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Message from the Program Chairs

Hi, Welcome to the 2024 Annual Conference of the North American Association for Computational
Linguistics! NAACL 2024 is a hybrid conference, and we are excited to have attendees and presenters
join us both in person in Mexico City and online from all over the world. We are especially thrilled to
hold the conference in Mexico City, which was originally planned for NAACL 2021 before COVID-19
required the transition to a virtual meeting. This will be the first NAACL conference in Latin America,
and we hope this will contribute to a tradition of broadening access and participation in the greater region.

Special Theme: Languages of Latin America Languages are the heart and soul of cultural identity
and communication, and nowhere is this more evident than in the vibrant tapestry of Latin America and
the Caribbean. With a rich linguistic diversity that spans Spanish, Portuguese, and numerous indigenous
languages, the region offers a unique challenge and opportunity for natural language processing resear-
chers. For NAACL 2024, we invited submissions to the special theme track on “Languages of Latin
America”. This track was dedicated to taking stock of past research and developments in the field of
natural language processing for languages of Latin America and the Caribbean while charting the cour-
se for future investigations. We received 19 submissions to the special theme, of which 10 have been
accepted to appear at the conference.

Review Process NAACL 2024 implemented a two stage review process, where submissions were first
sent to ACL Rolling Review (ARR) for reviews by reviewers and for meta-reviews by area chairs, and
then sent to a separate NAACL 2024 commitment site for recommendations by senior area chairs and
final acceptance decisions by program chairs.

For the ARR submission part of the process, NAACL program chairs coordinated with EACL 2024 and
ACL 2024 program chairs to ensure a smooth revise-and-resubmit cycle across the three conferences.
We also coordinated across conferences to recruit thousands of new reviewers and hundreds of new area
chairs to ARR, resulting in 7344 reviewers and 870 ACs in the 2023 December ARR cycle to which most
NAACL 2024 papers were submitted. Overall, the ARR process went mostly smoothly, successfully
delivering three reviews and a meta-review for all 2604 papers submitted. Several of the suggestions that
NAACL 2024 program chairs collected for improving the process (e.g., better OpenReview integration
of the responsible NLP checklist) have already been adopted by ARR for future cycles.

For the NAACL commitment part of the process, NAACL program chairs recruited 73 senior area chairs
for the 25 research areas defined by ARR. Senior area chairs made acceptance recommendations for
1140 committed papers based on the papers, reviews, and meta-reviews, and program chairs finalized the
recommendations into acceptance decisions.

Acceptance Rate The acceptance rate calculation follows precedent set by previous conferences that
also go through ARR, e.g. NAACL 2022, EACL 2024. The calculation takes into account the multi-stage
process of ARR where a paper may get revised in ARR and then later committed to the conference. The
denominator includes:

* Papers in the ARR December 2023 cycle that selected NAACL as a preferred venue.
* Papers in the ARR December 2023 cycle that did not select any conference as a preferred venue.

* Papers in the ARR December 2023 cycle that selected another conference, but then committed to
NAACL 2024.

* Papers in the ARR cycles before December 2023 that committed to NAACL 2024.



In total, we had 2604 submissions in the ARR December 2023 cycle. Among these, 29 were withdrawn
before reviews were released and 115 were desk-rejected. Of the remaining, 2328 had either an unspeci-
fied venue or included NAACL as the desired venue. Further, 17 out of the 132 submissions that selected
other venues were committed to NAACL. Finally, an additional 89 papers from other cycles were com-
mitted. So in total, the denominator for acceptance rate calculation is 2328 + 17 + 89 = 2434, Among
these, 1140 papers were officially committed to NAACL, and 565 were accepted. The acceptance rate
for Main Conference papers is therefore: 565 /2434 =23.2

Findings papers are those which are not accepted at the Main Conference, but nevertheless have been
judged worthy of publication as solid work with sufficient substance, quality and novelty. The next 304
/2434 =125

Presentation Format At NAACL 2024, we aimed to set all main conference papers on equal ground.
All presenters were allowed the same 13 minute video recording on the virtual site, regardless of whether
a paper was long or short, whether the presenter decided to attend in-person or virtually, and whether the
paper was assigned an oral presentation or a poster presentation.

To ensure there was no prestige associated with getting to present in oral vs. poster format, we tried
a new approach to presentation decisions: we assigned them randomly. Specifically, we calculated the
counts of papers across research areas, took the square roots of the counts to slightly upweight smaller
areas, converted the counts to a distribution, and then randomly sampled 130 orals from the research
areas according to the distribution (sampling in blocks of 5 to match the duration of oral sessions at the
conference).

Program Format At NAACL 2024, we aimed to improve both the in-person and virtual experiences.
For this, we are implemented the following two actions:

* A pre-conference virtual poster session was scheduled for Thursday, June 13, 2024, avoiding con-
flicts with the conference’s in-person sessions, and including different sessions to accommodate
various time zones. The goal of this move was to encourage all attendees, both virtual and in-
person, to join the virtual poster session.

* Oral presentations were given only to in-person attendees. (Oral presentations were still set to
be live-streamed for all virtual attendees). The goal of this move was to avoid Zoom fatigue and
encourage more in-person engagement with oral presenters.

The program includes live (and live-streamed) keynotes, plenaries, and panels, more than 100 live (and
live-streamed) oral presentations, more than 400 live poster presentations, and more than 200 virtual
poster presentations at the pre-conference event. The keynotes cover exciting topics including large
language models and indigenous languages (Claudio Pinhanez, IBM Research Brazil) and large language
models and neuroscience (Seana Coulson, UCSD), while the panel addresses the important issue of large
language models and their impact on education (Victoria Yaneva, National Board of Medical Examiners;
Swapna Somasundaran, Educational Testing Service; Karen Matias, Universidad Nacional Auténoma
de México; and Ekaterina Kochmar, Mohamed Bin Zayed University of Artificial Intelligence). Other
plenaries include the NAACL business meeting and the best paper awards session. The program is
rounded out with dedicated sessions during the main conference for industry track, demonstrations track,
student research workshop, NAACL Findings papers, and TACL/CL accepted papers.

Gratitude Conference organization is a team effort. We are very grateful for the support and contribu-
tions of many people, including:

¢ The General Chair, Katrin Erk
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* The ARR Editors-in-Chief of the Dec 2023 cycle (Mausam, Vincent Ng) and the entire team
(Viviane Moreira, Thamar Solorio, Lilja @vrelid, Jun Suzuki, Jonathan Kummerfield)

* The OpenReview team, especially Harold Rubio

* The 73 Senior Area Chairs

* The 870 Area Chairs and 7344 Reviewers

* The best paper committee chairs, Isabelle Augenstein and Manuel Montes y Gémez

* The ethics chairs (Cecilia Alm, Diana Galvan Sosa, Anjalie Field, Ameeta Agrawal, Daniel Fried,
Mark Yatskar, Maria Antoniak, Alane Suhr) and their team of reviewers

* The website chairs, Vered Shwartz and Xinya Du

* The publication chairs, Ryan Cotterell, Maarten Sap, and Lifu Huang, and their team of student
helpers

* The publicity chairs, Ximena Gutierrez- Vasques, Samuel Gonzalez-Lopez, and Najoung Kim
* The local chair, Hiram Calvo

* The volunteers chairs, Lucy Lu Wang and Liang Huang

* The ACL Anthology Director, Matt Post, and his team

e The Program Chairs of EACL 2024 (Yvette Graham, Matthew Purver) and ACL 2024 (Lun-Wei
Ku, Andre Martins, Vivek Srikumar)

e Damira MrSi¢ and Underline Team

* Jenn Rachhford and entire conference support staff

Kevin Duh, Helena Gomez, and Steven Bethard
NAACL 2024 Program Committee Co-Chairs
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Abstract

Large language models (LLMs) have demon-
strated powerful capabilities in natural lan-
guage processing, yet their vast number of pa-
rameters poses challenges for deployment and
inference efficiency. Structured model pruning
emerges as a viable approach to reduce model
size and accelerate inference, without requir-
ing specialized operators and libraries for de-
ployment. However, structured pruning often
severely weakens the model’s capability. De-
spite repetitive fine-tuning can restore the capa-
bility to a certain extent, it impairs LLMs’ util-
ity as versatile problem solvers. To address this
issue, we propose a novel structured pruning
algorithm tailored for LLMs. It derives the im-
portance of different components, namely rows
and columns in parameter matrices, based on in-
termediate data dependencies. Then it removes
coupled components across different layers si-
multaneously and preserves dependency rela-
tionships within remaining parameters, avoid-
ing significant performance degradation. The
pruned model requires only few epochs of fine-
tuning to restore its performance, ensuring the
model’s ability to generalize. Empirical eval-
uations on LLaMA, Vicuna, and ChatGLM?3
demonstrate our algorithm’s efficacy, yielding
20% parameter reduction while retaining at
least 94.4% of original performance metrics.

1 Introduction

Large language models (LLMs) have demonstrated
powerful capabilities in solving a variety of gen-
eral problems (OpenAl, 2023; Xue et al., 2020),
particularly in language understanding and gener-
ating. However, the large number of parameters
(Radford et al., 2018, 2019; Brown et al., 2020)
in LLMs poses significant challenges for deploy-
ment and inference efficiency. Structured pruning
(Wang et al., 2019; Xia et al., 2022; Zafrir et al.,
2021) has been proved to be a viable approach to

*Corresponding author.

1

compress deep neural networks. It removes entire
structural components of the neural network, with-
out requiring specialized operators and libraries for
executing the pruned model, so that it is convenient
for deployment and acceleration.

Despite structured pruning algorithms have long
been investigated (Lagunas et al., 2021; He et al.,
2020; Kurtic et al., 2022), they face new challenges
when tackling LLMs. Existing state-of-the-art
pruning algorithms follow an iterative scheme (Han
et al., 2015a; Louizos et al., 2017; Xia et al., 2022;
Zafrir et al., 2021) for specific tasks. This scheme
conducts iterative evaluating, pruning and fine-
tuning on a large model for a single task, achieving
low performance degradation. However, due to the
repetitive fine-tuning on a single task, the pruned
model has much less generalization ability on other
tasks. This is a particularly serious issue for LLMs,
since they are expected to be general-purpose mod-
els solving extensive problems. Simply extending
the fine-tuning on more corpus and tasks to reserve
the generalization ability is still challenging (Ma
et al., 2023), because LLMs require huge volume
of training corpus.

In this study, we propose a novel structured prun-
ing algorithm tailored for LLMs. In contrast to
existing iterative pruning works, our algorithm first
conducts iterative evaluating and pruning, until
the desired sparsity level is achieved. After com-
pleting all the iterations of evaluating and pruning,
it then conducts one stage of fine-tuning, which
involves few epochs of training on a small dataset.
The intuition of our algorithm is to limit the fine-
tuning operations as few as possible, so that the
pruned model will not import too much bias to-
wards specific tasks.

To ensure that the remaining parameters are con-
sistently important and do not need repetitive fine-
tuning to restore performance, we need to precisely
evaluate the importance of structured components,
namely rows and columns in parameter matrices.

Findings of the Association for Computational Linguistics: NAACL 2024, pages 1-12
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Figure 1: During the pruning process, we determine whether a component should be pruned according to the
inference error caused by removing the component and its coupled components from intermediate results.

More concretely, our algorithm derives the im-
portance and uncertainty of different components
based on intermediate data dependencies, as shown
in Figure (1). According to the Transformer-based
model architecture, we can identify the coupled
components that have data dependency on pruned
components. These coupled components across
different layers can be removed simultaneously,
and the dependency relationships within remain-
ing parameters can be still preserved, avoiding sig-
nificant performance degradation. Moreover, we
employ LoRA (Hu et al., 2022) fine-tuning to re-
store model performance, and use LoRA gradients
(Zhang et al., 2023) instead of full-scale fine-tuning
gradients to reduce the computational overhead dur-
ing pruning. The model pruned by our algorithm
preserves the original architecture with smaller pa-
rameter matrices, thus it is compatible to any other
Transformer-specific optimization techniques, e.g,
FlashAttention (Dao et al., 2022; Dao, 2023). We
have validated our algorithm on LLaMA (Touvron
et al., 2023), Vicuna (Chiang et al., 2023), and
ChatGLM3 (Zeng et al., 2022; Du et al., 2022),
achieving about 20% parameter reduction while
retaining at least 94.4% of original performance
metrics.

Contribution. In this paper, (i) we propose a
new structured pruning algorithm for LLMs that
uses minimal fine-tuning to recover model perfor-
mance. The algorithm effectively reduces the num-
ber of parameters while maintaining model general-
ization. (ii) We propose a novel evaluation method
that evaluates the impact of structured pruning on
an LLM by evaluating coupled components instead
of individual weights. (iii) We conduct our algo-

rithm on representative LLMs, including LLaMA,
Vicuna, and ChatGLM3. By reducing the param-
eter count by 20%, we maintain at least 94.4% of
the model’s performance while reducing MACs by
20%.

2 Related Work

2.1 Iterative Pruning

Iterative pruning is a type of algorithm that iter-
atively evaluates, prunes, and fine-tunes a neural
network model. The process involves calculating
scores for each weight in the model based on spe-
cific criteria, pruning weights with lower scores,
and fine-tuning the pruned model on a dataset.
PLATON (Zhang et al., 2022a) is a typical itera-
tive pruning method for BERT (Devlin et al., 2019)
and ViT (Dosovitskiy et al., 2020). It considers
the sensitivity and uncertainty of different model
components during evaluation, improving the ac-
curacy of the evaluation process. Although iter-
ative pruning has been proved to be effective for
task-specific models, it faces difficulty for general-
purpose LLMs due to the repeated fine-tuning.

2.2 LoRA

LoRA is an efficient fine-tuning algorithm for
LLMs. Due to the large size of the parameter ma-
trices in LLMs, the computational cost of full fine-
tuning is often prohibitively high. In LoRA fine-
tuning, a data bypass is created for the target pa-
rameter Wo: W = Wy + BA, where W € R"*™,
B e R™", A € R"™™, and r < min(n,m). Typ-
ically, the parameters in A are initialized with a ran-
dom Gaussian distribution, and the parameters in B
are set to 0. During the subsequent fine-tuning pro-



cess, the parameters in W are frozen, and only the
parameters in A and B are fine-tuned. LLM-Pruner
(Ma et al., 2023) is a structured pruning algorithm
for LLMs. It combines efficient LoORA fine-tuning
to recover the performance of the pruned model
with fewer fine-tuning epochs. LoRAPrune (Zhang
et al., 2023) is a non-structured pruning algorithm
for LLMs. Due to the high cost of obtaining gradi-
ents in LLM, LoRAPrune leverages LoRA gradi-
ents instead of full fine-tuning gradients to reduce
computational overhead.

3 Method

Our pruning consists of three steps. (i) Partitioning
the model into kernels and features, and grouping
the coupled components formed by kernels. (ii)
Iteratively evaluating and pruning coupled compo-
nents and features until the desired sparsity level
is achieved. (iii) After all evaluating and pruning
finish, a fine-tuning stage is conducted to restore
the model performance.

3.1 Partition of Kernels and Features

In our algorithm, the pruning granularity is rows or
columns in the parameter matrices. The function-
ality of a row or a column varies in different pa-
rameter matrices. For example, in the Transformer
architecture, each word in a sentence is transformed
into a word vector with d,,, features, the parame-
ter matrix V' € R%*% of the Transformer, each
row encounters all the weights in the word vectors
during computation. However, each column en-
counters only one weight in the word vector (Fang
et al., 2023). Therefore, we divide them into ker-
nels and features based on their functionalities in
the inference computation. If a row (or column)
receives all the features of the word vector, we refer
to that row (or column) as a kernel. For example,
each row in the Q € R%*9m of a single head, as
well as each column in O € R% % If a row
(or column) receives a specific feature of the word
vector, we refer to it as a feature. For example,
each row in O, or each column in Up € R¥"*dm
in LLaMA’s intermediate layers.

3.2 Evaluation of Importance

Evaluating coupled components. In the multi-
head attention mechanism of Transformer, the com-
putation of a single head can be represented by the
following equation Eq. (1):

X'Q'KX

Attn = Softmax
( Vg

) X'vtor, 1)

where Q, K,V € R%*m represent the Query,
Key, and Value of a single head in the multi-head at-
tention mechanism, respectively, and O € R%m >
represents the projection matrix used to receive the
output of that attention head. X € R%m*Ien repre-
sents the sequence of word vectors, where len is
the length of the vector sequence. We can observe
that () and K are coupled together, and V and O
are coupled together in the equation. The effective
parameters in the multi-head attention mechanism
are Q'K and V!O!. Hence, when evaluating the
coupled components of the self-attention layer, we
group @, K for evaluation, and V, O for another
evaluation. For the evaluation of coupled com-
ponents, we take () and K as an example. We
consider () and K as a sum of multiple kernels,
e Q = (g, by gl ) K = (KL K, o kG, 1
where Q, K € R%>m and ¢;, k;(i € [1,dy]) are
row vectors of dimension d,,. In this case, we
expand Q'K in Eq.(2):

d
QK=Y gk @)
=1

If we prune one g;, we can observe that the corre-
sponding k; will no longer be effective in the infer-
ence process and should be pruned simultaneously.
We have found the coupled component ¢!k; gener-
ated by () and K. The same applies to the grouping
of VtO!, where the coupled components become
vlol. In the intermediate layers of the model, we
can also find a similar relationship. In previous
models such as BERT (Devlin et al., 2019), GPT-
Neo (Black et al., 2022) and OPT (Zhang et al.,
2022b), a two-layer structure was commonly used,
which can be represented by the equation Eq.(3):

Out = feaF(fer X). 3)

Here, fc; € R7%%m and fey € R9mX™  F rep-
resents the activation function. The partitioning
method at this stage is the same as the partitioning
for Q'K . In the LLaMA and ChatGLM3, a three-
layer structure was used in the intermediate layers,
which can be represented by the equation Eq.(4):

Out = Down(F(GateX) ® UpX). 4)

Here, Gate,Up € Rim*dm and Down €
Rémxim 1 the LLaMA model, we cannot directly
partition the kernels in the three parameter matri-
ces through computation. However, we can ob-
serve that when any kernel in any of these three
matrices is zero, the corresponding kernels in the



remaining two matrices will no longer be effec-
tive. Therefore, we approximate the coupled com-
ponent (d;, g;,u;) as two sub-components: d;g’
and dzuﬁ where d;, g;, u; correspond to the kernels
in Down, Gate, Up, respectively. During the scor-
ing process, we use the sum of scores of the sub-
components d;g¢ and d;u! to represent the score of
the coupled component (d;, g;, u;).

After grouping the kernels, these coupled com-
ponents can be represented as the multiplication
of a column vector « and a row vector 3. We de-
note such coupled components as C' = a3, where
C € R4m>dm During the evaluation process, we
evaluate the importance of the coupled component
C by measuring the error in neural network predic-
tion when removing this group of coupled compo-
nents. This is defined as the importance I (Ma
et al., 2023) and can be calculated as Eq.(5):

For the second-order error term (%3) , we ap-
proximate it as (%C) 2 based on (Ma et al., 2023;
Yang et al., 2023). Therefore, we have Eq.(6):

oL 1 (0L N\

acc 2\ ac) |
Additionally, we refer to the evaluation method pro-
posed by PLATON (Zhang et al., 2022a), which
combines the sensitivity of the network to deter-

mine the final score for the coupled components.
The scoring process is as Eq.(7):

(6)

I = I8V 4+ (121,
ue =18 -1,
09 = 2208 4+ (1 — 2a)UL, ™
Se =S 100
:

Here, ¢ represents the current iteration of evalua-
tion for the variable. I represents the smoothed
treatment of importance changes during fine-tuning
(Molchanov et al., 2019; Liang et al., 2021) . Ux
represents the uncertainty of current importance
for the coupled component (Zhang et al., 2022a).
Uc represents the upper bound confidence for I
(Zhang et al., 2022a). Finally, S¢ is the final score
for the coupled component. The hyperparameters
x1 and x2 are chosen as 0.5 in our experiments.

Evaluating Features. According to the descrip-
tion in the (Fang et al., 2023), in structured pruning,
if we want to prune a feature at a specific position,
we need to prune the corresponding features at that
position in all parameter matrices of the model.
Therefore, we only need to group all corresponding
features at the same position in the model. When
we remove a feature from the model, the resulting
error can be approximated as Eq.(8):

2

Ifzzz Z %cf%(%c) .
C |ceCl;, fIUC]f,]

Here, C refers to the Q'K and V'O! for each at-
tention head in each layer. Taking the grouping of
Q'K as an example, we consider  and K in the
multi-head attention mechanism as the superposi-
tion of multiple features, i.e., Q = [q1, q2, ---, 4, ]
and K = [ki, ko, ..., kq,, |, Wwhere g; and k; are col-
umn vectors of dimension dj. If we set all the
values at position j to zero, it is equivalent to set-
ting all the values in the j-th row and j-th column
of the matrix Q'K to zero.

In the evaluation of features, we do not con-
sider the impact of intermediate layers. The impor-
tance of features is mainly determined by the self-
attention process of the model, while the role of
intermediate layers is to superimpose multiple self-
attention processes (de Wynter and Perry, 2020). In
our experiments with BERT and ViT (Dosovitskiy
et al., 2020), we find that evaluating features us-
ing only self-attention layers already achieves good
results. Additionally, because the partitioning of
intermediate layers in LLaMA does not strictly con-
sider the computation process, it may also affect
the accuracy of the evaluation.

We also incorporate the scoring process from the
PLATON algorithm into the feature evaluation, as
shown in Equation Eq.(7). In this case, the coupled
components C' are replaced by features f.

®

3.3 Pruning

In pruning self-attention layers, we adopt a simple
uniform strategy to remove unimportant compo-
nents. Our pruning strategy for self-attention lay-
ers is to remove the lowest-scoring self-attention
head for each self-attention layer in each iteration.
The score of a self-attention head is the sum of the
scores of its constituent (), K, V, and O kernels.
For the pruning of intermediate layers, we also
adopt a uniform pruning strategy. In each iteration,
a fixed number of kernels are pruned for all parame-
ter matrices in these layers. We have observed that



Pruning Ratio  tune Method WikiText2) PTBJ | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Ratio=0% LLaMA-7B 12.62 22.14 | 73.18 78.35 72.99 67.01 6745 4138 4240 63.25
LP-Channel 74.63 153.75 | 62.75 62.73 41.40 51.07 41.38 2790 3040 45.38

Ratio=20%  w/o  LP-Block 19.24 34.09 | 62.54 7541 65.99 60.30 61.57 36.69  39.20 57.39
Ours 37.90 74.30 | 66.57 73.39 62.11 62.90 5824 3575  36.20 56.45

LP-Channel 22.02 38.67 | 59.08 73.39 64.02 60.54 5795 3558  38.40 55.57

Ratio=20% w/ LP-Block 17.39 30.20 | 66.79 77.58 68.48 64.96 64.06 37.88  39.00 59.82
Ours 22.00 4258 | 72.26  75.13 68.87 66.53 63.29  38.73 4140 60.88

Ratio=24%  w/o Ours 34.55 72.14 | 6336 69.96 55.92 60.37 53.19 3370 3540 53.12
Ratio=24% w/ Ours 25.01 46.79 | 68.47 73.88 65.88 63.53 59.63 3558  38.00 57.85

Table 1: LLaMA pruning experiments. The evaluation metric for WikiText2 and PTB tests is perplexity, which is the
smaller the better. The evaluation metric for other tasks is accuracy, which is higher the better. In the experiments,
"w/o" indicates that the model did not undergo fine-tuning after the pruning process, and "w/" indicates that the

model underwent fine-tuning after the pruning process.

for most Transformer models, there is a constant
ratio between the number of kernels im in each in-
termediate layer and the number of head,,yy, X di
in the self-attention layers (de Wynter and Perry,
2020). For example, this ratio is 4 for OPT models
(Zhang et al., 2022b) and around 2.7 for LLaMA
models. Therefore, in each iteration, we prune
r X dy, kernels for each parameter matrix in the in-
termediate layers, where r = im/(head,ym X dy).

For features, we need to remove the features in
the same positions of all parameter matrices of the
model (Fang et al., 2023). We only need to score
all features in each iteration and remove the lowest-
scoring features. Since most parameter matrices in
the self-attention layers of Transformer models are
square matrices, for simplicity, we prune dy, fea-
tures in each pruning operation, which ensures that
the parameter matrices in the pruned self-attention
layers are still square matrices.

Algorithm 1 LLMs Structure Pruning

Input: pre-trained model, number of iterations
Output: pruned model

def EvalandPruning (PreTrainModel)
Partition and Eval kernels and features
fori in [0: Layer Num)
Remove the head with the lowest score
Remove the r X dj; kernels in FFN
end #end for
Remove d;, features in every weight matrix
Change the model size
return PrunedModel  # end def

Main( )
model < initial model
fori in [0: iterations)
model := EvalandPruning(model)
end #end for
Final M odel:= Finetune(model)
return FinalModel # end Main

3.4 Overall Process

This section summaries the overall process of our
pruning algorithm, as shown in Alg.(1). It begins
by partitioning the parameters using the approach
outlined in section 3.1. Subsequently, we employ
an iterative evaluation and pruning strategy, where
the parameters are evaluated using the methods
described in section 3.2, and the model is pruned
using the approach detailed in section 3.3. Once
the evaluation and pruning process is completed,
we proceed with fine-tuning to restore the model’s
performance.

4 Experiments

4.1 LLaMA and Vicuna Pruning Experiments

We conduct experiments on the LLaMA-7B and
Vicuna-7B which have identical architectures. We
test the performance of these models at sparsity
levels of 20% and 24%. The evaluation tasks we
used are WikiText2 (Merity et al., 2016), PTB
(Marcus et al., 1993), BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-
e, ARC-c (Clark et al., 2018), and OBQA (Mi-
haylov et al., 2018). The evaluation metrics for
WikiText2 and PTB tests are perplexity, which is
the smaller the better. The evaluation metric (Gao
et al., 2023) for other tasks is accuracy, which is
higher the better. We compare the results with the
structurally pruned LLM-Pruner. The experimental
results are shown in Tables 1 and 2. All experi-
ments are conducted on two Nvidia A100 GPUs.
Experimental Details. In every evaluation iter-
ation of LLaMA and Vicuna, we randomly take 10
sentences of length 64 from the C4 (Dodge et al.,
2021) dataset to obtain gradient and magnitude in-
formation. Our algorithm uses LoRA gradients
instead of actual gradients. Since the parameters in



the LoRA matrix are randomly initialized, we first
train the LoRA parameter matrix for 5 iterations
with the 10 sentences after concatenating the LoRA
parameter matrices. After the pre-processing of the
LoRA parameter matrix, we collect the gradient
and magnitude information generated by inputting
these 10 sentences into the model for evaluation.

In every prunning iteration, one self-attention
head is pruned for all self-attention layers, and
320 kernels were removed for gate-proj, up-proj,
and down-proj in each layer. Additionally, 128
features (model’s d;, = 128) were removed from
all parameter matrices.

To obtain the models with sparsity levels of 20%,
we initially performed 3 iterations of evaluation
and pruning. After the completion of the third
iteration of evaluation-pruning, we obtained the
20% sparse model without fine-tuning. We can
further increase the sparsity to 24% in the same
way, just by changing the number of evaluation-
pruning iterations from 3 to 4. Then we fine-tune
this model for 4 epochs on the Alpaca (Taori et al.,
2023) to restore its performance.

Experimental Analysis. In the LLaMA prun-
ing experiments, we observe that our pruning algo-
rithm performs well even at lower sparsity levels,
even without fine-tuning. At sparsity levels of 20%
and 24%, our algorithm surpasses LLM-Pruner’s
Channel mode at 20% sparsity. After pruning and
fine-tuning, our algorithm achieves slightly higher
perplexity in the WikiText2 and PTB tasks at a
20% sparsity level. Our algorithm outperforms
LLM-Pruner’s Channel and Block modes in aver-
age scores from BoolQ to OBQA, reaching 96%
of the performance of the unpruned network. At
a sparsity level of 24%, our algorithm, after fine-
tuning, outperforms LLM-Pruner’s Channel mode
at 20% sparsity in average scores from BoolQ to
OBQA, with an average score of 91% compared to
the unpruned network.

In the Vicuna pruning experiments, our algo-
rithm exhibits similar performance. At a sparsity
level of 20%, our algorithm’s perplexity perfor-
mance in WikiText2 and PTB is comparable to
LLM-Pruner’s Block mode. Our algorithm outper-
forms LLM-Pruner’s Block mode in average scores
from BoolQ to OBQA, reaching 94% of the perfor-
mance of the unpruned network. Additionally, at
a sparsity level of 24%, our pruned network, after
fine-tuning, shows no significant difference com-
pared to LLM-Pruner’s Block mode 20% sparsity
model. The average score from BoolQ to OBQA

only decreases by 0.17 points compared to LLM-
Pruner, while achieving the performance of the
original unpruned network 92%.

The inference performance and storage overhead
of our pruned models are presented in Table 3. The
evaluation is conducted following the methodology
described in the (Ma et al., 2023). At sparsity lev-
els of 20%, although our algorithm retains more
remaining parameters, it doesn’t exhibit a signifi-
cant difference in memory consumption compared
to LLM-Pruner. Our computational complexity
falls between LLM-Pruner’s Channel mode and
Block mode. Therefore, our algorithm theoreti-
cally offers better acceleration performance than
LLM-Pruner’s Block mode.

4.2 ChatGLM3 Pruning Experiment

We conduct experiments on the ChatGLM3. We
test the model on the datasets same to LLaMA and
Vicuna to evaluate its performance at sparsity lev-
els of 10% and 20%. We compare our pruning
algorithm with random pruning and L2 (Han et al.,
2015b; Li et al., 2016) weight pruning. All exper-
iments are conducted on two Nvidia A100 GPUs.

Experimental Details. Differing from many
Transformer-based models, like LlaMA, BERT,
ViT, etc., ChatGLM3 has a unique structure in its
self-attention layers. In ChatGLM?3-6B, there are
32 Query heads and only 2 Key and Value heads
in the multi-head self-attention mechanism. Dur-
ing inference, the model replicates the Key and
Value heads 16 times to match the number of Query
heads, and the subsequent computation follows the
same process as other Transformer models. We
make appropriate adjustments to our pruning algo-
rithm to accommodate ChatGLM3’s computation
approach.

\ .
000
I | (a7 )(as )=
~ w ]
Pruning l
Reorder l

Figure 2: We reorder the remaining pruned Query heads.
The processing of parameter matrix O follows the same
approach.

‘We observe that in ChatGLM3, odd-numbered
Query heads correspond to odd-numbered Key



Pruning Ratio  tune Method WikiText2) PTBJ | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=0% Vicuna7B | 1611 6137 | 7657 7175  70.64 67.40 6511 4121 4080 6278
LP-Channel | 7175  198.83 | 51.77 63.93 42558 55.17 4394 2927 3340 4572
Ratio=20%  wio _ LP-Block 2651 90.87 | 6297 7476 63.40 55.88 6423 3814 3660  58.57
Ours 2850 9256 | 69.69 7377 58.72 61.79 6292 3506 3540  56.76
Ratio20% vy LP-Block 1947 7655 | 6645 7584  65.05 60.38 6237 3643 3980 5805
e Ours 2289 7323 | 7073 7448 66.29 63.22 6519 3600 3880 59.24
Ratio=24% wlo___ Ours 3430 11318 | 6743 7056 5334 58.87 5837 3199 3400  53.50
Ratio=24% _ w/ Ours 2620 8412 | 69.11 7323 63.52 63.69 63.08 3498 3760  57.88
Table 2: The Vicuna pruning experiments.
Method [ Ratio [ #Params #MACs _ Memory tured pruning tasks for LLMs. This evaluation
- - 67B  4240G 12884.5MiB ) . .
CPChani S 3337G  10438.4MIB method doesn’t consider the depenc.lenc‘les bet'ween
LP-Block | 20% | 54B  367.5G 10375.5MiB different coupled components, making it unsuitable
Ours >5B  3517G  10687.2MiB for such coarse-grained structured pruning. Our al-
Ours 24% | 52B_ 3287G__ 9998.0MiB

Table 3: Statistic for LLaMA and Vicuna.

and Value heads, and the same applies to even-
numbered heads. Therefore, our previous pruning
strategy becomes removing the Query head with
the lowest score among all odd-numbered heads,
the Query head with the lowest score among all
even-numbered heads, and their corresponding pa-
rameter matrix O. The Key and Value heads remain
unchanged. After pruning, as the order of Query
heads may change from odd to even or vice versa,
we rearrange the Query heads and the parameter
matrix O according to their parity as Figure2.

The model evaluation and fine-tuning process
are the same as in the LLaMA and Vicuna pruning.
The 10% sparse model underwent one iteration
of evaluation and pruning, while the 20% sparse
model underwent two iterations of evaluation and
pruning. After evaluation and pruning, all models
are fine-tuned on the Alpaca dataset for 4 epochs.

