message mIo along with a tar-
get image It and a distractor image ID, and must
decide which of the two is the target through the
production of a probability distribution over these
two images. In such a setting, the relation between
the three images involved can provide more or less
(even no) signal about the categories to the agents.

Both agents are neural networks that contain
a convolutional image encoder; in addition, the
sender contains an LSTM message decoder while
the receiver contains an LSTM message encoder.
We use for these sub-networks the same architec-
tures as Bernard and Mickus (2023). The symbols
of the message are selected from a vocabulary of
size 16.

We train the receiver to assign a higher prob-
ability to the target than to the distractor by
minimizing its negative log-likelihood. Writing
preceiver(Ii | I1, . . . , In,mIo) for the probability as-
signed by the receiver to image Ii based on message
mIo when confronted to images I1, . . . , In, this
loss is:

− log(preceiver(It | It, Id,mIo)). (1)

In contrast, the sender is trained with REINFORCE

(Williams, 1992) by assigning a reward of value +1
to each symbol production action when the receiver
correctly retrieves the target, and a reward of value
−1 when it fails to do so. For each training batch,
the sum of the sender’s REINFORCE loss and of the
receiver’s negative log-likelihood loss is minimized
(with RMSProp; Hinton et al., 2012).

4 Influence of target and distractor choice

The goal of the present work is to establish what
training signal is necessary for categorical infor-
mation to appear in the communication protocols
developed by the agents. This requires modifying

they do take advantage of to some extent. In contrast, we are
here interested in the agents communicating about category-
level information as much as possible, and thus partition the
categories differently: we take as generalization categories
(cube, small, blue, down, left)—chosen arbitrarily—and
all 10 categories differing from it on exactly three features.
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the environment in which the agents interact so that
its categorical structure is more or less obvious.

4.1 Three types of environments
If we provide the sender with an image Io from
some category C, then we can either provide as tar-
get image It for the receiver either this very same
image (Io = It) or a different image of the same
category; the latter option provides a clear signal
that different images should be construed as part
of the same category. When using the former op-
tion (Io = It), selecting the distractor image Id
such that it always belongs to a category C ′ ̸= C
still induces a training signal pertaining to the cate-
gorization of images, albeit a much more indirect
one. These two choices compound to three types of
environments for our agents, which are illustrated
(along with a variant introduced in Section 5.1) in
Figure 1.

Direct signal environments. In direct signal en-
vironments, we provide as the receiver’s target im-
age It an image randomly sampled from the cate-
gory of the original image, and select the distractor
image Id from a different category (Io, It ∈ C,
Id ∈ C ′ and C ̸= C ′). As a result, the message
produced by the sender cannot focus solely on low-
level, image-specific, features of the original image
(e.g., the average brightness of the image), as they
might not match with the target. In other words, the
selection of a target image It that differs from the
original image Io but shares the same category pro-
vides these models with an explicit signal towards
learning high-level semantic information. Hence,
the performance of these models indicates what sort
of communication protocol emerges under optimal
conditions for retrieving categorical information.

While a successful game in this environment
requires that the receiver be able to derive category-
level information in its messages, this does not pre-
vent the sender from describing its input image. In-
deed, the sender could go as far as to purely convey
enough image-specific information and let the re-
ceiver infer the relevant category. This would how-
ever arguably lead to a remarkably complex com-
munication protocol, whereas having the sender
infer and describe the category ought to lead to a
much simpler solution.

Indirect signal environments. Models trained
in indirect signal environments only differ from
those trained in direct signal environments in that
the target is exactly the original image (It = Io).

In this setting, describing low-level, image-specific,
features of the original image, such as the back-
ground color, is a perfectly viable strategy. We
expect this strategy to be favored by the sender as
low-level features are intuitively easier to recognize
than high-level (category-level) ones (e.g., shape
or size of the object depicted).

