Yosuke Mikami


2025

pdf bib
Can Large Language Models Robustly Perform Natural Language Inference for Japanese Comparatives?
Yosuke Mikami | Daiki Matsuoka | Hitomi Yanaka
Proceedings of the 16th International Conference on Computational Semantics

Large Language Models (LLMs) perform remarkably well in Natural Language Inference (NLI).However, NLI involving numerical and logical expressions remains challenging.Comparatives are a key linguistic phenomenon related to such inference, but the robustness of LLMs in handling them, especially in languages that are not dominant in the models’ training data, such as Japanese, has not been sufficiently explored.To address this gap, we construct a Japanese NLI dataset that focuses on comparatives and evaluate various LLMs in zero-shot and few-shot settings.Our results show that the performance of the models is sensitive to the prompt formats in the zero-shot setting and influenced by the gold labels in the few-shot examples.The LLMs also struggle to handle linguistic phenomena unique to Japanese.Furthermore, we observe that prompts containing logical semantic representations help the models predict the correct labels for inference problems that they struggle to solve even with few-shot examples.

pdf bib
Implementing a Logical Inference System for Japanese Comparatives
Yosuke Mikami | Daiki Matsuoka | Hitomi Yanaka
Proceedings of the 5th Workshop on Natural Logic Meets Machine Learning (NALOMA)

Natural Language Inference (NLI) involving comparatives is challenging because it requires understanding quantities and comparative relations expressed by sentences. While some approaches leverage Large Language Models (LLMs), we focus on logic-based approaches grounded in compositional semantics, which are promising for robust handling of numerical and logical expressions. Previous studies along these lines have proposed logical inference systems for English comparatives. However, it has been pointed out that there are several morphological and semantic differences between Japanese and English comparatives. These differences make it difficult to apply such systems directly to Japanese comparatives. To address this gap, this study proposes ccg-jcomp, a logical inference system for Japanese comparatives based on compositional semantics. We evaluate the proposed system on a Japanese NLI dataset containing comparative expressions. We demonstrate the effectiveness of our system by comparing its accuracy with that of existing LLMs.