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Abstract

Supervised classification heavily depends on
datasets annotated by humans. However, in
subjective tasks such as toxicity classification,
these annotations often exhibit low agreement
among raters. Annotations have commonly
been aggregated by employing methods like
majority voting to determine a single ground
truth label. In subjective tasks, aggregating
labels will result in biased labeling and, conse-
quently, biased models that can overlook minor-
ity opinions. Previous studies have shed light
on the pitfalls of label aggregation and have
introduced a handful of practical approaches
to tackle this issue. Recently proposed multi-
annotator models, which predict labels individ-
ually per annotator, are vulnerable to under-
determination for annotators with few samples.
This problem is exacerbated in crowdsourced
datasets. In this work, we propose Annotator
Aware Representations for Texts (AART) for
subjective classification tasks. Our approach
involves learning representations of annotators,
allowing for exploration of annotation behav-
iors. We show the improvement of our method
on metrics that assess the performance on cap-
turing individual annotators’ perspectives. Ad-
ditionally, we demonstrate fairness metrics to
evaluate our model’s equability of performance
for marginalized annotators compared to oth-
ers.1

1 Introduction

Supervised machine learning tasks often train on
data provided by human annotators. To improve the
quality of ground truth data, the data samples are
labeled by multiple annotators, whose independent
decisions are then aggregated, often by taking the
majority label or average value. This approach
works well in some tasks, like image recognition,
where “objective” ground truth exists. Objective

1Our code and implementation are publicly available at
https://github.com/negar-mokhberian/aart.

judgments should not be affected by individual
differences among annotators and in practice, most
people would perceive and classify them similarly,
except for obvious errors or oversight (Basile et al.,
2021a).

However, some annotation tasks are subjective
by nature, and traditional approaches to aggregat-
ing annotations that ignore context and subjectivity
may lose important information (Plank, 2022). For
instance, individuals may differ about what they
consider to be toxic or hate speech on social media,
depending on their background and attitudes (Sap
et al., 2022). As a result, not all annotators will
agree when a particular message constitutes hate
speech. Disagreement among annotators in subjec-
tive tasks is expected because, for each item, the
annotation outcome depends on (1) the annotator’s
perspective and lived experience, (2) the item being
evaluated, (3) the time and circumstances surround-
ing the annotation task, and (4) the clarity of the
designed prompts or instructions given to annota-
tors (Basile et al., 2021b; Denton et al., 2021). In
addition, annotators vary in how much effort they
put into the task, with prolific annotators labeling
many samples and sparse annotators labeling few
samples. A classifier that does not take variety in
human labels into account risks overlooking minor-
ity perspectives by ignoring potentially informative
differences between annotators and integrating the
biases of a particular annotator pool.

Historically, most public datasets did not provide
labels at the individual annotator level. This limited
the ability of machine learning researchers to de-
velop methods that take advantage of differences in
annotator perspectives in subjective learning tasks.
Recently, researchers have acknowledged the im-
portance of incorporating this information and have
released raw annotations, often accompanied by de-
mographic information about the annotators. It has
now become commonplace to include multiple an-
notations per item in published datasets (Frenda
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Figure 1: The architecture of AART compared to the multi-task and single-task approaches. Whereas a multi-task
model incorporates annotator subjectivity by training entirely separate classification heads per annotator, AART
represents annotator-specific biases as embeddings that are added to the text embeddings prior to classification. This
new approach constrains the degrees of freedom and allows a common head across annotators, lending helpful
inductive biases to sparse annotators.

et al., 2023; Sap et al., 2022; Prabhakaran et al.,
2021; Denton et al., 2021). Recent studies have re-
vealed that the aggregation of annotations exhibits
detrimental biases toward specific groups of an-
notators (Prabhakaran et al., 2021; Aroyo et al.,
2024).

Instead of adhering to the conventional notion
that labels should be aggregated across all stages of
AI pipelines, recent research advocates for leverag-
ing the inherent diversity in human-assigned labels
by pioneering innovative approaches to accommo-
date multiple votes per item at different stages of AI
pipelines. This can be applied across domains such
as model architecture design (Weerasooriya et al.,
2023; Mostafazadeh Davani et al., 2022; Hayat
et al., 2022; Gordon et al., 2022; Deng et al., 2023;
Gordon et al., 2021), performance evaluation met-
rics (Basile et al., 2021b; Dumitrache et al., 2019;
Gordon et al., 2021), or label aggregation, surpass-
ing simplistic methods like averaging or majority
voting (Aroyo and Welty, 2014; Dumitrache et al.,
2018).