Remark that in such environment, we still sam-
ple the distractor image Id from a category C ′ dis-
tinct from that of the target image (C ̸= C ′). As
such, this environment does provide some means
by which categorical information can be recovered:
Implicitly, receivers are only ever presented pairs
of images that belong to different categories, and
may very well learn to segregate them along their
categories. This could in turn provide a weak,
indirect training signal for the sender. We how-
ever expect image-specific information to be more
straightforward, although inductive biases in the
agents’ neural architectures could also shape the
emergent communication towards category-level
descriptions.

No signal environments. Our ability to train
models in direct signal and, to a lesser extent, in-
direct signal environments hinges on the existence
of well-defined semantic categories in our dataset.
However, natural pictures of everyday scenes, for
instance, do not readily come with such annota-
tions. We therefore also study models that can be
trained without such information, so as to deter-
mine what are the minimal requirements for non-
trivial semantics to emerge. Accordingly, in no
signal environments, we use the sender’s original
input image as the target image for the receiver
to retrieve (Io = It) and select a distractor image
at random, regardless of which category it comes
from.3

In this last type of environment, no training sig-
nal about the categories in the dataset is given to
the agents. If category-specific information does
emerge in the communication protocol, this would
have to be pinned on inductive biases present in
our architectures.

4.2 Automatic evaluation metrics

To assess whether settings are conducive to the
emergence of semantic categories, we use two au-
tomated metrics as our primary means of evalu-
ation: abstractness and category communication

3As a result, for some training instances, the target and the
distractor belong to the same category.
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Sender Receiver

Io ∈ C

mIo

Id /∈ C

It ∈ C

(a) Direct signal environment

Sender Receiver

Io ∈ C

mIo

Id /∈ C

(b) Indirect signal environment

Sender Receiver

Io ∈ C

mIo

Id
?
∈C

(c) No signal environment

Sender Receiver

Adversary

Io ∈ C

mIo

Id
?
∈C

Ia

(d) No signal environment with an adversary

Figure 1: The four training setups. C is an image category sampled randomly and uniformly. The green frame
indicates which image is the target for the receiver agent. (a)-(c) are introduced in Section 4.1; (d) is introduced in
Section 5.1.

efficiency.4

Abstractness (abs.). We define this measure as

2 · preceiver(It | Io, It,mIo), (2)

where Io and It are two images from the same
category. This measure quantifies the use of image-
specific information by the sender-receiver system:
Abstractness scores near 0 indicate that the mes-
sage mIo contains image-specific information that
the receiver uses to accurately distinguish Io from
It, whereas scores near 1 suggest that the message
does not include such information.

Category communication efficiency (c.c.e.).
We define this measure as

preceiver(It | It, Id,mIo), (3)

where Io and It are two images of the same cate-
gory, and Id is an image of a different category.
This measure corresponds exactly to the objec-
tive maximized in direct signal environment. It
is relevant to make a distinction between cate-
gory communication efficiency and a notion of
image communication efficiency (i.c.e.), defined

4The definitions below are given based on a single evalu-
ation instance; the values reported later are averaged over a
large number of such instances.

as preceiver(Io | Io, Id,mIo), which corresponds to
the objective maximized in indirect signal environ-
ment.

A sender-receiver system with both low abstract-
ness and low c.c.e. only communicates image-level
information (low abstractness) that does not gen-
eralize to other images of the same category (low
c.c.e.). A system with low abstractness but high
c.c.e. communicates at least image-specific in-
formation; nothing, however, can be concluded
a priori about category-level information because,
as two images of the same category tend to be
more similar than two images of different cate-
gories, image-specific information may be enough
to achieve high c.c.e. A system with high abstract-
ness but low c.c.e. does not communicate about
image-specific neither category-level information
(such a system is not properly trained). Only for a
system with both high abstractness and high c.c.e.
can we conclude about the emergence of high-
level semantics: The system does not communicate
image-specific information (high abstractness) but
must then communicate category-level information
(high c.c.e.).

For finer-grained analyses, we consider other
metrics: meaning-form correlation (Brighton and
Kirby, 2006), as well as scrambling resistance and
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semantic probes accuracy (Bernard and Mickus,
2023); see Appendix A for further details.

