Du Jin
2025
LLMs Struggle with NLI for Perfect Aspect: A Cross-Linguistic Study in Chinese and Japanese
Lu Jie
|
Du Jin
|
Hitomi Yanaka
Proceedings of the 16th International Conference on Computational Semantics
Unlike English, which uses distinct forms (e.g., had, has, will have) to mark the perfect aspect across tenses, Chinese and Japanese lack sep- arate grammatical forms for tense within the perfect aspect, which complicates Natural Lan- guage Inference (NLI). Focusing on the per- fect aspect in these languages, we construct a linguistically motivated, template-based NLI dataset (1,350 pairs per language). Experi- ments reveal that even advanced LLMs strug- gle with temporal inference, particularly in de- tecting subtle tense and reference-time shifts. These findings highlight model limitations and underscore the need for cross-linguistic evalua- tion in temporal semantics. Our dataset is avail- able at https://github.com/Lujie2001/ CrossNLI.