@inproceedings{qian-etal-2017-syntax,
    title = "Syntax Aware {LSTM} model for Semantic Role Labeling",
    author = "Qian, Feng  and
      Sha, Lei  and
      Chang, Baobao  and
      Liu, Lu-chen  and
      Zhang, Ming",
    editor = "Chang, Kai-Wei  and
      Chang, Ming-Wei  and
      Srikumar, Vivek  and
      Rush, Alexander M.",
    booktitle = "Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/iwcs-25-ingestion/W17-4305/",
    doi = "10.18653/v1/W17-4305",
    pages = "27--32",
    abstract = "In Semantic Role Labeling (SRL) task, the tree structured dependency relation is rich in syntax information, but it is not well handled by existing models. In this paper, we propose Syntax Aware Long Short Time Memory (SA-LSTM). The structure of SA-LSTM changes according to dependency structure of each sentence, so that SA-LSTM can model the whole tree structure of dependency relation in an architecture engineering way. Experiments demonstrate that on Chinese Proposition Bank (CPB) 1.0, SA-LSTM improves F1 by 2.06{\%} than ordinary bi-LSTM with feature engineered dependency relation information, and gives state-of-the-art F1 of 79.92{\%}. On English CoNLL 2005 dataset, SA-LSTM brings improvement (2.1{\%}) to bi-LSTM model and also brings slight improvement (0.3{\%}) when added to the state-of-the-art model."
}Markdown (Informal)
[Syntax Aware LSTM model for Semantic Role Labeling](https://preview.aclanthology.org/iwcs-25-ingestion/W17-4305/) (Qian et al., 2017)
ACL
- Feng Qian, Lei Sha, Baobao Chang, Lu-chen Liu, and Ming Zhang. 2017. Syntax Aware LSTM model for Semantic Role Labeling. In Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing, pages 27–32, Copenhagen, Denmark. Association for Computational Linguistics.