4.3 Experimental results
Training & evaluation procedure Models are
used with a baseline term in the sender’s loss and
no entropy term; we pretrain all image encoders
and decoders on an auto-encoding task (without
freezing their parameters afterwards).5 For each
of the three environment types, we select the learn-
ing rate through a grid search, ran on 10 runs per
settings (trained for 200 epochs each; 1000 batch
updates per epoch; batches of 128 instances) so as
to maximize c.c.e. We then use these optimal learn-
ing rates to train 40 models in each environment
for 1000 epochs.6 Each run is evaluated once every
1000 batch updates. Unless otherwise stated, we
keep the values of the metrics obtained when the
c.c.e. is maximal so as to focus our observations
on effective communication protocols, and report
medians over the 40 runs for any given setup.

Direct signal environments. We first begin by
looking at models trained in direct signal environ-
ments (first row of Table 1). We observe very high
c.c.e. and abstractness scores; in other words, mes-
sages produced by the senders tend to contain only
category-level information, and no image-specific
information. This is expected, since the receivers
in these models are tasked with retrieving a target
that is not the original image. We can also point out
that these models often develop protocols that ap-
pear compositional, even though they likely remain
simplistic: They achieve a high scrambling resis-
tance of 82.2% (suggesting that the information
carried by a symbol is independent of its position
in the message), as well as a relatively high MFC
score of ρ = 0.39. In line with this analysis, we
observe perfect probing accuracy for all features
except shape (64.2% accuracy): This suggests that
most relevant categorical information is robustly
encoded in senders’ messages. In short, there is
reasonably strong evidence that direct signal envi-
ronments allow models to learn to link symbols to
the values of the five features.

Indirect signal environments. Turning to mod-
els trained in indirect signal environments (second

5Using the notation suggested in (Bernard and
Mickus, 2023), the setups considered here correspond
to ⟨+PAE ,−F,−A,−H,−C,+B⟩.

6For no signal environments, we report results after 200
epochs as preliminary results indicate further training to have
very limited impact.

row of Table 1), we observe both a very high me-
dian c.c.e. score and a high median abstractness
score. As pointed out earlier, a high c.c.e. score
could be due to the presence of category-level infor-
mation in the message, but also to enough image-
specific information—as two images from the same
category resemble each other more than two im-
ages from different categories. As for the high
abstractness score, it shows that the receiver as-
signs a similar probability mass to the image based
on which the sender produces the message, and
to another image of the same category. More pre-
cisely, 0.853 corresponds to assigning a probability
of preceiver(It | Io, It,mIo)) =

0.853
2 = 0.4265 to

the target image, and 1− 0.4265 = 0.5735 to the
original image, i.e., roughly a 4-to-5 odds. Even
if two images of the same category resemble each
other, they are however clearly distinct from a low-
level perspective, and if the sender were sending
enough low-level information, it would not be hard
for the receiver to confidently distinguish between
the original image and another from the same cat-
egory. Furthermore, the high performance of the
semantic probes does confirm that all five high-
level features of the images are reliably encoded
in the sender’s messages. This suggests that the
sender mainly conveys category-level information.
Our hypothesis—that the sender does not commu-
nicate category-level information if other strategies
are available—appears thus to be disproved. Fur-
thermore, the fact that the sender only conveys little
image-specific information on top of the category-
level information it communicates is surprising, as
nothing in this setting seems to prevent the sender
from communicating more image-specific informa-
tion (e.g., background color).7

Figure 2 shows the evolution of abstractness,
c(ategory).c.e and i(mage).c.e. (see Section 4.2)
during training in indirect signal environments. We
observe that i.c.e converges much more rapidly
than c.c.e. and abstractness; the agents learn fairly
quickly to communicate about specific images but
also gradually shift to communicating about image
categories themselves.

