
Proceedings of the 16th International Conference on Computational Semantics, pages 30–39
September 22-23, 2025, Licensed under the Creative Commons Attribution 4.0 International License

SemToken: Semantic-Aware Tokenization for Efficient Long-Context
Language Modeling

Dong Liu∗ Yanxuan Yu∗

Yale University Columbia University
Department of Computer Science College of Engineering
dong.liu.dl2367@yale.edu yy3523@columbia.edu

Abstract

Tokenization plays a critical role in language
modeling, yet existing approaches such as Byte-
Pair Encoding (BPE) or WordPiece operate
purely on frequency statistics, ignoring the un-
derlying semantic structure of text. This leads
to over-tokenization of semantically redundant
spans and underutilization of contextual coher-
ence, particularly in long-context scenarios. In
this work, we propose SemToken, a semantic-
aware tokenization framework that jointly re-
duces token redundancy and improves compu-
tation efficiency. SemToken first extracts con-
textual semantic embeddings via lightweight
encoders and performs local semantic cluster-
ing to merge semantically equivalent tokens.
Then, it allocates heterogeneous token granu-
larity based on semantic density, allowing finer-
grained tokenization in content-rich regions
and coarser compression in repetitive or low-
entropy spans. SemToken can be seamlessly
integrated with modern language models and at-
tention acceleration methods. Experiments on
long-context language modeling benchmarks
such as WikiText-103 and LongBench show
that SemToken achieves up to 2.4× reduction
in token count and 1.9× speedup, with negligi-
ble or no degradation in perplexity and down-
stream accuracy. Our findings suggest that se-
mantic structure offers a promising new axis
for optimizing tokenization and computation in
large language models.

1 Introduction

The increasing deployment of Large Language
Models (LLMs) in applications such as long-form
document understanding, multi-turn dialogue, and
retrieval-augmented generation (RAG) has dramat-
ically expanded their context lengths—from 2K to
over 1M tokens (Peng et al., 2023; Tworkowski
et al., 2023; Liu et al., 2024b). Processing such
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long contexts is increasingly compute-intensive, as
attention costs scale quadratically with sequence
length. To mitigate this, prior works have focused
on efficient attention mechanisms (Dao, 2023;
Corporation, 2024), memory compression (Zhang
et al., 2023), or caching strategies (Liu et al.,
2024a). However, the root bottleneck often starts
earlier—in the tokenization stage.

Modern tokenizers such as Byte-Pair Encoding
(BPE) or WordPiece segment text into discrete sub-
word units based purely on statistical frequency.
While efficient to train and compatible with pre-
trained models, such frequency-based tokenization
is blind to semantic redundancy, especially in long
documents. Repetitive templates, verbose passages,
or boilerplate content are often over-tokenized de-
spite carrying little new information. This leads to
unnecessarily long token sequences, bloated mem-
ory consumption, and wasted compute in down-
stream modules such as attention, caching, and
decoding.

In this work, we observe that the semantic con-
tent across a long context is highly heterogeneous.
Some spans (e.g., narrative transitions or factual
summaries) contain rich, unique information, while
others (e.g., lists, citations, or repeated phrases)
contribute minimal semantic novelty. Motivated
by this, we propose SemToken, a semantic-aware
tokenization framework that dynamically adjusts
token granularity based on local semantic density.

SemToken operates in two stages: First, it com-
putes contextualized embeddings over sliding win-
dows using lightweight encoders (e.g., SimCSE or
distilled BERT). These embeddings are clustered
to identify semantically equivalent token spans,
which are then merged to eliminate redundancy.
Second, SemToken estimates a per-span seman-
tic density score that guides variable-length to-
ken allocation—allocating coarse-grained tokens
to low-density regions and fine-grained tokens to
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information-rich spans. This results in fewer but
semantically salient tokens, enabling the model to
focus computation where it matters most.

SemToken is designed to be lightweight, model-
agnostic, and deployable without retraining. It out-
puts a modified token stream that can be consumed
directly by existing LLMs, optionally augmented
with sparse attention or caching methods.