Despite some progress, few researchers have sys-
tematically tackled the problem of learning from
multiple annotations. We address this gap by
proposing a new approach for modeling annota-
tor perspectives in subjective classification tasks
via Annotator Aware Representations for Texts
(AART). Our approach learns annotator embed-
dings that represent their perspectives in down-
stream classification tasks (see §3 for more details).
We demonstrate empirically that AART affords a

more accurate and context-sensitive interpretation
of subjective data at the individual annotator level.

We compare our approach to a widely recog-
nized method (Mostafazadeh Davani et al., 2022)
that captures differences in annotator judgments
using a multi-task architecture consisting of a sepa-
rate trainable classification-head per annotator. We
show that the multi-task learning suffers from hav-
ing under-trained classification heads for sparse
annotators that contribute few annotations. Al-
though this work marks an advance in the study
of annotations of subjective tasks, its difficulties in
accounting for differences in perspectives of infre-
quent, sparse annotators limits its utility in practical
applications.

In contrast, our method captures the semantics
inherent in subjective classification tasks, account-
ing for the diverse perspectives of annotators, in-
cluding those who contribute few annotations. The
AART architecture combines text embedding with
annotator embeddings and provides this joint infor-
mation to the classification layer. We couple this
design choice with using the L2 regularizer in the
loss, to prevent annotator embeddings from over-
fitting. Additionally, we use the contrastive loss to
aid in learning from the similarities and dissimilari-
ties of label choices among annotators, a capability
lacking in Multi-task. Furthermore, in Section 4,
we examine the learned annotation behaviors.

By leveraging metrics from algorithmic fair-
ness, we demonstrate that the viewpoints of sparse
annotators—who either contribute few samples or
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select less popular labels—are accurately repre-
sented (See §4.5). This inclusivity is crucial for
applications where the diversity of perspectives is
essential for understanding patterns in subjective
annotations. Practitioners can utilize this approach
to anticipate how individuals and, by extension,
subgroups would react to a particular input.

2 Related Work

Sources of Annotator Disagreement. Some
previous research has shown aggregating the la-
bels takes away the voice of minority socio-
demographic groups (Prabhakaran et al., 2021).
Al Kuwatly et al. (2020) conducted a study group-
ing annotators according to socio-demographic at-
tributes and discovered biases in the annotations
of personal attack corpora is linked to annotators’
age, education, and first language. Similarly, (Sap
et al., 2022) found that posts written in African
American dialect were more likely to be labeled
as offensive by conservative annotators. Further-
more, (Larimore et al., 2021) demonstrated that
there are differing interpretations among white and
non-white workers when annotating racially sensi-
tive topics, indicating the importance of consider-
ing the perspectives of those affected when gather-
ing annotations of racist language.

It is important to note that many public datasets
lack information regarding the demographics of the
annotators alongside their annotations. Moreover,
even in cases where datasets do report annotator
demographics, mostly there exists an imbalance in
the representation of demographics among annota-
tors (Orlikowski et al., 2023). For instance, while
females constitute the majority of crowd workers
in the US, they are significantly underrepresented
in most other countries. Additionally, online plat-
forms tend to attract a predominantly young de-
mographic of annotators (Posch et al., 2022; Hara
et al., 2019).

However, it is essential to recognize that relevant
lived experience and mindset among annotators
do not always perfectly align with demographic
characteristics (Orlikowski et al., 2023). Waseem
(2016) found that amateur annotators were more
prone to mislabel content as racist or sexist com-
pared to experts with backgrounds in feminism and
anti-racism activism. This finding emphasizes the
need for researchers to identify annotator behaviors
beyond relying solely on demographic character-
istics. Hence, some previous work has explored

methods to identify groups of annotators with sim-
ilar annotation behaviors. Wich et al. (2020) em-
ployed graph methods, and (Lo and Basile, 2023)
conducted hierarchical clustering of annotators,
while (Akhtar et al., 2020) and (Basile, 2021) uti-
lized exhaustive-search algorithms to automatically
group human annotators in order to maximize the
inter-group differences in annotation patterns.

Modeling Annotator Disagreement. Examining
annotation disagreement has been a subject of inter-
est in previous research. One line of research treats
disagreement as noise and attempts to minimize
it in order to improve performance (Mokhberian
et al., 2022; Hovy et al., 2013). However, another
line of research argues in favor of embracing an-
notation disagreement, considering it as a valuable
signal rather than entirely noise (Aroyo and Welty,
2015; Rodrigues and Pereira, 2018). Our paper
explores the latter possibility.