For the random pruning and L2 weight prun-
ing experiments, we also use the same grouping
method. The only difference is that during the cou-
pled components and feature evaluation, we don’t
consider the coupling relationship and only per-
form random pruning or evaluate based on the sum
of L2 values of the kernels containing parameters.

Experimental Analysis. Our pruning algorithm
achieves almost no decrease in average scores from
BoolQ to OBQA at a sparsity level of 10%. At a
sparsity level of 20%, our model retains 94% of
the original model’s performance. Furthermore,
by comparing our algorithm with L2 weight prun-
ing, we find that algorithms like L2 pruning, which
are based on pruning based on the magnitude of
model parameters, are almost ineffective in struc-

gorithm, on the other hand, considers the coupling
relationship between different components and the
errors that may arise in the model’s inference pro-
cess after eliminating these components. Therefore,
it performs better in structured pruning tasks for
LLM:s.

The inference performance and storage overhead
of our pruned models are shown in Table 5. Our
algorithm reduces MACs overhead by 30% at a
sparsity level of 20%.

4.3 More Analysis

Global Pruning vs. Layer-wise Pruning. During
coupled component elimination, we can employ
layer-wise sorted pruning or global sorted pruning
methods. However, during our initial experimen-
tation with global ranking, we find that the global
sorting approach was not effective. In our pruning
experiments, we observe that most low-scoring cou-
pled components are concentrated in the first two
layers. However, removing these coupled compo-
nents results in a significant performance degrada-
tion. Additionally, the pruning in LLM-Pruner ex-
cludes these layers, there is a need for prior knowl-
edge (Ma et al., 2023) in determining the regions
of the model that cannot be pruned. Therefore, we
adopt a simpler strategy of uniform pruning (Sun
et al., 2023) for every layer.

Kernel vs. Head. When pruning the self-
attention layers, we have two options: removing
the same number of kernels for each self-attention
head or maintaining the same number of kernels
per layer but removing one self-attention head in
each layer. Based on our experiments with BERT
and ViT in Figure3, the latter option performs bet-
ter when the number of parameters keeps the same.
This is because the distribution of importance in
the model is not uniform, and low-importance ker-



Pruning Ratio  tune Method WikiText2| PTBJ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=0% -  ChatGLM3-6B | 108.15 16949 | 6954 71.10  56.59 60.69 4903 3174 3740 5372
Random 33839 24757 | 5531 6648  43.77 55.16 4710 2841 3800 4774

Ratio=10%  wio 2 5758039 5081452 | 53.10 53.10 _ 25.19 4948 2626 2414 3600 3826
Ours 176.24 23440 | 5110 6757 484l 55.64 4621 2977 3660 4789

Ratio=10%  w/ Ours 75.80 9544 | 7431 7159 5214 55.56 5016 32.16 3820 5344
Random 967.15 77558 | 50.15 6025  37.46 4235 3464 2346 3520  40.50

Ratio=20%  wio 2 113621.15 11012540 | 49.00 5282 25.15 49.09 2520 2303 3580 3718
Ours 575.63 70252 | 3807 6316 3822 5311 3056 2807 3500 4217

Ratio=20%  w/ Ours 112.46 14051 | 6954 68.17 4740 56.35 4629 3063 3660 5071

Table 4: The pruning experiment for ChatGLM3-6B.
Method | Ratio | #Params #MACs = Memory pared to LLM-Pruner’s element-wise evaluation
- B 62B  3825G 11944.8MiB .
Ours | 10% | 55B  3374G  10542.7MiB and summation.
Ours | 20% | 488 295.1G 9249.IMiB LLM-Pruner’s Block mode and our individual

Table 5: Statistic for ChatGLM3.
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Figure 3: Pruning experiments on BERT, ViT, LLaMA
and Vicuna, where the x-axis represents the parameter
size of the self-attention layers and the y-axis represents
the accuracy of the tasks.

nels are often concentrated within the same self-
attention head. We observe this phenomenon in
LLaMA and Vicuna as well. Therefore, our prun-
ing strategy for self-attention layers is to remove
the lowest-scoring head in each iteration.

Comparison to LLM-Pruner. Our algorithm
shares similarities with LLM-Prnner’s Channel
mode in terms of pruning granularity. Our al-
gorithm prunes features and removes one self-
attention head per layer, reducing the size of pa-
rameter matrices and the number of self-attention
computations, leading to a significant reduction in
MACs. However, due to the negative impact from
feature pruning, a more accurate evaluation is nec-
essary. Our algorithm evaluates intermediate com-
putation results during inference, offering a more
accurate assessment of the impact of structured
pruning on model inference performance, com-

kernel-level pruning share similarities in terms of
smaller pruning granularity. These operations have
minimal impact on the model and enable more fine-
grained optimization. However, LLM-Pruner’s
Block mode uses a global pruning strategy, exclud-
ing the first two layers and relying on prior knowl-
edge. In contrast, our algorithm simplifies the pro-
cess by evaluating multiple kernels as self-attention
heads, eliminating the need for prior knowledge.

Furthermore, LLM-Prnner’s Block mode alters
the structure of certain layers in the model, thus
it cannot adopt off-the-shelf libraries for conve-
nient implementation and deployment. In contrast,
our algorithm only modifies the size of parameter
matrices and reduces the number of self-attention
computations while preserving the model’s struc-
ture. Therefore, our pruned model keeps compati-
ble to existing deep learning programming frame-
works, as well as all optimization techniques for
Transformer-based models.

5 Conclusion

In this paper, we propose a structured pruning algo-
rithm for LLMs. Our algorithm categorizes parame-
ters into kernels and features based on their relation-
ships between parameter matrices and word vectors
in computations. We evaluated these components
considering their coupling relationships and the
computational characteristics of Transformer ar-
chitecture. Experimental evaluations on LLaMA,
Vicuna, and ChatGLM3 models demonstrated that
our algorithm achieves compression to 20% of the
original size with minor performance degradation.
Our algorithm preserves the model structure, fa-
cilitating integration with other optimization tech-
niques and practical deployment.
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Limitations

Our algorithm employed a simple uniform pruning
scheme across different layers of an LLM, which
allows us to avoid acquiring prior knowledge and
assumes equal importance for each layer in the
model. However, most previous global pruning
schemes imply an uneven distribution of impor-
tance across different layers of the model, which
we did not further explore. In addition, we em-
ployed a more empirical approach for intermediate
layer pruning, without further exploring the spe-
cific number of kernel pairs to be pruned in each
layer. Our future work will focus on improving
these aspects.
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Appendix
A Runtime Analysis

We deployed the pruned model directly on GPUs
to test the inference time, using a batch size of 1
to simulate real-world inference scenarios where
typically only one sentence is inputted into the
model at a time. We tested the time it takes to
generate the next token for sequences of different
lengths on NVIDIA RTX 3080 Ti and NVIDIA
A100.

The runtime of LLaMA-7B and ChatGLM3-7B
on NVIDIA RTX 3080 Ti is shown in Figure 4,
where the missing parts indicate that it was not
feasible to perform actual inference tasks at that
sparsity level. This is mainly due to the fact that,
during inference, besides saving the model parame-
ters to the GPU memory, intermediate computation
results also require GPU memory. This exceeds
the 12 GB memory limit of NVIDIA RTX 3080 Ti.
The experiments on NVIDIA A100, as shown in
Figure 5, demonstrate that the longer the sequence
length, the more noticeable the acceleration effect.

In this study, a cluster with GPU-like SIMT ac-
celerators made in China is also tested. Each node
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Figure 4: The performance of LLaMA-7B and

ChatGLM3-6B in terms of inference time at different
input sequence lengths on NVIDIA RTX 3080 Ti.

in the cluster includes one CPU and four acceler-
ators. The CPU has four NUMA nodes, where
each NUMA node has eight X86 based proces-
sors. The accelerator adopts a GPU-like architec-
ture with 16 GB HBM2 device memory. Accel-
erators connected to CPU with PCI-E, where the
peak bandwidth of the data transcription between
main memory and device memory is 16 GB/s. The
evaluation result on this accelerator is shown in
Figure 6. Similar to the experimental results on
the NVIDIA A100, the acceleration effect becomes
more pronounced as the sequence length increases.

B Comparison to LoRAShear

We compared our approach with LoRAShear (Chen
et al., 2023), as shown in Table 6. LoRAShear em-
ploys a more effective method during the model
recovery stage, whereas our algorithm uses a sim-
pler LoRA fine-tuning approach. Consequently,
LoRAShear achieves more favorable results in this
aspect, which we lack. We plan to conduct further
research on the model recovery stage in our future
work. Additionally, due to the large pruning granu-
larity of our model, excessively high sparsity levels
are not suitable, leading to poor performance at
50% sparsity. Our future work will also explore
structured pruning methods at high sparsity levels.



Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | Average
Ratio = 0% LLaMA (Touvron et al., 2023) 76.5 79.8 76.1 70.1 72.8 47.6 57.2 68.59
(Baseline) LLaMA (Ma et al., 2023) 73.18 7835 72.99 67.01 6745 4138 4240 63.25
Ratio = 20%  LLM-Pruner (Ma et al., 2023) 66.79  77.58 68.48 64.96 64.06  37.88  39.00 59.82
LoRAPrune (Zhang et al., 2023) | 65.82 79.31 70.00 62.76 65.87 37.69 39.14 60.05
WANDA (Sun et al., 2023) 65.75 74.70 64.52 59.35 60.65 3626  39.40 57.23
LoRAShear® 70.17  76.89 68.69 65.83 64.11  38.77  39.97 60.63
LoRAShear 72.78 76.36 69.49 67.63 69.02 3947  40.78 62.22
Ours w/ 7226 7513 68.87 66.53 6329  38.73 4140 60.88
Ratio = 50%  LLM-Pruner (Ma et al., 2023) 61.56 68.72 46.62 52.64 4794 2927 3540 48.88
LoRAPrune (Zhang et al., 2023) | 61.88 71.53 47.86 55.01 4513 31.62 3498 49.71
WANDA (Sun et al., 2023) 50.90 57.38 38.12 55.98 42.68 3420  38.78 45.43
LoRAShearf 62.12  71.80 48.01 56.29 47.68 3226  34.61 50.39
LoRAShear 63.40 72.15 49.83 56.40 4945 3431 3586 51.63
Ours w/ 62.66 64.52 45.11 54.85 4246  28.58  31.10 47.04

T Knowledge recovery only on the instructured fine-tuning datasets as other works.

Table 6: Comparison with other algorithms.
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Figure 5: The performance of LLaMA-7B and
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Figure 6: The performance of LLaMA-7B and
ChatGLM3-6B in terms of inference time at different
input sequence lengths on a GPU-like accelerator.
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Abstract

Knowledge Distillation (KD) is a predominant
approach for BERT compression. Previous KD-
based methods focus on designing extra align-
ment losses for the student model to mimic the
behavior of the teacher model. These methods
transfer the knowledge in an indirect way. In
this paper, we propose a novel Weight-Inherited
Distillation (WID), which directly transfers
knowledge from the teacher. WID does not
require any additional alignment loss and trains
a compact student by inheriting the weights,
showing a new perspective of knowledge dis-
tillation. Specifically, we design the row com-
pactors and column compactors as mappings
and then compress the weights via structural
re-parameterization. Experimental results on
the GLUE and SQuAD benchmarks show that
WID outperforms previous state-of-the-art KD-
based baselines. Further analysis indicates that
WID can also learn the attention patterns from
the teacher model without any alignment loss
on attention distributions. The code is available
at GitHub.

1 Introduction

Transformer-based Pre-trained Language Mod-
els (PLMs), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNET (Yang et al.,
2019), have achieved great success in many Natural
Language Process (NLP) tasks. These models are
pre-trained on massive corpus via self-supervised
tasks to learn contextualized text representations.
However, PLMs have high costs in terms of storage,
memory, and computation time, which brings chal-
lenges to online services in real-life applications.
Therefore, it is crucial and feasible to compress
PLMs while maintaining their performance.
Knowledge Distillation (KD), which trains a
compact student model by mimicking the behav-
ior of a teacher model, is a predominant method
*Equal contributions. Work was done when Taigiang and

Cheng were interning at Tencent.
"Yujiu Yang and Zhe Zhao are the corresponding authors.
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Alignment Loss
Logit Feature

v

Approach Hard Loss Task-Agnostic

DistilBERT
TinyBERT (GD)
PKD

MiniLM
MobileBERT
WID (ours)

EIANENENENEN
ENENESENESEN
NENENEE NN

v
v
X
v
X

Table 1: Comparison with previous state-of-the-art dis-
tillation methods. Logit and Feature denote whether
logit-based loss and feature-based loss are used for dis-
tillation. To the best of our knowledge, WID is the first
distillation method without any alignment loss and di-
rectly transfers the knowledge by weight inheritance.

for PLM compression. There are two settings for
KD in BERT compression: 1) task-specific, which
first fine-tunes the teacher PLMs on specific tasks
and then performs distillation, and 2) task-agnostic,
which distills PLMs in the pre-training stage. For
task-agnostic distillation, the student model can
be directly and generically fine-tuned on various
downstream tasks (Wang et al., 2020; Sun et al.,
2020). Hence, we evaluate the proposed weight-
inherited distillation (WID) under a task-agnostic
setting.

Previous KD-based methods mainly focus on de-
signing alignment losses to minimize the distance
between the teacher model and the student model.
We can further categorize these alignment losses
into 1) logit-based, which measures the distance
of logit distributions, and 2) feature-based, which
aims to align the intermediate features including
token embeddings, hidden states, and self-attention
distributions. However, selecting various loss func-
tions and balancing the weights of each loss are
laborious (Sun et al., 2019; Jiao et al., 2020). Mean-
while, the knowledge is embedded in the weights.
This gives rise to an intuitive thought: can we distill
the knowledge by directly inheriting the weights,
rather than aligning the logit distributions or inter-
mediate features?

Findings of the Association for Computational Linguistics: NAACL 2024, pages 13-28
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In this work, we propose Weight-Inherited Dis-
tillation (WID), which does not require any ad-
ditional alignment loss and trains the student by
directly inheriting the weights from the teacher. In
WID, we factorize the KD process into the compres-
sion of each weight matrix. Inspired by structural
re-parameterization in CNN compression (Ding
et al., 2021), we design row compactors and col-
umn compactors, and then view them as mappings
to compress the weights by row and column, re-
spectively. For the matrices to compress the row
only, such as the output layer for MLM task (the
column is always the size of vocabulary), we em-
ploy the row compactors exclusively to compress
them. Moreover, during training, we design a novel
alignment strategy to align the compactors due to
the residual connection in Transformer (Vaswani
etal., 2017). As shown in Table 1, WID is the only
method for task-agnostic distillation without any
alignment loss.

We conduct extensive experiments on down-
stream NLP tasks, including the GLUE and
SQuAD benchmarks. Experimental results demon-
strate that WID outperforms traditional KD-based
baselines. Further analysis shows that WID can
also learn high-level semantic knowledge such as
self-attention patterns via inheriting weights.

Our contributions can be summarized as follows:

* We propose Weight-Inherited Distilla-
tion (WID), revealing a new pathway to
KD by directly inheriting the weights via
structural re-parameterization.

* We design the compactor alignment strategy
and conduct WID for task-agnostic BERT
compression. Experiments on the GLUE and
SQuAD benchmark datasets demonstrate the
effectiveness of WID for model compression.

* We perform further analyses on how to get bet-
ter performance in BERT compression. Even
more, we find that WID is able to learn atten-
tion patterns from the teacher.

2 Preliminaries

2.1 Embedding Layer

In BERT (Devlin et al., 2019), the input texts
are tokenized to tokens by WordPiece (Wu et al.,
2016). The representations ({xi}ﬁl) of the input
sequence are constructed by summing the corre-
sponding token embedding, segment embedding,
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and position embedding. For the token embedding
layer in BERT, the weight is Wy € RIVI*4 where
|V| and d denote the sizes of the vocabulary and
the hidden state vector, respectively.

2.2 Transformer Layer

Transformer layers are adapted to encode the con-
textual information of input texts. The input vec-
tor ({xi}ﬁl) are packed to H? = [xy, -, Xy].
After that, the L-layer transformer computes the
encoding vectors following:

H' = Transformer;(H'™1), [ € [1, L].

(D
The final output HY = [hf,~--,h|];‘] € Rlelxd
is employed as the contextualized representation
of {XZ}LQE:'1 Each transformer layer consists of a
multi-head self-attention (MHA) sub-layer and a
feed-forward (FFN) sub-layer. In these two sub-
layers, the residual connection (He et al., 2016) is
employed, followed by Layer Normalization (LN)
(Baet al., 2016).

MHA For the I-th transformer layer with A at-
tention heads, the output Oy , of the attention head
a € [1, A] is calculated as:

Qo = H WP,
Ki,= Hl—lwffa
Vi, =H"W},

2

Ql aK%Fa
Ol, = 1&17 Vl, ’Al7 = softmax(%)
a a a a \/@
3)
where linear projection WlQa,WlKa,WlVa €

Rk and d), = % is the dimension of each head.
The final output of MHA sub-layer is as follows:

O, =LN(H'"' 4 (|A1,0,,)W?) @)

where W € R4 LN is layer normalization and
|| denotes the concatenation operation.

FFN The [-th FEN sub-layer consists of an up
projection and a down projection, parameterized by
WU € R¥*dr WP € R4*4 and corresponding
bias bl € R%, bP € R%:

FFN(O;) = gelu(O;W{ + b/ YWP +bf. (5)

Typically, dy = 4d. Finally, we obtain the output
of layer [ by:

H' = LN(O; + FFN(Oy)). (6)



2.3 Knowledge Distillation

Knowledge Distillation (KD) trains a compact stu-
dent model S by mimicking the behaviors of the
teacher model 7'. The losses can be categorized
into logit-based and feature-based.

For logit-based loss, the target is to minimize
the distance between logit distribution ps from the
student and p; from the teacher, which can be for-
malized as:

Elogit =H1 (ps/Ty pt/T), (7

where 7 is the temperature and #; is the cross-
entropy loss or KL-divergence.

Feature-based loss aims to align the intermediate
features between the teacher and the student by:

»Cfeature = HZ(fS(x)v fT(x))7 3

where H is the loss function such as Mean Square
Error (MSE) and f(x) denotes for the intermediate
output including hidden state vector H and atten-
tion distribution A.

As shown in Table 1, logit-based and feature-
based loss can be jointly employed for better dis-
tillation. However, balancing the weights of each
loss is laborious. For example, the overall loss of
PKD (Sun et al., 2019) is:

L= (1 - CV)Ehard + CVﬁlogit + /B‘Cfeaturea )

where L4 is the loss on target tasks and a and
( are the hyper-parameters. PKD performs grid
search over o and 7, where a € {0.2,0.5,0.7}
and 7 € {5,10,20}. After that, the best «
and 7 are fixed, followed by a search of § €
{10,100, 500, 1000}.

Meanwhile, selecting various loss functions is
also laborious. In PKD, L f¢,ye is defined as the
mean square loss between the normalized hidden
states for each layer. DistilBERT (Sanh et al., 2019)
adopts the cosine embedding loss for hidden states.
TinyBERT (Jiao et al., 2020) employs the mean
square loss for self-attention distributions, embed-
ding layer outputs, and hidden states.

3 Weight-Inherited Distillation

3.1 Structural Re-parameterization

As mentioned in Section 2, the PLMs (e.g., BERT)
consist of embedding layers and transformer layers.
To compress the BERT, we have to learn a mapping
from the larger weight in the teacher model to the
compact one. In terms of matrices, these mappings
can be categorized as:
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Figure 1: Overview of compressing linear layer L1 with
weight W7 € REXC to compact linear layer Lg with
weight WEs € RP*F via WID. Both row compactor
and column compactor are initialized as identity ma-
trices. After training, we compress the compactors and
merge them with the original layer. All the linear layers
in the teacher model are compressed simultaneously.

* column mapping only, such as the token em-
bedding matrix Wy € RIVIxd,

* row mapping only, such as the weight of out-
put layer for MLM task with size R**IV1,

* column and row mapping, such as up projec-
tion W; , € R%*4f jn FFN.

In WID, we adopt the re-parameterization trick and
design the row compactor for row mapping and col-
umn compactor for column mapping, respectively.
Figure 1 gives an example showing the process
of compressing the original weight W17 ¢ RB*C
to a compact weight Ws € RP*E adopting both
row compactor and column compactor. First, we in-
sert the row compactor with weight W' ¢ RE*B
and the column compactor with weight W &
RE*C before and after the linear layer Ly from
the teacher model. All compactors are linear lay-
ers without bias and their weights are initialized
as identity matrices. For an arbitrary input X, the
re-parameterized teacher model produces identical
outputs as the original, since
XWhr = xwrewlrwee, (10)
Second, we train the re-parameterized teacher
model on the pre-training task. After training,
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Figure 2: Training and compression for column compactor. During the training process, we add weight penalty
gradients by columns and progressively select the mask to fuse the penalty gradients and original loss gradients.
After training, we compress the column compactor following the column mask.

the row compactor is compressed by reducing the
B — D rows, and the column compactor is com-
pressed by reducing C' — E columns. The objects
are as follows:

WT’C c RBXB — W’I'CI c RDXB

WCC c RCXC N WCC/ c RCXE. (11)

More details can be found in Section 3.2. Finally,
we merge the compressed compactors wre wee
and the original teacher layer WX7 to obtain the
compact layer for the student following:
WLS _ WTC/WLTW06/ c RDXE (12)
For the weights to compress the rows only, we
adopt the row compactor exclusively. Similarly, we
employ the column compactor exclusively for the
weights to compress the columns only.

3.2 Compactor Compression

The goal is to maintain the performance of the
teacher model as much as possible and compress
the compactors simultaneously.

Figure 2 presents the training and compression
process for the column compactor. To compress the
compactors, we add extra penalty loss to minimize
the norms of some columns. Given the column
compactor W € RE*C and original gradients
g, € RE*C from training tasks, the penalty gra-

dients gp,, € RE* are calculated as follows:

WCC

o= 13
Gpen = T[Wee] (19
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where ||[W||2 denotes the Euclidean norm across
each column.

However, applying the gS’; and penalty gradi-
ents g, to the same row/column leads to the gra-
dient competition (Ding et al., 2021). Therefore,
we choose some columns to reduce and apply the
penalty gradients gyc,,, while the rest columns are
adopted to keep performance and updated with g&7 ..
Specifically, we pick top-k columns with lower
norm value based on the |[W||5 and set the corre-
sponding value in our column mask M = {0,1}¢
to be 1. Later, the original gradients g5, and the

penalty gradients go¢  are fused as follows:

pen

where 0 < ¢ < C. We employ the fused gradients
9fusea to update the corresponding column com-
pactor. After training, we compress the column
compactor by column mask:

cc

9euldl, if M3
Goril:»1ls 1 MIi]

= (14)

. 1
gjcc(zjj,sed[:v Z] 0

W = W[, 4], where M[i] =0.  (15)
Moreover, the process is similar for row com-
pactors. We calculate ||[W"€||2 for each row and
select the top-k rows with the lower norm value.

For stability and better performance, we choose
the rows/columns of the compactors progressively.
Concretely, we increase k by d for N steps until
reaching the desired size during the training stage.
Moreover, we also try the dynamic selection (Ding
et al., 2021) for mask and it makes no effect.
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Figure 3: Compactor merging process for a Transformer block. For the bias terms, we merge them with correspond-
ing column compactors. For beta and gamma in Layer Norm (LN), we adopt the previous column compactors
to update them. During training, the compactors in the same color are aligned. For each group of the aligned
compactors, we learn one of them and duplicate (or, flip) it for the rest compactors.

3.3 Compactor Alignment Strategy

To apply WID for BERT compression, we design
a novel compactor alignment strategy. Since each
dimension in a hidden representation h; is con-
nected to the same dimension in another hidden
representation hy through a residual connection,
the compactors before and after the h; and hy
need to be aligned. As shown in Figure 3, the
compactors in a transformer block are divided into
three groups (same color, same group). The first
compactor before the H'~! and the first compactor
after the H' are also aligned with groups in blue.
Therefore, the column compactor for the embed-
ding layer, the row compactor for the output layer,
and compactors in blue from each layer are all
aligned. Meanwhile, the groups in orange/green
can be different across layers since they are not ad-
jacent. For each group of the aligned compactors,
we learn one of them and duplicate (or, flip) it for
the rest. Please refer to Appendix B.2 for more
details.

4 Experiments

4.1 Task-Agnostic Distillation

We employ the uncased version of BERTs as
our teacher model ! and implement WID based
on TencentPretrain framework(Zhao et al., 2023).
BERTy,a6 (Devlin et al., 2019) is a 12-layer trans-
former model (d=768, A=12, L=12), which con-
tains 110M parameters. For student models, we
compress the teacher model to various model sizes
for comparison, including WIDs5 (d=516, A=12,
L=12) with 55M parameters and WID1; (d=192,
A=12, L=12) with 11M parameters. We use the
documents of English Wikipedia and BookCorpus

"From https://huggingface.co/bert-base-uncased
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(Zhu et al., 2015) for pre-training following De-
vlin et al. (2019). We use AdamW (Loshchilov
and Hutter, 2019) with 8; = 0.9, 83 = 0.99. The
compactors are trained with peak learning rate 5e-5
and the original linear layers with peak learning
rate le-6. For WID, we adopt the 2-norm and set
N=500, d=|(d; — ds)/16]. It costs about 64 hours
to train for 400,000 steps with a batch size of 960
on 8 A100 GPUs.

4.2 Downstream Tasks

Following previous PLM-based KD methods (Sanh
et al., 2019; Wang et al., 2020), we evaluate our
WID on the SQuAD vl1.1 (Rajpurkar et al., 2016)
and GLUE benchmark (Wang et al., 2019). The
GLUE benchmark consists of CoLLA (Warstadt
et al., 2019), SST-2(Socher et al., 2013), MRPC
(Dolan and Brockett, 2005), STS-B (Cer et al.,
2017), QQP (Chen et al., 2018), MNLI (Williams
etal., 2018), QNLI(Rajpurkar et al., 2016) and RTE
(Bentivogli et al., 2009). After task-agnostic distil-
lation, we fine-tune our compressed BERT WID55
and WID1; on these benchmarks adopting the grid
search and report the results on the development
sets. The result of MNLI is the score of MNLI-m.
More details about these datasets including dataset
sizes and metrics and the hyperparameters for fine-
tuning can be found in the Appendix A.

4.3 Baselines

For a fair comparison, we compare our WID with
the task-agnostic distillation baselines. These
baselines include: 1) DistilBERT (Sanh et al.,
2019), which distills the student by the combina-
tion of the original MLM loss, the cosine distance
for features, and the KL divergence for output log-
its. 2) TinyBERT (GD) (Jiao et al., 2020), which
aligns the attention distributions and hidden states



Method | FLOPs Params | SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD | AVG
BERThage | 227B  110.IM | 927 5901 904 917 914 708 90.1 845 89.6/82.6 | 843
DistilBERT 119B  67.5M | 913 513 875 892 885 599 869 822 862/78.1| 80.1
MiniLM 119B  675M | 920 492 84 910 910 715 - 84.0 /- -

MiniLM v2 119B  67.5M | 924 525 889 908 9Ll 721 - 84.2 /- -

TinyBERT (GD)/ | 11.9B  675M | 929 441 895 907 910 737 896 838 84.0/742 | 813
TinyBERT (GD)* | 104B  549M | 923 470 873 908 909 69.7 890 833 854/762 | 812
WIDs; (ours) 104B  549M | 924 617 882 901 910 704 879 829 885/80.8 | 83.4
TinyBERT (GD)* | 1.6B  113M | 884 303 804 875 891 653 840 794 80.570.7 | 75.6
WID;; (ours) 1L6B  113M | 888 442 819 854 895 603 845 784 812724 76.7

Table 2: Comparison between our WID and various task-agnostic distillation methods. We compare the task-
agnostic distilled models without both data augmentation and task-specific distillation. T means that we fine-tune
the official weights. I means that we reproduce the methods following the official code. Other results are taken
from corresponding papers. For MiniLM and MiniLM v2, the average reported scores are 81.0 and 81.7, and both

are lower than the 82.3 of WID.

for general distillation. 3) MiniLM (Wang et al.,
2020) and MiniLM v2 (Wang et al., 2021), which
align the attention matrix and values-values scaled
dot-product. We also reproduce the TinyBERT in
the same architecture as WID, following the of-
ficial code. For fair comparison, we employ the
same corpus and follow the official hyperparame-
ters. We do not compare with MobileBERT (Sun
etal., 2020) since its teacher is IB-BERT,rge (much
higher accuracy than BERT},s) and its compu-
tations (4096 batch size, 740,000 steps) is much
higher. Moreover, we also compare WID with task-
specific methods in Appendix C.1.

4.4 Main Results

We compare WID with other task-agnostic distilla-
tion methods in various model sizes. All the meth-
ods utilize the BERT},, as the teacher model. As
shown in Table 2, WID retains 98.9% and 90.9%
performance of BERT},s using only 49.2% and
10.2% parameters, respectively. In particular, in
the CoLA task, WIDs5 gets a higher score than
BERT},.5.. Compared to the baselines with 67.5M
parameters, WIDss gets comparable performance
with MiniLM and higher performance than Distil-
BERT with fewer parameters. Meanwhile, WID
outperforms the TinyBERT under the same archi-
tecture on GLUE benchmarks and SQuAD, show-
ing its superiority over the traditional KD methods
with logit-based loss and feature-based loss. With-
out CoLA, WIDss5 gets an average score of 85.8
and still outperforms the TinyBERT (GD) with an
average score of 85.0.

Meanwhile, we apply WID for generative PLM.
Please refer to C.4 for more details.
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Larger Performance Gap Since the perfor-
mance gap between teacher and student has al-
ways been a crucial point and difficulty in KD,
we conduct experiments for smaller student mod-
els (11.3M parameters). We reproduce the task-
agnostic TinyBERT under the General Distilla-
tion (GD) as the baseline. As shown in Table 2,
we find that WID (average score: 76.7) still outper-
forms TinyBERT (average score: 75.6) when the
student model is about 10x smaller.

5 Analysis and Discussion

5.1 WID vs Pruning

Pruning (LeCun et al., 1989) aims to remove re-
dundant weights from a neural network to achieve
parameter-efficiency while preserving model per-
formance, including unstructured pruning which
sets weights to 0, and structured pruning which
removes components such as attention heads. Un-
structured pruning methods do not reduce the
model size. However, WID is very likely to be
confused with structured pruning methods.

Structured pruning methods aim to remove the
redundant units and then usually get sub-networks
without a pre-defined structure. However, WID
does not remove any parts of the original weights
from the teacher models but learns a student model
with a pre-defined structure. Meanwhile, the goal
of KD is to transfer the knowledge from teacher
models to student models. In WID, we design the
compactors as mappings to inherit knowledge from
teacher models, rather than to find sub-networks.
Hence, we consider WID as a KD method though
the compression process of compactors is similar
to pruning. More comparison between WID and
pruning methods can be found in C.2.



Method ‘ SST-2 CoLA MRPC OQNLI QQP RTE STS-B MNLI SQuAD ‘ AVG
WID%m 924 61.7 88.2 90.1 91.0 704 879 829 88.5/80.8 | 83.4
WID?gad 92.0 61.6 88.2 89.4 910 70.8 87.6 82.6 87.3/79.4 | 83.0
WID{im 88.8 44.2 81.9 854 895 603 84.5 784  81.2/72.4 | 76.7
WIDhead | 896 46.2 83.1 86.1 89.5 621 85.3 79.0 81.7/729 | 77.6

Table 3: Comparison between dropping heads and reducing dimension of each head for WIDs5 with 55M parameters

and WID;; with 11M parameters.

Teacher | Params | SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD | AVG
BERTy,. | 110.IM | 89.6 462 831 861 895 621 853 790 81.7/729 | 77.6
BERTss | 542M | 89.5 432 846 863 897 632 857 794 81.2/725| 715
WIDI¢ed | 542M | 89.9 462 848 865 895 646 847 788 82.1/735 | 78.1

Table 4: Comparison between different teacher models after they are compressed to WID}£%¢. BERTss means the

BERT model with same architecture as WID2¢%,

5.2 MHA: Dropping Heads or Reducing
Dimension

Multi-Head Attention (MHA) allows the model to
jointly attend to the information from different rep-
resentation subspaces (Vaswani et al., 2017). When
compressing the weights in MHA, there are two op-
tions, including 1) dropping heads, which reduces
the number of heads A, and 2) reducing dimension,
which reduces the size of each head dj. For Tiny-
BERT (Jiao et al., 2020) and MiniLM (Wang et al.,
2020), they keep A=12 and reduce dj, due to the
constraint of attention-based loss. Our proposed
WID is more flexible since we do not employ any
alignment loss. Moreover, we can easily achieve
these two strategies by constraining the column
mask in MHA. For WIDss and WIDy; reported in
Table 2, we reduce the size of each attention head
following TinyBERT for a fair comparison.