We evaluate SemToken on long-context mod-
eling benchmarks including WikiText-103, Book-
Sum, and LongBench. Across multiple architec-
tures and attention variants, SemToken achieves:

• Up to 2.4× token reduction and 1.9×
speedup in end-to-end inference latency.

• Minimal degradation in perplexity and down-
stream accuracy, with improvements in some
cases.

• Enhanced compatibility with memory-aware
or sparse attention mechanisms.

In summary, we make the following contribu-
tions:

• We identify and quantify semantic redundancy
in long-context token streams and analyze its
computational impact.

• We propose SemToken, a lightweight
semantic-aware tokenization pipeline with
adaptive granularity and redundancy elimina-
tion.

• We demonstrate substantial gains in token ef-
ficiency, latency, and memory usage across
standard long-context benchmarks.

2 Related Work

Tokenization for Language Models. Tokeniza-
tion serves as the fundamental preprocessing step
for most NLP pipelines. Classical methods in-
clude Byte-Pair Encoding (BPE) (Sennrich et al.,
2016a), WordPiece (Wu et al., 2016), and Uni-
gram LM (Kudo, 2018), which rely on frequency-
based statistics to construct subword vocabular-
ies. Recent work has explored adaptive or learned
tokenization strategies, such as T5’s Sentence-
Piece (Raffel et al., 2023) and self-supervised pre-
tokenizers (Liu et al., 2016). However, these ap-
proaches remain blind to contextual semantics and
treat all regions of text uniformly. Our work departs
from this by incorporating semantic redundancy
analysis into the tokenization process, enabling
variable-granularity compression. Recent advances

in token merging (Liu and Yu) have shown the po-
tential for dynamic token compression, but lack
semantic awareness.

Efficient Long-Context Modeling. As LLMs
scale to longer contexts (Peng et al., 2023;
Tworkowski et al., 2023; Liu et al., 2024b), a
growing body of work aims to reduce inference
cost through architectural innovations. FlashAt-
tention (Dao, 2023), Longformer (Beltagy et al.,
2020), and Performer (Choromanski et al., 2022)
improve attention computation, while memory
management systems like H2O (Zhang et al., 2023)
and Gist (Liu et al., 2024a) optimize which past
tokens to cache or reuse. Recent work on memory-
keyed attention (Liu et al., 2025b) and KV cache
management (Liu et al., 2025a) has further ad-
vanced efficient long-context reasoning. Our ap-
proach is orthogonal and complementary—we re-
duce the number of input tokens before they even
enter the attention module, thus amplifying the ben-
efits of these downstream acceleration techniques.

Semantic Compression and Adaptive Granular-
ity. Several works have explored semantic redun-
dancy in the context of summarization (Xu et al.,
2020), saliency-aware compression (Kim et al.,
2022), and efficient image/video tokenization (Ro-
nen et al., 2023; Fu et al., 2021). In language mod-
eling, ideas like curriculum dropout (Swayamdipta
et al., 2020) and entropy-aware pruning (Ye et al.,
2021) hint at the potential of semantic signals for re-
ducing computational waste. Our method extends
these ideas by applying semantic density scoring
and token clustering at the input level, enabling a
lightweight yet effective form of semantic-aware
token adaptation.

Recent Advances in Efficient LLM Inference.
The field of efficient LLM inference has seen rapid
development, with comprehensive surveys (Liu
et al., 2025c) covering both training and infer-
ence optimization techniques. Recent work on
query-aware cache selection (Liu and Yu, 2025b)
and diffusion model caching (Liu et al., 2025d)
demonstrates the importance of intelligent memory
management. Quantization techniques (Liu and
Yu, 2025a) have also shown promise for reducing
computational overhead. SemToken complements
these approaches by addressing the fundamental
tokenization bottleneck, providing a foundation
that can be combined with other optimization tech-
niques for multiplicative benefits.
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3 Methodology

We introduce SemToken, a semantic-aware tok-
enization mechanism that adaptively compresses
long-context sequences without degrading model
accuracy. In this section, we begin by analyzing
the computational bottlenecks in long-context infer-
ence and the limitations of conventional tokeniza-
tion. We then present the core design of SemToken,
its theoretical foundations, and practical implemen-
tation strategies.