Interestingly, even though the messages do con-
tain some image-specific information that ought

7Somewhat paradoxically, models trained in indirect signal
environments obtain a higher median c.c.e. than those trained
in direct signal environments, despite the latter being directly
trained to maximize c.c.e. scores. This is likely due to the little
bit of image-specific information included in the messages
along with category-level information, reinforcing the ability
of the receiver to recognize the target.
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Env. c.c.e. abs. s.r. semantic probes MFCshape size color h. pos. v. pos.
Direct signal 0.986 0.992 0.822 0.642 0.996 0.998 0.999 0.999 0.387

Indirect signal 0.992 0.853 0.949 0.818 0.993 0.993 0.999 0.999 0.439
No signal 0.771 0.511 0.898 0.624 0.869 0.677 0.812 0.754 0.265

No signal + adv. 0.768 0.594 0.859 0.609 0.901 0.601 0.867 0.838 0.243

Table 1: Summary of performances observed at maximal c.c.e., according to the training environment. Di-
rect/Indirect/No signal environments are introduced in Section 4.1; the adversary agent is introduced in Section 5.1.

0 200 400 600 800 1000
epochs

0.2

0.4

0.6

0.8

1.0

ab
s./

c.
c.

e.
/i.

c.
e.

metric
abs.
c.c.e.
i.c.e.

Figure 2: Evolution of the abstractness, c.c.e. and i.c.e.
scores over 1000 epochs of training in indirect signal
environments. Median over all runs, interquartile inter-
vals shaded; exponential moving average with α = 0.1.

to deteriorate MFC scores (as evidenced by the
lower than 1 abstractness), the MFC is higher than
what we observe for models in direct signal envi-
ronments (ρ = 0.439). This is probably explained
by communication protocols in this setting hav-
ing very high scrambling resistance (94.9%), sug-
gesting that receivers treat messages as orderless
bags-of-symbols. Indeed, we compute MFC based
on Jaccard indices; therefore, distances between
messages are not sensitive to symbol order.

No signal environments. If we now study mod-
els trained in no signal environments (third row
of Table 1), we can observe a sharp decrease in
abstractness, although performances remain non-
trivial (an abstractness of 0.511 corresponds to as-
signing a fourth of the probability mass on a target
image of the same category).

Likewise, while it remains firmly above a ran-
dom chance threshold of 0.5, c.c.e. drops to 0.771.
This shows that the sender not only communicates
more about image-specific information, but also
communicates less about category-level features.
Looking at semantic probes accuracy, we find more
evidence of the same trend—all probes perform

worse than what we saw thus far; shape and color
appear especially unreliably encoded.

5 Fostering the emergence of high-level
semantics

As we just saw, encoding category-level informa-
tion systematically seems to require the agents to
have access (directly or indirectly) to category-
level information. We now turn to whether we
can dispense from including this explicit informa-
tion while retaining category-level information in
the messages.

Spike (2017, §.5) suggests that noisy inputs can
foster more robust and effective communication
channels: Adding noise to input images would pre-
vent agents from communicating about very low-
level information (e.g., specific pixel brightness),
since this information may not match with what
the receiver would perceive. Such a procedure is
therefore a natural candidate to explore. However,
preliminary experiments involving the addition of
normal noise to the images showed this technique
to only make the training process less reliable, with-
out any observable benefit.

Instead, we focus on a more involved approach:
incorporating an agent playing an adversarial role
to discourage the sender and receiver to exchange
image-specific information.

5.1 An adversary agent

In this section, we introduce a third agent in the
signaling game. This adversary agent is imple-
mented with an LSTM message encoder (like the
receiver) and a convolutional image decoder. In
this setting, the message produced by the sender is
also passed to the adversary, which outputs an ad-
versary image Ia = adversary(mIo) intended to
fool the receiver. Our intuition is that messages that
convey low-level information can easily be coun-
terfeited by this adversary, and therefore should
be disfavored by the receiver, and therefore by the
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sender—thereby creating an implicit training sig-
nal towards communicating high-level semantic
information.8

As in previous settings, the sender is trained with
REINFORCE using rewards determined by the abil-
ity of the receiver to distinguish between the target
and the distractor only. Unlike in previous settings,
however, receivers in adversary settings are trained
to distinguish the target from both the distractor
and the adversary image by minimizing the nega-
tive log-likelihood of the target image considering
the three images:

− log(preceiver(It | It, Id, Ia,mIo)). (4)

We use an adversarial scheme (Goodfellow et al.,
2014) to train the adversary to generate an image
that the receiver cannot distinguish from the tar-
get; i.e., the adversary is trained to minimize the
negative log-likelihood of the adversary image:

− log(preceiver(Ia | Id, Ia,mIo)). (5)

To foster the diversity of adversary images, we
add Gaussian noise to the output of the adversary’s
message encoder before feeding it into the image
decoder.