Certain studies have demonstrated that the level
of disagreement among annotators for each data
point can be predicted based on the text itself
(Kenyon-Dean et al., 2018). Additionally, incorpo-
rating demographic information of the annotators
has shown even better performance (Wan et al.,
2023).

Recent work for numerous tasks has proposed
to approximate the full annotators’ label distribu-
tion on each item, instead of aggregating, utiliz-
ing methods such as soft-label learning (Fornaciari
et al., 2021; Uma et al., 2021, 2022).

Other research has developed approaches to
model annotators for subjective tasks and to pre-
dict a personalized label for each annotator. Plepi
et al. (2022) explore methods of personalization
to model Reddit users and analyze the effect of
their method on demographic groups. Akhtar et al.
(2020) employ a comprehensive search approach
to divide annotators into two groups based on
their annotation patterns. They demonstrate the
effectiveness of an ensemble model comprising
two separate classifiers representing the perspec-
tives of each group over the traditional single-task
model, which merely observes aggregated labels.
Mostafazadeh Davani et al. (2022) explored the
effectively of three different multi-annotator ar-
chitectures for predicting each annotator’s labels.
Deng et al. (2023) integrate annotator embeddings
into their model design, yet they were unable to
identify significant annotator patterns solely based
on these embeddings without incorporating addi-
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tional embeddings for representing annotation la-
bels. Gordon et al. (2022) introduced the concept
of jury learning, a recommender system approach
that specifies the demographic composition of in-
dividuals, along with their respective proportions,
tasked with determining the predictions of the clas-
sifier. For example, in the context of online hate
speech detection, a jury learning model might rec-
ommend the inclusion of women and Black ju-
rors, as they are often primary targets of online
harassment. Drawing motivation from this line of
work, our paper investigates a new approach to
model the subjectivity of tasks through label vari-
ations among individual annotators. By training
annotator-specific embeddings with a contrastive
loss, we learn a latent space that captures similari-
ties and differences in annotator behavior.

3 Methodology

This section presents the details of our proposed
approach and baselines used for evaluation. Our
proposed method AART (§3.2) learns separate rep-
resentations for each annotator in an end-to-end
fashion during the training phase of the main classi-
fication task. In the inference phase, we are able to
predict personalized labels for each annotator based
on the annotation behaviors observed during train-
ing. A commonly used method for learning subjec-
tive perspectives is multi-task model (§3.3) which
trains a separate classification head for each of
the annotators. Other than comparing our method
to the multi-task model we also compare it to a
single-task (§3.4) model which is fed the aggre-
gated labels during training and is not aware of the
variety of annotations for each item. The overall
framework of these approaches is shown in Fig. 1.

3.1 Problem Definition

We consider an input corpus D = {(xi, aj , yij)}
that is composed of triplets, with elements coming
from text items X = {xi}Ni=1, annotators A =
{aj}Mj=1, and annotations yij ∈ {1, ..., Q}. Each
(i, j) combination that appears (at most once) in D
means that annotator aj assigned label yij to the
text item xi. In most annotated datasets, many yij
values are not available as annotators only label a
portion of items.

Most traditional classification studies aim to pre-
dict the aggregated label that would be assigned to
text xi by the annotator pool {aj}Mj=1. This aggre-
gated label is usually calculated via majority-voting

or averaging. This fundamental model, referred to
as the single-task model in this paper (See §3.4),
solely considers and predicts the aggregated labels.
In this study, however, we are interested in predict-
ing the label that annotator aj would assign to an
unseen text item xi, i.e., predict yij given a pair of
annotator and item (xi, aj). We use the overarch-
ing term “multi-annotator models" to encompass
these models, and we will describe our proposed
multi-annotator model, AART (see §3.2), and the
established multi-task (see §3.3) model found in
prior literature.

All the approaches we investigate in this pa-
per leverage pretrained transformer-based language
models for encoding text (such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)).
Given a text item xi, we extract its generic represen-
tation by taking the embedding of the [CLS] token
from the final layer of the language model, denoted
as e(xi) ∈ Rd (d is the size of the representation
vector defined in the language model). This repre-
sentation is then fine-tuned in conjunction with the
other parameters of the model architectures during
training.