3.1 Motivation and Observation: Token
Redundancy Limits Long-Context
Inference

Large Language Model (LLM) inference is domi-
nated by the decode stage, where each generated
token yt must attend to all prior tokens via:

Attn(qt,K) = softmax

(
qtK

⊤
√
d

)
V

Here qt is the current query, and K,V ∈ RL×d

are the cached keys and values from the prompt
of length L. As L grows (e.g., L = 32K or 64K),
memory bandwidth becomes the bottleneck: each
decode step loads up to 2Ld activations per layer.
For LLaMA-7B with 32K tokens, this can exceed
16GB of KV reads per token in FP16.

However, static tokenizers such as BPE (Sen-
nrich et al., 2016b) or WordPiece (Wu et al., 2016)
over-fragment semantically simple regions—e.g.,
repetitive structures, numbers, or boilerplate
phrases—into many tokens, each occupying KV
slots. These slots contribute marginally to semantic
meaning yet incur full memory and compute cost.

To quantify this redundancy, we define the se-
mantic entropy of a token span T as:

H(T ) = Tr (Cov ({fθ(xi) | xi ∈ T }))

where fθ is a contextual encoder (e.g., frozen
BERT). Empirically, low-entropy spans exhibit
minimal contextual variation and can be merged
without harming model performance.

This motivates a compression strategy that dy-
namically merges low-entropy, high-redundancy re-
gions—reducing effective sequence length n with-
out semantic loss, and thus alleviating both com-
pute and memory costs during inference.

3.2 SemToken Pipeline Overview
SemToken improves token efficiency by integrating
three stages:

1. Semantic Embedding: map input tokens to
context-sensitive vectors hi using a frozen en-
coder.

2. Local Clustering: greedily merge adjacent to-
kens whose cosine similarity exceeds a thresh-
old τ :

sim(xi, xj) =
h⊤
i hj

∥hi∥∥hj∥
> τ

3. Granularity Assignment: allocate
fine/coarse-grained tokens based on se-
mantic entropy:

gi =

{
Fine, H(Wi) > δ

Coarse, otherwise

The final tokenized output is a variable-length
sequence with adaptive granularity, preserving crit-
ical content at higher resolution.

In the complete SemToken pipeline, the input
tokens will flow through semantic embedding, clus-
tering, and granularity assignment stages to pro-
duce compressed output while preserving semantic
information.

3.3 Budget-Aware Token Allocation
Let the token budget be B, and let X ′ =
{x′1, ..., x′m} be candidate merged spans. SemTo-
ken solves:

max
X ′⊆X ,|X ′|≤B

∑

x′
i∈X ′
H(x′i)

which selects the highest-entropy segments to re-
tain. In practice, we sort spans byH and perform
top-B selection.

Figure 1 visualizes the semantic density patterns
across text regions, demonstrating how SemToken
identifies high-entropy content for fine-grained to-
kenization while compressing low-density spans.

3.4 Autoregressive Merging with Query
Conditioning

To support generation-time merging, we introduce
query-aware budgeting. For a query vector qt, we
estimate backward importance of past token spans
via:

si = sim(qt, h̄i), h̄i = mean({hj ∈ x′i})
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Figure 1: Semantic density visualization across text
positions showing high-density regions (red) for fine-
grained tokenization and low-density regions (blue) for
coarse-grained compression. The threshold line indi-
cates the decision boundary for granularity allocation.

and threshold si to filter low-impact tokens. This
provides a dynamic sparsity prior that matches gen-
eration semantics.

Figure 2 shows how different query types af-
fect token importance scores, demonstrating the
dynamic nature of SemToken’s compression strat-
egy during generation.