To further explore these two strategies, we con-
duct WID under these two settings and report
the scores on downstream tasks. In BERT},g,
we have A=12 and d=64. The student mod-
els are selected as: WIDggm (A=12, dp=43),
WID2ead (A=8, d=64), WID%™ (A=12, d;=16),
and WID¢?4 (A=3, dy=64). As shown in Table 3,
the dropping head strategy performs slightly worse
under 55M parameters and much better under 11M
parameters. For attention heads in WIDss, both
43 and 64 are large enough to encode the textual
information in the representation subspace. Thus,
the WID%m with more attention heads gets slightly
better results. Similarly, the attention heads with
size 16 perform worse due to the limited represen-
tation subspace, leading to the poor performance
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of WID%im,

5.3 Impact of Teacher Models

To study the impact of teacher models, we compare
the results of three teachers, including 1) BERTyse,
2) WIDgL;’“d, which is compressed by BERTp,ge
adopting the dropping head strategy, 3) BERTss,
which shares the same architecture as WID%¢e4,
Both BERTy,,se and BERT55 are downloaded from
the official repository 2. We compress these three
teachers to WID?f“d employing the dropping head
strategy. Table 4 shows the results of three teachers.
Some findings are summarized as follows:

(1) A smaller teacher can also teach a smart stu-
dent. Both BERT},s and BERTss5 are pre-trained
on the MLLM tasks. But the student from BERT 55
gets an average score of 77.5, which is comparable
to 77.6 from the student of BERTy,s.. A similar
conclusion is also observed in Zhang et al. (2023).

(2) An educated teacher teaches better. The
WIDggad is compressed by BERT},,s. adopting the
dropping head strategy. Compared to BERT's5 un-
der the same architecture, WIDg‘sead can teach a
better student on both GLUE benchmarks and the
SQuAD task.

5.4 Looking into WID

We visualize the attention distributions between the
teacher BERT},se and the student WID9™ with the
same input tokens. For more comparison, we also
pre-train BERT/; from scratch which shares the

same architecture as WID‘ﬁm. As shown in Figure

Zhttps://github.com/google-research/bert
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Figure 4: Attention distributions under same input tokens for BERT},,s (upper), WIDflfm (middle), and BERT; (bot-
tom). Our WID can learn the knowledge about attention distributions from the teacher without any alignment loss.

4, WID can learn the attention patterns in vari-
ous layers of the teacher model BERTyg, while
BERT/; can not. The results of more attention
heads can be found in Appendix C.5.

In WID, we do not use any alignment loss be-
tween the teacher and the student. However, the
compressed student model can still learn attention
patterns. This indicates that inheriting the weights
can also inherit high-level semantic knowledge.

6 Related Work

6.1 BERT Compression

Transformer-based Pre-trained Language Mod-
els (PLMs) can be compressed via Quantization
(Stock et al., 2021; Tao et al., 2022), Matrix De-
composition (Mao et al., 2020), Pruning (Xia et al.,
2022; Lagunas et al., 2021), and Knowledge Dis-
tillation (Jiao et al., 2020; Wang et al., 2020). We
refer the readers to Ganesh et al. (2021) for a com-
prehensive survey. In this paper, we focus on KD
for BERT compression.

6.2 Knowledge Distillation

KD aims to transfer the knowledge from the teacher
model to the student model (Hinton et al., 2015;
Wang et al., 2023; Wu et al., 2023). The distillation
methods can be directly divided into three main
categories: offline distillation, online distillation,
and self-distillation (Gou et al., 2021). For PLMs,
the majority of methods follow the offline distilla-
tion pattern where the teacher model is pre-trained
before distillation. Meanwhile, distillation meth-
ods for PLMs can be divided into task-agnostic,
which distills the PLM in pre-training stage, and
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task-specific, which fine-tunes the teacher model
on specific tasks and then distills.

In this work, we focus on the task-agnostic dis-
tillation. Previous methods mainly focus on de-
signing extra matching losses for the student model
to mimic the teacher model. These losses mainly
include feature-based loss for features in interme-
diate layers and logit-based loss for output logits.
DistilBERT (Sanh et al., 2019) adopts the output
logit and embedding outputs of the teacher to train
the student. TinyBERT (Jiao et al., 2020) and Mo-
bileBERT (Sun et al., 2020) further employ the self-
attention distributions and hidden states for align-
ment loss. Such layer-to-layer distillation restricts
the number of student layers or requires an extra
mapping function. To address this issue, MiniLM
(Wang et al., 2020) proposes a new loss based on
the attention matrix and values-values scaled dot-
product. WD (Lin et al., 2021) employs a similar
idea to inherit the knowledge in parameters. How-
ever, WD initializes the weights of student models
randomly and still requires alignment losses.

Different from existing methods, WID does not
require additional alignment losses, thus avoiding
laborious selection for both loss functions and loss
weights.

7 Conclusion

This work proposes a novel Weight-Inherited Dis-
tillation (WID) method for task-agnostic BERT
compression. In WID, we factorize the compres-
sion process as weight mappings, and then design
the row compactors and column compactors for
row mappings and column mappings, respectively.
Empirical results on various student model sizes



demonstrate the effectiveness of WID. Further anal-
ysis indicates that inheriting the weights can also
inherit high-level semantic knowledge such as at-
tention patterns. In future work, we would con-
sider reducing the extra memory cost by compactor
layers, such as compactor sharing. Moreover, em-
ploying WID on the large language model (LLM)
would be another interesting topic.
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Limitations

Our proposed WID inserts row/column compactors
to learn the mappings from the teacher model to
the student model. Thus, WID requires additional
computational time and memory. However, WID
still outperforms TinyBERT with fewer time costs.
As shown in Table 7, WIDggm trained with 100k
steps achieves a higher score and saves more than
50% time costs compared to TinyBERT. However,
we believe that such a trade-off is valuable since a
faster and better compact student would save more
time on downstream tasks.
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A GLUE and SQuAD
A.1 Data Statistics

Table 5 shows the sizes of the train/development
set and the metrics for downstream tasks.

Task #Train #Dev Metric
SST-2 67k 872 Accuracy
QNLI 105k 5.5k Accuracy
MNLI 393k 20k Accuracy
QQP 364k 40k Accuracy
CoLA 8.5k 1k Matthews corr.
RTE 2.5k 276 Accuracy
STS-B 7k 1.5k Spearman corr.
MRPC 3.7k 408 Accuracy
SQuAD  87.6k 34.7k F1 & EM

Table 5: Data statistics of GLUE and SQuAD datasets.

A.2 Hyperparameters

We employ the grid search to fine-tune the GLUE
benchmarks and SQuAD.

GLUE The learning rate is searched in {1e-5, 2e-
5, 3e-5}. We set the search space for the training
batch size based on the size of the training set. For
large datasets including QNLI, MNLI, and QQP,
the batch size is searched in {32, 48}. For small
datasets including MRPC, RTE, CoL A, and STS-
B, the batch size is searched in {4, 6}. For SST-2,
the batch size is searched in {8, 16}. All tasks are
trained for 10 epochs.

SQuAD The learning rate is searched in {1e-5,
2e-5, 3e-5} and batch size is searched in {4,6,8}.
The training epochs are set to 3.

B Method Details

B.1 Algorithm

More details about the proposed WID can be found
in Algorithm 1.

B.2 Groups of Aligned Compactors

Specifically, we can divide all the compactors in
BERT into the following aligned groups:

* One group in blue: {CC for embedding layer,
blue compactors in each Transformer layer,
RC for output layer},

* [ groups in orange: {orange compactors in
layer 1}; {orange compactors in layer 2}; ...
{orange compactors in layer L},
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Algorithm 1 Weight-Inherited Distillation

Input: teacher model 7 with width d;

Params: k: number of rows/columns to compress, N: steps

to increase k, d: increment for k each time

Output: student model S with width d,

1: Add compactors for 7 to construct the re-parameterized

teacher model 7. Initialize the weights for compactors as
identity matrices.

20 k+0; M+ []

3: for ¢ = 0 to max training steps do

4:  Forward a batch through T, derive the gradients gor;

for compactors to update

5. if i%N ==0& k < d: — d, then

6: Calculate p-norm values

7: Select the top-k row/column with the lower norm

to get M

8: Get penalty gradients gpn following Eq. 13

9: Gfused < [(gori, Gpen, M) following Eq. 14
10: k<k+d
11:  endif
12:  Update the compactors with corresponding g fuseq and

original layers with gor;
13:  Apply the compactor aligning strategy
14: end for
15: Compress the compactors following Eq. 15
16: Merge the compactors and original layers following Eq.
12 to get compact layers for S

17: return S

» L groups in green: {green compactors in layer
1}; {green compactors in layer 2}; ... {green
compactors in layer L},

Where RC/CC denotes the row/column compactor
and {-} denotes a group. For the only one group
in blue, we calculate the column compactor for
the embedding layer and duplicate (or, flip) it for
the other compactors. For each group in orange,
we calculate the column compactor for the Value
projection and duplicate (or, flip) it for the rest three
compactors. For each group in green, we calculate
the column compactor for the Up-project and flip
it for the other one.

C Extensive Analysis

C.1 Comparison with Task-Specific
Distillation

We also compare WID with task-specific distil-
lation methods where the teacher model in task-
specific distillation methods is fine-tuned for the
task before distillation. For baselines, we select
BERT-of-Theseus (Xu et al., 2020), DynaBERT
(Hou et al., 2020) and MetaDistill(Zhou et al.,
2022). As shown in Table 6, WID also outper-
forms these task-specific methods on the GLUE
benchmarks.



Method | Type Params | SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI | AVG
BERTpy. | Teacher 110.IM | 927  59.1 904 917 914 708 90.1 845 | 8338
DynaBERT | TS-KD  67.5M | 92.7 546 850 906 91.1 661 886 837 | 816
MetaDistill TS-KD 67.5M | 923 586 86.8 904 91.0 694 89.1 83.8 | 82.7
TinyBERT* | TS-KD  67.5M | 919 524 86.5 80.8 906 67.7 887 838 | 81.4
BlockPruning | Pruning 77.0M | 89.3 52,6 88.3 882 907 639 846 829 | 80.1
WIDss (ours) | TA-KD  549M | 924  61.7 882  90.1 910 704 879 829 | 834
CoFi Pruning 284M | 90.6  35.6 82.6 86.1 90.1 647  83.1 80.6 | 76.6
WID; (ours) | TA-KD  11.3M | 888 442 81.9 854 895 603 845 784 | 76.6

Table 6: Comparison among WID, task-specific distillation methods, and pruning methods on GLUE benchmarks
without data augmentation. TS-KD and TA-KD denote task-specific knowledge distillation and task-agnostic
knowledge distillation, respectively. * means the results are taken from Zhou et al. (2022). Other results are taken

from the corresponding papers.

C.2 Comparison with Pruning

We try to compare WID with pruning methods
for BERT compression, including task-specific
CoFi (Coarse- and Fine-grained Pruning,(Xia et al.,
2022)) and BlockPruning(Li et al., 2020). As men-
tioned in Appendix C.1, the task-agnostic setting is
more difficult than the task-specific setting. How-
ever, as shown in Table 6, WID still achieves com-
parable results with less than 50% parameters com-
pared to CoFi, and achieves better performance
than BlockPruning with 28.7% fewer parameters.

C.3 Less Training Steps

In Table 2, we report the results of WID‘S@m trained
for 400k steps. We re-implement TinyBERT and
train 3 epochs following the setting in Jiao et al.
(2020). We reduce the training steps for WIDggm
to 50k and 100k. All experiments are carried out
with 8 A100 GPUs. As shown in Table 7, WIDggm
trained with 100k steps can still outperform Tiny-
BERT and save more than 50% training time.

Model Steps Time Score
TinyBERT (GD) 450k  33h 81.27
WIDZim 50k  8h 80.78
WIDZim 100k  16h 81.65
WIDZim 400k  64h 83.08

Table 7: Comparison between TinyBERT and WID
trained with less steps on GLUE benchmarks.

C.4 WID for GPT Compression

To evaluate the performance of WID on the gener-
ative pre-trained language model, we train a GPT
model and compress it via vanilla KD and WID.
Due to the limited GPU memory, we train a GPT
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teacher (12 layers and hidden size as 768) for 100k
steps. After that, we train a student model (12
layers and hidden size as 512) and compress the
teacher model into such a setting via vanilla KD
and WID. During distillation, we employ Book-
Corpus as training datasets and report the training
accuracy. For hyperparameters, the batch size is 64
and the learning rate is 1e-4. Figure 5 shows the
training process. We can conclude that WID still
works for generative pre-trained language models,
and can get better performance than vanilla KD.

>
[°]
g
5
(5]
v
<
0.151 PN~V — Teacher
‘ 0.34 — Student
0.10 90 100 —— wID
KD
0.05 T T T T
20 40 60 80 100

Training steps(k)

Figure 5: The training process for teacher GPT, vanilla
student GPT, and students via KD and WID.

C.5 Attention Distributions

We visualize the attention distributions for the
teacher BERT g, pre-trained BERTss and the stu-
dent WID’}f“d under the same input tokens (input
sentence: "if the world harassed me, it will harass
you too.") in Figure 6, Figure 7 and Figure 8, re-
spectively. WID can effectively learn the attention
patterns from the teacher model while BERT}; is
much more different.
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Abstract

Cybersecurity information is often technically
complex and relayed through unstructured text,
making automation of cyber threat intelligence
highly challenging. For such text domains that
involve high levels of expertise, pretraining on
in-domain corpora has been a popular method
for language models to obtain domain exper-
tise. However, cybersecurity texts often con-
tain non-linguistic elements (such as URLs and
hash values) that could be unsuitable with the
established pretraining methodologies. Previ-
ous work in other domains have removed or
filtered such text as noise, but the effectiveness
of this approach has not been investigated, es-
pecially in the cybersecurity domain. We exper-
iment with different pretraining methodologies
to account for non-linguistic elements (NLEs)
and evaluate their effectiveness through down-
stream tasks and probing tasks. Our proposed
strategy, a combination of selective MLM and
jointly training NLE token classification, out-
performs the commonly taken approach of re-
placing NLEs. We use our domain-customized
methodology to train CyBERTuned, a cyberse-
curity domain language model that outperforms
other cybersecurity PLMs on most tasks.

1 Introduction

Cybersecurity is a critical concern as the world
continues to grow reliant on technology. Modern
cybersecurity practice emphasizes the need for
preemptive defense utilizing Cyber Threat Intel-
ligence (CTI) — actionable information on pos-
sible cyber-threats (Farnham and Leune, 2013).
However, due to the unstructured and complex
nature of such information, leveraging CTI re-
quires extensive manual inspection by human ex-
perts (Husari et al., 2017). Although automating
cyber threat intelligence has been regarded as im-
portant (Fernandez Vazquez et al., 2012; Kam-
panakis, 2014), it has been considered highly chal-
lenging (Wagner et al., 2019).

*Work performed while at S2W Inc.
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This sample ( d8e93252f41e8b@d10cffa92923
eeab94c6c42e8acc308e91340d1102042c8c8 )
is configured with hardcoded c2 irc server
( asdgsd.uselesslongdomain[.]info ).

This || sample ==/d||8 == 93| 252 || f 41
e/ 8 b/ |0 == 10
ee || 94
e[ 9 13 40 | df
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irc|| server || ( u

seless info||)

Figure 1: A threat report excerpt after tokenization and
masking with 15% probability. The tokens inside the
SHA hash and URL are highlighted. Masked tokens are
indicated by a gray bar.

Meanwhile, pretrained language models (PLMs)
have shown great potential for text comprehen-
sion (He et al., 2020). However, PLMs are un-
likely to have developed the necessary expertise
for domains that require significant domain knowl-
edge, such as the cybersecurity domain. This could
be somewhat addressed by extremely large mod-
els (Sergeev, 2023), but this option is costly to train
and run. A more common approach to teach do-
main expertise to PLMs has been to pretrain on a
domain-specific corpus. The effectiveness of such
domain-pretrained PLMs has been demonstrated in
the biomedical (Lee et al., 2019), scientific (Belt-
agy et al., 2019), and legal (Chalkidis et al., 2020)
domains to name a few. Several cybersecurity do-
main PLMs (Ranade et al., 2021; Aghaei et al.,
2022; Bayer et al., 2022) were also trained in a
similar manner.

However, cybersecurity texts often incorporate
non-linguistic elements (NLEs) that could be in-
appropriate for self-supervised pretraining. Self-
supervised objectives like masked language mod-
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eling (MLM) (Devlin et al., 2019) or de-noising
objectives (Lewis et al., 2020) learn by recover-
ing original texts from a masked or modified state.
While this is mostly beneficial for natural language,
such tasks might not be effective when trying to
recover tokens in non-linguistic parts of text. Fig-
ure 1 shows an excerpt from a malware threat re-
port containing a SHA hash and a URL. The SHA
hash tokens are linguistically random, and therefore
training a model to correctly recover these tokens
may not be beneficial. Similarly, the URL tokens
are less predictable compared to the natural lan-
guage text surrounding it, and therefore potentially
unsuitable for pretraining.

Outside of the cybersecurity domain, previous
works addressed such NLEs through replacement
(e.g. replace all URLs with “/URL]”) (Dai et al.,
2020; Caselli et al., 2021; Jin et al., 2023) or fil-
tering (Le et al., 2020; Raffel et al., 2020; Hung
et al., 2022). However, no attempt has been made
to verify whether these approaches actually benefit
pretraining. It is also unclear whether such prac-
tices would have similar benefits in the cybersecu-
rity domain, where it is more common for NLEs
to be used alongside natural language. Conversely,
pretraining with NLEs could be beneficial to utilize
the informational value of NLEs. For instance, a
model may learn to identify suspicious domains in
URLSs or recognize familiar hash values in the way
human cybersecurity experts can.

We investigate different strategies of pretrain-
ing on the cybersecurity domain. We first identify
commonly occurring NLE types that can be ex-
tracted using regular expressions. We then pretrain
models using different MLM strategies, testing the
effectiveness of selective masking and NLE token
classification and comparing to the vanilla MLM
and replacement strategy. Our experiments suggest
that replacement benefits on downstream tasks but
harms performance on probing tasks, especially
near NLEs. Instead, we find that a strategy of se-
lective masking while jointly training with NLE
token classification generally outperforms the re-
placement strategy. Using this strategy, we train
CyBERTuned (Cybersecurity BERT-like Utilizing
Non-linguistic Elements of the Domain), a cyber-
security domain PLM trained with the domain-
customized pretraining methodology. We show
CyBERTuned outperforms comparable cybersecu-
rity domain PLMs in most tasks. CyBERTuned
model weights, training resources, and code are
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publicly available at https://github.com/
genesith/CyBERTuned.
Our contributions are as follows:

* We propose and test multiple strategies to deal
with NLEs when pretraining on a cybersecu-
rity corpus.

Through experiments on a variety of domain
tasks, we find a strategy that is preferable to
the common practice of replacing NLEs.

We use our methodology to train CyBER-
Tuned, a cybersecurity domain encoder model
that outperforms other cybersecurity models.

We provide our model weights, training re-
sources, and code.

2 Related Work

Cybersecurity NLP Automating cyber threat intel-
ligence has been often discussed in literature (Kam-
panakis, 2014; Wagner et al., 2019; Jo et al., 2021).
Classical off-the-shelf NLP methods, such as regex
processing and dependency parsing, have been used
to extract attack patterns (Husari et al., 2017) or
malware behaviors (Zhu and Dumitrag, 2016) from
cybersecurity texts. Recent works explore the po-
tential of using BERT (Devlin et al., 2019) for
more complex tasks such as exploitability predic-
tion (Yin et al., 2020), malware detection (Rahali
and Akhloufi, 2021), and dark web analysis (Jin
et al., 2023).

Domain PLMs PLMs train with large text corpora
using self-supervision tasks (Devlin et al., 2019;
Lewis et al., 2020; He et al., 2020). Many domain
PLMs (Lee et al., 2019; Chalkidis et al., 2020; Belt-
agy et al., 2019) were able to outperform general
PLMs on domain-specific tasks by simply repli-
cating existing pretraining procedures on domain
corpora. PLMs for the cybersecurity domain us-
ing this approach have been suggested by several
works (Ranade et al., 2021; Aghaei et al., 2022;
Bayer et al., 2022). Our work differs in that we use
a domain-customized methodology after investigat-
ing the effectiveness of various strategies.

Pretraining Strategies Self-supervised tasks for
pretraining have been investigated by many
works (Lewis et al., 2020; Aroca-Ouellette and
Rudzicz, 2020; Yamaguchi et al., 2021). Some
works find improvements by modifying the mask-
ing procedure of the MLM task. Changing mask-
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Figure 2: The overall architecture of CyBERTuned. NLE spans from the original input is used in the masking step

and for NLE classification.

ing from token-level to word-level significantly im-
proved BERT pretraining for Chinese (Cui et al.,
2021). Works on selective masking suggested that
masking tokens important to tasks (Gu et al., 2020),
entities (Lin et al., 2021), or reasoning (Sanyal
et al., 2023) more frequently was effective. Con-
versely, our selective masking method skips mask-
ing tokens that are ineffective for MLM training.
Previously, dropping less important tokens mid-
training was suggested as a way to increase training
efficiency (Hou et al., 2022), but at the cost of los-
ing semantic sensitivity (Zhong et al., 2023). In our
work, ineffective tokens are identified beforehand
via NLE spans, and are skipped during masking
rather than dropped during training.

3 Method

In this section, we first discuss the types of NLEs
in cybersecurity texts and how to extract NLE in-
stances. We then propose some methods to utilize
the extracted NLE spans in pretraining with cyber-
security texts.

3.1 Non-linguistic Elements

Cybersecurity texts often feature non-linguistic text
alongside natural language. Among non-linguistic
texts, certain types of are extractable with regular
expressions (Husari et al., 2017). We narrow our
scope to non-linguistic elements that can be iden-
tified by regular expressions, since our aim is to
apply them into self-supervised tasks. After man-
ual inspection of cyber threat reports, we select
the NLE types that are both frequent and identi-
fiable with regular expressions. The following 7
types were selected: URLs, email addresses, IP
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addresses, MD5 hashes, SHA hashes, Bitcoin ad-
dresses, and CVE IDs'. Note that we do not con-
sider NLE types that require significant effort to
extract precisely, such as filepaths or code blocks.
We also extend detection to defanged NLE:s (e.g.,
hxxp:/lexample.com, 192.168/.71.192) by utilizing
the iocide Python library?.

3.2 Leveraging NLE Spans in Pretraining

We study two methods to leverage extracted NLE
spans to guide the pretraining. Figure 2 shows a
model utilizing both methods.

NLE Classification: The model is explicitly in-
structed to predict which tokens belong to NLEs
in the pretraining text. This can be modeled as a
simple token classification task and can be trained
alongside the MLM task. Each token is labeled
with its NLE type (0 if outside of NLE span), which
is predicted by a token classification head (linear
layer).

Since this task is a more semantically shal-
low task compared to the original MLM task, it
should not dominate the total loss function (Aroca-
Ouellette and Rudzicz, 2020). Therefore, we apply
a scaling factor (0.1) before adding with the MLM
loss to produce the total loss.

Selective MLLM: In the masking stage, the NLE
spans are used to avoid masking tokens that are
inside NLEs. However, since informational con-
tent varies between NLE types it must be inves-
tigated whether all NLE types should be avoided.

'CVE (Common Vulnerabilities and Exposures) IDs are
unique identifiers assigned to publicly disclosed vulnerabili-
ties.

https://pypi.org/project/iocide/



. Masks Example Example
Strategies _ __  NLEC . .
& SLE FNLE (MLM) (NLE Classification)
The Dropper drops a zipped SysJoker
. (53£1bb23f670d331c9041748e7e8e396
Vanilla MLM o ) from C2 https[:/]github[. Jurl-mini[.] N/A
com/msg.zip, copies it to
The Dropper drops a zipped SysJoker
Replace All (replaced) (<MD5>) from C2 <URL>, copies it to N/A
The Dropper drops a zipped SysJoker ~ The Dropper drops a zipped SysJoker
. (53f1bb23£670d331c9041748e7e8e396  (53f1bb23{670d331c9041748e7e8e396
Vanilla + NLEC o Y ) from C2 https[://]github[.Jurl-minil.] ) from C2 https[://]github[. Jurl-minil |
com/msg.zip, copies it to com/msg.zip, copies it to
The Dropper drops a zipped SysJoker
. (53f1bb23f670d331c9041748e7e8e396
Mask-Semis v ) from C2 https[:/]github[. Jurl-mini[.] N/A
com/msg.zip, copies it to
The Dropper drops a zipped SysJoker The Dropper drops a zipped SysJoker
. . (53f1bb23f670d331c9041748e7e8¢396  (53f1bb23f670d331c9041748e7e8e396
Mask-Semis + NLEC v/ v ) from C2 https[://]githubl[.]Jurl-mini[.] ) from C2 https[:/]github[.]url-mini].]
com/msg.zip, copies it to com/msg.zip, copies it to
The Dropper drops a zipped SysJoker The Dropper drops a zipped SysJoker
. . o
Mask-None + NLEC v (53f1bb23f670d331c9041748e7e8e396  (53f1bb23{670d331c9041748e7e8e396

) from C2 https[://]githubl.]url-mini[.]
com/msg.zip, copies it to

) from C2 https[://]githubl.]url-mini[.]
com/msg.zip, copies it to

Table 1: Comparisons between how each text types are processed in different strategies. In the MLM examples,
highlighted sections indicate text that are considered for masking. In the NLE Classification examples, each token is

predicted for its NLE type (indicated by color).

We note that NLEs that involve human generated
text (URLs and emails), unlike protocol-generated
values (IP addresses, hash values, etc.), can contain
linguistically meaningful information. For instance,
a human expert may identify the URL github/. Jurl-
mini[. Jcom/msg.zip as a malicious file download
link from a fake domain masquerading as the legit-
imate GitHub domain.

To make a simple distinction between NLE
types, we group the NLEs based on whether they
are generated by humans or protocol. Specifically,
we group URLs and emails as semi-linguistic el-
ements (SLEs) and IP addresses, MD5 hashes,
SHA hashes, Bitcoin addresses, and CVE IDs
as fully non-linguistic elements (FNLEs). We
then test two settings of selective masking: Mask-
None: all NLE types are avoided during mask-
ing. Mask-Semis: fully non-linguistic elements are
avoided but semi-linguistic NLEs are allowed to be
masked.

4 Pretraining the Models

To evaluate our pretraining methodology on the
cybersecurity domain, we pretrain models on a cy-
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bersecurity text corpus using a number of strategies.
We first describe the tested pretraining strategies, in-
cluding the vanilla MLM and ablation settings. We
also describe our cybersecurity corpus and show
statistics that suggest NLEs are more frequent in
cybersecurity texts.

4.1 Pretraining Strategies

We compare a total of 6 pretraining strategies. First
we include two commonly used strategies as base-
lines. As ablation studies, we also test two strate-
gies using only one method. Then two strategies
that utilize both NLE classification and selective
MLM are described. Examples of these strategies
can be seen in Table 1.

Vanilla MLLM: The original masking strategy (De-
vlin et al., 2019). After tokenization, 15% of the
input tokens are selected for prediction. Following
the original implementation, 80% are converted
into the mask token, 10% are converted into a ran-
dom token, and 10% are unchanged.

Replace All: A commonly used strategy to reduce
the impact of NLEs in pretraining (Caselli et al.,



Data Source Count Data Size
Full

Online security articles 150K 680.8 MB
Security paper abstracts 7.3K 9.1 MB
Wikipedia articles 34K 15.7MB
CVE descriptions 185K  52.5MB
Pretraining Subset

Online security articles 34K 170.4 MB

Table 2: Statistics of data sources used in the corpus.
The data used to pretrain the models is a subset of the
total data.

2021; Jin et al., 2023). The MLM method is un-
changed, but the NLEs in the input corpus is con-
verted to an identifier of the NLE type (e.g., all
CVE IDs are replaced with “<CVE>"). However,
comes with a risk of reducing informational content
in the pretraining corpus.

Vanilla + NLEC: The MLM method is unchanged,
but the joint task of token-level NLE classifica-
tion (NLEC) is also performed. While MLM is
still done on NLE tokens, NLEC could instruct the
model to understand the different role the tokens
have.

Mask-Semis: A selective MLM method that avoids
masking of FNLEs (hash values, IP addresses,
etc.) while allowing masking of SLEs (URLs and
emails).

Mask-Semis + NLEC: A strategy using both the
selective masking and NLEC. In this setting, tokens
in SNLEs are allowed to be masked and tokens in
FNLEs are avoided.

Mask-None + NLEC: A strategy using both the
selective masking and NLEC. In this setting, tokens
in all NLEs are avoided during masking.

4.2 Cybersecurity Corpus

We collect and curate a large amount of text from
publicly available online sources. Like other cyber-
security PLMs, we construct our corpus with data
from a variety of sources: Online Security Articles,
Security Paper Abstracts, Wikipedia Articles, and
CVE Descriptions. A detailed description of the
components and collection of the corpus can be
found in Appendix A and D.

Pretraining subset. We further identify a subset
of the corpus focused on threat reports to pretrain
on. This is because the full corpus covers a vari-
ety of styles, including news articles written for
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Ours OQOurs .
NLE PS)  (Full) Wiki C4
URL 16,272 5,172 62 404
EMAIL | 3,282 901 <1l 33
1P 2,503 780 3 15
MD5 2,651 754 <1 1
SHA 550 161 <1l <1
BTC 1,024 273 <1l <1
CVE 1,225 550 <1 3

Table 3: Distribution of non-linguistic elements (per
million words) in our pretraining subset (PS) corpus,
full corpus, Wikipedia, and C4.

non-expert audiences. Such articles contain little
technical information and few NLEs. Since our
goal is to compare pretraining strategies of teach-
ing technical expertise of analysts to models, we
filter to find sources that publish for expert audi-
ences. From 60 total online source sites, we select
30 sites that more often feature technical informa-
tion to make up the pretraining subset. The data
size of our sources used for constructing the corpus
and the pretraining subset is listed in Table 2.

NLE Statistics. To demonstrate the frequency of
non-linguistic elements in our cybersecurity text
corpus, we compare our corpus with two general
domain text corpora: the Wikipedia corpus and
the C4 corpus (Raffel et al., 2020). The Wikipedia
corpus, used in pretraining BERT and other models,
consists of text content from Wikipedia articles.
The C4 corpus, first used for pretraining TS (Raffel
et al., 2020), is a collection of crawled web pages.
Unlike our corpus, the C4 corpus aims to include
only natural language text and use heuristics to
filter text with non-natural language. Due to the
large size of this dataset, we sample 0.1% of the
total size (365,234 documents) for our analysis.

To compare between corpora, we calculate the
frequency of NLEs. We first count the number of
instances of each NLE type, using our detection
methodology (discussed in Section 3.1) on each
corpus. We use the NLTK (Bird and Loper, 2004)
tokenizer to count the number of words in each
corpus. Table 3 shows the frequencies of each non-
linguistic element per million words. We observe
that the frequency of NLEs in our corpus is signifi-
cantly higher compared to the two general domain
corpora.



. Downstream Tasks Probing Tasks

Strategies
CyNER CySecED MTDB All Near-FNLEs

ROBERTa 0.637 0.504 0.802 0.278 0.270
Vanilla MLM 0.648 0.510 0.822 0.382 0.460
Replace All 0.664"* 0.544 0.827° 0.381 0.438
Vanilla + NLEC 0.652 0.526 0.820 0.380 0.455
Mask-Semis 0.638 0.538 0.817 0.386 0.463
Mask-Semis + NLEC ~ 0.667"*  0.544"  0.825 0.383 0.464
Mask-None + NLEC  0.643 0.533° 0.829° 0.382 0.452

Table 4: Experimental results on multiple pretraining strategies. Downstream tasks show median values over 10
runs. Boldface represents the best score and underlined values represents the second best score. The * symbols
indicates statistically significant distributions from the RoOBERTa-base baseline. The * symbols indicates statistically
significant distributions from the Vanilla MLM baseline.

4.3 Pretraining Setup

For our experiments, we pretrain further on the pre-
trained ROBERTa-base model (Liu et al., 2019). We
choose the RoBERTa model as the base architec-
ture because its minimal pre-tokenization scheme
and coverage is suitable to our corpus’. For effi-
ciency, we choose to pretrain further on the pre-
trained model, following findings that suggest that
this method is as effective as training a model from
scratch (Chalkidis et al., 2020; EI Boukkouri et al.,
2022). We mostly follow RoBERTa’s training hy-
perparameters, with few modifications to account
for our smaller corpus size (details can be found
in Appendix C). Note that the Replace All strategy
modifies the pretraining corpus size. For fair com-
parison, all models were trained for 500 steps (~12
epochs for the Replace All model, ~10 epochs for
other models).

5 Experiments

We evaluate the models trained by each pretrained
strategy with both downstream tasks and probing
tasks. For comparison, we also experiment with the
base RoOBERTa model.