3.2 Annotator-Aware Representations for
Texts (AART)

We present a novel approach for incorporating an-
notator information into text representations for the
purpose of learning an annotator’s label on a given
text instance. Our approach utilizes M annotator
embeddings, with one randomly initialized embed-
ding per annotator, as learnable parameters with the
same dimensionality as the text embeddings. Given
a text instance xi and annotator aj , the annotator-
aware text embedding g(xi, aj) is calculated as the
sum of the text embedding e(xi) and annotator em-
bedding f(aj), yielding g(xi, aj) = e(xi)+f(aj).
We also tried concatenating a one-hot encoding
for each annotator with text embeddings which re-
sulted in lower performance compared to taking
the sum. Our idea draws inspiration from the po-
sitional encoding used by transformers (Vaswani
et al., 2017), where a positional embedding of the
same dimensionality as the token embedding is
added to the token embedding at each position to
form the sequence representation. A similar ap-
proach has been found effective in dialogue act clas-
sifications by learning speaker-turn embeddings
in a conversation (He et al., 2021). We feed the
annotator-aware representations of text g(xi, aj)

7340



into a fully connected classification layer.
To train AART we propose the following objec-

tive function:

L = LCE + λ
∑

j

∥f(aj)∥2 + α
∑

j,j′
LC(j, j

′)

Where the first term is a cross-entropy loss for
predicting the item-annotator labels yij , the sec-
ond term is the regularizing L2 norm for annotator
embeddings, and the third term is contrastive loss.
We calculate InfoNCE contrastive loss (Oord et al.,
2018; Chen et al., 2020) on pairs of aj and aj′ that
have both worked on the same text xi. When two
annotators aj and aj′ have assigned the same label
to xi we consider aj and aj′ as a positive pair and
our loss will push them closer in the latent space.
We consider a negative pair to be any two annota-
tors that have assigned different labels to that item.
The contrastive loss for a positive pair of annotators
(j, j′) is defined as below:

LC(j, j
′) =

− log
exp

{
−
∥∥aj − aj′

∥∥2
2
/τ

}

∑
k∈Nj∪{j′} exp

{
−∥aj − ak∥22/τ

} ,

in which τ is a temperature constant and Nj is
the set of all negatives for annotator j.

3.3 Multi-task Approach
The multi-task approach learns each annotator’s la-
beling behavior via individual classification tasks,
utilizing shared language model layers to derive a
consistent representation of the input text, e(xi),
for all annotators (Mostafazadeh Davani et al.,
2022). To capture annotator-specific labeling be-
havior, this method has a separate fully connected
layer specifically optimized for each annotator.
However, the text encoding layers generating e(xi)
are refined based on the outputs of all annotator
tasks. The optimization objectives are formulated
separately for each annotator as a cross-entropy
loss function, which takes into account each anno-
tator’s available labels for each item xi.

3.4 Single-task Approach
The baseline model embodies the typical approach
of using a single-task classifier to predict the ag-
gregated label for each instance. This model is
constructed by adding a fully connected classifica-
tion layer to the text embedding e(xi). The fully

connected layer performs a linear transformation
in order to predict the majority label. Unlike the
multi-annotator models detailed in §3.2 and §3.3,
the baseline model does not incorporate the individ-
ual annotator labels yij ; rather, it directly predicts
the aggregated label ȳi for each item xi.

4 Experiments

4.1 Datasets

The Multi-Domain Agreement dataset (DMDA):
(Leonardelli et al., 2021) created an dataset for the
task of offensive language detection. The dataset
consists of 9,814 English tweets from three do-
mains (Black Lives Matter movement, Election
2020, and COVID-19 pandemic). Each tweet was
annotated for offensiveness by 5 annotators via
Amazon Mechanical Turk.

English Perspectivist Irony Corpus (DI): The
irony detection corpus, as presented by Frenda et al.
(2023), encompasses 3,000 Post-Reply pairs ex-
tracted from social media. These pairs are evenly
sourced from Twitter and Reddit, originating from
five English-speaking countries: Australia, India,
Ireland, the United Kingdom, and the United States.
For Twitter data, the authors utilized the API ge-
olocation service to distinguish the five English
varieties. In the case of Reddit, data was gath-
ered from specific subreddits, assuming the texts’
origins: r/AskReddit (United States), r/CasualUK
(United Kingdom), r/britishproblems (United King-
dom), r/australia (Australia), r/ireland (Ireland),
r/india (India). The 74 annotators were balanced in
terms of both gender and nationality, with approxi-
mately 15 raters assigned to each of the mentioned
nationalities. Each rater labeled around 200 in-
stances, resulting in a corpus containing 14,172
annotations, with a median of 5 annotations per
instance.