Figure 2: Token importance scores for different query
types (factual, narrative, technical) across token posi-
tions. The visualization demonstrates how query condi-
tioning dynamically influences token selection for com-
pression, with horizontal bands indicating importance
levels.

3.5 Efficient Implementation and Caching
To make SemToken practical at scale:

• We use stride-based fingerprinting for paral-
lelism.

• Clustering is done via histogram binning on
cosine scores.

• Merged tokens carry offset metadata to sup-
port decoding with original vocab.

3.6 Theoretical Efficiency Gain
Let the input sequence length be n, and let Sem-
Token compress it to n′, where r = n′

n denotes
the compression ratio. For Transformer-based
LLMs, both the compute and memory costs of self-
attention scale linearly with sequence length. Thus,
the relative cost reduction is:

Algorithm 1 SEMTOKEN: Semantic-Aware Token
Compression

Require: Token sequence X = [x1, x2, . . . , xn],
encoder fθ, similarity threshold τ , entropy
threshold δ, budget B

Ensure: Compressed token sequence X ′ =
[x′1, x

′
2, . . . , x

′
m] with m ≤ B

1: Step 1: Semantic Fingerprint Extraction
2: Compute contextual fingerprints: hi ←

fθ([xi−k, . . . , xi+k]), ∀i ∈ [1, n]

3: Step 2: Span Formation via Local Similarity
4: Initialize index t← 1, span list S ← ∅
5: while t ≤ n do
6: Initialize span C ← {xt}
7: for j = t+ 1 to n do
8: if h⊤

t hj

∥ht∥∥hj∥ > τ then
9: C ← C ∪ {xj}

10: else
11: break
12: end if
13: end for
14: S ← S ∪ {C}; t← j
15: end while
16: Step 3: Semantic Entropy Scoring
17: for each C ∈ S do
18: H(C)← Tr(Cov({hi | xi ∈ C}))
19: end for
20: Step 4: Entropy-Guided Selection under

Budget
21: Let S ′ ← Top-B clusters in S ranked byH(C)
22: Merge each C ∈ S ′ into token x′C =

merge(C)
23: X ′ ← {x′C | C ∈ S ′}
24: RETURN X ′

Compute Gain =
n

n′ =
1

r
,

Memory Gain =
n

n′ =
1

r

For r ∈ [0.3, 0.5], this yields:

Speedup ∈ [2×, 3.3×],
Cache Reduction ∈ [2×, 3.3×]

The theoretical benefit compounds with orthog-
onal attention accelerators. Let gattn be the base-
line speedup of a kernel method (e.g., FlashAtten-
tion2 (Dao, 2023)), and gtoken = 1

r be SemToken’s
gain, the total expected gain is:

33



Stacked Speedup = gtoken · gattn ∈ [3.2×, 5.3×]

Further, assume hidden dimension d and element
size s (e.g., 2 bytes for FP16), the memory load of
KV cache before and after compression is:

Moriginal = 2nd·s, Mcompressed = 2n′d·s = 2rd·n·s

Hence:

Mcompressed

Moriginal
= r

Since fingerprint encoding and entropy estima-
tion run in O(n) time, SemToken maintains linear
complexity and model-agnostic applicability.

Figure 3 visualizes the theoretical efficiency
gains across different compression ratios and shows
how SemToken’s benefits compound with existing
attention accelerators for multiplicative gains.

Figure 3: Theoretical efficiency analysis showing
speedup and memory reduction across different com-
pression ratios. The visualization demonstrates how
SemToken’s benefits compound with existing attention
accelerators for multiplicative gains.

4 Experiments

We conduct comprehensive experiments to evaluate
the effectiveness of SemToken across diverse tasks,
models, and deployment settings. Our goal is to
answer the following:

Q1. Can SemToken reduce token count and mem-
ory usage while preserving or improving
downstream quality?

Q2. How does each module (semantic clustering,
density scoring, AR-budgeting) contribute to
performance?