5.1 Downstream Tasks

We compare the ability of each model to fine-tune
onto downstream tasks using challenging cyberse-
curity datasets.

3The BERT pretokenizer assumes there are spaces between
the 2, ¢/, * characters common in URLs. The corpus also
contains obscure characters that aren’t considered by other
tokenizers(the T5 tokenizer does not have the ‘\’ character in
its vocabulary.

34

CyNER (Alam et al., 2022): A named entity recog-
nition dataset of annotated malware threat reports.
The reports are annotated for five entity types: Mal-
ware, System, Organization, Indicator, and Vulner-
ability.

CySecED (Man Duc Trong et al., 2020): An event
detection dataset of annotated articles from The
Hacker News. The articles are annotated for 30
fine-grained events types describing cyber-attacks
or vulnerabilities.

MalwareTextDB (MTDB) (Lim et al., 2017,
Phandi et al., 2018): A dataset of malware reports
annotated for four types of attributes ActionName,
Capability, StrategicObjectives and TacticalObjec-
tives. The labels are cast into a multiple choice
question format, where the objective is to identify
the correct attribute given a passage, attribute type,
and answer choices.

5.2 Probing Tasks

A disadvantage of comparing performance with
downstream tasks is that fine-tuning modifies the
model weights learned from pretraining. In or-
der to evaluate the model weights themselves,
we probe the model’s ability to produce correct
MLM answers for relevant tokens similar to the
LAMA (Petroni et al., 2019) framework. We fol-
low the domain-specific version by Chalkidis et al.
(2023), in which a list of legal terminology was
used to find instances of the terms from a target
corpus. Models are then evaluated by its ability to
recover the correct terminology after it is masked.

Our implementation tests model ability to cor-



rectly identify cybersecurity terminology in text
context. We first construct a list of relevant termi-
nology by taking words used in MITRE’s database
of enterprise attack techniques*. After processing
and filtering, we identify 226 tokens to be used for
probing (see Appendix B). To probe the ability of
each model, we evaluate the MLM performance on
the validation split of the full corpus after mask-
ing all target tokens. A total of 77,983 tokens were
masked. We also mark tokens in the vicinity (within
20 tokens away) of FNLEs, to see if the presence
of FNLEs affects the probing performance. A total
of 4,906 tokens were near FNLEs.

5.3 Results

The results of the experiments are presented in
Table 4. For downstream tasks, we report the me-
dian values over 10 seeds. We mark statistical sig-
nificance of p < 0.05 compared with the base
RoBERTa and Vanilla MLM baselines. F1 scores
are shown for the CyNER and CySecED tasks and
accuracy is shown for the MTDB task and probing
tasks.

NLEC. Comparing the Vanilla MLM with the
Vanilla + NLEC model suggests that the classifi-
cation task, on its own, does not provide meaning-
ful benefits. However, when comparing the Mask-
Semis and Mask-Semis + NLEC settings, the addi-
tion of the NLEC task provides a noticeable benefit
in downstream tasks. In both comparisons, NLEC
caused a slight decrease in the probing tasks.
Selective Masking. Comparing the Vanilla MLM
with the Mask-Semis model suggest that selective
masking does not produce consistent gains in down-
stream tasks, although it benefits probing tasks.
Comparing Mask-Semis + NLEC and Mask-None
+ NLEC settings, the strategy of masking SLEs
seems to benefit more consistently across down-
stream tasks and the probing tasks. This results
suggests that there is value in performing masking
on URLs and emails.

Best performers. While different pretraining meth-
ods suit different tasks (Lewis et al., 2020), the
Mask-Semis + NLEC model performed consistently
well across all tasks. The Replace All model was
also very capable in downstreaming tasks, but was
weaker in probing tasks. Especially, the model prob-
ing performance was worst of all the pretrained
models when the probed token was near an FNLE.

“https://attack.mitre.org/techniques/
enterprise/
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This is an undesirable characteristic of the model,
since the model is expected to encounter multi-
ple FNLEs in the domain. We argue Mask-Semis
+ NLEC is the best strategy because it allows the
model to utilize NLEs while achieving high down-
stream performance.

6 CyBERTuned Experiments

6.1 Pretraining CyBERTuned

With our findings, we train our final model CyBER-
Tuned. We train on a larger scale with the Mask-
Semis + NLEC strategy. We compare our model
with other language models on a larger array of
downstream tasks in the cybersecurity domain. The
CyBERTuned model is trained on our full cyber-
security corpus using a similar setup. Compared
to the previous experiments, we train longer for a
total of 200 epochs on a larger corpus.

6.2 Downstream Tasks

We conduct downstream tasks> on a wider variety
of cybersecurity tasks. The new tasks are described
below.

CASIE (Satyapanich et al., 2020): An event de-
tection dataset of annotated news articles for non-
expert audiences. The articles are annotated for
five event types: data breach, phishing, ransom, dis-
cover, and patch.

TwitterThreats (TT) (Zong et al., 2019): A binary
sequence classification dataset of annotated tweets
that mention threat keywords. Each tweet is anno-
tated on whether the tweet describes a threat to the
mentioned entity.

CYDEC (Yagcioglu et al., 2019): A binary se-
quence classification dataset of annotated tweets
that mention cybersecurity keywords. Each tweet
annotated on whether the tweet describes a
cybersecurity-related event.

6.3 Baselines

We compare CyBERTuned with the base RoOBERTa
model and other cybersecurity domain PLMs. All
models follow the 12-layer Transformer encoder
architecture.

RoBERTa-base (Liu et al., 2019): The RoBERTa-
base model that was used to initialize CyBER-
Tuned.

>Note that we do not do the probing tasks, since only

our model was trained on the same sources of text with the
validation corpora.



Token Class. Sequence Class. MCQA
CASIE CyNER CySecED CYDEC TT MTDB
RoBERTa-base 0.748  0.637 0.504 0.829  0.831 0.802
CyBERT 07117 0.462" 0.361° 0.798  0.832 0.731°
CySecBERT 0.734  0.572" 0.491 0.814  0.845 0.808
SecureBERT 0.753  0.638 0.529° 0.816  0.828 0.825
CyBERTuned (Ours)  0.750  0.654 0.585° 0.844  0.857" 0.861°

Table 5: Experimental results of CyBERTuned and baselines on downstream cybersecurity tasks, showing median
F1 scores across 10 seeds. Boldface values represents the best score and underlined values represents the second
best score. The symbols ¥ (positive) and * (negative) indicates statistically significant distributions from the baseline

(RoBERTa-base).

CyBERT (Ranade et al., 2021): A cybersecurity
BERT-based model, further pretrained on the base
BERT model. The BERT vocabulary is extended
by 1,000 tokens from the training corpus identified
by TF-IDF.

CySecBERT (Bayer et al., 2022): A cybersecurity
BERT-based model, further pretrained on the base
BERT model. The model uses the BERT vocabu-
lary.

SecureBERT (Aghaei et al., 2022): A cybersecu-
rity RoBERTa-based model, further pretrained on
the base RoOBERTa model. The model uses a cus-
tom vocabulary with adjusted token weights.

6.4 Results

The experiment results are presented in the Table 5.
As before, we conduct each experiment over 10
seed values and report median values.

The base RoBERTa model, despite being pre-
trained on the general domain, performed bet-
ter than some domain PLMs in several tasks. Of
the two BERT-based models, CyBERT performed
poorly on most tasks while CySecBERT generally
showed competitive performance. However, even
CySecBERT performed poorly in the CyNER task.
This is possibly due to its usage of the uncased
BERT tokenizer, which not only distorts texts with
special characters but is case-insensitive (possibly
important for NER).

SecureBERT was the only model that beat Cy-
BERTuned in a task. It showed high performance
in the token-level tasks, suggesting some benefit
of their custom tokenizer. On the other hand, Cy-
BERTuned performed consistently, achieving best
or second-best performance in all tasks.
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7 Discussion

RoBERTa’s performance. The base RoBERTa
model achieved good performance on certain tasks
after fine-tuning, often outperforming domain-
pretrained models. A possible interpretation is that
previously challenging cybersecurity tasks, such as
binary sequence classification of threat tweets, do
not require extensive domain knowledge to achieve
high performance. It should be noted that the CY-
DEC dataset reports a human F1-score of 0.59 and
the TwitterThreats dataset reports a Cohen’s K of
0.66, suggesting these models have possibly al-
ready exceeded human and annotator performance
on these tasks. This underscores the need for more
challenging datasets for benchmarking models in
the cybersecurity domain.

NLE Classification as auxiliary task. Although
MLM loss takes long to plateau, NLE classifica-
tion loss plateaus quite early during pretraining.
We note that the NLE classification overhead is
not large, training with and without NLE classifica-
tions only had a 0.6% difference in training time.
One possible method to increase training efficiency
might be to drop NLE classification task after the
loss plateaus. Whether this would achieve compa-
rable performance could be investigated in further
work.

NLE:s of other domains. While it is common prac-
tice to remove NLEs in other domains, our inves-
tigation suggests proper modifications to training
may be preferable. However, our experiments were
conducted in the cybersecurity domain, where cer-
tain NLE types can contain informative content.
The optimal pretraining strategy is likely different



across text domains, and dependent on informa-
tional content of NLEs.

8 Conclusion

We investigate methods to modify pretraining to
suit the cybersecurity domain. We find that a strat-
egy of selective MLM that allows for masking of
semi-linguistic elements but not fully-linguistic el-
ements with an auxiliary NLE classification task
showed best performance. With these findings, we
present CyBERTuned, a cybersecurity PLM with
our modified pretraining methodology. The final
CyBERTuned model shows strong performance
across all cybersecurity downstream tasks. Our
findings support the importance of adapting pre-
training methodologies to suit target domains.

Limitations

Non-linguistic Element Types. The types of non-
linguistic element discussed in this work represent
a subset of a large set of textual data that are atypi-
cal to natural language. While there are more text
types that fall under this category, our scope was
limited to types that are easily identifiable to be
practical for self-supervision. We note the exis-
tence of more complex types of text that are rel-
evant to understanding cybersecurity text such as
code blocks, filepaths, or log entries. We leave the
detection and effective utilization of such text types
for future work.

Another limitation is that the strategies tested uti-

lized broad distinctions between SLEs and FNLE:s.
Due to computational restraints, it was not possible
to pretrain while treating each NLE type uniquely.
Therefore, even with our method that utilizes mask-
ing SLEs to improve performance, it is difficult to
attribute the performance gains to specific individ-
ual NLE types. For now we focus discussions on
our empirical results, and leave fine-grained analy-
sis to future work.
Downstream tasks. There are many factors to con-
sider when fine-tuning downstream tasks across
multiple models. We attempt to find stable settings
that allow all runs to be successful, but there are in-
consistent runs. To mitigate this, we report median
values of 10 seed values and suggest the probing
task as an alternative. Since our experiments are run
across multiple models, multiple tasks, and multi-
ple hyperparameters, there may be cases of novel
untested hyperparameter combinations on model-
task combinations that have not been explored.
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NLE:s in different domains. As stated in Section 7,
the findings in this work were investigated only in
the cybersecurity domain. For example, the URL
NLE type also occurs frequently in other domains,
but might not have the similar information value
of performing MLM as the cybersecurity domain.
Therefore, the decision to do MLM on URL to-
kens could depend on the domain. An example of
a domain where MLM of URL tokens might be
inappropriate is in the Twitter text domain, where
links are randomized by the Twitter URL shortener.
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A Corpus

We construct our corpus with data from the follow-
ing sources:

* Online Security Articles: Following work
in CTI (Zhao et al., 2020) we identify news
outlets, corporate blogs, and personal blogs
that discuss cybersecurity content. We find a
total of 60 online sources (see Appendix D).

We extract text using Scrapy® and Selenium’.

Security Paper Abstracts: We identify se-
curity conferences that make the abstracts of
accepted papers publicly available. In total,
we collect 7,301 abstracts from 8 different
security conferences.

Wikipedia Articles: We start with the cyber-
crime category®, recursively visiting its sub-
categories one by one and collecting all the
pages under each category while discarding
irrelevant pages through manual inspection.
We collect a total of 3,411 pages.

CVE Descriptions: The CVE database’ is a
database of publicly disclosed vulnerabilities.
Each vulnerability is assigned an ID and given
a short description. We process the database
to remove duplicate descriptions, incomplete
(reserved or unused CVEs) descriptions, and
descriptions that are too short (less than 10
words). We retain a total of 184,956 CVE en-
tries of unique and informative descriptions.

B Tokens for Probing Task

We collect a total of 556 phrases from the attack
techniques and subtechniques listed in the MITRE
database. For simplification, we only select single-
token target words. From the phrases, we seperate
into words and check if the word is in the ROBERTa
tokenizer. This way we find a total of 871 target
tokens. Since many common tokens such as “ and"
or “to" are selected in this way, we apply a simple
filter by token IDs to remove common tokens (ID
< 25,000). This results in a target token list of 226
tokens including *“ Unix" and * runtime".

*https://scrapy.org

7https ://www.selenium.dev

$https://en.wikipedia.org/wiki/
Category:Cybercrime

‘https://cve.mitre.org/
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C Experiment settings

C.1 Pretraining

To pretrain the models for Section 4, we train on
2 NVIDIA A100 80GB GPUs. We use a slightly
lowered effective batch size of 2024 to accomo-
date the smaller corpus size, and a warmup ratio
of 0.048 following RoBERTa (which uses fixed
steps). Other hyperparameters regarding including
learning weights, weight decay, and adam hyperpa-
rameters are kept the same as RoBERTa’s.

To pretrain the full CyBERTuned model de-
scribed in Section 6.1, we train on 4 NVIDIA A100
80GB GPUs on our full corpus. The hyperparam-
eter settings are kept the same as above with the
exception of the maximum epochs, which is set to
200.

C.2 Fine-tuning

For all tasks, fine-tuning is done with 20 max
epochs, warmup ratio of 0.06, and an early stopping
patience of 4 based on evaluation loss on the dev
set. For the token classification tasks, evaluation
is done every epoch. For sequence classification
tasks, evaluation is done every 200 steps. For the
multi-choice QA task, evaluation is done every 200
steps.

To best compare the models themselves, we keep
implementations simple for downstream tasks. We
use the Hugging Face (Wolf et al., 2020) imple-
mentations of each task. For token classification,
sequence classification, and multichoice QA tasks,
we use the AutoModelForTokenClassification, Au-
toModelForSequenceClassification, and AutoMod-
elForMultipleChoice, respectively.

To simplify hyperparameter selection, we select
a batch size for each task following observations
that input types varied heavily on the task (such as
sentences and documents). First we conducted a
grid search of learning rates € {2e5, 3e3, 5e5, 1le-4}
and batch sizes € {1, 2, 4, 8, 32} for the CyNER
task. We identified learning rate of 5e-5 and batch
size 32 worked best. This combination worked well
with all tasks involving single-sentence inputs. CY-
DEC and TwitterThreats use this setting. For Cy-
SecED (document), we did grid search of batch
sizes € {1, 2, 4, 8, 32} and find that batch size
of 1 works best. CASIE also uses this setting. For
MTDB (QA), we did grid search of batch sizes €
{1, 2, 4,8, 32} and find that batch size of 8 works
best.

We use the train/eval/test given in the datasets



if pOSSible (CyNER, CySecED, MTDB). If the Source Type # Pages Collected

dataset does not have splits (CASIE, Twit- InfoSecurity News 23,217
terThreats, CyDEC), we split randomly at a 8:1:1 ThreatPost News 15,742
ratio. Since CyNER deals with identifying exact ;llle Hacker News News, 10049
eeping Computer* News 8,852
spans while CySecED and CASIE deals with iden- Infosec Institute News 6.086
tifying event triggers, we use a stricter matching for Security Intelligence News 1,824
CyNER (with seqeval'?) but use a loose matching The Record News 1471
Cyber Security Hub News 902
scheme for CySecED and CASIE. - -
Schneier on Security Personal Blog 8,008
. TaoSecurity Blog* Personal Blog 3,044
D Article Sources Krebs on Security Personal Blog 2,151
In Table 6, we list detailed online data sources from gzzt‘:ev Blog* ]l:zzz:i gigi ?(5)3;
which we collect cybersecurity domain text. hpHosts Blog* Personal Blog 1,057
Hexacorn Blog Personal Blog 784
Garwarner Blog* Personal Blog 570
Kahu Security* Personal Blog 194
SkullSecurity* Personal Blog 144
CarnalOwnage* Personal Blog 124
SecNiche* Personal Blog 94
DeepEnd Research* Personal Blog 23
Naked Security Corporate Blog 13,233
State of Security* Corporate Blog 5,233
WeLiveSecurity Corporate Blog 5,186
Palo Alto Networks Corporate Blog 3,482
Malwarebytes Corporate Blog 3,359
Securosis Corporate Blog 3,302
Microsoft Corporate Blog 2,902
Securelist Corporate Blog 2,897
Sophos* Corporate Blog 1,987
Sucuri* Corporate Blog 1,718
MSRC Corporate Blog 1,473
Spider Labs* Corporate Blog 1,463
‘Webroot* Corporate Blog 1,429
Recorded Future Corporate Blog 1,280
Zscaler* Corporate Blog 782
Unit42* Corporate Blog 771
NETSCOUT Corporate Blog 731
Radware Corporate Blog 720
Trustwave Blog Corporate Blog 676
Forcepoint* Corporate Blog 665
SecureAuth Corporate Blog 583
Trend Micro (News)* Corporate Blog 494
Cloudflare Corporate Blog 449
Infoblox* Corporate Blog 403
BitDefender Corporate Blog 400
Honeynet Project* Corporate Blog 395
Mandiant* Corporate Blog 355
CoreSecurity Corporate Blog 257
Intezer* Corporate Blog 236
Symantec Enterprise Blogs* Corporate Blog 219
LookingGlass Corporate Blog 214
Veracode Corporate Blog 203
SEI (CERT/CC)* Corporate Blog 174
FireEye* Corporate Blog 148
CrowdStrike* Corporate Blog 144
Trend Micro (Research)* Corporate Blog 141
Juniper* Corporate Blog 122
Fox IT* Corporate Blog 109
Verisign Blog Corporate Blog 100

Table 6: Full list of security news articles and security
blogs used for corpus collection. The sources included

10 . .
https://github.com/chakki-works/ . ..
P g in our pretraining subset are marked by *.

segeval
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Abstract

Existing dense retrieval systems utilize the
same model architecture for encoding both the
passages and the queries, even though queries
are much shorter and simpler than passages.
This leads to high latency of the query encod-
ing, which is performed online and therefore
might impact user experience. We show that
combining a standard large passage encoder
with a small efficient query encoder can pro-
vide significant latency drops with only a small
decrease in quality. We offer a pretraining and
training solution for multiple small query en-
coder architectures. Using a small transformer
architecture we are able to decrease latency
by up to ~ 12x, while M RRQ10 on the MS
MARCO dev set only decreases from 38.2 to
36.2. If this solution does not reach the desired
latency requirements, we propose an efficient
RNN as the query encoder, which processes the
query prefix incrementally and only infers the
last word after the query is issued. This short-
ens latency by ~ 38x with only a minor drop
in quality, reaching 35.5 M RRQ10 score.'

1 Introduction

Information retrieval was revolutionized by seman-
tic matching models (Karpukhin et al., 2020; Xiong
et al., 2021; Gao and Callan, 2021, 2022). Such
models encode the corpus of passages’ and the
query in a shared embedding space, where re-
trieval is performed using an (approximated) near-
est neighbors search (Johnson et al., 2021). These
models increase the quality of search results dra-
matically (Zhao et al., 2022), but suffer from a large
computational overhead (Chen et al., 2021). While
training a large model and encoding the corpus is
costly, this can usually be done offline once (or ev-
ery couple of days/weeks) and cost is bounded by

'Code can be found at https:/github.com/amzn/extremely-
efficient-query-encoder

*In this paper we consider the passage retrieval task. Re-
trieving documents or other textual units is similar in concept.
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the size of the corpus. On the other hand, encoding
queries is a major part of the retrieval system that
is performed frequently and online, making latency
an important consideration.® Hence, cutting the
latency of this component directly leads to a cut in
the online-latency of the whole system.*

Today, practically all semantic retrieval models
use the same architecture to embed both the corpus
(passages) and the queries. Knowledge distillation
(Hinton et al., 2015) has been used to improve
efficiency by creating smaller models. However,
mainly transformer-based architectures (Vaswani
et al., 2017) of medium size were considered (Gao
et al., 2020; Chen et al., 2021), putting a bound on
the achievable latency of the query encoding.

Balancing between the latency and cost require-
ments is challenging; while sophisticated GPU im-
plementations can run BERT inference in just a
few milliseconds, this hardware is very costly. This
is especially problematic in an over-provisioning
setting, where utilization is kept low to handle burst
of traffic. Further, as query encoding is run online,
it is often necessary to use a batch size of 1, which
also limits the GPU utilization. Therefore, it is
often necessary to use a CPU for query encoding,
which in-turn increases the latency overhead. This
challenge calls for a query-embedding solution that
can balance cost and latency, while still providing
quality embeddings for retrieval.

The simple, yet crucial observation we make in
this paper is that queries are usually very short; of-
ten just 3-5 words, and rarely exceeding 15 words.
This is in contrast to passages (or documents),

3The other significant part typically run online is an ap-
proximate KNN-search. We experiment with ScaNN (Guo
et al., 2020), a popular KNN solution. We use it with standard
parameters to retrieve from MS-MARCO’s corpus and find
that query embedding takes ~ x4 more time than the KNN
search. Hence, we can determine that the significant portion
of online latency is spent on embedding the query.

*Additional avenues for reducing latency are presented in
(Seo et al., 2019; Fang et al., 2020; Lewis et al., 2021; Formal
etal., 2021).
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which consist of dozens of words or more in some
settings. Therefore, we argue that while large, com-
plex models and a vast amount of training data
are crucial for quality passage embedding’, for
query embedding it is sufficient to use smaller, sim-
pler models. With this observation, we propose a
method to trade-off latency and quality of online
query encoding for dense retrieval, reaching low
latency while preserving reasonable quality.

Specifically, we propose training two different
variations of small models for query encoding. The
first straightforward option is a small, efficient
transformer. This leads to impressive results, barely
hurting the retrieval quality, but the decrease in
online-latency is limited to 12x, reaching 2.1 mil-
liseconds. To extend our solution and also deal with
cases where a more significant decrease in online
latency is needed, we propose using an RNN-based
model. As mentioned above, queries tend to be
short, making RNNs a viable option.

Apart from being efficient, the RNN architecture
offers another benefit for online latency. Since an
RNN processes tokens sequentially, the system can
feed the model with the prefix of the query as it is
typed by the user. When the user issues the query,
the model only needs to process its last word. This
method is denoted as incremental inference in this
paper, and is able to further reduce online-latency.
Our smallest proposed model reaches a 38 x drop
in latency compared to the baseline, with an online
latency of only 0.7 milliseconds running on a CPU,
while also achieving competitive quality results.
Finally, for cases where online-latency is of utmost
importance, we suggest a method to practically
nullify the contribution of query-encoding to the
online-latency at the cost of ~ 4 rise in compute.

2  Design

We want to train a dual encoder system composed
of a small and efficient query encoder and a stan-
dard larger transformer passage encoder. We are
not interested in the training procedure of the large
encoder, which was already studied thoroughly.
Therefore, we assume one is available.

We denote by T, the large Transformer en-
coder, and S, as the small query encoder (either
a smaller transformer, or an RNN). Even though
the passage and query encoders cannot share all
their weights due to their different sizes and archi-

3Gao et al. (2020) show that in order to properly distil an
encoder for retrieval a vast amount of data is needed.
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tectures, we opt to keep the token embeddings of
both models tied. This ensures that a token has the
same “meaning” in both models (Dong et al., 2022).
This decision is further discussed in Appendix A.
To train the efficient query encoder we operate in
stages, as detailed in this section.

2.1 Pretraining via Distillation

A large encoder T, trained for passage and query
encoding, is available. Thus, we use it as a teacher
to the smaller S,. We train S, to imitate the em-
beddings 7., generates for all queries in the train
set. We use a standard cosine similarity loss, push-
ing the embeddings generated by .S, towards the
embeddings generated by T¢,,.. We pretrain for 10
epochs, as discussed in Section 4.4.1.

2.2 Training on Labeled Data

The large passage encoder T, and the small query
encoder, starting from the pretrained Sy, are trained
for dense retrieval. We use the standard training
procedure of (Gao and Callan, 2022), including
the selection of negative samples and other hyper-
parameters. Further details appear in Appendix B.

2.3 Small Model Architectures

RNN. In this work we use a GRU (Cho et al., 2014)
as the architecture of S;. In order to increase the
capability of the network, we consider models with
different capacities by stacking multiple recurrent
networks together and adding a feed-forward (FF)
layer on top of the embedding generated for the
last token of the query. This, of course, comes with
a latency cost. The FF network is defined as:

FF(x) =
Layer Norm(x + Wa(Gelu(W1 - x + by) + be)

Small Transformer (ST). When using a trans-
former based model to implement S,, we use a
BERT-like architecture with different number of
layers. We initialize the model from the first layers
of the pretrained encoder Tpy,.

3 Incremental Inference with RNNs

When using an RNN to encode a token-sequence,
the encoding of the prefix of tokens is independent
of the rest of the tokens:

RNN(pref + suff) = RNN(RNN(pref), suff)

This property enables incremental encoding of user
queries before they are fully composed. Upon



query completion, encoding only the remaining
part accelerates encoding and minimizes latency.

However, while the model can encode tokens
incrementally, the tokenization process is not inde-
pendent of the prefix. For example, while hell
is a prefix of hello, their token representations
are not. Luckily, word boundaries (e.g., a space)
are not crossed by the tokenizer, so prefix encoding
can immediately be applied when coming across
such a boundary. When the user issues the query,
only the last word has to be encoded.

A single word can span multiple tokens (e.g.,
‘cephalosporin’ consists of 5 tokens), necessitating
multiple inference steps. Still, in the MS MARCO
dev set queries, the last word’s token count per-
centiles (p50, p90, p95, and p99) are 1, 2, 3, and
4 (respectively). In complete queries the same per-
centiles correspond to 9, 12, 14, and 18 tokens.
This suggests that by only processing the last word
of a query on the critical path of inference, we can
significantly reduce the latency. Note, the current
Guinness record for fast typing is 212 words per
minute®, or 283ms per average word. As our com-
putation speed per word is significantly smaller,
computations of the query prefix are done before
the last word is issued. While this approach could
increase overall computation time’, in most cases
the latency of the critical path is more important
than overall latency. Section 4.1 shows that incre-
mental encoding can vastly reduce this measure.

3.1 Extreme Incremental Encoding

There are cases where reducing latency is drasti-
cally more important than computation cost. As-
suming that the user has to hit the Enter key to
initiate the search, we show that by encoding each
intermediate string, each requiring a single RNN
computation step, the query encoding can be com-
puted before the user hits Enter, practically trans-
lating to an online latency of 0.
We start by stating a property of tokenizers:

Property 1 For every string S and non-space char-
acter c, the tokenization of S + c consists of a se-
quence of tokens T such that T[: —1] corresponds
to the tokenization of a prefix of S.

Thus, adding a single character to a string corre-
sponds to adding just a single token to a prefix of
the computed tokens. Assuming we store the em-

®https://www.academyoflearning.com/blog/the-fastest-
typists-in-the-world-past-and-present
"The overhead of invoking PyTorch is non-negligible.
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Figure 1: Illustrating the quality (MRR @ 10) - latency
(in milli-seconds) tradeoff. x represents the small trans-
formers architecture, V represents the RNN architecture.

beddings of all token prefixes, the embeddings of
the tokens of the new string can be computed with
a single RNN step. We note that the encodings
generated by this process are equivalent to those
generated by the vanilla RNN approach. There-
fore, result presented in Section 4.1 for the RNN
models are reached by this method as well, with
an online latency of 0. However, this incurs a com-
putational cost, as we encode every possible prefix
of the string. The number of steps grows by a fac-
tor equal to the number of non-space characters
divided by the number of tokens in the query. In
MS MARCO, this is equal to ~ 4x compared to
the vanilla RNN approach.

4 Experiments

Our models are based on the Tevatron framework
(Gao et al., 2022) and therefore coCondenser is
the main baseline we compare to. For complete-
ness we also include the results of BM25, DPR
(Karpukhin et al., 2020) and ANCE (Xiong et al.,
2021). We follow many previous works and train
and test our methods on the MS MARCO dataset
(Nguyen et al., 2016) using M RRQ@10 as the main
metric and R@50/1000 as complementary metrics,
and on the NQ dataset (Kwiatkowski et al., 2019)
using R@5/20/100 as metrics. For T¢,. we use
the pretrained version of coCondenser, trained on
the MLM task in a retrieval-friendly way. S, is
implemented both using an RNN model and a ST
model as described in Section 2. We denote by
RNN(, f) an RNN model with ¢ layers and f feed-
forward layers. ST(¢) is an ST model with ¢ layers.



Query encoder 95 Params MS-MARCO Natural Question

y P MRR@10 R@50 R@lk | R@5 R@20 R@100
BM25 - - 18.7 - 85.7 - 591 737
DPR 2681 110 - - - - 744 853
ANCE 26.81 110 33.0 - 95.9 - 81.9 875
coCondenser | 26.81 110 | 382 86.5 984 | 758 843 89

RNN(1,0) 070 274 35.5 82.6  97.0 | 6745 8036 8745
RNN(1,1) 107 321 36.2 83.8 978 | 67.64 8113  88.11
RNN(2,0) 110 309 36.1 841 978 | 6839 8041 8772
RNN(2,1) 165 356 36.5 84.6 979 | 6861 8124 8825
ST(1) 21 315 36.2 837 977 | 685 8119  88.03
ST(2) 444 386 37.2 856 983 | 69.88 8213  88.69
ST(3) 699 457 37.1 862 983 | 7094 8232  88.64
ST(4) 931 528 373 865 984 | 71.82 8315  88.86

Table 1: Online latency vs quality of different query encoder models. Number of parameters is reported in millions.
Online latency is measured in milliseconds and the p95 percentile is reported.

4.1 Main Results

Main results are provided in Table 1.8 Using a
small query encoder can indeed be very rewarding.
For example, on the MS-MARCO dataset reduc-
ing the query-encoder from the standard 12-layer
transformer to a 2-layer transformer drops latency
by ~ 6x for only a modest drop in the M RRQ10
score (from 38.2 to 37.2) and barely any change
in the Recall@1000 measure. On a different note,
in Figure 1 it can be seen that the RNN methods
are highly effective in extending the latency/quality
trade-off curve. While the smallest transformer can
reduce ~ 12X in latency compared to the base-
line with a drop from 38.2 to 36.2 in M RRQ@10
score, the smallest RNN model extends the drop in
latency to ~ 38 reaching 35.5 M RRQ10 score.
A similar trend can be seen in the results for NQ,
with a slight difference in behavior at the top and
bottom of the lists metrics. We further elaborate on
this topic in Section 4.2.

4.2 Fine-grained Topical Understanding

Table 2 compares the fine-grained topical under-
standing of our smallest architecture, RNN(1,0),
with that of coCondenser. As expected, the smaller
models are less capable in capturing more complex
nuances, affecting its R@k scores for small k-s.
Yet, it is interesting to note that its performance is
almost on-par with that of coCondenser for large k-
s, showing impressive coarse-grained understand-
ing. Another observation is that the performance

8For brevity, we report only the 95" percentile as the
latency measure in this table. Extended latency results and
measurements can be found in Appendix C, where it can be
seen that trends are kept across all percentiles.
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R@k | MS-MARCO  NQ

1 92% 88%
5 93% 89%
10 94% 93%
20 95% 95%
50 96% 96%
100 96% 98%

Table 2: Performance of RNN(1,0) measured in percent-
age w.r.t. the performance of coCondenser.

of the small models follow a similar trend on both
datasets, with some advantage in MS-MARCO at
small k-s and a slight advantage in NQ at large k-s.

4.3 RNNs Dependence on Query Length

A concern one might have regarding using RNN
models as query encoders, due to the recursive
inference process of RNNs, is that the encoding
quality will drop significantly for longer queries.

To measure whether quality drops (more than the
baseline) when the query becomes longer, we com-
puted the quality drop for each query by subtract-
ing the M RRQ10 score of an RNN model from
the score of the coCondenser baseline, computed
on the MS-MARCO dataset. We then compute
Pearson correlation between the score drop and the
query length. We found that the correlation is only
0.018 and 0.045 for the RNN(1,0) and RNN(2,0)
models respectively. These results suggest that the
RNN architecture is capable of computing qual-
ity embeddings even for the longer queries in the
dataset.



Epochs | MRR@10
| ST(2) | RNN(2,1)

0 34.1 31.5

5 37.2 36.5

10 37.3 36.6

15 37.3 36.7

Table 3: Pretraining effect.

model type  passage embeder ‘ MRR@10
RNN pretrained_coco 0.362
RNN fine-tuned_coco 0.353
transformer  pretrained_coco 0.372
transformer  fine-tuned_coco 0.362

Table 4: Starting the retrieval training from a trained/pre-
trained passage encoder model.