The Racial Bias Toxicity Detection Corpus
(DRB): Sap et al. (2019) have studied the effect
of annotators’ biases on their toxicity perceptions.
They have confirmed in their work that determining
what is harmful is a subjective task and annotators’
racial biases can transmit to their annotations. They
have gathered toxicity annotations for tweets on
Amazon Mechanical Turk asking workers to deter-
mine whether a tweet (a) is offensive to them, and
(b) could be seen as offensive to anyone. We work
with the former as personal perspectives are more
relevant to this study.
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Dataset Single-task Multi-task AART (α = 0) AART (α > 0)
Annotator-level F1

DMDA 66.80± 0.7 61.87± 1.5 69.64± 1.3 69.72± 1.1

DI 58.59± 1.9 57.31± 0.9 56.45± 7.9 59.67± 0.9

DRB 68.61± 1.5 66.57± 3.1 71.6± 1.6 71.1± 3.2

Global-level F1
DMDA 71.99± 0.6 74.19± 0.9 77.40± 0.6 77.38± 0.4

DI 60.23± 1.7 66.78± 0.9 63.64± 5.4 66.16± 1.4

DRB 71.97± 1.7 77.72± 1.8 79.38± 2.4 79.96± 1.9

Item-level Disagreement Correlations
DMDA NA 0.33± 0.03 0.39± 0.03 0.37± 0.04

DI NA 0.23± 0.04 0.14± 0.10 0.20± 0.06

DRB NA 0.47± 0.05 0.48± 0.12 0.54± 0.04

Table 1: This table presents experimental results for the classification tasks. AART is the new method introduced
here. Single-task is a baseline that only sees and predicts aggregated labels. We repeated each experiment 10 times
and report the mean and standard deviation. α is the coefficient for contrastive loss. The best performing model is
indicated in bold and the second best is underlined. See section §4 for further details.

Table 2: Statistics of the datasets used in our experi-
ments. DMDA refers to the offensive speech detection
dataset (Leonardelli et al., 2021), DI refers to the irony
detection corpus (Frenda et al., 2023), and DRB to the
racial bias corpus (Sap et al., 2019).

DMDA DI DRB

# Annotators 819 74 334
# Annotations per Annotator 60± 131 192± 27 35± 51
# Unique Texts 9814 2884 1309
# Annotations per Text 5 5 9± 2

4.2 Evaluation Metrics

Annotator-level F1 This study is primarily mo-
tivated by the objective of safeguarding minority
perspectives that might be overlooked when resolv-
ing annotator disagreements through the common
practice of aggregating labels in machine learning.
Consequently, it becomes crucial to demonstrate
performance of model across all annotators, re-
gardless of whether they have made substantial or
minimal contributions to the annotated dataset. To
address this, we introduce the metric of Annotator-
level F1 defined as the average macro F1 score
across all annotators. The performance for each an-
notator aj over items xi appearing in the test split is
calculated by comparing the existing ground truths
yij to the model’s predicted label for (xi, aj).

Global-level F1 The metric Global-level F1 con-
siders all pairs of item-annotator (xi, aj) appearing
in the test set and calculates the macro F1 compar-
ing their true label yij to the predicted label of the
model for (xi, aj). In contrast to the Annotator-
level F1, this metric implicitly gives preference to
larger annotators, potentially overshadowing the
performance of sparse annotators within the sub-

stantial contributions of prolific annotators.

Disagreement Measurement for Items In the
context of multi-annotator models, a crucial consid-
eration is whether the degree of disagreement in the
predicted labels aligns with the actual degree of dis-
agreement for each item. We follow the definitions
from (Wan et al., 2023) for quantifying disagree-
ment for each item. They introduce a continuous
disagreement metric, quantifying the fraction of
votes for an item that differs from the majority vote.
For instance, if five votes for an item are recorded
as 0,1,0,1,1, the disagreement is computed as 0.4.
The disagreement scale ranges from 0 (complete
unanimity in annotation results) to 1 (a significant
divergence in opinions on annotation results). How-
ever, in the case of binary labels, the disagreement
scale is confined to the range [0, 0.5]. Notably, we
calculate predicted disagreement for each item ex-
clusively based on annotators for whom ground
truth information is available, aligning with the set
of annotators used to calculate the ground truth
disagreement per item.