To perform the optimization, each agent’s loss
is scaled by a factor that depends on the agent’
performance. Let us define

ssender = preceiver(It | It, Id,mIo),

sreceiver = preceiver(It | It, Id, Ia,mIo),

sadversary = preceiver(Ia | It, Ia,mIo).

Over the course of training, we compute moving
averages of these values, noted “ŝa” for “sa”. Now
consider the following values:

wsender = 2 · ŝsender − 1,

wreceiver = 3 · ŝreceiver − 1,

wadversary = 2 · ŝadversary.

Except in pathological situations (that we have
not observed), each of these values is nonnegative.
These weights are normalized using the softmax
function and a “temperature” hyperparameter τ ,
and then used to scale each of the three losses:

exp (−wa/τ)∑
a′∈ agents

exp (−wa′/τ)
· La.

8This adversary agent can also be seen as an auxiliary
module of the receiver: one devoted to formulating plausible
alternative targets that the receiver has yet to learn to discrimi-
nate.

This scaling of the losses (and therefore of the gra-
dients) entails that training focuses on the agents
that perform the worst at their task. Note that to
avoid updating agents with gradients derived from
their adversaries’ loss, the losses are not summed:
Each agent’s loss is minimized by a distinct opti-
mizer that only updates this agent’s parameters.

Finally, because image-generation is a partic-
ularly challenging task, when the adversary is
present, we send the target and distractor images
through a pretrained auto-encoder before showing
them to the receiver. Indeed, convolution image
decoders like the one used to produce the adversary
images are very likely to generate visual artifacts
that a receiver can easily use to distinguish between
neurally generated images and images from the
dataset (which lack such artifacts). If the adversary
images were to be spotted in this trivial manner, the
additional agent would be rendered entirely inef-
fective. Using auto-encoded versions of the target
and distractor images, then exhibiting similar arte-
facts, we make it technically possible (though still
quite challenging) for the adversary to fool the re-
ceiver. We implement this auto-encoder using the
same image encoding architecture as the sender
and receiver agents, and the same image decoding
architecture as the distractor agent. This network
is trained beforehand and its parameters are frozen
during the signaling game.

5.2 Experimental results

Training & evaluation procedure Unless other-
wise specified, we rely on the same implementation
choices as in Section 4.3. As previously (but with
the temperature τ as an additional hyperparameter),
we employ a grid search with 10 runs per settings
over 200 epochs to maximize c.c.e. We then use
these optimal learning rates to train 40 models in
each environment (still on 200 epochs as prelimi-
nary experiments show that further training brings
no improvements).

Adversary agents. In the last (fourth) row of
Table 1, we list the performances of models in
no-signal environments that involve an adversary
agent. Compared with similar environments but
without an adversary, we notice a boost in terms
of abstractness (from 0.511 to 0.594). This boost
is unlikely to be due to random variation only, as
indicated by a Pitman permutation test targeting the
difference of abstractness scores (p-value ≃ 0.02).
C.c.e. scores are comparable (the difference is

207



0 25 50 75 100 125 150 175 200
epochs

0.2

0.4

0.6

0.8

1.0
ab

st
ra

ct
ne

ss
setup

direct signal
indirect signal
no signal
no signal + adv.

Figure 3: Evolution of the abstractness scores over
200 epochs of training in the four setups studied. For
each setup, median over all runs, interquartile intervals
shaded; exponential moving average with α = 0.1.

not statistically significant, p-value ≃ 0.5), which
demonstrates that the presence of an adversary
agent tends to remove image-specific information
in the sender’s messages with no impact on the re-
ceiver’s ability to retrieve a target selected from the
original image category. The accuracy of the se-
mantic probes suggests that the sender and receiver
rely less on the color and shape of the object when
an adversary is present, and more on its size and its
position (both horizontal and vertical).