4.4 Ablation Study

We study some of the design decisions made when
training the models. Specifically, we discuss the
pretraining procedure and the teacher model used.

4.4.1 Pretraining

Table 3 shows that the pretraining procedure de-
scribed in Section 2.1 improves the MRR@10
scores. For the RNN-based models, pretraining
is especially important. This makes sense as pre-
trained RNN weights are not available for initial-
ization, as opposed to the transformer which is ini-
tialized from the first layers of a pretrained model.

4.4.2 Teacher Selection

Training S, relies on a teacher model. The main
results uses a pre-trained version of coCondenser
as the teacher 7%, which utilizes a self-supervised
MLM training. An alternative option would be to
utilize the fine-tuned coCondenser model, trained
on ground truth labels. On one hand, starting from
a well trained model may result in converging to
a better model, but on the other hand, it might
result in overfitting the training data. We report
results both on the RNN architecture (with 2 RNN
layers and without feed-forward layers) and the
transformer architecture (2 layers) in Table 4. It
can be seen that the encoders benefit from learning
the retrieval task simultaneously, as opposed to
starting the training from a well-trained passage
encoder and an untrained query encoder.
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5 Conclusions

In this paper, we point out that queries are signifi-
cantly shorter and simpler than passages, suggest-
ing that using similar architectures for both passage
and query encoders might be wasteful. Indeed, we
show that small transformer-based query encoders
improve latency with only a minor hurt to qual-
ity. We also introduce incremental inference with
RNN-based encoders, and show they produce an
even lower latency, better suited for cases where
latency is highly constrained. Again, we show this
improvement in latency comes with only a small
drop in the quality of the generated embeddings.

6 Limitations

While incremental inference with RNNs drops la-
tency significantly when running on CPUs this is
not the case when using GPUs. The overhead of
calling the GPU is high compared to the embedding
time; in addition, GPUs are not well optimized for
the RNN architecture. This means that the bene-
fit of the proposed method is limited. CPUs are
often used for retrieval as discussed in Section 1,
but there are cases where GPUs are used in which
RNN-based architectures are expected to give a
lesser gain.

Another limitation of our method is that it re-
quires running two training procedures. First, train-
ing a large encoder, and only after it is trained
we can start the pretraining and training procedure
of the smaller query encoder. Furthermore, since
training the query encoder involves inferencing pas-
sages (using a larger passage encoder) the training
time of a small model is very similar (~ 10 hours)
to the training time of the large transformer. Never-
theless, since online query encoding can run a vast
amount of time and the query encoder is trained
once, in most cases we believe this is a price worth

paying.
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A Tying the Passage and Query Encoders
Embeddings

In this section we provide justification for our deci-
sion to tie the token embeddings of the passage and
query encoders. This decision can be split into two;
For the transformer based models, that are loaded
from the first layers of some pretrained model, it
is not very significant. Experiments show that ty-
ing the embeddings has very small effect on these
models (e.g. for a 2-layer transformer M RR@10
results increase from 37.25 to 37.28). On the other
hand, we do not have available pretrained models
to initialize GRU-based models. Tying the embed-
dings allows us to transfer some of the knowledge
acquired during the pretraining of the transformers
to the GRU models. Further, if a dev query con-
tains a token that does not appear at all in the train
set, during testing on the dev set the token embed-
ding will be totally random, and the model will
not be able to correctly encode the query. Indeed,
experiments show that for the GRU-models tying
the embeddings is extremely important as without
doing so they have a hard time to converge.

B Training Procedure

This work does not focus on the training procedure
of the model. Thus, we chose to utilize the popular
training procedure of (Gao and Callan, 2022). For
completeness we provide the technical details of
their procedure in this section.

We assume we have at hand a pre-trained model.
The procedure starts by retrieving hard negative
examples using a model denote by 57 (described
below). Then, our model is trained for three epochs
and a batch size of 64 using a contrastive loss. We
used the AdamW optimizer with a 5e — 6 learning
rate and a linear learning rate schedule.

The model 5 is trained using the same training
procedure. It only differs in the set of negative
samples used. Specifically, when training 57 the
negative samples are retrieved by BM25.
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C Complete Latency Report

In Table 5 we give a full latency report. For each
model we report latency in milliseconds of 50,
90, 95 and 99 percentiles. We report both online-
latency (marked as pX) and full latency (marked as
pXf). Online and full latency differ only For RNN-
based models where online latency is considered
as latency when applying incremental inference
as described in Section 3. We measure latency
on a c6i.2xlarge EC2 machine featuring Ice Lake
processor with 8 hyperthreads. Each evaluation is
repeated 1020 times, and we discard the first 20 to
allow the model to warm up. We report the average
of the remaining runs. We note that utilizing a GPU
typically requires provisioning a separate machine
with a GPU. Since network latency is above 5ms,
this does not decrease the total inference cost, so
we avoid measuring it here.



Encoder Layers FF Layers ‘ Params ‘ p50 p90 p95 P99 ‘ pS0f  p9of  p95f  p99f
BERT 12 NA ‘ 110 ‘ 21.05 23.69 26.81 25098 ‘ 21.05 23.69 26.81 2598
GRU 1 0 274 043 058 070 0.84 1.2 .52 1.66 2.04
GRU 1 1 32.1 087 099 1.07 123 | 1.66 199 223 253
GRU 2 0 30.9 0.66 090 1.10 143 | 230 285 324 4.09
GRU 2 1 35.6 .19 149 165 197 | 284 360 3.89 4.67
Transformer 1 NA 31.5 1.6 191 210 229 1.6 191 210 229
Transformer 2 NA 38.6 353 4.03 444 470 | 353 403 444 470
Transformer 3 NA 45.7 569 623 699 783 | 569 623 699 7.83
Transformer 4 NA 52.8 748 823 931 933 | 748 823 931 933

Table 5: Full latency report.
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Abstract

Large Language Models (LLMs) excel in gener-
ating text but struggle with hallucinations, par-
ticularly for uncommon queries, due to reliance
on internal knowledge. Retrieval-augmented
models address this by integrating external
knowledge, enhancing accuracy. Nonetheless,
recent approaches have primarily emphasized
retrieval from unstructured text corpora, owing
to its seamless integration into prompts. When
using structured data such as knowledge graphs,
most methods simplify it into natural text, ne-
glecting the underlying structures. Moreover, a
significant gap in the current landscape is the
absence of a realistic benchmark for evaluat-
ing the effectiveness of grounding LLMs on
heterogeneous knowledge sources (e.g., knowl-
edge base and text). To fill this gap, we have
curated a comprehensive dataset that poses two
unique challenges: (1) Two-hop multi-source
questions that require retrieving information
from both open-domain structured and unstruc-
tured knowledge sources; retrieving informa-
tion from structured knowledge sources is a
critical component in correctly answering the
questions. (2) Generation of symbolic queries
(e.g., SPARQL for Wikidata) is a key require-
ment, which adds another layer of challenge.
Our dataset is created using a combination of
automatic generation through predefined rea-
soning chains and human annotation. We also
introduce a novel approach that leverages mul-
tiple retrieval tools, including text passage re-
trieval and symbolic language-assisted retrieval.
Our model outperforms previous approaches
by a significant margin, demonstrating its ef-
fectiveness in addressing the above-mentioned
reasoning challenges.

1 Introduction

LLMs have shown exceptional performance in
multi-hop question-answering (QA) tasks over text
(TextQA) (Rajpurkar et al., 2018; Kwiatkowski

* Work was done when the first author was a research
intern at Salesforce Research

Q: How many awards has the first person to walk on the moon
received?

A: 26

Multi-Hop Multi-Source Reasoning

Q1: Who was the first person to walk on the moon?

Al: Neil Armstrong (Supporting facts: [1], [2])

Q2: How many awards has Neil Armstrong received?

A2:26 (Supporting fact: [3])

Unstructured Knowledge .
Paragraph A, Moon landing Wikarepi
[1] This was accomplished with two US pilot-astronauts flying

a Lunar Module on each of six NASA missions across a
41-month period starting on 20 July 1969 UTC, with Neil
Armstrong and...

Paragraph B. Purdue University
[2] Neil Armstrong (the first person to walk on the moon)

Structured Knowledge |“ |I I

WIKIDATA

[3] ["Presidential Medal of Freedom","Order of the White
Elephant", "Cullum Geographical Medal", "National
Aviation Hall of Fame", ...] (In total 26 items)

SPARQL Query:

SELECT (COUNT (?item) AS ?count)

WHERE {wd:Q1615 wdt:P166 ?item.}

Figure 1: An example of the two-hop multi-source ques-
tions in DIVKNOWQA.

et al., 2019; Joshi et al., 2017; Trivedi et al.,
2022a; Yang et al., 2018; Ho et al., 2020), ta-
bles (TableQA) (Yu et al., 2018; Zhong et al.,
2017; Pasupat and Liang, 2015; Chen et al., 2019),
and knowledge-bases (KBQA) (Gu et al., 2021;
Yih et al., 2015; Talmor and Berant, 2018; Bao
et al., 2016), where the supporting fact is contained
in a single knowledge source — structured or un-
structured. However, in many real-world scenar-
i0s, a QA system may need to retrieve information
from both unstructured and structured knowledge
sources; failing to do so results in insufficient infor-
mation to address user queries.

While existing QA benchmarks provide di-
verse perspectives for evaluating models (Table 1),
they are limited in assessing the performance of
retrieval-augmented language models across het-
erogeneous knowledge sources in the following
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Table 1: Comparing benchmarks for heterogeneous
question-answering tasks. The column OpenR stands for
open information retrieval, Human for human-written
questions, EI for equitable importance of knowledge
sources, and SGT for structured ground truth.
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Dataset

HybridQA (Chen et al., 2021a)
OTT-QA (Chen et al., 2020)
NQ-Tables (Herzig et al., 2021)
TAT-QA (Zhu et al., 2021)
MultimodelQA (Talmor et al., 2021)
Manymodelga (Hannan et al., 2020)
FinQA (Chen et al., 2021b)
HetpQA (Shen et al., 2022)
CompMix (Christmann et al., 2023)
WikiMovies-10K (Miller et al., 2016)
MetaQA (Zhang et al., 2018)

DIVKNOWQA (Ours)

Text Table OpenR Human

NN %% % % % % x| T
NES SRS NN SN NN
RN R T NN N N NN N NN
N RN N
NAS SRS SN TR
x> XX Axx A%\

aspects: (1) Closed-book QA: Closed-book ques-
tions do not accurately reflect the real-world setting
where individuals generally have access to diverse
knowledge sources on the Internet; (2) Automati-
cally generated data: The lack of human verifi-
cation results in erroneous data; (3) Imbalanced
emphasis across different knowledge sources: Cur-
rent benchmarks feature knowledge sources with
varying levels of importance. Answers may be
found in multiple sources, leading models to priori-
tize textual sources while underutilizing structured
knowledge sources; (4) Suboptimal use of struc-
tured knowledge: Structured knowledge sources
are typically treated as textual sources by lineariz-
ing triplets from the knowledge base or rows/-
columns from tables, missing the opportunity to
fully realize the benefit of highly-precise structured
knowledge by probing them via symbolic queries.

Despite the inherent challenges, being able
to generate structured queries effectively can
offer a number of benefits. First, unlike a
query to retrieve text passages, the structured
query itself can share the responsibility of rea-
soning (Liu et al.,, 2022). For example, for
the question “How many awards has Neil
Armstrong received?”, to get an answer
from a knowledge base such as Wikidata (Vran-
deci¢ and Krotzsch, 2014), a SPARQL query (Pérez
et al., 2006) can use an aggregation function to
return the numerical number as the final result
as shown in Figure 1. In contrast, a text retriever
needs to locate all the relevant passages and rely
on a reader module to get the final result. The
commonly used readers often come with an in-
put length constraint. The number of returned pas-
sages could be too many to fit into the reader’s
context, causing a wrong answer. Even when the
context length is not an issue, even the best LLMs
have difficulties in locating the answer (Liu et al.,
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2023a). Besides, there is less room for ambigu-
ity in structured queries. For example, a dense re-
triever cannot easily distinguish between similar
song titles such as “I’11 be good to you”
and “I have been good to you” by differ-
ent singers. On the other hand, given the right iden-
tifier of the entity, the structured knowledge search
engine can return the relevant information for the
exact entity.

In this work, we propose DIVKNOWQA, a novel
fact-centric multi-hop QA benchmark that requires
models to utilize heterogeneous knowledge sources
equitably in order to answer a question. We per-
form the first study to assess the reasoning ability of
LLMs, via jointly exploiting open-domain QA over
heterogeneous knowledge sources. In particular, we
have chosen Knowledge Base (KB) as our primary
case study for the structured source, and we have
created a dataset comprising 940 human-annotated
examples. Additionally, each entry in our dataset
includes a corresponding symbolic SPARQL query
to facilitate the retrieval of information from the
KB. To generate the questions, we construct a ques-
tion collection pipeline comprising three key steps:
text-based QA sampling, KB question generation,
and question composition, all while minimizing the
need for human annotation efforts.

To set up a baseline, in addition to benchmark-
ing on standard and tool-augmented LLMs, we pro-
pose a Diverse rEtrieval Tool Augmented LLM
(DETLLM) to address the challenges posed by
DIivKNOWQA. DETLLM decomposes a multi-
hop question into multiple single-hop questions,
and adopts two novel strategies: (1) symbolic
query generation to retrieve supportive text from
a KB by transforming a single-hop natural ques-
tion into a SPARQL query, and (2) retrieval tool
design, which includes a textual retriever and a
symbolic query generation tool to recall relevant
evidence from heterogeneous knowledge sources.
Our method shows improvements of up to 4.2%
when compared to existing methods.

2 The DIVKNOWQA Dataset

2.1 Dataset Collection

Our goal is to create a method for generating com-
plex questions from diverse knowledge sources,
making each source indispensable; and we aim
to do so with a minimal human annotation effort.
Additionally, we wish to provide Wikidata entity
and relation IDs to support structured query-based
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2. Linking TextQA with KB

3. KB triplet selection

QI1: Who plays Mary
Poppins in Mary 1“
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Poppins in the work in
which

is present? .
Returns?)

Compose( In which work is

present?, Who plays Mary
Poppins in Mary Poppins

1. In which work is

present?
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6. Human verification

5. Using LLM to generate
multi-hop questions

4. Using LLM to generate
single-hop KB question

Figure 2: An overview of DIVKNOWQA data generation process.

knowledge retrieval. Figure 2 depicts our proposed
method. We first sample a single-hop text question
from the Natural Question dataset (Kwiatkowski
et al., 2019) as an anchor, to which we link to a
relevant Wikidata triplet. Then single-hop KB ques-
tions are generated based on the sampled triplets
thereby using the anchor question to automatically
compose a heterogeneous multi-hop question. Hu-
man annotators finally verify the quality of the
machine-generated question and rewrite the ques-
tion that needs revision. In the following, we elabo-
rate on the steps.

Natural Questions as Anchors The Natural
Question (NQ) dataset is a question-answering
dataset containing tuples of (question,
answer, title, passage),wheretitle
and passage are respectively the title of the
Wikipedia page and the passage containing the
answer. The questions in NQ were collected from
real-world user queries issued to the Google search
engine, and it contains 307K training examples.
We concentrate on constructing a multi-hop dataset
linked through the initial step’s single-hop answer.
To achieve this, we extract question-answer pairs
where the question contains a succinct answer of
up to 5 words to ensure the quality of the resulting
composed question.

Linking Natural Questions to Wikidata We
adopt the notion of bridge entity from Yang et al.
(2018) to describe the single-hop answer in the
initial step when breaking down a multi-hop
question. We explore two linking options, each
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involving a unique choice of bridging an entity
to connect the natural question to Wikidata.
We explain the options using the example
question “Who plays Mary Poppins in
Mary Poppins Returns?” with the answer
“Emily Blunt”. (a) Text — KB Approach: We
treat the answer “Emily Blunt” as the bridge
entity, and search for a Wikidata triplet where
“Emily Blunt” is the subject, for example,
(Emily Blunt, sibling, Felicity
Blunt). (b) KB — Text Approach: In this
alternative method, we recognize the question
entity that exists in Wikidata, in this case, “Mary
Poppins Returns”, as the bridge entity. For
simplicity, we only consider the entity mentioned
in the Wikipedia title. We then link to the
Wikidata triplet using it as the object, leading
to triplets such as “(William Weatherall
Wilkins, present in work, Mary
Poppins Returns)”

Selection of KB Triplets To maintain an equal
emphasis on both structured and unstructured
knowledge sources, we implement a meticulous
selection process for KB triplets to ensure that the
associated knowledge cannot be easily obtained
by merely retrieving information from the textual
source (Wikipedia passages). We retain triplets
(sub, relation, obj), where either the subject sub
is not linked to a Wikipedia page or the object obj
does not exist within the Wikipedia page associated
with the subject. This ensures that simply retriev-
ing the Wikipedia passage for the sub is unlikely
to yield an answer to a question involving sub and



obj, thereby requiring the model to utilize the KB.
Furthermore, when generating questions in the KB
— Text linking option, we selectively retain triplets
where only one object is associated with the given
relation and subject This approach ensures the com-
pleteness and uniqueness of the reasoning chain.
For example, given a composed question, “Who
plays Mary Poppins in Lin-Manuel Miranda’s no-
table work?”, “Mary Poppins Returns” is one of
the notable works from “Lin-Manuel Miranda”. By
querying KB given the subject “Mary Poppins Re-
turns” and the relation “notable work™, we will lo-
cate multiple answers rather than the single bridge
entity “Mary Poppins Returns”, posing a challenge
to infer the second sing-hop question “Who plays
Mary Poppins in Mary Poppins Returns?”.

Generating Single-Hop KB Questions We then
create single-hop questions from the selected
(sub, relation, obj) triplets. These questions are
designed to emphasize the relationship between
sub and obj, with obj being the expected answer.
For instance, for the KB triplet “ (Emily Blunt,
sibling, Felicity Blunt)”, we expect
to generate a question like “Who is the
sibling of Emily Blunt?”. For this, we
employ the gpt-turbo-3.5 LLM from Ope-
nAl; the prompt can be found in Appendix A.1.

Generating Heterogeneous Multi-Hop Ques-
tions In this stage, we wish to create a multi-hop
question by composing a textual question and a KB
question. We generate such heterogeneous ques-
tions by carefully chaining two single-hop ques-
tions together. DIVKNOWQA supports three ques-
tion types: short entity, yes/no, and aggregate ques-
tions, and two question composition orders: Text
— KB and KB — Text. This combination results in
a total of five question types, as we construct aggre-
gate questions following only the Text — KB order.
We employ gpt-turbo-3.5 as a question com-
poser to connect two single-hop questions. This is
achieved by substituting the entity mentioned in the
outer question with a rephrased version of the first
question. The prompt for generating the multi-hop
questions is given in Appendix A.2. Our generation
method for different question types is discussed as
follows.

Short Entity Question We use a factoid entity as
the final answer. The final answer can be the object
from Wikidata or the factoid answer from NQ.
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Yes/No Question In contrast to Short Entity ques-
tions, Yes/No questions involve an additional step.
Initially, the original question is reformulated into
a verification-style question typically starting with
phrases like “Is/Was/Were/Does/Do/Did”.
This new question includes a candidate answer for
verification purposes. For instance, let’s consider
the original question “What grade were
they in High School Musical 17?7
with a known answer of “juniors”. To create
a verification question, we might rephrase it as
“Were they seniors in High School
Musical 17?7 and include the verifying answer
“seniors” within the question. Generating
the candidate answer for verification can be a
complex task as it requires choosing a verifying
answer that aligns well with the context of
the question. Sampling incorrect distractors as
verifying answers is also a part of the process.
These distractors should be incorrect but closely
related to the answer, and they are generated by
prompting gpt-turbo-3.5. This approach
ensures that the verification process is robust and
accurate, preventing situations where the verifying
answer deviates from the question’s context and
potentially leads to a simplistic answer “no”
during evaluation.

Aggregate Question We formulate aggregating
questions in the “Text — KB” composition
order, where the outermost question pertains to
counting the number of associated triplets based
on the given subject and relation. For instance,
the outermost question “How many awards
does Milton Friedman receive?”
arises from the KB triplets of the form (Milton
Friedman, award received, award
name) ” with 10 such award name objects. In
such cases, we leverage the aggregate feature
offered by the structural query (i.e., SPARQL).

2.2 Human Annotation

We recruited five individuals, three undergraduate
and two graduate students with experience in the
field of NLP for data verification and annotation.
Each question underwent a verification and rewrit-
ing process involving two annotators. To mitigate
any potential annotation bias, we presented each
question to both annotators, with the order of ex-
amples shown to annotators randomized. Annota-
tors were tasked with assessing the quality of KB
question generation, and they had three options



to choose from: “Accept”, “Revise”, or “Reject”.
When a question required revision, annotators were
instructed to make modifications while preserving
the focus on the subject and relation and keeping
the answer unchanged. Additionally, they were re-
sponsible for evaluating the quality of complex
questions and providing necessary revisions. The
instruction provided to human annotators is shown
in Appendix A.4. Annotators were duly compen-
sated for their valuable contributions to our study.
Out of 1,000 examples that were annotated, 757
examples received unanimous approval, 183 under-
went revisions, and 60 were rejected. Both unan-
imously accepted and revised examples were in-
cluded in the dataset.

2.3 Dataset Statistics and Analysis

In this section, we analyze the question types and
KB single-hop relation types in DIVKNOWQA.

Question Central Word Taking inspiration
from (Yang et al., 2018), we designate the first
three words of a question as the Center Question
Words (CQW). We adopt this approach because
our questions typically do not contain comparison
queries, and a majority of question words are found
at the beginning of the question. Due to the page
limit, Figure 4(a) in Appendix A.6 provides a visual
representation of CQW in DIVKNOWQA.

KB Relation Types We also analyze the distri-
bution of relations by counting the frequency of
different relations that appear in the KB triplets
used to construct the single-hop KB questions. Due
to the page limit, Figure 4(b) in Appendix A.6 fea-
tures the distribution of diverse relations.

Anecdotal Examples for Representative Types
Due to the length limit, in Appendix A.7, Table 7
presents illustrative examples drawn from the DI-
VKNOWQA benchmark for each of our five ques-
tion composition types. These examples serve to
showcase how our dataset necessitates information
retrieval from diverse sources in varying orders.
Additionally, they highlight that the answer types
require models to perform tasks such as answer
span extraction, candidate answer verification, and
information aggregation based on relevance.

3 DETLLM: Diverse Retrieval Tool
Augmented LLM

We now introduce our diverse retrieval tool aug-
mented LLM (DETLLM) and show its promising
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capability on the proposed DIVKNOWQA bench-
mark by unifying the retrieval ability from the struc-
tured and unstructured knowledge sources.

To tackle a complex question, we follow the
chain-of-thought (CoT) framework (Wei et al.,
2022) to decompose a complex question into single-
hop questions where each single-hop question is
knowledge-intensive, requiring supportive fact re-
trieval from a knowledge source.

We design a retrieval tool capable of retriev-
ing from heterogeneous knowledge sources. For
unstructured text knowledge, a dense passage re-
triever (Izacard et al., 2022) is employed to retrieve
relevant passages. For structured knowledge, we
consider two modalities of structured knowledge to
maximize the relevant information coverage. First,
we transform the structured data into text passages
by linearizing the relation triplets into passages
in which case a sparse text retriever can be used
to detect similar sources. Second, we propose a
symbolic query generation module to map a nat-
ural language query to a structured query (e.g.,
SPARQL) to directly query against the KB (e.g.,
Wikidata). The benefits are twofold: (1) pinpointing
precise knowledge, and (2) leveraging the compo-
sitionality of the query language and reducing the
mere reliance on the language model’s reasoning
responsibility. Figure 3 shows the DETLLM flow
for querying an LLM.

3.1 Question Decomposition and Planning

Our approach to answering a complex multi-hop
question is inspired by the conceptual framework
of DSP (Khattab et al., 2022). When dealing with
a question that involves n hops, we query the LLM
n times to generate retrieval queries and retrieve
information from a knowledge source. The final
query is used to ultimately arrive at the final an-
swer, utilizing the retrieved passage to answer the
last single-hop question. This process results in a
total of n + 1 interactions with the LLM. At the
j-th LLM prompting, the LLM’s task is to utilize
the previously retrieved information to answer the
j — 1 single-hop question. It then dissects the origi-
nal question () into the j-th subsequent single-hop
questions ¢;, which serve as a retriever query to
gather information from a knowledge source.

3.2 Multi-Source Knowledge Retrieval

In addressing the single-hop questions, our ap-
proach entails searching across diverse knowl-
edge sources to gather supporting facts. To an-
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Armstrong and...
[2]Neil Armstrong(the first person to walk on
the moon) ...

Linearized Triplets

[3] Neil Armstrong; Description; Armstrong was
an American astronaut and the first person to
walk on the Moon. ...

[4] John Young; Spaceflight Astronaut Missions;
Apollo 16. ...

SPARQL
None

received? .
9D M <
Paragraph

WikirioiA  WIKIDATA
[1] She was the first female newscaster on
television in Los Angeles and the West Coast
She has received many awards and honors...
[2] Apollo 11 was the spaceflight that landed
the first two people on the Moon. Commander
Neil Armstrong and Lunar Module ...

Linearized Triplets

[3] Neil Armstrong; Award Received Silver
Buffalo Award. Neil Armstrong; Award
Received; Livingstone Medal. ....

[4] Neil Armstrong; Award Received; Air Medal
. Neil Armstrong; Award Received; Collier
Trophy. ...

SPARQL
SELECT (COUNT(?award) as ?count)
WHERE { wd:Q1615 wdt:P166 ?award. }

Rationale: Neil Armstrong was the first person to
walk on the moon and he has received 26 awards.

\.

®

Answer: 26

Figure 3: The illustration of DETLLM to instruct LLMs for addressing multi-source multi-hop questions.

swer the subsequent single-hop question g;, we
begin by having the LLM generate semanti-
cally diverse queries, denoted as Query; =
{query{, A query{ }. We set the LLM decoding
temperature to 0.7 to sample diverse queries.

In our approach, we treat unstructured and struc-
tured knowledge separately and retrieve relevant
information from both knowledge sources. As men-
tioned, for unstructured knowledge, we use a dense
retriever Contriever (Izacard et al., 2022) to re-
trieve relevant passages, while for structured knowl-
edge, we retrieve relevant information from both
textual and structured formats. The preparation of
the textual knowledge base involves linearizing KB
triplets (sub, relation,obj) into a string format
“sub relation ob7j” after which we create a
retrieval index for efficient passage retrieval using a
sparse text retriever BM25 (Robertson et al., 2009).
The Contriever, trained on natural language corpus,
is adaptable to unstructured knowledge but strug-
gles when faced with linearized structured knowl-
edge because it lacks natural language formatting.
In contrast, the sparse retriever BM25 performs bet-
ter with structured knowledge by using a keyword-
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Table 2: Answer and Sub-Step Retrieval Accuracy on
DIVKNOWQA.

EM Fl1 Recall HI-R H2-R
Vanilla Prompt  26.0 283 26.8 422 -
ReAct 16.1 184 190 - -
DSpP 279 31.0 312 576 412
DETLLM (our) 321 357 356 701 47.1

based search methodology. We show the ablation
study in Section 4.3.

In addition, we generate SPARQL queries to exe-
cute against the Wikidata engine to retrieve further
relevant information. Our retrieval tool thus com-
prises three components: a sparse retriever, a dense
retriever, and a symbolic query language genera-
tion module. These elements collectively enable
the comprehensive retrieval of information from
heterogeneous knowledge sources.

3.3 Multi-Source Knowledge Ranking

To consolidate the retrieved information obtained
from the tool, we perform a ranking of information
from various knowledge sources. The goal is to se-



lect the top-k most relevant pieces of information.
This selection is necessary because of the inher-
ent length constraint of the language model, which
prevents us from incorporating all the retrieved
information into the prompt. To achieve this rank-
ing, our approach leverages the off-of-shelf cross-
encoder model (Reimers and Gurevych, 2019) to
assess the relevance of each piece of retrieved in-
formation in the context of a single-hop question.
We use the sentence-transformers pack-
age implementation with the model checkpoint
cross—encoder/ms-marco-MiniLM-L-6
—v2.!

4 Benchmarking

4.1 Experimental Setup

Baselines (1) ChatGPT (OpenAl, 2023):
We employ OpenAl's ChatGPT model
(gpt—-3.5-turbo) by single-step query in-
putting the question and retrieved-context and
obtaining its response as the final answer. (2)
DSP (Khattab et al., 2022): We apply the
demonstrate-search-predict framework to it-
eratively address complex QA tasks with the
assistance of retrieved context. (3) ReAct (Yao
et al., 2023): It leverages a synergistic approach,
combining reasoning with tool usage. It involves
verbally generating a reasoning trace and issu-
ing the necessary commands to invoke a tool,
which then takes action accordingly. We use
gpt—-3.5-turbo as the backbone model.

Evaluation Metrics To assess the accuracy and
relevance of various models for factoid questions,
we rely on established metrics. We report the exact
match and F1 score for final answer quality, follow-
ing the methodology of (Yang et al., 2018). Besides,
we report the Recall score indicating whether the
ground-truth answer is a substring in prediction
since LLM may generate extra information. In ad-
dition, we report the retrieval accuracy for each
decomposed single-hop question denoted as H1-R
and H2-R for the two-hop question.

Implementation Details To ensure a comprehen-
sive and equitable comparison, we offer baseline
model access to both structured knowledge and un-
structured knowledge as retrieval sources. In the
case of the baseline model, the KB is converted
into linearized passages, which are then combined

1
sentence-transformers:
sbert .net/

https://www.
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Table 3: Ablation study on the retrieval strategy.

EM Fl Recall HI-R H2-R

w/o SPARQL

Text-KB(Sparse) 279 31.0 312 57.6 412
Text-KB(Dense) 22.7 26.1 269 549 320
Text(Sparse)-KB(Sparse) 26.4 29.8 30.2 60.0 41.2
Text(Dense)-KB(Sparse) 30.7 35.0 355 689 46.8
w/ SPARQL

Text-KB(Sparse) 28.8 31.9 329 58.0 429
Text-KB(Dense) 31.2 347 359 643 426
Text(Sparse)-KB(Sparse) 28.5 31.8 32.0 615 42.1
DETLLM (our) 32.1 357 356 701 471

with the unstructured knowledge, creating a uni-
fied source for retrieval. We use BM25 (Robert-
son et al., 2009) and Contriever (Izacard et al.,
2022) as sparse and dense retrieval tools respec-
tively. Unless specified otherwise, we experiment
with a few-shot prompt that includes three human-
annotated demonstrations along with task instruc-
tions to guide the model generation process.

4.2 Main Results

Comparing with State-of-the-Art LLLMs Table 2
presents the model performance results on the DI-
VKNOWQA. ReAct exhibits lower performance
compared to the Vanilla prompt. The retrieval tool
created for ReAct is specialized for querying un-
structured knowledge. As the presence of irrele-
vant passages distracts the LLM (Chen et al., 2023;
Mallen et al., 2023), the iterative reasoning accu-
mulates errors, leading to less accurate answers.
Conversely, DSP outperforms both Vanilla Prompt
and ReAct, thanks to its robust search module de-
signed to engage with frozen retrievers. DSP en-
hances a single retrieval query into multiple queries,
employing a fusion function to rank candidate pas-
sages and identify the most relevant one. However,
the search module cannot effectively retrieve struc-
tured knowledge. Our model stands out as the top-
performing model, demonstrating its capability to
generate symbolic language for retrieval from struc-
tured knowledge.

Retrieval Performance Table 2 also presents the
single-step retrieval accuracy. Among the base-
line methods, comparing single-step generation
e.g. Vanilla Prompt with the multi-step genera-
tion e.g. ReAct and DSP, the retrieval accuracy
increases due to the decomposed query from the
multi-step generation process. On the other hand,
the DETLLM shows stronger retrieval performance
compared to DSP due to the careful retrieval tool



Table 4: Comparison between the closed book setting
and open domain retrieval.

Table 5: Breakdown Analysis on SPARQL generation.

QID QID+REL QID*

EM Fl Recall HI1-R H2-R
Closed Book 30.2 33.8 31.2 - -
DETLLM 32.1 357 35.6 70.1  47.1

design, the unstructured and structured knowledge
is treated separately. This finding underscores the
importance of having a robust retrieval strategy to
provide reliable and focused information, ground-
ing the LLM on relevant supportive facts.

4.3 Discussion

Ablation Study Table 3 presents the results of
an ablation study involving three key factors: a) the
integration of heterogeneous knowledge sources,
b) the choice between dense and sparse retrievers,
and c) the incorporation of SPARQL. Our find-
ings indicate that optimal performance is achieved
when handling heterogeneous knowledge sources
separately, combined with careful retriever tool se-
lection. The unsupervised dense retriever (i.e., Con-
triever), trained on natural language corpus, demon-
strates adaptability to unstructured knowledge but
loses its advantage when dealing with linearized
structured knowledge due to the absence of natu-
ral language formatting. Conversely, the sparse re-
triever BM25 performs better on structured knowl-
edge, relying on keyword-based search methodolo-
gies. Furthermore, the SPARQL tool consistently
outperforms its counterparts in all settings, show-
casing improvements regardless of the integration
of knowledge sources and the choice of retriever.