4.3 Quantitative Analysis of Performance
Table 1 presents the numerical outcomes based on
the metrics outlined in §4.2. The experimental
setup is described in §A. Given that the primary
motivation in this paper is to achieve equitable per-
formance across all annotators, we initially focus
on the Annotator-level F1. Across all three datasets,
one of the two variants of the AART model (with
or without the use of contrastive loss) consistently
outperforms both single-task and multi-task mod-
els. This underscores the AART model’s capacity
to excel across diverse annotators, irrespective of
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Figure 2: The UMAP projection visualizes the annotator embeddings, with the colorbar indicating the fraction
of annotator votes aligning with the majority vote. The smaller circles show the real annotators. Larger triangles
represent two distinct sets of synthetic annotators integrated into the annotator pool for each dataset. Within each
group of eight synthetic annotators, the yellow triangles consistently assign the majority vote, while the purple
triangles consistently diverge from the majority. A distinct separation is evident between annotators aligning more
closely with the majority opinion and those deviating further from the majority vote in their annotation patterns.

their contribution counts or other characteristics.
It’s noteworthy that incorporating contrastive

loss with AART proves particularly beneficial for
the Irony detection dataset (DI). Without con-
trastive loss, the AART model faces challenges in
converging on this dataset, possibly due to the in-
herent difficulty of automatically recognizing irony
in text. The generally lower overall performances
on DI compared to the other two datasets affirm the
challenging nature of this particular dataset. Mean-
while, the disparities in AART’s performance with
or without the contrastive loss on the other two
datasets are marginal, indicating the overall bene-
fit of including the contrastive loss in the training
objective.

The Global-level F1 metric assesses how well
the predicted label for an annotator-item pair
aligns with the true label. Notably, whenever the
AART approach outperforms the two baselines on
Annotator-level F1, it also excels on Global-level
F1. This observation indicates that AART achieves
a robust Annotator-level F1 without merely overfit-
ting to sparse annotators, maintaining a comprehen-
sive understanding of item-annotator relationships
across all pairs in the dataset.

The Pearson correlations between item-level la-
bels disagreements, derived from true labels versus
predicted labels, are presented in the third section
of Table 1. The capacity to capture disagreements
among annotators at the item level is a major advan-
tage of multi-annotator models over conventional
single-task models. The results demonstrate the
effectiveness of utilizing contrastive loss (α > 0)
in improving the correlation of item-level disagree-
ments when compared to the AART model, which
does not employ contrastive loss (α = 0). This

enhancement is observed in the case of both DI and
DRB datasets. However, in the case of DMDA, there
is a marginal decline in performance, although it
still outperforms the multi-task model.

4.4 Annotation Patterns Captured in
Embeddings

In this section, we aim to gain a deeper understand-
ing of the annotation patterns captured in the anno-
tator embeddings. We are particularly interested in
exploring whether the embeddings are influenced
by the annotators’ tendency to align with the ma-
jority opinion. To investigate this, we added two
sets of eight synthetic annotators into the annotator
pool for each dataset. Each synthetic annotator was
exposed to 1/8 of the data items. Within each set,
eight annotators consistently provided the majority
vote (determined from true labels) for the items,
while the remaining eight consistently assigned a
label different from the majority vote.

Upon completion of the AART training, we il-
lustrate the embeddings in a 2D plot using UMAP
projection (McInnes et al., 2018). Figure 2 demon-
strates that the two groups of synthetic annotators
exhibit distinct separation from each other. Also,
the real annotators aligning more closely with the
majority opinion and those deviating further from
the majority vote in their annotation patterns are
showing divergence in the embeddings. This obser-
vation shows the similarity to the majority opinion
indeed plays a significant role in shaping the anno-
tator embeddings.

We encourage future research to investigate ad-
ditional patterns of similarity among annotators.
These similarities may stem from shared demo-
graphic features or the conditions in which anno-
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tators have been provided with prompts for the
annotation task (Sap et al., 2019).

4.5 Fairness to Marginalized Annotators

Similarity to Majority
Single-Task Multi-task AART

DMDA 0.14± 0.02 0.07± 0.01 0.07± 0.01
DI 0.14± 0.02 0.12± 0.02 0.12± 0.02
DRB 0.20± 0.04 0.04± 0.03 0.05± 0.03

Count of Contributions
Single-Task Multi-task AART

DMDA 0.03± 0.02 0.14± 0.04 0.06± 0.02
DI 0.03± 0.02 0.03± 0.02 0.02± 0.02
DRB 0.07± 0.03 0.07± 0.05 0.03± 0.03

Table 3: Statistical Parity based on two sensitive at-
tributes for the annotators: (1) Similarity to majority
vote and (2) Count of Contributions. Mean and Stan-
dard deviations are reported based on running with 10
different random seeds.

