@inproceedings{cattle-ma-2017-srhr,
    title = "{SRHR} at {S}em{E}val-2017 Task 6: Word Associations for Humour Recognition",
    author = "Cattle, Andrew  and
      Ma, Xiaojuan",
    editor = "Bethard, Steven  and
      Carpuat, Marine  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      Cer, Daniel  and
      Jurgens, David",
    booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/iwcs-25-ingestion/S17-2067/",
    doi = "10.18653/v1/S17-2067",
    pages = "401--406",
    abstract = "This paper explores the role of semantic relatedness features, such as word associations, in humour recognition. Specifically, we examine the task of inferring pairwise humour judgments in Twitter hashtag wars. We examine a variety of word association features derived from University of Southern Florida Free Association Norms (USF) and the Edinburgh Associative Thesaurus (EAT) and find that word association-based features outperform Word2Vec similarity, a popular semantic relatedness measure. Our system achieves an accuracy of 56.42{\%} using a combination of unigram perplexity, bigram perplexity, EAT difference (tweet-avg), USF forward (max), EAT difference (word-avg), USF difference (word-avg), EAT forward (min), USF difference (tweet-max), and EAT backward (min)."
}Markdown (Informal)
[SRHR at SemEval-2017 Task 6: Word Associations for Humour Recognition](https://preview.aclanthology.org/iwcs-25-ingestion/S17-2067/) (Cattle & Ma, SemEval 2017)
ACL