Comparing with Closed-book LLM Table 4
presents a comparison between DETLLM and
LLM performance in the closed-book setting,
where no external knowledge is accessible. We
demonstrate that DETLLM exhibits improvements
in scenarios distinct from the closed-book setting.
We observe that only 50.8% of examples answered
correctly by our DETLLM are also present in the
closed-book setting, highlighting the orthogonal
performance of DETLLM compared to the closed-
book setting. The combination of correctly an-
swered examples accounts for 45.4% of the entire
dataset. One plausible hypothesis is that the closed
book setting enables the LLLM to access knowledge
stored in its memory, reducing the impact of re-
triever errors. We also suggest a potential research
direction, which involves designing a strategy to

58

Text-KB(Sparse) 26.5 22.4 6.91
Text-KB(Dense) 31.8 27.6 7.87
Text(Sparse)-KB(Sparse) 26.3 22.6 7.34
Text(Dense)-KB(Sparse)  29.7 26.5 7.66

switch between the closed book setting and open
domain retrieval to achieve optimal performance.

SPARQL Generation Analysis Symbolic lan-
guage generation is an essential tool, which is ex-
ecuted against the Wikidata engine to assist with
structured knowledge retrieval. We provide a de-
tailed breakdown analysis of SPARQL generation
in Table 5. “QID” represents the percentage of ex-
amples with entity IDs correctly linked to Wiki-
data. Additionally, we present the percentage of
examples linked to the Wikidata in terms of both
entity IDs and relation IDs denoted as “QID+REL”.
The last column, labeled “QID*”, showcases the
percentage of examples with great potential for ac-
curate identification through entity disambiguation.
In our experimental process, we first identify the
entity name from the decomposed question as a re-
triever query and then link the entity from the query
to Wikidata. The returned results provide a list of
candidate Wikidata entities, from which we select
the most semantically similar one by computing
the similarity between the query and the entity’s
description. The displayed number reveals that this
heuristic entity disambiguation process fails to rec-
ognize those examples that actually contain the
correct entity ID within the candidate list. This
highlights a potential avenue for further improving
model performance.

Establishing Oracle Performance In Table 6,
we present the experimental results obtained using
Oracle information. In these experiments, we grant
the model access to ground-truth passages from the
Oracle Text and linearized KB triplets from the KB
Oracle. A notable observation is the comparison
between Text Oracle and KB Oracle. We find that
KB Oracle exerts a more significant influence on
the final results. This is because structured knowl-
edge contains long-tail knowledge, showing the
necessity to effectively explore structured knowl-
edge. Furthermore, when both Text and KB Ora-
cle sources are provided, the model’s performance
reaches an Exact Match (EM) rate of 48.7%, high-
lighting the necessity of each knowledge source.
In comparison to our current established results



Table 6: Experiment results using Oracle knowledge
source retrieval in each sub-step.

EM Fl Recall HI-R H2-R
Oracle_Text 26.8 31.3 334 964 51.7
Oracle_ KB  38.1 40.0 422 100.0 62.1
Oracle_All 48.7 522 528 100.0 96.7

from DETLLM, this benchmark reveals substantial
room for the research community to further explore
and improve upon.

5 Related Work

5.1 Assessing the Reasoning Ability of LLMs

LLMs (Brown et al., 2020; Touvron et al., 2023;
Nijkamp et al., 2023) have exhibited notable ad-
vancements in their capabilities, particularly in the
domain of reasoning skills. These skills encom-
pass various categories, including inductive reason-
ing (Wang et al., 2023; Yang et al., 2022), deduc-
tive reasoning (Creswell et al., 2023; Han et al.,
2022), and abductive reasoning (Wiegreffe et al.,
2022; Lampinen et al., 2022), depending on the
type of reasoning involved. Current research ef-
forts have predominantly focused on evaluating
LLMs in the context of open-ended multi-hop de-
ductive reasoning. These scenarios involve com-
plex question-answering tasks (Yang et al., 2018;
Gu et al., 2021; Trivedi et al., 2022b; Liu et al.,
2023c) and fact-checking (Jiang et al., 2020). No-
tably, our work contributes to this landscape by
introducing an additional layer of complexity: the
integration of multi-hop and multi-source reason-
ing. In our approach, we retrieve supporting facts
from heterogeneous knowledge sources, further en-
hancing the challenges posed to LLMs in this de-
ductive reasoning context.

5.2 Retrieval-Augmented LLMs

Retrieval-Augmented Large Language Models
(RALLMs) are semi-parametric models that inte-
grate both model parameters and a non-parametric
datastore to make predictions. RALLMs enhance
LLMs by updating their knowledge (Izacard et al.,
2023; Khandelwal et al., 2020; Yavuz et al., 2022;
Mallen et al., 2023), providing citations to support
trustworthy conclusions (Menick et al., 2022; Gao
et al., 2023). RALLMSs can retrieve information in
an end-to-end fashion within a latent space (Khan-
delwal et al., 2020, 2021; Min et al., 2023), or they
can follow the retrieve-then-read paradigm, lever-
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aging an external retriever to extract information
from textual sources (Ram et al., 2023; Khattab
et al., 2022). Recent work (Zhao et al., 2023, 2021;
Liu et al., 2022, 2023b) have explored methods for
anchoring language models to essential knowledge
sources, aiming to enhance the language models’
capacity to utilize and incorporate relevant infor-
mation effectively. Our approach adheres to the
retrieve-then-read paradigm, with a specific empha-
sis on multi-source retrieval, advocating for struc-
tured knowledge retrieval through symbolic gener-
ation.

6 Conclusion

We introduce the DIVKNOWQA, designed to eval-
uate the proficiency of question-answering sys-
tems, especially those enhanced by retrieval tools,
in addressing knowledge-intensive questions with
a strong emphasis on multi-hop multi-source re-
trieval. This dataset is constructed through auto-
mated data generation and subsequent human ver-
ification, minimizing manual effort. Our evalua-
tion encompasses both standard LLMs and LLMs
augmented with retrieval tools. Notably, we iden-
tify that this task presents a new challenge for
state-of-the-art models due to the demand for struc-
tured knowledge retrieval and the inherent lack
of prior knowledge in this context. To tackle this
challenge, we propose the DETLLM, which incor-
porates diverse retrieval tools including innovative
symbolic query generation for retrieving informa-
tion from the structured knowledge source. In the
future, we are keen on enhancing LLMs’ capabili-
ties in understanding and generating symbolic lan-
guage, as well as exploring methods to improve
performance on knowledge-intensive and complex
question-answering tasks.

Limitations

One limitation of our proposed DETLLM is that
the retrieval tool is used in each decomposed
single-hop question-answering step. A further step
involves investigating when the large language
model truly requires retrieval knowledge, rather
than invoking the tool at every step. Recent re-
search (Mallen et al., 2023) has indicated that
LLMs derive substantial benefits from general do-
main knowledge but may encounter challenges
when dealing with long-tail knowledge because
LLMs’ memorization is often limited to popular
knowledge. Future work can address the issue of



uncertainty in LLMs’ reliance on retrieval tools,
aiming to optimize tool usage efficiently and estab-
lish trustworthiness in the process.

Another limitation is the need to explore the im-
pact of extended prompts on retrieval-augmented
language models. Recent research has revealed that
LLMs can be susceptible to recency bias (Liu et al.,
2023a). Furthermore, a study (Peysakhovich and
Lerer, 2023) indicates that documents containing
the ground truth answer tend to receive higher at-
tention, suggesting that reordering documents by
placing the highest-attention document at the fore-
front can enhance performance. Thus, an avenue
for further investigation of whether document re-
ordering strategies, based on attention mechanisms,
can be employed to improve retrieval-augmented
LM performance on multi-source multi-hop QA
task.
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A Appendix

A.1 Single-Hop Knowledge Base Question
Generation Prompt

Prompt 1: Single-Hop Knowledge Base Question Gen-
eration

Instruction: Question generation given
the following information:

1) Answer

2) Short relation between the question
entity and the answer

3) Question entity .

IMPORTANT: The answer must be avoided
in the question.

Answer: Jacques Boigelot;

Relation: director;

Question Entity: Peace

Question: Who directs
Fields?

in the Fields;
Peace in the

Answer: Academy Award for Best Sound
Mixing;

Relation: award received;

Question Entity: Douglas Shearer;

Question: Which award does Douglas
Shearer receive?

Answer: Rio de Janeiro;

Relation: place of birth;

Question Entity: David Resnick;
Question: Where was David Resnick born?

A.2 Multi-Hop Complex Question Generation
Prompt

Prompt 2: Multi-Hop Complex Question Generation

Instruction:
questions
given:

1) Hopl question

2) Hopl answer

3) Hop2 question.

Compose 2 single —hop
into a 2-hop question

Hopl question: Who said a rose by any
other name would smell just as
sweet?

Hopl answer: Juliet
Hop2 question: What is
death of Juliet?
Composed question: What is the cause of
death of the person who said a rose
by any other name would smell just

as sweet?

the cause of

Hopl question: Who hosted The Price Is
Right before Bob Barker?

Hopl answer: Bill Cullen

Hop2 question: What is the medical
condition of Bill Cullen?

Composed question: What is the medical
condition of the person who hosted
The Price Is Right before Bob
Barker?



Hopl question: Who wrote If You Go Away

on a Summer’s Day?

Hopl answer: Rod McKuen

Hop2 question: Which record company
does Rod McKuen own?

Composed question: Which record company
does the person who wrote If You Go
Away on a Summer’s Day own?

A.3 Benchmark Prompt

To use the DETLLM method and generate the fi-
nal answer, three steps are followed: (1) First-hop
prompting, (2) Second-hop prompting, and (3) Fi-
nal answer generation. The prompt for each stage
is provided below. For simplicity, we denote the k

retrieved passages as “Context: [[1] ... [k]]”.

Prompt 3: First Hop

Write a search query, query entity , and
SPARQL that will help answer a
complex question.

Follow the following format.

Context: ${sources that may contain
relevant content}

Question: ${the question to be answered}

Rationale: Let’s think step by step.
Based on the context, we have
learned the following.
${information from the context
provides useful clues}

Search Query: ${a simple question for
seeking the missing information}
Query Entity: ${query entity name from

search query}

SPARQL: ${SPARQL query used to query
against Wikidata}

that

Example 1

Context:

Question: What are the occupations of
the person who holds the most
women’ s Wimbledon titles?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. Decompose
the question to answer the
following single —hop questions. 1.
Who holds the most women’s
Wimbledon titles? 2. What are
occupations of this person

Search Query: Who holds the most
women’ s Wimbledon titles?

Query Entity: women’s Wimbledon titles

SPARQL: None

the

Example 2

Context:

Question: Which bay is the name of
David Resnick’s place of birth?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. Decompose
the question to answer the
following single —hop questions. 1.
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Where was David Resnick born? 2.
Which bay is the name of this place

Search Query: Where was David Resnick
born?

Query Entity: David Resnick

SPARQL: SELECT ?place WHERE {wd:Q962183
wdt: P19 ?place.}

Example 3

Context:

Question: Is the person who directed
the film The Shape of Water a
member of the Writers Guild of
America, West?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. Decompose

the question to answer the
following single —hop questions. 1.
Who directed the film the shape of

water? 2. Is the person the person
a member of the Writers Guild of
America, West?

Search Query: The director of the film
The Shape of Water
Query Entity: The Shape of Water
SPARQL: SELECT ?name WHERE
{wd: Q26698156 wdt:P57 ?name.}

Target Question

Context:

Question: How many organizations is the
26th president of the United States
a member of?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. Decompose
the question to answer the

following single —hop questions. 1.
who is the 26th president of the
United States? 2. How many
organizations is this person a

member of?

Search Query: 26th president of the
United States

Query Entity: None

SPARQL: None

Prompt 4: Second Hop

Write a search query, query entity , and
SPARQL that will help answer a
complex question.

Follow the following format.

Context:${sources that may contain
relevant content}

Question: ${the question to be answered}

Rationale: Let’s think step by step.
Based on the context, we have
learned the following.
${information from the context
provides useful clues}

Search Query: ${a simple question for
seeking the missing information}
Query Entity: ${query entity name from

search query}

SPARQL: ${SPARQL query used to query
against Wikidata}

that



Example 1

Context:[[1] [k1]

Question: What are the occupations
the person who holds the most
women’s Wimbledon titles?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. Wimbledon is
a tennis tournament, and tennis
player Martina Navratilova holds
the most women’s Wimbledon titles .
The second step is to answer what
are the occupations of this person.

Search Query: What are the occupations
of Martina Navratilova?

Query Entity: Martina Navratilova

SPARQL: SELECT ?name WHERE {wd:Q54545
wdt:P106 ?name. }

of

Example 2

Context:[[1] [k1]

Question: Which bay is the name of
David Resnick’s place of birth?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. David
Resnick was born in Rio de Janeiro.
The second step is to answer which
bay is the name of Rio de Janeiro?

Search Query: which bay is the name of
Rio de Janeiro?

Query Entity: Rio de Janeiro

SPARQL: None

Example 3

Context:[[1] [k]1]

Question: Is the person who directed
the film The Shape of Water a
member of the Writers Guild of
America, West?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. The Shape of
Water is directed by Guillermo del
Toro. The second step is to answer
is the person a member of the
Writers Guild of America, West

Search Query: the organization
Guillermo del Toro is in

Query Entity: Guillermo del Toro

SPARQL: SELECT ?name WHERE {wd:Q219124
wdt: P463 ?name.}

Target Question

Context:[[1] [k1]

Question: How many organizations is the
26th president of the United States
a member of?

Rationale: Let’s think step by step.
Based on the context, we have
learned the following. The 26th
president of the United States is
Theodore Roosevelt. The second step
is to answer how many organizations
he is a member of.

Search Query: How many organizations is
Theodore Roosevelt a member of?

Query Entity: Theodore Roosevelt

SPARQL : SELECT (COUNT(?organization)
as ?count) WHERE { wd: Q33866
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wdt:P463 ?organization. }

Prompt 5: Final QA Step

Answer questions with short factoid
answers .

Follow the following format.

Context:${sources that may contain
relevant content}

Question: ${the question to be answered}

Rationale: Let’s think step by step.
${a step-by—step deduction that
identifies the correct response,
which will be provided below}

Answer: ${a short factoid answer,
between 1 and 5 words}

often

Example 1
Context: [[1] [kT]
Question: What are the occupations of

the person who holds the most
women’ s Wimbledon titles?

Rationale: Let’s think step by step.
Martina Navratilova is a tennis
player, writer, novelist, and
autobiographer.

Answer: tennis player, writer,
novelist , and autobiographer

Example 2

Context: [[1] [k]]

Question: Which bay is the name of
David Resnick’s place of birth?
Rationale: Let’s think step by step.
David Resnick was born in Rio de
Janeiro, and "Rio de Janeiro" was
the name of Guanabara Bay.
Answer: Guanabara Bay

Example 3

Context:[[1] [k11]

Question: Is the person who directed
the film The Shape of Water a
member of the Writers Guild of

America, West?

Rationale: Let’s think step by step.
Guillermo del Toro Gomez is a
filmmaker , he is a member of the
Writers Guild of America, West.

Answer: yes

Target

Context:[[1] [k11]

Question: How many organizations is the
26th president of the United States
a member of?

Rationale: The 26th president of the
United States was Theodore
Roosevelt. He is a member of 5
organizations .

Answer: 5

A.4 Human Annotation Instruction

We show the instructions and annotating exam-
ples provided to human annotators to annotate the
dataset as below.



Overall Instruction The goal of the annotation
is to judge and revise the complex question chained
by two single-hop questions. To complete this goal,
you need to do the following two tasks:

* Judge and revise the single-hop question gen-
erated from the knowledge base triplet.

* Judge and revise the composed complex ques-
tion.

Task 1 Given a triplet (subject, relation, object)
and a machine-generated question as shown below,
you need to judge the quality of the generated ques-
tion and whether it is acceptable, needs revision, or
is rejected. If the question can be revised, please re-
vise the question rather than reject it. If the question
is too poor to revise, reject the question.

Triplet: (LeBron James; child; [Bryce
James, Zhuri James, Bronny James])
Question: How many children does LeBron

James have?

An accepted triplet question should satisfy the
following criteria:

* The question focuses on the subject w.r.t rela-
tion.

* The question should sound natural and fluent.

» The answer to the generated question should
be the object, thus the object cannot be shown
in the question.

Task 2 Judge and revise the composed complex
question given the following information. If the
question can be revised, please revise the question
rather than reject it. If the question is too poor to
revise, reject the question and choose the reason
for rejection.

Below is a list of provided information:

* Two single-hop question-answer pairs:
“(Question 1, Answer 1)” and “(Question 2,
Answer 2)”.

* The bridging entity “Bridge Entity” that
chains two single-hop questions together.

* Machine generated composed question “Com-
posed Question”.

Question 1: Who is the highest-paid
athlete in the NBA

Answer 1: LeBron James

Question 2: How many children does
LeBron James have?
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Answer 2: [3, three]

Bridge Entity: LeBron James

Composed Question: How many children
does the highest—paid athlete in
the NBA have?

An accepted question should meet the following
criteria:

* The composed question must be constructed
using two single-hop questions, with the an-
swer to the first question becoming the subject
of the second question.

* Ensure that the composed question does not
reveal the answer itself.

* Use ‘Answer 2’ as the answer to the composed
question.

If you choose to reject the question, please select
one of the following reasons. If your reason is not
listed, choose *Other’ and include a comment.

* Circular question: Two single-hop questions
are the same question.

* Bridge entity answer leaking.
* Final answer leaking.

* Change in the original meaning of single-hop
questions.

e Other.

An overview of DETLLM data
generation process

AS



(a) Types of questions. (b) Types of KB relations.

Figure 4: Types of (a) questions, and (b) KB relations, covered in DIVKNOWQA.
A.6 Dataset Analysis
The stats of the dataset are shown in Figure 4.

A.7 Anecdotal Examples for Representative
Types

Anecdotal Examples for Representative Types are
shown in Table 7.
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Table 7: Types of multi-hop reasoning required to answer questions in DIVKNOWQA. Two single-hop questions

are shown: TextQA is sampled from NQ, and is generated using the sampled
D1vKNOWQA is based on those two single-hop questions.

. The question from

Order Type %  Example

TextQA: Who is Rafael Nadal married to?
Answer: Maria Francisca Perell6
: (Rafael Nadal, spouse, Marfa Francisca Perell6)
short entity | 20.3 : Who won the Men’s US Open 2017?
: Rafael Nadal

Answer: Maria Francisca Perello

DIVKNOWQA: Who is the person married to the winner of the Men’s US Open 2017?

TextQA: Who sang When the Lights Went Out in Georgia?
Answer: Vicki Lawrence
: (Vicki Lawrence, hair color, red hair)
Text — KB yes/no 17.9 : What is Vicki Lawrence’s hair color?
: red hair

Answer: no

DIVKNOWQA: Is the hair color of the singer of "When the Lights Went Out in Georgia" gray?

TextQA: who does Meg ’s voice on Family Guy?
Answer: Vicki Lawrence
: (Mila Kunis, child, [Wyatt Kutcher, Dimitri Kutcher])
aggregate | 21.1 : How many children does Mila Kunis have?
: Two

Answer: Two

DIvKNOWQA: How many children does the person who does Meg’s voice on Family Guy have?

: In which work is William Weatherall Wilkins present?
: Mary Poppins Returns

short entity | 20.7 | TextQA: Who play Mary Poppins in Mary Poppins Returns?
Answer: Emily Blunt

KB — Text Answer: Emily Blunt

: (William Weatherall Wilkins, present in work, Mary Poppins Returns)

DIVKNOWQA: Who plays Mary Poppins in the work in which William Weatherall Wilkins is present?

: (Girl #2, present in work, High School Musical)
: In which work is Girl #2 present?
: High School Musical
yes/no 20.0 | TextQA: What grade were they in in high school musical 1?
Answer: juniors

Answer: no

DIVKNOWQA: Were they seniors in the work in which Girl #2 is present?
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Abstract

Geometric knowledge graph embedding mod-
els (gKGEs) have shown great potential for
knowledge graph completion (KGC), i.e., auto-
matically predicting missing triples. However,
contemporary gKGEs require high embedding
dimensionalities or complex embedding spaces
for good KGC performance, drastically limit-
ing their space and time efficiency. Facing these
challenges, we propose SpeedE, a lightweight
Euclidean gKGE that (1) provides strong in-
ference capabilities, (2) is competitive with
state-of-the-art gKGEs, even significantly out-
performing them on YAGO3-10 and WN18RR,
and (3) dramatically increases their efficiency,
in particular, needing solely a fifth of the train-
ing time and a fourth of the parameters of the
state-of-the-art ExpressivE model on WN18RR
to reach the same KGC performance.

1 Introduction

Geometric knowledge graph embedding models
(gKGEs) represent entities and relations of a know!-
edge graph (KG) as geometric shapes in the seman-
tic vector space. gKGEs achieved promising per-
formance on knowledge graph completion (KGC)
and knowledge-driven applications (Wang et al.,
2017; Broscheit et al., 2020); while allowing for an
intuitive geometric interpretation of their captured
patterns (Pavlovi¢ and Sallinger, 2023a,b).

Efficiency Problem. Recently, increasingly more
complex embedding spaces were explored to boost
the KGC performance of gKGEs (Sun et al., 2019;
Zhang et al., 2019; Cao et al., 2021). However,
more complex embedding spaces typically require
more costly operations or more parameters, low-
ering their time and space efficiency compared to
Euclidean gKGEs (Wang et al., 2021). Even more,
most gKGEs require high-dimensional embeddings
to reach good KGC performance, increasing their
time and space requirements (Chami et al., 2020;
Wang et al., 2021). Thus, the need for (1) complex
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embedding spaces and (2) high-dimensional em-
beddings lowers the efficiency of gKGEs, hindering
their application in resource-constrained environ-
ments, especially in mobile smart devices (Sun
et al., 2019; Zhang et al., 2019; Wang et al., 2021).

Table 1: Dimensionality, MRR, convergence time, and
number of parameters of SotA gKGE’s on WN18RR.

Model Dim. MRR Conv. Time #Parameters
SpeedE 50 500 6min 2M
ExpressivE 200  .500 31min &M
HAKE 500  .497 50min 41M
ConE 500  .496 1.5h 20M
RotH 500  .496 2h 21M

Challenge and Methodology. Although there has
been much work on scalable gKGEs, any such work
has focused exclusively on either reducing the em-
bedding dimensionality (Balazevic et al., 2019a;
Chami et al., 2020; Bai et al., 2021) or using sim-
pler embedding spaces (Kazemi and Poole, 2018;
Zhang et al., 2020; Pavlovi¢ and Sallinger, 2023b),
thus addressing only one side of the efficiency prob-
lem. Facing these challenges, this work aims to
design a Euclidean gKGE that performs well on
KGC under low-dimensional conditions, reducing
its storage space, inference, and training times. To
reach this goal, we analyze ExpressivE (Pavlovi¢
and Sallinger, 2023b), a Euclidean gKGE that has
shown promising performance on KGC under high-
dimensional conditions.

Contribution. Based on ExpressivE, we propose
the lightweight SpeedE model that (1) halves Ex-
pressivE’s inference time and (2) enhances Expres-
sivE’s distance function, significantly improving
its KGC performance. We evaluate SpeedE on
the three standard KGC benchmarks, WN18RR,
FB15k-237, and YAGO3-10, finding that it (3) is
competitive with SotA gKGEs on FB15k-237 and
even outperforms them significantly on WN18RR
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and the large YAGO3-10 benchmark. Further-
more, we find that (4) SpeedE preserves Expres-
sivE’s KGC performance on WN18RR with much
fewer parameters, in particular, requiring solely a
fourth of the number of parameters of ExpressivE
and solely a fifth of its training time to reach the
same KGC performance (Table 1, also c.f. Sec-
tion 6.3). In total, we propose the SpeedE model,
which reaches strong KGC performance using low-
dimensional embeddings while maintaining the low
space and time requirements of Euclidean gKGEs.

Organization. Our paper is organized as follows:
Section 2 introduces the KGC problem. Section 3
reviews related work. Section 4 discusses the Ex-
pressivE model. Section 5 disassembles Expres-
sivE’s components to find a simpler model that still
supports the core inference patterns (c.f. Section 2)
and continues by building on these results to in-
troduce the lightweight SpeedE model. Section 6
empirically evaluates SpeedE’s KGC performance
and studies its space and time efficiency. Finally,
Section 7 summarizes our results, and the appendix
lists proofs, further experiments, and setup details.

2 Knowledge Graph Completion

This section discusses the KGC problem and its
empirical evaluation (Abboud et al., 2020). First,
we introduce the triple vocabulary, consisting of
a finite set of relations R and entities EE. We use
this vocabulary to define triples, i.e., expressions
of the form r;(ep, e;), where 7; € R, ep,e; € E,
and where we call ey, the triple’s head and e; its
tail. A finite set of triples over the triple vocabulary
is called a knowledge graph GG. KGC describes the
problem of predicting missing triples of G.

Empirical Evaluation. To experimentally evalu-
ate gKGEs, a set of true and corrupted triples is
required. True triples 7;(ep,, ;) € G are corrupted
by substituting either e, or e; with any e, € E such
that the corrupted triple does not occur in G. To
estimate a given triple’s truth, gKGEs define scores
over triples and are optimized to score true triples
higher than false ones. The KGC performance of a
gKGE is measured with the mean reciprocal rank
(MRR), the average of inverse ranks (1/rank), and
H@Zk, the proportion of true triples within the pre-
dicted ones whose rank is at maximum k.

Theoretical Evaluation. A gKGE’s theoretical
capabilities are commonly evaluated by studying
the inference patterns it captures. An inference
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pattern is a logical rule ¢ = 1), where ¢ is called
its body and ) its head. A rule ¢ = 1 is satisfied
over a graph G iff if ¢ is satisfied in G, then ¢
must be satisfied in G. A rule of the form ¢ = |
states that the pattern ¢ is never satisfied in GG. For
instance, r1(X,Y) A r1(Y, X) = L represents
that there is no pair of entities X, Y € F, such that
both 7 (X,Y) € Gand (Y, X) € G.

Intuition of Capturing. Following (Sun et al.,
2019; Abboud et al., 2020; Pavlovi¢ and Sallinger,
2023b), a gKGE captures an inference pattern if
there is an embedding instance such that the pat-
tern is captured (1) exactly and (2) exclusively as
formalized in the appendix. Capturing a pattern
means, at an intuitive level, that there is an embed-
ding instance such that (1) if the instance satisfies
the pattern’s body, then it also satisfies its head,
and (2) the instance does not capture any unwanted
inference pattern.

Core Inference Patterns. Next, we briefly list
important inference patterns that are commonly
studied in the gKGE literature (Sun et al., 2019; Ab-
boud et al., 2020; Pavlovi¢ and Sallinger, 2023b):
(1) symmetry 71 (X,Y) = ri(Y,X), (2) anti-
symmetry 7 (X,Y) A r(Y,X) = L1, (3) in-
version 71(X,Y) < r(Y,X), (4) composi-
tion r1(X,Y) A ro(Y, Z) = r3(X,Z), (5 hi-
erarchy 7 (X,Y) = ro(X,Y), (6) intersection
r(X,Y)Ary(X,Y) = r3(X,Y), and (7) mutual
exclusion 71 (X,Y) A re(X,Y) = L. We shall
call these seven types of patterns core inference
patterns henceforth.

3 Related Work

The main focus of our work lies on gKGEs, i.e.,
knowledge graph embedding models (KGEs) that
allow for a geometric interpretation of their cap-
tured inference patterns. Thus, we have excluded
neural KGE:s as they are typically less interpretable
(Dettmers et al., 2018; Socher et al., 2013; Nathani
et al., 2019; Wang et al., 2021). gKGEs are com-
monly classified by how they embed relations:

Bilinear gKGEs embed relations as matrices, al-
lowing them to factorize a graph’s adjacency matrix
by computing the bilinear product of entity and re-
lation embeddings. The pioneering bilinear model
is RESCAL (Nickel et al., 2011), embedding rela-
tions with full-rank d x d matrices and entities with
d-dimensional vectors. However, its parameter size
grows quadratically with its dimensionality d, lim-



iting RESCAL’s scalability (Kazemi and Poole,
2018). Thus, more scalable bilinear gKGEs were
proposed, such as DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2016), TuckER (Bal-
azevic et al., 2019b), SimplE (Kazemi and Poole,
2018), QuatE (Zhang et al., 2019), and DualQuatE
(Caoetal.,2021). Although these enhanced models
could capture increasingly more inference patterns,
none of them can capture composition patterns.

Spatial gKGEs embed relations as semantic re-
gions within the embedding space. BoxE (Abboud
et al., 2020) is the pioneering spatial gKGE, embed-
ding relations with two bounded hyper-rectangles.
This allows BoxE to capture most of the core in-
ference patterns. However, purely spatial models
cannot capture composition patterns.

Functional gKGEs embed relations as functions
fr; : K¢ — K9 and entities as high-dimensional
points e; € K¢ over some field K. The pioneering
functional model is TransE (Bordes et al., 2013),
which embeds relations as translations from head
to tail entity embeddings. However, representing
relations as translations limits TransE from cap-
turing inference patterns, such as symmetry or hi-
erarchy. Thus, many extensions were proposed,
solving some of these limitations, such as RotatE
(Sun et al., 2019), MuRP (Balazevic et al., 2019a),
RotH (Chami et al., 2020), HAKE (Zhang et al.,
2020) and ConE (Bai et al., 2021). However, none
of these models can capture hierarchy patterns.

Spatio-Functional gKGEs. Recently, Pavlovi¢
and Sallinger (2023b) proposed ExpressivE, a
spatio-functional gKGE that combines the ad-
vantages of both spatial and functional models
by embedding relations as hyper-parallelograms.
Thereby, it can capture all core inference patterns
simultaneously.

Embedding Space Problem. Although these
model families are vastly different, many contem-
porary gKGEs overcome the limitations of for-
mer ones by exploring increasingly more complex
spaces. For example, while (a) RESCAL and Dist-
Mult use the Euclidean space R, (b) ComplEx uses
the complex space, extending R by one imaginary
unit, (c¢) QuatE uses the quaternion space, extend-
ing R by three imaginary units, and (d) DualQuatE
uses the dual-quaternion space, extending R by
seven imaginary units. Thus, a d-dimensional en-
tity embedding of (a) RESCAL and DISTMULT
requires d, (b) ComplEx requires 2d, (c¢) QuatE
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requires 4d, and (d) DualQuatE requires even 8d
real-valued parameters. Therefore, gKGEs based
in more complex embedding spaces typically re-
quire more parameters, lowering their efficiency
compared to Euclidean gKGEs (Wang et al., 2021).

High-Dimensionality Problem. Even more, most
gKGEs require high-dimensional embeddings to
reach good KGC performance (Chami et al., 2020;
Wang et al., 2021). Yet, high embedding dimension-
alities of 200, 500, or 1000 (Sun et al., 2019; Zhang
et al., 2019) increase the time and space require-
ments of gKGEs, limiting their efficiency and ap-
plication to resource-constrained environments, es-
pecially mobile smart devices (Wang et al., 2021).

Hyperbolic gKGEs such as RotH and AttH
(Chami et al., 2020) embed entities and relations
in the hyperbolic space, which allows for high-
fidelity and parsimonious representations of hier-
archical relations (Balazevic et al., 2019a; Chami
et al., 2020), i.e., relations that describe hierarchies
between entities, such as part_of. This allowed
them to reach promising KGC performance using
low-dimensional embeddings, addressing the high-
dimensionality problem (Chami et al., 2020). Yet,
most hyperbolic gKGEs were limited to expressing
a single global entity hierarchy per relation. ConE
(Bai et al., 2021) solves this problem by embed-
ding entities as hyperbolic cones and relations as
transformations between these cones. However, hy-
perbolic gKGEs typically cannot directly employ
Euclidean addition and scalar multiplication but re-
quire far more costly hyperbolic versions of these
operations, termed Mobius Addition and Multipli-
cation. Thus, they fail to address the embedding
space problem, which results in high time require-
ments for hyperbolic gKGEs (Wang et al., 2021).

Euclidean gKGEs have recently shown strong rep-
resentation, inference, and KGC capabilities under
high-dimensional conditions. On the one hand,
HAKE (Zhang et al., 2020) achieved promising
results for representing hierarchical relations on
which hyperbolic gKGEs are typically most effec-
tive. On the other hand, ExpressivE (Pavlovi¢ and
Sallinger, 2023b) managed to capture all core in-
ference patterns. Although Euclidean gKGEs ad-
dress the embedding space problem, their reported
KGC results under low dimensionalities are dra-
matically lower than those of hyperbolic gKGEs
(Chami et al., 2020). Thus, they currently fail to
address the high-dimensionality problem.