In this section, we assess the model’s ability
to capture the perspectives of annotators who ex-
hibit minority opinion, and those who contribute
few annotations. We do this through the lens of
Statistical Parity, a popular metric for algorithmic
fairness (Mehrabi et al., 2021). Statistical parity
measures the relative rate of a successful outcome
for the majority group against that of the minority
group. In separate experiments, we study the major-
ity and minority groups from two perspectives: (1)
the similarity of annotation selections compared to
the majority vote and (2) the count of contributions.
In (1), the grouping of annotators is determined by
the fraction of annotations generated by a labeler
that are equal to the majority vote of the items they
annotated. The annotators that fall in the lowest
25th percentile in terms of similarity to the major-
ity vote are considered in the minority group and
the rest fall into the majority group. In (2), the
minority group of annotators is determined by the
lowest 25th percentile in terms of the number of
contributions. We compare Statistical Parity across
Single-task, Multi-task, and AART. Our interest lies
in showing whether each method performs equally
accurate for the sensitive group versus the rest of
annotators.

Table 3 displays the results of disparity among
the two groups of annotators. The lower disparity
values indicates the predictions are more fair. Ob-
serving the grouping of annotators based on their
similarity to majority behavior, we note that the
Single-task approach which consistently predicts
the majority vote exhibits the most significant dis-

parity in accuracy between the two groups. Addi-
tionally, AART and Multi-task show similar levels
of disparity, which is less compared to the Single-
task approach. This observation confirms that ag-
gregating labels causes unfairness in accuracy to-
ward annotators whose opinions differ from the
majority behavior. And motivates the use of unag-
gregated annotations and multi-perspective classifi-
cation models instead of aggregated ground truths.

When we group annotators based on their count
of contributions, Multi-task shows the most dis-
parity among the sensitive group of annotators
and others, while AART is more equitable than
the other two methods. This observation confirms
that Multi-task is limited for sparse annotators and
performs poorly for them, whereas AART demon-
strates more balanced performance among sparse
and prolific annotators.

5 Discussion

Predicting a single label remains the most pop-
ular problem in classification applications. Pre-
vious studies have demonstrated that multi-
annotator models can perform comparably to
single-task models in predicting the aggregated la-
bels (Mostafazadeh Davani et al., 2022; Hayat et al.,
2022; Al Kuwatly et al., 2020). In the single-task
model, the aggregated labels are computed directly,
while in multi-annotator models, the aggregated
label is derived by consolidating predictions across
annotators. We assess the performance of predict-
ing the aggregated label and present the results in
Table 4. Our findings align with previous observa-
tions, indicating that all three models effectively
predict single label outcomes.

An additional advantage of training multi-
annotator models compared to single-task mod-
els is the ability to learn the entire label distribu-
tion rather than solely focusing on aggregated la-
bels. This flexibility proves valuable in various
real-world scenarios. As models are increasingly
tailored for more personal, subjective use cases, a
direct application of this work could be to predict
personalized preferences for each annotator.

Furthermore, (Gordon et al., 2022) introduces
an inference approach for trained multi-annotator
models, advocating for the selection of a task-
specific subset of annotators akin to a “Jury.” For
instance, for the task of toxicity detection in online
posts, prioritizing votes from women and Black
individuals—often targeted by online harassment—
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Dataset Single-task Multi-task AART (α = 0) AART (α > 0)
Aggregated Label Performance

DMDA 78.58±0.9 78.99±1.3 79.51±1.0 79.66±1.2
DI 64.05±2.9 65.47±2.5 60.22±9.4 64.95±2.1
DRB 81.09±3.5 81.43±3.1 81.43±3.5 81.02±1.6

Table 4: In this table the performance (F1) of the three models on predicting the aggregated label is reported. The
single-task model computes the majority labels directly. For both the multi-task model and our proposed method
(AART), we determined the majority of predictions across labels for each annotator.

could prove advantageous. Their goal with jury
learning is to assist practitioners in acknowledging
and incorporating annotator disagreement within
the classifier pipeline. To achieve this, they en-
courage practitioners to form a jury that specifies
the individuals or groups their classifiers should
emulate.

