Mollie Shichman
2025
FRIDA to the Rescue! Analyzing Synthetic Data Effectiveness in Object-Based Common Sense Reasoning for Disaster Response
Mollie Shichman
|
Claire Bonial
|
Austin Blodgett
|
Taylor Pellegrin
|
Francis Ferraro
|
Rachel Rudinger
Proceedings of the 16th International Conference on Computational Semantics
During Human Robot Interactions in disaster relief scenarios, Large Language Models (LLMs) have the potential for substantial physical reasoning to assist in mission objectives. However, these reasoning capabilities are often found only in larger models, which are not currently reasonable to deploy on robotic systems due to size constraints. To meet our problem space requirements, we introduce a dataset and pipeline to create Field Reasoning and Instruction Decoding Agent (FRIDA) models. In our pipeline, domain experts and linguists combine their knowledge to make high-quality, few-shot prompts used to generate synthetic data for fine-tuning. We hand-curate datasets for this few-shot prompting and for evaluation to improve LLM reasoning on both general and disaster-specific objects. We concurrently run an ablation study to understand which kinds of synthetic data most affect performance. We fine-tune several small instruction-tuned models and find that ablated FRIDA models only trained on objects’ physical state and function data outperformed both the FRIDA models trained on all synthetic data and the base models in our evaluation. We demonstrate that the FRIDA pipeline is capable of instilling physical common sense with minimal data.
2023
Use Defines Possibilities: Reasoning about Object Function to Interpret and Execute Robot Instructions
Mollie Shichman
|
Claire Bonial
|
Austin Blodgett
|
Taylor Hudson
|
Francis Ferraro
|
Rachel Rudinger
Proceedings of the 15th International Conference on Computational Semantics
Language models have shown great promise in common-sense related tasks. However, it remains unseen how they would perform in the context of physically situated human-robot interactions, particularly in disaster-relief sce- narios. In this paper, we develop a language model evaluation dataset with more than 800 cloze sentences, written to probe for the func- tion of over 200 objects. The sentences are divided into two tasks: an “easy” task where the language model has to choose between vo- cabulary with different functions (Task 1), and a “challenge” where it has to choose between vocabulary with the same function, yet only one vocabulary item is appropriate given real world constraints on functionality (Task 2). Dis- tilBERT performs with about 80% accuracy for both tasks. To investigate how annotator variability affected those results, we developed a follow-on experiment where we compared our original results with wrong answers chosen based on embedding vector distances. Those results showed increased precision across docu- ments but a 15% decrease in accuracy. We con- clude that language models do have a strong knowledge basis for object reasoning, but will require creative fine-tuning strategies in order to be successfully deployed.
Search
Fix author
Co-authors
- Austin Blodgett 2
- Claire Bonial 2
- Francis Ferraro 2
- Rachel Rudinger 2
- Taylor Hudson 1
- show all...