Our work is inspired by (1) the gap of gKGEs
addressing both sides of the efficiency problem,
i.e., the use of (a) complex embedding spaces and
(b) high-dimensional embeddings (Wang et al.,
2021), and (2) the promising results of Euclidean
gKGEs under high embedding dimensionalities
(Pavlovi¢ and Sallinger, 2023b). In contrast to prior
work, our paper jointly focuses on both sides of
the efficiency problem to design a highly resource-
efficient gKGE.

4 The ExpressivE Model

This section reviews ExpressivE (Pavlovi¢ and
Sallinger, 2023b), a Euclidean gKGE with strong
KGC performance under high dimensionalities.

Representation. ExpressivE embeds entities
ep, € E via vectors e, € R? and relations ri € R
via hyper-parallelograms in R2¢. The hyper-
parallelogram of a relation 7; is parameterized
via the following three vectors: (1) a slope vector
s; € R?? representing the slopes of its boundaries,
(2) a center vector cj € R?4 representing its center,
and (3) a width vector w; € (R>0)?? representing
its width. At an intuitive level, a triple 7;(ep, e;) is
captured to be frue by an ExpressivE embedding
if the concatenation of its head and tail embedding
is within 7;’s hyper-parallelogram. Formally, this
means that a triple 7;(ey, e;) is true if the following
inequality is satisfied:

(ent — ¢j — 85 © en)! < w; (D
Where ey := (ex||ey) € R?? with || representing
concatenation and e, e, € E. Furthermore, the in-
equality uses the following operators: the element-
wise less or equal operator =<, the element-wise
absolute value z!"! of a vector x, and the element-
wise (i.e., Hadamard) product .

Scoring. ExpressivE employs the typical dis-
tance function D : E x R x E — R?? of spa-
tial gKGEs (Abboud et al., 2020; Pavlovi¢ and
Sallinger, 2023b), which is defined as follows:
D(h,rj,t) = {me om0 S0 )
Tr;(hot) © T — kj, otherwise
Where © denotes the element-wise division
Operator, Ty (h,t) (ent —cj — 85 © ewn)!
denotes the triple embedding, m; := 2 © w; + 1
represents the distance function’s slopes, and
k:j =050 (mj — 1) ®© (mj —-10 mj).
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Based on this distance function D(h,r;,t), we de-
fine ExpressivE’s scoring function for quantifying
the plausibility of a given triple r;(h, t) as follows:

s(h,rj,t) ==[|D(h,7j,t)]|2 (3)

S The Methodology

Our goal is to design a gKGE that addresses the
efficiency problems raised by the use of (1) com-
plex embedding spaces and (2) high-dimensional
embeddings while (3) allowing for a geometric in-
terpretation of its embeddings (Abboud et al., 2020;
Pavlovi¢ and Sallinger, 2023b). We reach this goal
by designing a KGC model that (1) is based in
the Euclidean space, (2) reaches high KGC perfor-
mance under low-dimensional conditions while at
the same time supports the core inference patterns
(Section 2), and (3) is a gKGE.

Toward our goal, Section 5.1 analyzes the SotA
ExpressivE model, finding that it uses redundant
parameters that negatively affect its inference time.
By redundant parameters, we mean parameters that
can be removed while preserving the support of
the core inference patterns (Section 2). Facing this
problem, we propose the lightweight Min_SpeedE
model that removes these redundancies, halving
ExpressivE’s inference time (Section 5.1).

However, Min_SpeedE loses the ability to adjust its
distance function, which is essential for represent-
ing hierarchical relations (as empirically verified in
Section 6). Thus, Section 5.2 introduces SpeedE, a
model that enhances Min_SpeedE by adding care-
fully designed parameters for flexibly adjusting the
distance function while preserving Min_SpeedE’s
low inference times.

5.1 Min_SpeedE

To design Min_SpeedE, let us first analyze Expres-
sivE’s parameters, particularly its width vector. Ad-
justing ExpressivE’s width vector w; has two com-
peting effects: (1) it alters the distance function’s
slopes (by m; in Inequality 2), and (2) it changes
which entity pairs are inside the relation hyper-
parallelogram (by w; in Inequality 1). To increase
ExpressivE’s time efficiency substantially, we intro-
duce Min_SpeedE, a constrained version of Expres-
sivE that replaces the relation-wise width vectors
w; € (R>0)?? by a constant value w € R - that
is shared across all relations 7; € R. The follow-
ing paragraphs theoretically analyze Min_SpeedE’s
inference capabilities and time efficiency.



Inference Capabilities. We find that Min_SpeedE
surprisingly still captures the core inference pat-
terns (given in Section 2) and prove this in The-
orem 5.1. We give the full proof in the appendix
and discuss one of the most interesting parts here,
namely, hierarchy patterns.

Theorem 5.1. Min_SpeedE captures the core in-
ference patterns, i.e., symmetry, anti-symmetry, in-
version, composition, hierarchy, intersection, and
mutual exclusion.

Hierarchy Patterns. According to Pavlovi¢ and
Sallinger (2023b), an ExpressivE model captures a
hierarchy pattern 1 (X,Y) = ro(X,Y) iff r1’s
hyper-parallelogram is a proper subset of 73’s.
Thus, one would expect that ExpressivE’s ability to
capture hierarchy patterns is lost in Min_SpeedE,
as the width parameter w € R+ (responsible for
adjusting a hyper-parallelogram’s size) is shared
across all hyper-parallelograms. However, the ac-
tual size of a hyper-parallelogram does not solely
depend on its width but also on its slope parameter
8 € R?, allowing one hyper-parallelogram H
to properly subsume another H2 even when they
share the same width parameter w. We have visual-
ized two hyper-parallelograms Ho C H; with the
same width parameter w in Figure 1.

W

W

ae
ale

A%

Figure 1: Representation of the two-dimensional rela-
tion hyper-parallelograms H; and Hs, such that Hy
subsumes H and such that they share the same width
parameter w in each dimension.

Intuition. Min_SpeedE can capture Ha C H;
as w (depicted with orange dotted lines) rep-
resents the intersection of the bands (depicted
with blue and green dotted lines), expanded from
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the hyper-parallelogram, and the axis of the
band’s corresponding dimension. Thus, a hyper-
parallelogram’s actual size can be adapted by solely
changing its slopes, removing the need for a learn-
able width parameter per dimension and relation.

Inference Time. The most costly operations dur-
ing inference are operations on vectors. Thus, we
can estimate ExpressivE’s and Min_SpeedE’s infer-
ence time by counting the number of vector opera-
tions necessary for computing a triple’s score: By
reducing the width vector to a scalar, many opera-
tions reduce from a vector to a scalar operation. In
particular, the calculation of m; and k; uses solely
scalars in Min_SpeedE instead of vectors. Thus,
ExpressivE needs 15, whereas Min_SpeedE needs
solely 8 vector operations to compute a triple’s
score. This corresponds to Min_SpeedE using
approximately half the number of vector opera-
tions of ExpressivE for computing a triple’s score,
thus roughly halving ExpressivE’s inference time,
which aligns with Section 6.3’s empirical results.

Key Insights. Fixing the width to a constant value
w stops Min_SpeedE from adjusting the distance
function’s slopes. As we will empirically see in
Section 6, the effect of this is a severely degraded
KGC performance on hierarchical relations. In-
troducing independent parameters for adjusting
the distance function’s slopes solves this problem.
However, these parameters must be designed care-
fully to (1) preserve ExpressivE’s geometric inter-
pretation and (2) retain the reduced inference time
provided by Min_SpeedE. Each of these aspects
will be covered in detail in the next section.

5.2 SpeedE

SpeedE further enhances Min_SpeedE by adding
the following two carefully designed scalar
parameters to each relation embedding: (1)
the inside distance slope sé € [0,1] and (2)
the outside distance slope sg with 33'» < s;?.
Let mz = 2s§w +1, m§:=2sw+1, and
kj :==mj(m§ —1)/2 — (mj —1)/(2mj), then
SpeedE defines the following distance function:

T (hst) (%) m;», if T (hot) <w

D(h,rj,t) = { “4)

Tr;(hot) © MG — kj, otherwise

Again, the distance function is separated into two
piece-wise linear functions: (1) the inside distance
Dj(h,7j,t) = Ty, (n,t)@m’; for triples that are cap-
tured to be true (i.e., Tr; (hot) = w) and (2) the out-
side distance Do(h,7j,t) = Tp (n,p) © MG — kj



for triples that are captured to be false (i.e.,
Tr;(h,t) ~ W)- Based on this function, SpeedE de-
fines the score as s(h,r;j,t) =—||D(h,;,1)||2.

Geometric Interpretation. The intuition of s§ and
s;? is that they control the slopes of the respective
linear inside and outside distance functions. How-
ever, without any constraints on sé- and s7, SpeedE
would lose ExpressivE’s intuitive geometric inter-
pretation (Pavlovi¢ and Sallinger, 2023b) as 33'. and
s7 could be chosen in such a way that distances
of embeddings within the hyper-parallelogram are
larger than those outside. By constraining these
parameters to s; € [0,1] and s% < s?, we pre-
serve lower distances within hyper-parallelograms
than outside and, thereby, the intuitive geometric

interpretation of our embeddings.

Inference Time. The additional introduction of
two scalar distance slope parameters s;-, s7 € R per
relation 7; does not change the number of vector
operations necessary for computing a triple’s score
and, thus, does not significantly affect SpeedE’s in-
ference time. Thus, we expect that SpeedE retains
the time efficiency of Min_SpeedE, as empirically
validated in Section 6.3.

With this, we have finished our introduction and
theoretical analysis of SpeedE. What remains to be
shown is its empirical performance, which we shall
evaluate next.

6 Experiments

This section empirically evaluates SpeedE: Sec-
tion 6.1 describes the experimental setup. Sec-
tion 6.2 studies SpeedE’s KGC performance, find-
ing that it is competitive with SotA gKGEs on
FB15k-237 and even significantly outperforms
them on YAGO3-10 and WN18RR. Section 6.3
studies SpeedE’s space and time efficiency, find-
ing that on WN18RR, SpeedE needs a quarter of
ExpressivE’s parameters to reach the same KGC
performance while training five times faster than it.

6.1 Experimental Setup

Datasets. We empirically evaluate SpeedE on the
three standard KGC benchmarks, WN18RR (Bor-
des et al., 2013; Dettmers et al., 2018), FB15k-237
(Bordes et al., 2013; Toutanova and Chen, 2015),
and YAGO3-10 (Mahdisoltani et al., 2015). We pro-
vide detailed information about these benchmarks,
including their languages, licenses, and number of
triples in Appendix 1.2.
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Characteristics. Table 2 displays the following
characteristics of the benchmarks: their number of
entities | E| and relations | R/, their curvature C
(taken from Chami et al. (2020)), and the Krack-
hardt scores « (taken from Bai et al. (2021)), con-
sisting of the four metrics: (connectedness, hierar-
chy, efficiency, LUBedness). Both Cg and & state
how tree-like a benchmark is and, thus, how hierar-
chical its relations are. Following the procedure of
Chami et al. (2020), we employ the standard aug-
mentation protocol (Lacroix et al., 2018), adding
inverse relations to the benchmarks.

Table 2: Benchmark dataset characteristics. Curvature
Cg¢ is from (Chami et al., 2020); the lower, the more
hierarchical the data. Krackhardt scores « are from (Bai
et al., 2021); the higher, the more hierarchical the data.

Dataset |E| |R| Cg K
FB15k-237 14,541 237 -0.65 (1.00,0.18,0.36, 0.06)
WNI18RR 40,943 11 -2.54 (1.00, 0.61, 0.99, 0.50)
YAGO3-10 123,143 37 -0.54 -

Setup. We compare our SpeedE model to (1)
the Euclidean gKGEs ExpressivE (Pavlovi¢ and
Sallinger, 2023b), HAKE (Zhang et al., 2020),
TuckER (Balazevic et al., 2019b), MuRE (Balaze-
vic et al., 2019a), and RefE, RotE, and AttE (Chami
et al., 2020), (2) the complex gKGEs ComplEx-
N3 (Lacroix et al., 2018) and RotatE (Sun et al.,
2019), and (3) the hyperbolic gKGEs ConE (Bai
et al., 2021), MuRP (Balazevic et al., 2019a), and
RefH, RotH, and AttH (Chami et al., 2020). Fol-
lowing Pavlovi¢ and Sallinger (2023b), we train
SpeedE and ExpressivE for up to 1000 epochs
using gradient descent and the Adam optimizer
(Kingma and Ba, 2015) and stop the training if the
validation H@ 10 score does not increase by min-
imally 0.5% for WN18RR, YAGO3-10, and 1%
for FB15k-237 after 100 epochs. We average the
experimental results over three runs on each bench-
mark to handle marginal performance fluctuations.
Furthermore, as in (Chami et al., 2020), we evalu-
ate SpeedE and ExpressivE in the low-dimensional
setting using an embedding dimensionality of 32.

Reproducibility. We list further details on our
experimental setup, hardware, hyperparameters, li-
braries (Ali et al., 2021), and definitions of metrics
in the appendix. To facilitate the reproducibility of
our results, we provide SpeedE’s source code in a
public GitHub repository'.

"https://github.com/Aleks Vap/SpeedE



Table 3: Low-dimensional (d = 32) KGC performance
of SpeedE, Min_SpeedE, ExpressivE, and SotA gKGEs
on WN18RR, FB15k-237, and YAGO3-10 split by em-
bedding space. The results of: SpeedE, Min_SpeedE,
and ExpressivE were obtained by us; ConE are from
(Bai et al., 2021), HAKE and RotatE are from (Zheng
et al., 2022), TuckER are from (Wang et al., 2021), and
any other gKGE are from (Chami et al., 2020).

Model WNISRR  FBI5k-237 YAGO3-10
MRR H@l MRR H@I MRR Hel
SpeedE 493 446 320 227 413 332
. Min_SpeedE 485 442 319 226 410 328
S ExpressivE 485 442 298 208 333 257
&' TuckER 428 401 306 223 - -
5 MuRE 458 421 313 226 283  .187
S RefE 455 419 302 216 370 289
5 RoE 463 426 307 220 381 295
AtE 456 419 311 223 374 290
HAKE 416 389 296 212 253 .l64
8 RotatE 387 330 290 208 235 153
& ComplEx-N3 420 390 294 211 336 259
S MuRP 465 420 323 235 230 150
S RefH 447 408 312 224 381 302
S RotH AT2 428 314 223 393 307
T AuH 466 419 324 236 397 310
S ConE 471 436 - - - -
6.2 Knowledge Graph Completion

This section evaluates the KGC performance of
SpeedE and SotA gKGEs. Furthermore, we study
how well these models represent hierarchical re-
lations, on which hyperbolic gKGEs are typically
most effective (Balazevic et al., 2019a; Chami et al.,
2020). Finally, we analyze the effect of embedding
dimensionality on SpeedE’s KGC performance.

Low-Dimensional KGC. Following the evaluation
protocol of Chami et al. (2020), we evaluate each
gKGE’s performance under d = 32. We report the
MRR and H@1 in Table 3 and provide the com-
plete results in the appendix. Table 3 reveals that
on YAGO3-10 — the largest benchmark, contain-
ing over a million triples — SpeedE outperforms
any SotA gKGE by a relative difference of 7%
on H@1, providing strong evidence for SpeedE’s
scalability to large KGs. Furthermore, it shows
that our enhanced SpeedE model is competitive
with SotA gKGEs on FB15k-237 and even out-
performs any competing gKGE on WN18RR by a
large margin. Furthermore, SpeedE’s performance
gain over Min_SpeedE on the highly hierarchical
dataset WN18RR (see Table 2) provides strong em-
pirical evidence for the effectiveness of the distance
slope parameters for representing hierarchical rela-
tions under low-dimensional conditions. SpeedE’s
performance on the more hierarchical WN18RR al-
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ready questions the necessity of hyperbolic gKGEs
for representing hierarchical relations, which will
be further investigated in the following.

Hierarchical Relations (Chami et al., 2020; Zhang
et al., 2020) describe hierarchies between entities,
such as part_of. Hyperbolic gKGEs have shown
great potential for representing hierarchical rela-
tions, outperforming Euclidean gKGEs under low-
dimensional conditions and thereby justifying the
increased model complexity added by the hyper-
bolic space (Chami et al., 2020). To study SpeedE’s
performance on hierarchical relations, we evaluate
SpeedE on the triples of any hierarchical relation of
WNI18RR following the methodology of Bai et al.
(2021). Table 4 presents the results of this study. It
reveals that SpeedE significantly improves over Ex-
pressivE on most relations and outperforms RotH
on five out of the seven hierarchical ones. Most
notably, SpeedE improves over RotH by a relative
difference of 23% on H@ 10 on the hierarchical re-
lation _member_of_domain_usage, providing em-
pirical evidence for SpeedE’s promising potential
for representing hierarchical relations even under
low-dimensional settings. The performance gain
on hierarchical relations is likely due to the added
distance slope parameters, which allow for inde-
pendently adjusting the distance function’s slopes.

Table 4: H@ 10 of ExpressivE, RotH, and SpeedE on
hierarchical relations (Bai et al., 2021) of WN18RR.

Relation ExpressivE RotH SpeedE
_member_meronym 0.362 0.399 0.379
_hypernym 0.276 0.276 0.301
_has_part 0.308 0.346 0.330
_instance_hypernym 0.509 0.520 0.543
_member_of_domain_region 0.365 0.365 0.397
_member_of domain_usage 0.545 0.438 0.538
_synset_domain_topic_of 0.468 0.447 0.502

Dimensionality Study. To analyze the effect of
the embedding dimensionality on the KGC per-
formance, we evaluate state-of-the-art gKGEs on
WNI18RR under varied dimensionalities. Figure 2
visualizes the results of this study, displaying er-
ror bars for our SpeedE model with average MRR
and standard deviation computed over three runs.
The figure reveals that, surprisingly, ExpressivE
significantly outperforms RotH, especially under
low-dimensional conditions, and that the enhanced
SpeedE model achieves an additional performance
improvement over ExpressivE. This result provides
further evidence for the great potential of Euclidean



gKGESs under low-dimensional conditions.
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Figure 2: MRR of SotA gKGEs on WNI18RR using
d € {10, 16, 20, 32, 50, 200, 500}

High-Dimensional KGC. The KGC performance
of SotA gKGEs under high-dimensional conditions
(i.e., d > 200) is listed in the appendix. It reveals
that on FB15k-237, SpeedE achieves highly com-
petitive KGC performance compared to gKGEs of
its own family while dramatically outperforming
any competing gKGE on WN18RR.

6.3 Space and Time Efficiency

This section empirically analyzes SpeedE’s space
and time efficiency compared to SotA gKGEs.

Time per Epoch. Following the methodology of
Wang et al. (2021), Table 5 displays the training
time per epoch of SpeedE and SotA gKGEs for
WNI18RR, FB15k-237, and YAGO3-10 with em-
bedding dimensionality d = 32, negative sampling
size n = 500, and batch size b = 500. The times
per epoch were recorded on a GeForce RTX 2080
Ti GPU of our internal cluster. The empirical re-
sults of the table align with the theoretical results
of Sections 5.1 and 5.2, stating that SpeedE ap-
proximately halves ExpressivE’s inference time
and, thus, also its time per epoch. Furthermore,
the results emphasize SpeedE’s efficiency benefits
over SotA gKGEs, as they reveal that under the
same configurations, SpeedE solely requires about
a sixth of RotH’s and AttH’s time per epoch.

Next, to provide a fair comparison of each gKGE’s
space and time efficiency, we measure the conver-
gence time of gKGEs with approximately equal
KGC performance. Specifically, we observe that
SpeedE with dimensionality d = 50 achieves com-
parable or slightly better KGC performance on
WNI18RR to ExpressivE with d = 200 and the
best-published results of RotH, HAKE, and ConE
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Table 5: Time per epoch of SpeedE, ExpressivE, RotH,
and AttH.

Model Time per Epoch
WNI18RR FB15k-237 YAGO3-10
SpeedE 7s 22s 88s
ExpressivE 15s 46s 185s
RotH 42s 112s 520s
AttH 43s 113s 533s

with d = 500. In particular, the results are summa-
rized in Table 1 (provided in Section 1).

Hypotheses. Since (1) the dimensionality of
SpeedE embeddings is much smaller in compari-
son to RotH’s, HAKE’s, ConE’s, and ExpressivE’s
dimensionality, while (2) SpeedE achieves compa-
rable or even slightly better KGC performance, we
expect a considerable improvement in SpeedE’s
space and time efficiency at comparable KGC per-
formance. Next, based on Table 1’s results, we
analyze how strongly SpeedE reduces the model
size and convergence time of competing gKGE:s.

Model Size Analysis. Since |R| << | E| in most
graphs, (WN18RR: |R|/|E| = 0.00012) and since
SpeedE, ExpressivE, ConE, and RotH embed each
entity with a single real-valued vector, SpeedE
(d = 50) needs solely a quarter of ExpressivE’s
(d = 200) and a tenth of ConE’s and RotH’s
(d = 500) number of parameters, while preserv-
ing their KGC performance on WN18RR (Table 1).
As HAKE requires two real-valued vectors per en-
tity, SpeedE (d = 50) solely needs a twentieth of
HAKE’s (d = 500) parameters to achieve a slightly
better KGC performance. Table 1 lists the number
of parameters of a trained SpeedE model and SotA
gKGEs, empirically confirming that SpeedE signif-
icantly reduces the size of competing gKGE:s.

Convergence Time Analysis. To quantify the con-
vergence time, we measure for each gKGE the
time to reach a validation MRR score of 0.490,
i.e., approximately 1% less than the worst reported
MRR score of Table 1. As outlined in the table,
SpeedE converges already after 6min. Thus, while
keeping strong KGC performance on WN18RR,
SpeedE speeds up ExpressivE’s convergence time
by a factor of 5, HAKE’s by a factor of 9, ConE’s
by a factor of 15, and RotH’s by a factor of 20.

Discussion. These results show that SpeedE is not
only competitive with SotA gKGEs on FB15k-237
and significantly outperforms them on YAGO3-10



and WN18RR but even preserves their KGC perfor-
mance on WN18RR with much fewer parameters
and a dramatically shorter convergence time, in
particular speeding up the convergence time of the
SotA ExpressivE model by a factor of 5, while
using solely a fourth of its number of parameters.

7 Conclusion

Although there has been much work on resource-
efficient gKGEs, any such work has focused exclu-
sively on reducing the embedding dimensionality
(Balazevic et al., 2019a; Chami et al., 2020; Bai
et al., 2021) or using simpler embedding spaces
(Kazemi and Poole, 2018; Zhang et al., 2020;
Pavlovi¢ and Sallinger, 2023b), thus addressing
only one side of the efficiency problem.

In this work, we address the embedding space and
dimensionality side jointly by introducing SpeedE,
a lightweight gKGE that (1) provides strong in-
ference capabilities, (2) is competitive with SotA
gKGEs, even significantly outperforming them on
YAGO3-10 and WN18RR, and (3) dramatically
increases the efficiency of current gKGEs, need-
ing solely a fifth of the training time and a fourth
of the number of parameters of the SotA Expres-
sivE model on WN18RR to reach the same KGC
performance.

8 Limitations and Future Work

SpeedE and ExpressivE use one d-dimensional vec-
tor to embed entities and four, respectively, six
d-dimensional vectors to embed relations. Thus,
ExpressivE and SpeedE have the same space com-
plexity, which is linear in the number of relations
and entities (i.e., O(d|E| + d|R|). A critical lim-
itation of both models is that they use the same
dimensionality d for relations and entities. Being
able to decouple the relation and entity embedding
dimensionalities might be crucial for further raising
their efficiency as (1) at an intuitive level, entities
are less complex objects than relations (which rep-
resent sets of pairs of entities) and therefore (2)
entity embeddings might solely require a lower em-
bedding dimensionality than relation embeddings.
Since in real-world KGs, the number of entities is
typically much higher than the number of relations,
a lower entity dimensionality might further raise
the model’s efficiency.

Since gKGEs naturally provide a geometric inter-
pretation of their learned patterns, how to automat-
ically and efficiently mine these learned patterns
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from the embeddings — to make the implicitly
learned knowledge explicit and further raise the
model’s transparency — remains an open challenge
and forms an exciting branch for future work. Fi-
nally, another interesting direction for future work
points at how to integrate knowledge graph em-
beddings in novel practical applications, such as
aligning their learned knowledge with the latent
representations of large language models.

9 Ethical Impact

We designed SpeedE with the goal of finding a
highly resource-efficient model for KGC that, at
the same time, provides a geometric interpretation
of its captured patterns. Therefore, our work aligns
with two pressing challenges of the machine learn-
ing community in general and the KGC community
in particular, namely, (1) raising the resource ef-
ficiency of KGC models while (2) offering some
degree of explainability via the geometric interpre-
tation of captured patterns. Specifically, SpeedE
reduces the training time — and thus the total com-
pute — of the SotA ExpressivE model on WN18RR
to one-fourth while sustaining ExpressivE’s KGC
performance and geometric interpretation. There-
fore, we do not foresee any negative impact, but
even expect a potential positive environmental (see
1) and social impact (see 2) of our work by in-
troducing a highly resource-efficient model that
allows for some degree of explainability.
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A Organization

This appendix includes complete proofs, experimental setup details, and additional results. In particular,
Section B lists the complete low-dimensional benchmark results. Section C provides an overview of
SpeedE’s modifications and their impact on SpeedE’s efficiency and prediction performance. Section D
studies the relevance of the distance slope parameters by performing an ablation study. Section E reports
the KGC performance of SpeedE and SotA gKGEs under high-dimensional conditions. Section F briefly
summarizes the notation that is used throughout this paper. Section G formally defines vital concepts for
SpeedE that we will use in our proofs. Based on the introduced concepts, Section H proves Theorem 5.1.
Finally, Section I lists details on reproducing our results and on our implementation, training setup,
evaluation protocol, and estimated CO2 emissions.

B Complete Low-Dimensional KGC Results

This section reports the complete KGC performance of SotA gKGEs under low-dimensional conditions
(i.e., d = 32). Table 6 displays these results, where the results for SpeedE, Min_SpeedE, and ExpressivE
were obtained by us; for ConE are from (Bai et al., 2021), for HAKE are from (Zheng et al., 2022), for
TuckER are from (Wang et al., 2021), and for any other gKGE are from (Chami et al., 2020). Table 6
reveals that on YAGO3-10 — the largest benchmark, containing over a million triples (see Appendix 1.2,
Table 11) — SpeedE outperforms any considered gKGE by a relative difference of 7% on H@ 1, providing
strong evidence for SpeedE’s scalability to large KGs. Furthermore, it shows that our enhanced SpeedE
model is competitive with SotA gKGEs on FB15k-237 and even outperforms any competing gKGE on
WN18RR by a large margin. Furthermore, SpeedE’s performance gain over Min_SpeedE on the highly
hierarchical dataset WN18RR provides strong empirical evidence for the effectiveness of the distance
slope parameters for representing hierarchical relations under low-dimensional conditions.

Table 6: KGC performance under low dimensionalities (d = 32) of SpeedE, Min_SpeedE, ExpressivE, and SotA
gKGEs on WN18RR, FB15k-237, and YAGO3-10 split by embedding space.

Space  Model WN18RR FB15k-237 YAGO3-10
MRR H@l H@3 H@l0 MRR H@l H@3 H@l0 MRR H@l H@3 H@I0
SpeedE 493 446 512 584 320 227 356 504 413 332 453 564

Min_SpeedE 485 442 499 573 319 226 356 502 410 328 449 563
ExpressivE 485 442 499 571 298 208 331 476 333 257 367 476

% TuckER 428 401 - 474 306 223 - AT5 - - - -
=2 MuRE 458 421 471 525 313 226 340 489 283 187 317 478
é RefE 455 419 470 521 302 216 330 474 370 289 403 527
RotE 463 426 477 .529 307 220 337 482 381 295 417 .548
AttE 456 419 471 .526 311 223 339 488 374 290 410 537
HAKE 416 389 427 467 296 212 323 463 253 164 286 430
RotatE 387 330 417 491 290 208 316 458 235 153 260 410
§ ComplEx-N3 420 390 420  .460 294 211 322 463 336 259 367 484
= MuRP 465 420 484 544 323235 353 501 230 150 247 392
2 RefH 447 408 464 518 312 224 342 489 381 302 415 .530
Ué RotH 472 428 490 553 314 223 346 497 393 307 435 .559
;<ZD AttH 466 419 484 551 324 236 354 501 397 310 437 566

ConE 471 436 486 537 - - - - - - - -

C SpeedE’s Advancements

When we theoretically analyzed ExpressivE, we noticed that (1) its space and time efficiency and (2) its
prediction performance could significantly be increased by (a) replacing its width vector with a scalar
and (b) adding flexibility to its distance function by enhancing it with learnable parameters that (c) are
constrained in such a way that the intuitive geometric interpretation of its embeddings is preserved. The
advancements of Points (a), (b), and (c) (discussed in Section 5) are highly non-trivial and need significant
theoretical and empirical effort to show that they do not have a negative impact but even a significant
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positive impact on SpeedE’s prediction performance and resource efficiency. The following paragraphs
briefly discuss each reported evidence for SpeedE’s advancements over SotA gKGEs.

Min_SpeedE’s Inference Capabilities. Surprisingly, there is no theoretical downside to replacing
ExpressivE’s relation-wise width parameters w; with a constant width w, as shown in Theorem 5.1
(proven in Appendix H). Specifically, it shows that Min_SpeedE, a model that replaces ExpressivE’s width
vector with a scalar, still captures all core inference patterns and, thus, does not lose any of its inference
capabilities.

Min_SpeedE’s Prediction Performance. Furthermore, Min_SpeedE has no empirical downside com-
pared to ExpressivE, as verified in Table 3. Specifically, Table 3 shows that Min_SpeedE performs
similarly or slightly better than ExpressivE on KGC under low embedding dimensionalities, although
Min_SpeedE replaces ExpressivE’s width vector with a scalar.

SpeedE’s Performance Boost Analysis. Recall, as explained in Section 3, hyperbolic gKGEs were
proposed to capture hierarchical relations more effectively with low embedding dimensionalities, which
was the key reason for their strong KGC performance under low-dimensional conditions (Chami et al.,
2020). To test how well SpeedE performs on hierarchical relations, we evaluated SpeedE’s KGC
performance on hierarchical relations of the highly hierarchical benchmark WN18RR and compared them
to the KGC performance of SotA gKGES. Table 4 presents the results of this analysis, showing that our
SpeedE model outperforms the best-performing gKGEs on most hierarchical relations. Thus, SpeedE’s
performance boost under low-dimensional conditions is likely due to SpeedE’s strong performance
on hierarchical relations (see Table 4). Furthermore, Table 3 shows that SpeedE even outperforms
Min_SpeedE by a large margin on WN18RR, which gives strong empirical evidence for the hypothesis
that the added learnable parameters in SpeedE’s distance function boost SpeedE’s KGC performance in
low-dimensional conditions. Even more, Table 3 reveals that SpeedE outperformed any competing gKGE
by a large margin on the highly hierarchical benchmark WN18RR.

SpeedE’s Scalability and Efficiency Results. To test whether SpeedE’s prediction performance scales to
larger KGs, we benchmarked SpeedE on the YAGO3-10 benchmark (which contains over one million
triples) and reported the results in Table 3. We found that SpeedE outperforms any of the considered
gKGEs on YAGO3-10 by a large margin, even outperforming the best-performing hyperbolic gKGE,
namely AttH, on most metrics. These results provide strong empirical evidence for SpeedE’s scalability
to large KGs with millions of triples. Moreover, we did not solely show that SpeedE reaches SotA
KGC performance but that it even dramatically boosts the resource efficiency of any considered gKGE.
Specifically, Table 1 shows that SpeedE preserves ExpressivE’s KGC performance on WN18RR with
fewer parameters and a much smaller training time. In particular, SpeedE requires solely a fourth of
ExpressivE’s number of parameters and only a fifth of its training time to reach the same KGC performance.
Table 5 further emphasizes SpeedE’s efficiency benefits over SotA gKGEs, revealing that under the same
configurations, SpeedE requires half of ExpressivE’s and about a sixth of RotH’s and AttH’s time per
epoch on all benchmarks.

Conclusion. In this section, we have very comprehensively shown that SpeedE’s modifications did not
solely lead to significant KGC performance boosts as verified in Theorem 5.1, Figure 2, and Tables 3 and
4, but also that SpeedE dramatically boosts the space and time efficiency of SotA gKGEs as shown in
Tables 1 and 5.