Rather than completely disregarding the diver-
sity present in human labels, our paper proposes
an effective approach to predict individual perspec-
tives while maintaining competence in predicting
the aggregated label. Instead of eliminating dis-
agreement at the initial stages of machine learning,
our aim is to learn from the various perspectives of
annotators. By embracing the diversity of opinions
through data-driven pipelines, which enhances data
transparency, we are able to present it to end-users
and human decision-makers. This empowerment
allows them to take corrective actions and interven-
tions by leveraging common sense and contextual
information.

6 Conclusion

This paper tackles the challenges posed by annota-
tor disagreements in subjective tasks, where estab-
lishing a single ground truth is not straightforward.
We propose an approach named Annotator Aware
Representations for Texts (AART) for modeling
annotators’ perspectives. Our methodology com-
bines representations of individual annotators with
those of text in the classification task. By learn-
ing the embeddings of annotators through Cross
Entropy loss, contrastive loss, and regularization,
we capture their individual labeling patterns. We
compare our approach to a popular multi-task ar-
chitecture, which is constrained by under-trained
classification heads for annotators with limited an-
notations. Through several experiments, we demon-
strate that AART, despite its simplicity, effectively
captures the semantics of textual data for classifica-
tion tasks while accommodating different annota-
tors’ perspectives. Moreover, we show that AART
is fair and equitable when it comes to marginalized

annotators, who may have few labeled samples or
provide votes that often differ from the majority
votes for samples.

Limitations

The performance of the models outlined in this pa-
per may be adversely affected when dealing with
noisy annotations. This noise can arise from un-
clear instructions or insufficient attention from the
worker. A limitation of this study, as well as many
others focusing on designing multi-annotator mod-
els, is the tendency to overlook the high likelihood
of certain annotators being unreliable. Differenti-
ating between labeling noise and natural disagree-
ment is a challenge that remains unaddressed in this
work, and in numerous other studies. Additionally,
the degree of overlap among items annotated by
multiple individuals can enhance the learning pro-
cess for multi-annotator models by exposing both
similarities and differences among the annotators.
Nevertheless, crowdsourced datasets are inherently
imperfect and susceptible to noise or sparsity. It
is imperative for future research to examine the
robustness of multi-annotator models in the face of
sub-optimal dataset features.

Ethical Considerations

This work seeks to improve AI systems by incor-
porating perspectives beyond just the most prolific
annotators, as is currently done in most AI sys-
tems. This will encourage developers of subse-
quent AI systems to recruit more sparse annotators,
as the difference in perspective they bring will ad-
vance the performance of their resulting models,
rather than hinder it. This advances the ACM and
ACL ethics code’s core tenet that “all people are
stakeholders in computing,” and to “take action not
to discriminate.”2 In this case, the discrimination
would be against those who do not provide a wealth
of annotations, due to time or other constraints.

2https://www.acm.org/code-of-ethics
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As with any approach, there is the possibility
that it could cause ethical harm. For example, a
coordinated and nefarious minority could have am-
plified sway in our model compared to one that only
focuses on the most prolific annotators. Further-
more, research has shown that large language mod-
els, such as the ones we use in this work, capture
various biases that can harm our proposed model.
Thus, the perspective we learn for each annotator
is through the lens of these models, and it might be
different from reality. Nevertheless, we maintain
that this potential harm is vastly outweighed by the
potential of incorporating all voices.
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Across all three approaches we set max sequence
length to 100, training batch size to 100, and
learning rate to 5e−5. The training steps use the
Adam optimizer (Kingma and Ba, 2014) with a
weight decay rate equal to 0.01. We use early stop-
ping with 20 max number of epochs and we save
the model parameters from the epoch with best
annotator-level F1. For the language model we use
“roberta-base" for DMDA and DI datasets. How-
ever, because the DRB is a much smaller dataset
(only contains 1309 text items) we use a language
model pretrained on the task of offensiveness de-
tection “cardiffnlp/twitter-roberta-base-offensive"3.
We load the transformer models from HuggingFace
Library (Wolf et al., 2020).

We initiate the splitting process with a
train/dev/test split of 50/25/25 percent stratified
on item-level disagreements, after which we trans-
fer the items from dev and test splits annotated by
an annotator which is unseen in the training set to
augment the training data. We repeat the splitting
with 10 random seeds.

AART parameters: We set τ = 0.07 for con-
trastive loss and performed hyper-parameter search
for α ∈ {0.1, 0.2, 0.3} and for λ ∈ {0.0, 0.1, 0.2}
which are respectively coefficients for contrastive
loss and for L2 norm regularization in the objective
function.

3https://huggingface.co/cardiffnlp/
twitter-roberta-base-offensive
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