Figure 3 shows the evolution of abstractness dur-
ing training in all four setups. The information
about categories provided in indirect signal environ-
ments has a very progressive effect on abstractness,
which starts low and raises gradually. In contrast,
the presence of an adversary immediately limits the
reliance of the sender and receiver agents on image-
specific information. Additional experiments not
presented here in details due to space constraints
show that in indirect signal environments, while
the presence of an adversary agent does not lead to
an increase in abstractness in the long run, it clearly
fosters higher abstractness scores in the early stages
of training.

Adversary images. We include a grid of selected
examples from one model in Figure 4. We can
observe many images with severe defects, but also
that in most images, the background color and even
some higher-level features are properly recreated.
It is important to keep in mind that the rationale be-
hind introducing the adversary was not to produce
high quality images, but to drive the sender and
receiver away from communicating only about low-
level features of the image, such as the background
color. As indicated by the increase in abstract-

Figure 4: Original and adversary images (no signal
environment). Each image in an even column is an
adversary image crafted from the sender’s message for
the original image immediately on its left.

ness, this goal has been achieved. These images
contribute to explain how: The fact that adversary
images often faithfully reproduce the original im-
ages’ background indicates that the sender and the
receiver used to rely on this feature to retrieve the
target; the adversary then prevents them from rely-
ing only on this feature.

6 Conclusions

Do agents learning to identify images through sym-
bolic communication develop a language able to
describe category-level features of these images?
Interestingly, indirect signal environments provide
evidence that models are able to develop high-level
semantics even when the only relevant training sig-
nal is extremely tenuous.

The results of models in no signal environments
suggest, however, that one cannot expect the sender
to encode category-level information systemati-
cally without an appropriate training signal.

Our last experiment shows that even without
relying on the availability of semantic categories—
as is often the case with natural images—, fostering
the emergence of high-level semantics is possible
via the introduction of an adversarial agent.

In the future, we would be interested in studying
whether this technique is effective on other datasets
that the one used here, and in whether improve-
ments of the (delicate) training procedure of the
adversary may lead to a stronger impact on the
emergent languages.
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A Supplementary metrics

To further evaluate the communication protocols
that emerge from our various models, we rely on
abstractness and c.c.e., as well as three metrics
previously proposed in the literature.

Meaning–form correlation (MFC), also known
as topographic similarity (Brighton and Kirby,
2006), consists in evaluating whether changes in
form are commensurate to changes in meaning.
The metric was originally proposed as a means of
quantifying compositionality, but see Mickus et al.
(2020); Chaabouni et al. (2020) for discussions. In
our specific case, we use Jaccard distance (Jaccard,
1912) as a form metric and Hamming distance be-
tween categories as a meaning distance. Noting
|m|x for the number of occurrences of symbol x
in message m, the Jaccard distance between two
messages m and m′ is defined as

1−

∑
x∈Alphabet

min(|m|x, |m′|x)
∑

x∈Alphabet
max(|m|x, |m′|x)

. (6)

For instance, the Jaccard distance between “A A B
A C” and “A B C D” is 1− 1+1+1+0

3+1+1+1 , i.e., 1
2 . The

Hamming distance between two categories c and c′

is simply the number of features (i.e., among color,
size, shape, h. pos., v. pos.) on which c and c′

disagree.
The two other metrics are borrowed from

Bernard and Mickus (2023). Scrambling resistance
(s.r.), quantifies how sensitive to symbol ordering
receivers are: Values close to 1 indicate that each
symbol is interpreted independently of its position
in the message, whereas values close to 0 indicate
that the message is only interpreted as a whole. We
also rely on semantic probes to detect how much
each of the five category-level features is communi-
cated in the sender’s messages. In practice, they are
implemented as a decision tree per feature, trained
to predict the corresponding value for the original
image based on a bag-of-symbol representation of
the sender’s message (i.e., a vector in N16).
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