D Ablation Study

To study the necessity of S; and s? in SpeedE, we introduce two versions of SpeedE: (1) Eq_SpeedE
that forces s’ = s7 and (2) Diff_SpeedE, where s} and s? can be different. We hypothesize that the
flexibility of different s} and s7 might be beneficial under lower dimensionalities, while under higher
dimensionalities, reducing the number of parameters and thus setting s’ = s7 might be beneficial. Figure 3
visualizes the result of this analysis, empirically supporting our hypothesis, as Diff SpeedE outperforms
Eq_SpeedE under low dimensionalities and vice-versa in high ones.
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Figure 3: MRR of different ablations of SpeedE on WN18RR using d € {10, 16, 20, 32, 50, 200, 500}

E High-Dimensional KGC Results

This section reports the KGC performance of SotA gKGEs under high-dimensional conditions (i.e.,
d > 200). Table 7 displays these results, where the results for SpeedE were obtained by us, for ExpressivE
are from (Pavlovi¢ and Sallinger, 2023b), for HAKE are from (Zhang et al., 2020), for ConE are from
(Bai et al., 2021), for BoxE are from (Abboud et al., 2020), for MuRE and MuRP are from (Balazevic
et al., 2019a; Chami et al., 2020), for DistMult are from (Dettmers et al., 2018), for RotatE are from
(Sun et al., 2019), for TuckER are from (Balazevic et al., 2019b), and for any other gKGE are from
(Chami et al., 2020). Table 7 reveals that on FB15k-237, SpeedE achieves highly competitive KGC
performance compared to gKGEs of its own family while dramatically outperforming any competing
gKGE on WN18RR.

Table 7: KGC performance under high dimensionalities of SpeedE and SotA gKGEs on WN18RR and FB15k-237
split by model family.

Family Model WNI18RR FB15k-237
MRR H@]l H@3 H@10 MRR H@l H@3 H®@I0

SpeedE 512 460 531 615 348 253 0.386  .536
ExpressivE 508 464 522 597 350 256 387 535
HAKE 497 452 516 582 346 250 381 542

= ConE 496 453 515 579 345 247 381 .540
"é BoxE 451 400 472 541 337 238 374 538
2 MuRE 475 436 487 554 336 245 370 521
E RefE 473 430 485  .561 351 256 390 541
S RotE 494 446 512 585 346 251 381 .538
%’ AttE 490 443 508 581 351 255 386 .543
= MuRP 481 440 495 566 335 243 367 518
RefH 461 404 485 568 346 252 383 .536

RotH 496 449 514 586 344 246 380 535

AttH 486 443 499 573 348 252 384 540
DistMult 430 390 440 490 241 155 263 419

§ RotatE 476 428 492 571 338 241 375 533
£ ComplEx-N3 480 435 495 572 357 264 392 547
A QuatE 488 438 508  .582 348 248 382  .550
TuckER 470 443 482 526 358 266 394 544
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F Notation

In this section, we give a brief overview of the most important notations we use. Note that, for ease of
readability and comparability, we use exactly the same language as ExpressivE (Pavlovi¢ and Sallinger,
2023b).
v ...non-bold symbols represent scalars
.. bold symbols represent vectors, sets or tuples
..represents a vector of zeros (the same semantics apply to 0.5, 1, and 2)
..represents the element-wise division operator
.. represents the element-wise (Hadamard) product operator
.. represents the element-wise greater or equal operator
..represents the element-wise greater operator
..represents the element-wise less or equal operator
...represents the element-wise less operator
xll .. .represents the element-wise absolute value
|| ... represents the concatenation operator

ALY YOO ¢

G Definition of Capturing

In this section, we introduce the formal semantics of SpeedE models. Note that, for ease of readability
and comparability, we use exactly the same language as ExpressivE (Pavlovi¢ and Sallinger, 2023b). In
places where SpeedE significantly differs from ExpressivE, we will explicitly note this and compare the
two. Specifically, this section introduces the notions of capturing a pattern in a SpeedE model that we
informally discussed in Section 2. Furthermore, it introduces some additional notations, which will help
us simplify the upcoming proofs and present them intuitively.

Knowledge Graph. A tuple (G, E, R) is called a knowledge graph, where R is a finite set of relations,
E is a finite set of entities, and G C E x R x F is a finite set of triples. W.l.o.g., we assume that any
relation is non-empty since removing any virtual entity pair embedding from a hyper-parallelogram would
be trivial, just adding unnecessary complexity to the proofs.

SpeedE Model. We define a SpeedE model as a tuple M+ = (€, 0, w, p), where € C 2R? is the set of
entity embeddings, o C 2R? is the set of center embeddings, w € R+ represents the width constant,
and p C 2R? i the set of slope vectors. Note that this definition is slightly different from an ExpressivE
model M = (€, 0,48, p), where instead of the width constant w, we have § C 2R that represents the set
of width embeddings.

Linking Embeddings to KGs. A SpeedE model M+ = (¢, 0, w, p) and a KG (G, E, R) are linked via
the following assignment functions: The entity assignment function f. : E — € assigns to each entity
e, € E an entity embedding ey, € €. Based on f,, the virtual assignment function f, : E x E — R?¢
defines for any pair of entities (ep, e;) € F a virtual entity pair embedding fy,(en, e:) = (fe(en)|| fe(er)),
where || represents the concatenation operator. Furthermore, we define SpeedE’s relation assignment
function f;i (r;) : R — R* x R x R* as ;7 (r;) = (c;-‘t,w,s;h), where c;.‘t = (c;‘Hc;) with
c;P, c;- € o and where s;h = (s;Hs;‘) with s;., s;-‘ € p. Note that this is different from ExpressivE’s
relation assignment function fp(r;) : B — R?? x R% x R? where f5(r;) = (ct, wht, sth) with

J J i
wi = (w}||w}) being two concatenated width embeddings.

Virtual Triple Space. To be able to assign a geometric interpretation to f,j' (rj), we briefly recap the
definition of the virtual triple space R?? introduced by Pavlovi¢ and Sallinger (2023b). Specifically, the
virtual triple space is constructed by concatenating the head and tail entity embeddings. In detail, this
means that any pair of entities (ey,, ;) € E x E defines a point in the virtual triple space by concatenating
their entity embeddings e, e; € R%, i.e., (ep||es) € R?. We will henceforth call the first d dimensions
of the virtual triple space the head dimensions and the second d dimensions the fail dimensions. A set
of important sub-spaces of the virtual triple space are the 2-dimensional spaces created from the k-th
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dimension of the head and tail dimensions — i.e., the k-th and (d + k)-th virtual triple space dimensions.
We call them correlation subspaces as they visualize the captured relation-specific dependencies of head
and tail entity embeddings. Moreover, we call the correlation subspace spanned by the k-th and (d + k)-th
virtual triple space dimension the k-th correlation subspace. Now, the geometric interpretation of f,f (5)
within the virtual triple space is a hyper-parallelogram whose edges are solely crooked in each correlation
subspace, representing the relationship between head and tail entity embeddings.

Model Configuration. We call a SpeedE model M ™ together with a concrete relation assignment
function f,J[ a relation configuration m;{ = (MT, f;lF ). If m,J{ additionally has a virtual assignment
function f,,, we call it a complete model configuration m+ = (M, f,;" , fv). Note that an ExpressivE
relation configuration my, = (M, fj) and a complete ExpressivE model configuration m = (M, fn, fv)
are defined differently by replacing M+ and f,;" with their ExpressivE equivalents, i.e., M and f.

Definition of Truth. A triple r; (e, €;) is captured to be true in some m™, withr; € Rand ey, e; € E iff
Inequality 5 holds for the assigned embeddings of &, ¢, and r. This means more precisely that Inequality 5
needs to hold for fy(en, 1) = (fe(en)||fe(er)) = (en, et) and f;F (r;) = (ch*, w, s%). Note that, for
ExpressivE, the definition of a triple’s truth is slightly different, as w in Inequality 5 would be exchanged
by the respective width embedding w;-‘t.

(ent — M — st © egn) = w, (5)
Intuition. At an intuitive level, a triple 7;(ep, e;) is captured to be true by some complete SpeedE
model configuration m™ iff the virtual pair embedding f, (e, e;) of entities ej, and e; lies within the
hyper-parallelogram of relation r; defined by f,:L (r5).

Simplifying Notations. Therefore, to simplify the upcoming proofs, we denote with f,(en, ;) € f,j (r5)
that the virtual pair embedding fy,(ep, e;) of an entity pair (ep,e;) € E x E lies within the hyper-
parallelogram f,;" (r;) of some relation ; € R in the virtual triple space. Accordingly, for sets of virtual
pair embeddings P := {fy(en,,e,), ..., fv(en,,et,)}, we denote with P C f,'f(rj) that all virtual
pair embeddings of P lie within the hyper-parallelogram of the relation r;. Furthermore, we denote with
folen,er) & f,j' (r;) that a virtual pair embedding fy (e, e;) does not lie within the hyper-parallelogram
of a relation 7; and with P & f,j (rj) we denote that an entire set of virtual pair embeddings P does not
lie within the hyper-parallelogram of a relation 7.

Capturing Inference Patterns. Based on the previous definitions, we define capturing patterns formally:
A relation configuration m,‘t captures a pattern ¢ exactly if for any ground pattern ¢p, A---Adp,, = o1
within the deductive closure of ¢ and for any instantiation of f. and f, the following conditions hold:

* if ¢y is a triple and if m;t captures the body triples to be true — i.e., fy(args(¢p,)) €
f,j'(rel(¢31)), ..., Jolargs(ém,,)) € f,;"(rel(d)Bm)) — then m,‘f also captures the head triple
to be true — i.e., fo(args(om)) € fif (rel(dm)).

e if ¢y = L, then m;{ captures at least one of the body triples to be false — i.e., there is some
j € {1,...,m} such that fy(args(dp,)) € it (rel(¢p,))-

where args() is the function that returns the arguments of a triple, and rel() is the function that returns
the relation of the triple. Furthermore, a relation configuration mf: captures a pattern v exactly and
exclusively if (1) m,i' exactly captures 1) and (2) m,f does not capture any positive pattern ¢ (i.e.,
¢ € {symmetry, inversion, hierarchy, intersection, composition}) such that ¢ [~ ¢ except where

the body of ¢ is not satisfied over m,i'

Discussion. The next paragraphs provide some intuition of the above definition of capturing a pattern.

Capturing a pattern exactly is defined straightforwardly by adhering to the semantics of logical implication
¢ := ¢ = ¢m, i.e., arelation configuration m,‘l‘ needs to be found such that for any complete model

configuration m™ over m: if the body ¢ g of the pattern is satisfied, then its head ¢y can be inferred.
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Capturing a pattern exactly and exclusively imposes additional constraints. Here, the aim is not solely
to capture a pattern but additionally to showcase that a pattern can be captured independently from any
other pattern. Therefore, some notion of minimality/exclusiveness of a pattern is needed. As in Abboud
et al. (2020); Pavlovi¢ and Sallinger (2023b), we define minimality by means of solely capturing those
positive patterns ¢ that directly follow from the deductive closure of the pattern ¢, except for those ¢ that

are captured trivially, i.e., except for those ¢ where their body is not satisfied over the constructed m:

The authors of (Pavlovi¢ and Sallinger, 2023b) have shown that any core inference patterns (given in Sec-
tion 2) can be expressed by means of spatial relations of the corresponding relation hyper-parallelograms
in the virtual triple space. Therefore, exclusiveness is formulated intuitively as the ability to limit the
intersection of hyper-parallelograms to only those intersections that directly follow from the captured
pattern 1) for any known relation r; € R, which is in accordance with the notion of exclusiveness of the
literature (Abboud et al., 2020; Pavlovi¢ and Sallinger, 2023b).

Note that the definition of capturing patterns solely depends on relation configurations. This is vital
for SpeedE to capture patterns in a lifted manner, i.e., SpeedE shall be able to capture patterns without
grounding them first. Furthermore, being able to capture patterns in a lifted way is not only efficient but
also natural, as the aim is to capture patterns between relations. Thus, it would be unnatural if constraints
on entity embeddings were necessary to capture such relation-specific patterns.

As outlined in the previous paragraphs, the definition of capturing patterns is in accordance with the
literature (Abboud et al., 2020; Pavlovi¢ and Sallinger, 2023b), focuses on efficiently capturing patterns,
and gives us a formal foundation for the upcoming proofs, which will show that SpeedE can capture the
core inference patterns.

H Proof of Theorem 5.1

In Section 2, we have already briefly introduced inference patterns. To prove that SpeedE captures the core
inference patterns exactly and exclusively (Theorem 5.1), let us now first recall the full, formal definition
of these patterns.

Definition H.1. (Abboud et al., 2020; Paviovi¢ and Sallinger, 2023b) Let the inference patterns be defined
as follows:

* Patterns of the form r1(X,Y) = r1(Y, X) withr, € R are called symmetry patterns.
* Patterns of the form r1(X,Y) Ar1(Y, X) = L withr € R are called anti-symmetry patterns.

* Patterns of the form r1(X,Y) < ro(Y, X) with r1,r2 € R and ry # ry are called inversion
patterns.

o Patterns of the form ri(X,Y) Aro(Y, Z) = r3(X, Z) withri,ra,r3 € Rand 11 # o # 13 are
called (general) composition patterns.

* Patterns of the form r(X,Y) = ro(X,Y) with r1,ro € R and ry # ro are called hierarchy
patterns.

e Patterns of the form r (X, Y) Aro(X,Y) = r3(X,Y) withr1, 79,73 € Rand v # ro # 13 are
called intersection patterns.

* Patterns of the form ri(X,Y) Aro(X,Y) = L withri,7o € R and r1 # ry are called mutual
exclusion patterns.

Based on these definitions, we will prove that SpeedE captures the core inference patterns exactly and
exclusively, thereby proving Theorem 5.1. To prove Theorem 5.1, we give the relevant propositions
obtained from and proved by Pavlovi¢ and Sallinger (2023b) and adapt them to SpeedE. For each of them,
we give proofs, which in some situations follow from the ones in Pavlovi¢ and Sallinger (2023b), and in
other situations are entirely new constructions.
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The key change of SpeedE that will be of our concern in the following proofs is fixing the width to
a constant value, as this will require new proofs for some of the properties. Observe that SpeedE
additionally changes the distance function of ExpressivE. However, this does not affect ExpressivE’s
inference capabilities, i.e., which inference patterns can be captured. Careful inspection of the proofs of
inference capabilities given in (Pavlovi¢ and Sallinger, 2023b) shows that the only property required of
the distance function is that scores within the hyper-parallelogram are larger than those outside. As the
newly defined distance function of SpeedE keeps this property, the change of distance function between
the two models does not affect the proofs of the inference capabilities given in (Pavlovi¢ and Sallinger,
2023b). Hence, the same proof argument can be applied.

9

The other observation that we will make in general before giving the specific proofs is that the “exactly
part, proved in (Pavlovi¢ and Sallinger (2023b), Propositions F.1-F.7), of “exactly and exclusively
capturing patterns is not affected by the changes in the model. These proofs are all based on embedding
pairs of entities as points in the virtual triple space and relations as hyper-parallelograms, which is still
the case in SpeedE. Thus, we now proceed to proving that SpeedE captures the core inference patterns
exactly and exclusively.

E3]

Proposition H.2 (Inversion (Exactly and Exclusively)). Let m,J{ = (M, f,;'" ) be a relation configu-
ration and r1,72 € R be relations where r1(X,Y") < ra(Y, X) holds for any entities X,Y € E. Then
m;t can capture 71(X,Y) < ro(Y, X) exactly and exclusively.

Proof. The proof of this property in Expressive (Pavlovi¢ and Sallinger (2023b), Proposition G.3) is based
on a key assumption, namely that there is an my, such that fp,(71) is the mirror image of fp(72) with
fn(r1) # fn(r2). This is straightforward in ExpressivE but more complex in SpeedE. We will show
this next.

Let us first observe that in SpeedE, it is not trivially given that there is an m,JLr =(MT, f}:“ ) such that
f,j' (1) is the mirror image of f,‘l" (r2) with f,'l" (r1) # f,j' (r2), as fr(r;)’s width embedding 'w;?t
has been replaced by a shared width constant w in f,;" (rj) with j € {1,2}. Thus, what needs to be
shown is that there is a relation configuration m,'i' such that f,':' (1) is the mirror image of _f,j' (r2)
with f;[ (r1) # f;“ (r2), as then the original proof of ExpressivE can be directly applied to prove
Proposition H.2’s claim, i.e., that m;t can capture 71 (X, Y) < (Y, X)) exactly and exclusively. Now, it
is interesting to see that fixing the width parameter in SpeedE as opposed to ExpressivE not only changes

the model but actually allows a quite elegant construction witnessing this property.

Let us now give this construction, thereby showing the claim. Specifically, let f,;" (r1) = (b, w, sth)

with cf* = (c?||ch) € R, w € R.g, and s{* = (st||sh) € R??. Furthermore, let f; (r2) =
(cBt w, sth) with Bt = (ch||ch) € R?, w € Ry, and s&* = (sP||s}) € R??. We will, in the
following, show that the constructed fp(72) is the mirror image of fr(71) to prove our claim. Let
X,Y € E be arbitrary entities and let f,, be an arbitrary virtual assignment function defined over (X, Y)
and (Y, X) with f,(X,Y) = egy and f,, (Y, X) = eyx. Then by Inequality 5, a triple r1(X,Y") is
captured to be true by m+ = (M T, f,;" , fv) if Inequality 6 is satisfied.

(ezy — At —sito eyw)l'l Sw (0)
(eya — g —stto emy)l'l =w (N
(eya — 5" — 85 © ewy)l'l ~w ®)

Since Inequality 6 is element-wise, one can equivalently reformulate it by arbitrarily exchanging its
dimensions. Using this insight, we can replace the head and tail dimensions for each embedding, thereby
obtaining Inequality 7. Finally, by our construction of f; (r2), we have that ci* = c? and st = sh*.
We substitute these equations into Inequality 7, thereby obtaining Inequality 8. Now, Inequality 8 states by

the definition of a triple’s truth (i.e., Inequality 5) that ro (Y, X) is captured by mz Since Inequalities 6-8
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are all equivalent, we have shown that f;‘ (r1) is the mirror image of f;‘ (r2). Since, it is now easy to see
that an m;" exists such that f; (ry) is the mirror image of f;} (r2) with f;7 (71) # ;7 (r2), the proof
of (Pavlovi¢ and Sallinger (2023b), Proposition G.4) can be directly applied to SpeedE. Thus, we have
proven Proposition H.2, i.e., that m: can capture 71 (X, Y) < ro(Y, X) exactly and exclusively. O

Table 8: Relation embeddings of a relation configuration m;f that captures hierarchy (i.e., r1(X,Y) = r2(X,Y))
exactly and exclusively using width w = 1.

Ch St Ct Sh
ri| —25[05| 15| 0
ra 1| —2]45

Proposition H.3 (Hierarchy (Exactly and Exclusively)). Ler m,’i‘ =(MT, f,;" ) be a relation configu-
ration and r1,79 € R be relations where r1(X,Y) = ro(X,Y') holds for any entities X,Y € E. Then
m,‘t can capture 71(X,Y) = (X, Y) exactly and exclusively.

Proof. The proof of this property in Expressive (Pavlovi¢ and Sallinger (2023b), Proposition G.4) is based
on a key assumption, namely that there is an myp, such that fr(r1) C fr(r2) with fr(r1) # fr(rz).
This is straightforward in ExpressivE but much more complex in SpeedE. We will show this next.

Let us first observe that in SpeedE, it is not trivially given that there is an m,i' =(MT, f;‘ ) such that
_f,j' (r1) C f;j' (r2) with f,'f(rl) # fi7(r2), as fn(rj)’s width embedding wg‘t has been replaced
by a shared width constant w in f,j' (rj) with j € {1,2}. Thus, what needs to be shown is that there
is a relation configuration m; such that f;"(r1) C f; (re) with f;7(r1) # fi (r2), as then the
original proof of ExpressivE can be directly applied to prove Proposition H.3’s claim, i.e., that nm;LF can
capture r1(X,Y) = ro(X,Y) exactly and exclusively. In the following, we construct such a relation
configuration m;'; = (MT, f,j'), where f,’:‘(rl) C f,':'('rz) with f,;"(rl) # f,':'(rz) to prove the
claim of Proposition H.3:

Figure 1 (given on Page 5 of the main body) visualizes the relation configuration m;i' = (MT, f,'l" )
provided in Table 8. As can be easily seen in Figure 1, m,JLr captures f;LF (r1) C ff: (r2) with f;“ (r1) #
f,j' (r2). Thus, we have proven Proposition H.3, as (1) we have shown the existence of an m?: that
captures f,;" (r1) C f,j‘ (r2) with f,j' (r1) # f,"f (r2) and (2) the proof of (Pavlovi¢ and Sallinger

(2023b), Proposition G.4) can be directly applied to SpeedE since an m,J{ exists such that f,‘f (r1) C

£if (r2) with f;7 (r1) # f;F (r2). O

Table 9: Relation embeddings of a relation configuration m,‘i‘ that captures intersection (i.e., 71 (X, Y)Ar2(X,Y) =
r3(X,Y")) exactly and exclusively using width w = 1.

Ch St Ct Sh
ri| =375[05] 1| 0
ro 1| -2| 5| 2
rs | —35(05 05| —1
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Figure 4: Relation embeddings of a relation configuration my, that captures intersection (i.e., r1(X,Y) A
ro(X,Y) = r3(X,Y)) exactly and exclusively using width w = 1.

Proposition H.4 (Intersection (Exactly and Exclusively)). Ler m:[ = (M, f,'f ) be a relation
configuration and 1,712,173 € R be relations where r1(X,Y) Ara(X,Y) = r3(X,Y) holds for any

entities X,Y € E. Then m: can capture r1(X,Y) Ara(X,Y) = r3(X,Y) exactly and exclusively.

Proof Sketch. This is similar in construction to the previous proof. Hence, we only give a proof sketch for
ease of readability. To prove Proposition H.4, observe that in (Pavlovi¢ and Sallinger (2023b), Proposition
G.5) an ExpressivE relation configuration my, with several different width embeddings is constructed.
However, the key observation we will make is that choosing the width embeddings differently is not
necessary. In fact, an interested reader inspecting the original proof can obtain a proof applicable to
SpeedE by following the proof of (Pavlovi¢ and Sallinger (2023b), Proposition G.5) analogously for the
SpeedE relation configuration m; described in Table 9 and visualized by Figure 4. Thus, the proof for
Proposition H.4 is straightforward given mz defined in Table 9 and (Pavlovi¢ and Sallinger (2023b),
Proposition G.5). O

Table 10: Relation embeddings of a relation configuration m;f that captures composition (i.e., r1(X,Y) A
ro(Y, Z) = r3(X, Z)) exactly and exclusively using width w = 1.

ch|st|et|sh
1 =71 3 5}
T 75| 1 2 3
r3 | =195 | 2|13

Proposition H.5 (Composition (Exactly and Exclusively)). Let 1,723,735 € R be relations and let
m,‘t = (M, f,'l" ) be a relation configuration, where _f,j is defined over r1,ra, and r3. Furthermore
let 3 be the composite relation of r1 and 1o, i.e., 11(X,Y) ANro(Y, Z) = r3(X, Z) holds for all entities

X,Y,Z € E. Then m;i' can capture r1(X,Y) Nra(Y, Z) = r3(X, Z) exactly and exclusively.

Proof Sketch. This is similar in construction to the proof of Proposition H.3. Hence, we only give a proof
sketch for ease of readability. To prove Proposition H.5, observe that in (Pavlovi¢ and Sallinger (2023b),
Proposition G.6), an ExpressivE relation configuration m;, with several different width embeddings is
constructed. However, choosing the width embeddings differently is not necessary. In fact, an interested
reader inspecting the original proof can obtain a proof applicable to SpeedE by following the proof of

(Pavlovi¢ and Sallinger (2023b), Proposition G.6) analogously for the SpeedE relation configuration m;[
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Figure 5: Relation embeddings of a relation configuration myp, that captures composition (i.e., r1(X,Y) A
ro(Y, Z) = r3(X, Z)) exactly and exclusively using width w = 1.

described in Table 10 and visualized by Figure 5. Thus, the proof for Proposition H.5 is straightforward
given m; defined in Table 10 and (Pavlovi¢ and Sallinger (2023b), Proposition G.6). ]

Proposition H.6 (Symmetry (Exactly and Exclusively)). Let m,J{ =(MT, f}j ) be a relation configu-
ration and 1 € R be a symmetric relation, i.e., r1(X,Y) = r1(Y, X) holds for any entities X,Y € E.

Then mﬁ can capture r1(X,Y) = r1(Y, X) exactly and exclusively.

Proposition H.7 (Anti-Symmetry (Exactly and Exclusively)). Ler m;LL =(MT, f,J[ ) be a relation
configuration and r1 € R be an anti-symmetric relation, i.e., r1(X,Y) Ari(Y, X) = L holds for any
entities X,Y € E. Then m: can capture r1(X,Y) Ar1(Y, X) = L exactly and exclusively.

The proofs for Proposition H.6-H.7 are straightforward and work analogously to the proofs of (Pavlovié¢
and Sallinger (2023b), Proposition G.1-G.2). This is the case, as (1) any of these patterns contain at
most one relation, (2) thus we solely need to show that no unwanted patterns over at most one relation
are captured, as any considered pattern over more than one relation (precisely inversion, hierarchy,
intersection, and composition) requires by Definition H.1 at least two or three distinct relations and thus is
not applicable, and (3) it is easy to see that, for instance, a relation hyper-parallelogram can be symmetric
without being anti-symmetric, or vice versa (i.e., without capturing any unwanted pattern).

Proposition H.8 (Mutual Exclusion (Exactly and Exclusively)). Let m;{ =(MT, f,JLr ) be a relation
configuration and r1,73 € R be mutually exclusive relations, i.e., r1(X,Y) Ara(X,Y) = L holds for

any entities X,Y € E. Then m: can capture r1(X,Y) Ara(X,Y) = L exactly and exclusively.

The proof for Proposition H.8 is trivial, as it is straight-forward to see that (1) there is an m:[ =(MT, f,"f )
such that f;f(rl) N f,'l"(rg) = (), thereby m;i' captures 71 (X, Y) A ra(X,Y) = L exactly, (2) neither
f,j' (r1) nor f,j (r9) need to be symmetric, thereby no unwanted symmetry pattern is captured, (3) f,j' (r1)
does not need to be the mirror image of f,‘f (r9), thus no unwanted inversion pattern is captured, and
finally (4) since f,;" (r1) and f,j' (r9) are disjoint, neither f,j' (r1) can subsume f,'l" (r2) nor vice versa,
thus no unwanted hierarchy pattern is captured. Thus by Points 1-4, we have shown that m;f captures
r1(X,Y) Are(X,Y) = L exactly and that it does not capture any unwanted positive pattern that is
applicable, i.e., requires at most two different relations (symmetry, inversion, and hierarchy). Thus, we

have shown Proposition H.8, i.e., that m,'l' can capture r1 (X, Y) Ara(X,Y) = L exactly and exclusively.

Finally, by Propositions H.2-H.8, we have shown Theorem 5.1, i.e., that SpeedE captures the core inference
patterns exactly and exclusively.
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I Experimental Details

The details of our experiment’s setup, benchmarks, and evaluation protocol are covered in this section.
Specifically, details on SpeedE’s implementation and about reproducing our results are covered in
Section I.1. Each benchmark’s properties are discussed in Section I.2. Our experimental setup is described
in Section 1.3, including details about the chosen learning setup, hardware, and hyperparameters. The
evaluation protocol and the used metrics are discussed in Section 1.4. Finally, the size of CO2 emissions
resulting from our experiments is estimated in Section L.5.

I.1 Implementation Details & Reproducibility

Following Pavlovi¢ and Sallinger (2023b), we have implemented our gKGE using PYKEEN 1.7 (Ali et al.,
2021), a Python library that runs under the MIT license and offers support for numerous benchmarks
and gKGEs. In doing so, we facilitate the comfortable reuse of SpeedE for upcoming benchmarks and
applications. To ease reproducing our findings, we provide SpeedE’s source code in a public GitHub
repository®. Additionally, the repository contains a ReadMe.md file stating library dependencies and
running instructions.

1.2 Benchmarks and Licenses

The details of the three standard KGC benchmarks, WN18RR (Dettmers et al., 2018), FB15k-237
(Toutanova and Chen, 2015), and YAGO3-10 (Mahdisoltani et al., 2015) used in our experiments are
discussed in this section. WN18RR is extracted from the WordNet database (Miller, 1995), representing
lexical relations between English words, thus naturally containing many hierarchical relations (e.g.,
hypernym-of) (Chami et al., 2020). FB15k-237 is a subset of a collaborative database consisting of
general knowledge (in English) called Freebase (Bollacker et al., 2007), which contains both hierarchical
relations (e.g., part-of) and non-hierarchical ones (e.g., nationality) (Chami et al., 2020). YAGO3-10
is a subset of YAGO3, which is a KG describing people that, similarly to FB15k-237, contains both
hierarchical relations (e.g., actedIn) and non-hierarchical relations (e.g., isMarriedTo). Table 2 (given on
Page 6 of the main body) has already stated important characteristics of the benchmarks, including their
number of entities, relations, and metrics describing how hierarchical the relations within the benchmark
are. WN18RR, FB15k-237, and YAGO3-10 (Mahdisoltani et al., 2015) already provide a split into a
training, validation, and testing set, which we directly adopted in any reported experiments. Table 11
lists characteristics of these splits, specifically the number of training, validation, and testing triples.
Furthermore, the table lists the number of entities and relations of each benchmark. Finally, concerning
licensing, we did not find a license for WN18RR nor its superset WN18 (Bordes et al., 2013). Also, we
did not find a license for FB15k-237, but we found that its superset FB15k (Bordes et al., 2013) uses the
CC BY 2.5 license. For YAGO3-10, we also did not find a license, but we found that its superset YAGO3
(Mahdisoltani et al., 2015) uses the CC BY 3.0 license.

Table 11: Benchmark split characteristics: Number of entities, relations, and training, validation, and testing triples.

Dataset |El |RI #training triples #validation triples #testing triples
FB15k-237 14,541 237 272,115 17,535 20,466
WNI18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,143 37 1,079,040 4,978 4,982

LI.3 Training Setup

Training Details. We have trained each model on one of four GeForce RTX 2080 Ti GPUs of our internal
cluster. In particular, during the training phase, we optimize the self-adversarial negative sampling loss
(Sun et al., 2019) using the Adam optimizer (Kingma and Ba, 2015). We use gradient descent to optimize
SpeedE’s parameters, stopping the training after 1000 epochs early if the H@10 score did not rise by at

“https://github.com/Aleks Vap/SpeedE
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least 0.5% for WN18RR and YAGO3-10 and 1% for FB15k-237. Any experiment was run three times to
average over light performance variations. We will discuss the optimization of hyperparameters in the
following paragraph.

Hyperparameter Optimization. Following similar optimization principles as Balazevic et al. (2019a);
Chami et al. (2020); Pavlovi¢ and Sallinger (2023b), we manually tuned the following hyperparameters
within the listed ranges: (1) the learning rate A € {b* 107° | b € {1,2,5} Ac € {2,3,4,5,6}},
(2) the negative sample size n € {100, 150,200,250}, (3) the loss margin v € {2,3,4,5,6}, (4) the
adversarial temperature o € {1,2,3,4}, (5) the batch size b € {100,250, 500, 1000,2000}, and (6)
constraining the distance slope parameters to be equal — i.e., s§~ = s for each relation r; € R —
or not EgDS € {true, false}. Following the literature (Chami et al., 2020; Lu and Hu, 2020), we
used for the large YAGO3-10 benchmark a wider range for the negative sampling size n, in particular
n € {100,200, 500, 1000, 2000}. Similar to Lu and Hu (2020), we also increased the range for margins
~ to include 50 and 100 for YAGO3-10. In accordance with Pavlovi¢ and Sallinger (2023b), we chose
self-adversarial negative sampling (Sun et al., 2019) for generating negative triples. We list the best
hyperparameters for SpeedE split by benchmark and embedding dimensionality in Table 12. Following
Chami et al. (2020), we used one parameter set for any low-dimensional experiment (i.e., d < 50) and
one parameter set for any high-dimensional experiment (i.e., d > 50). Furthermore, for ExpressivE,
we used the hyperparameters of Pavlovi¢ and Sallinger (2023b) under high-dimensional conditions, as
they report the best-published results for ExpressivE. For low-dimensional conditions, ExpressivE’s
best hyperparameter setting was unknown. Thus, we optimized ExpressivE’s hyperparameters manually,
finding the hyperparameters of Table 13 to produce the best KGC results for ExpressivE under low
dimensionalities. For RotH, we used the hyperparameters of Chami et al. (2020), as they report the
best-published results for RotH. Finally, we used the same hyperparameters for each of SpeedE’s model
variants to directly compare SpeedE to them, i.e., Min_SpeedE, Diff_SpeedE, and Eq_SpeedE.

Table 12: Hyperparameters of SpeedE models that achieve the best performance on WN18RR, FB15k-237, and
YAGO3-10 split by low-dimensional (i.e., d < 50) and high-dimensional <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>