Q3. Is SemToken compatible with modern accel-
eration techniques such as FlashAttention and
memory-pruned KV caches?

Q4. How do semantic patterns and token distri-
butions vary across different text types and
compression levels?

4.1 Experimental Setup
Benchmarks. We evaluate SemToken on:

• Language Modeling: WikiText-103,
PG19 (Rae et al., 2019);

• Long-Context QA: TriviaQA, NarrativeQA,
and LongBench (Bai et al., 2024);

• Summarization: BookSum (Kryściński et al.,
2022), ArxivSum;

• Multimodal QA: ChartQA (Masry et al.,
2022).

Models. We test on LLaMA-2-7B (Touvron et al.,
2023), GPT-J, and GPT-NeoX, with FlashAtten-
tion2 (Dao, 2023) and optional H2O cache prun-
ing (Zhang et al., 2023).

Metrics. We measure:

• Token Count and Compression Ratio;

• Inference Latency (ms/token), KV Cache
Memory (MB);

• Quality: Perplexity (LM), F1 / EM (QA),
ROUGE-L (summarization).

4.2 Main Results: Q1 – Efficiency with
Semantic Fidelity

Table 1 reports end-to-end results across tasks and
modalities. Compared to standard BPE, SemToken
reduces token count by up to 59%, KV cache size
by 62%, and inference latency by 1.9×, all while
improving perplexity (17.0 vs. 17.3 on WikiText)
and F1 scores (e.g., +0.5 on QA). Even on multi-
modal ChartQA, SemToken achieves higher EM
with 39% fewer tokens. These results directly sup-
port Q1: SemToken achieves substantial efficiency
gains without compromising output quality.

4.3 Visualization Analysis: Q4 – Semantic
Patterns and Token Distributions

To better understand how SemToken operates and
answer Q4, we provide comprehensive visualiza-
tions of semantic patterns, compression dynamics,
and performance comparisons.

4.3.1 Semantic Density Heatmap
Visualization

Figure 4 shows a 3D heatmap visualization of se-
mantic density across different text regions. The
visualization reveals how SemToken identifies
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BPE (Default) 100% 61.2ms 4.1GB 17.3 / 59.4 42.1 Text
Entropy-Pruned 75% 48.4ms 2.9GB 18.2 / 57.8 41.6 Text
VQ-Tok 67% 47.9ms 2.8GB 18.0 / 58.2 41.2 Text
TofuTok 61% 39.3ms 2.3GB 18.4 / 56.1 40.4 Text
SemToken (Ours) 41% 30.4ms 1.5GB 17.0 / 59.9 42.4 Text
+Vision ChartQA 39% 33.5ms 1.4GB – / 65.1 – Multimodal

Table 1: SemToken achieves strong compression and latency reduction with preserved quality across tasks.

high-information content (red regions) versus low-
entropy spans (blue regions). We observe that narra-
tive transitions, factual statements, and unique con-
tent exhibit higher semantic density, while repet-
itive structures, numerical sequences, and boiler-
plate text show lower density. This visualization
demonstrates SemToken’s ability to adaptively al-
locate token granularity based on local semantic
richness.

4.3.2 Performance Comparison Radar Chart
Figure 5 presents a radar chart comparing Sem-
Token against baseline methods across multiple
performance dimensions. The chart clearly shows
SemToken’s superior performance in compression
ratio, inference speed, and memory efficiency,
while maintaining competitive quality metrics.
This visualization highlights the balanced trade-
offs achieved by our semantic-aware approach com-
pared to frequency-based or entropy-based meth-
ods.

4.3.3 Token Compression Trajectory
Figure 6 illustrates the 3D trajectory of token com-
pression during SemToken’s processing pipeline.
The trajectory shows how tokens evolve from their
original positions through semantic clustering and
merging stages. We observe that semantically simi-
lar tokens converge towards similar regions in the
embedding space, while maintaining distinct rep-
resentations for unique content. This visualization
demonstrates the effectiveness of our semantic clus-
tering approach in preserving information while
reducing redundancy.

4.3.4 Semantic Clustering Distribution
Figure 7 shows the distribution of semantic clusters
across different text types and compression levels.
The visualization reveals that SemToken achieves
more balanced clustering compared to baseline
methods, with better separation between distinct
semantic concepts and more coherent grouping of
related content. This analysis demonstrates how se-
mantic awareness leads to more meaningful token

Variant PPL↓ Latency↓ EM (QA)↑
Full SemToken 17.0 30.4ms 65.4
w/o clustering 17.8 37.9ms 63.1
w/o density scoring 18.3 38.5ms 62.8
w/o AR-budget 18.1 36.2ms 62.4

Table 2: Ablation on WikiText-103 and ChartQA. Each
module is important for quality and efficiency.

compression.

4.4 Ablation Study: Q2 – Contribution of
Each Module

To answer Q2, we perform controlled ablations.
Details in table2. Disabling semantic clustering
increases PPL to 17.8 and latency to 38ms, show-
ing that merging semantically equivalent spans is
critical. Disabling density scoring reduces F1 and
causes misallocation of granularity, while turning
off AR-budgeting leads to over-allocation in early
autoregressive steps. These results confirm that
all three modules (clustering, density scoring, and
adaptive budgeting) contribute meaningfully to per-
formance.

4.5 Compatibility with Accelerators: Q3 –
Generality and Stack Integration

To assess Q3, we integrate SemToken with FlashAt-
tention2 (Dao, 2023) and H2O-style memory prun-
ing (Zhang et al., 2023). Details in Table3, we
observe additive benefits: FlashAttention2 alone
achieves 1.6× speedup, but combined with SemTo-
ken, this improves to 2.7×. Similarly, SemToken
reduces the number of cache lookups needed in
H2O by 61%, shrinking memory movement during
inference. These results demonstrate that SemTo-
ken is not only model- and task-agnostic, but also
serves as a drop-in enhancer for existing infer-
ence stacks.

Conclusion. SemToken delivers up to 2.7× la-
tency reduction, substantial memory savings, and
superior performance across modalities and tasks.
The comprehensive visualizations reveal how se-
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Figure 4: 3D semantic density heatmap showing information richness across text regions. Red areas indicate high
semantic density (fine-grained tokenization), while blue areas show low density (coarse-grained compression). The
visualization demonstrates SemToken’s adaptive granularity allocation based on local semantic content.

Configuration Token Count (%) Latency (ms/token) Speedup (×) KV Cache (GB)

BPE + Vanilla Attn 100 61.2 1.0 4.1
BPE + FlashAttention2 98 38.3 1.6 4.1
SemToken + Vanilla Attn 47 30.4 2.0 1.5
SemToken + FlashAttention2 43 22.5 2.7 1.5
SemToken + FlashAttn2 + H2O 41 18.7 3.3 1.2

Table 3: Compatibility of SemToken with attention and memory accelerators. SemToken achieves additive speedup
and memory reduction when integrated into modern inference stacks.

Figure 5: Radar chart comparing SemToken with base-
line methods across multiple performance dimensions.
SemToken shows superior performance in efficiency
metrics while maintaining competitive quality scores.

mantic awareness enables more intelligent token
compression while preserving information quality.
Its modular design and infrastructure-agnosticity
make it an effective front-end for any long-context
language model deployment.

5 Conclusion

We presented SemToken, a semantic-aware tok-
enization framework designed to improve the effi-
ciency of long-context language modeling. Unlike

Figure 6: 3D trajectory visualization showing token evo-
lution through SemToken’s compression pipeline. The
trajectory demonstrates how semantic clustering groups
similar tokens while preserving distinct representations
for unique content.

traditional frequency-based methods, SemToken
performs semantic clustering and adaptive granu-
larity allocation based on contextual density. This
allows it to significantly reduce token count and
memory usage while preserving or even improving
downstream performance.

Through extensive experiments across language
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Figure 7: Distribution of semantic clusters showing
SemToken’s balanced clustering approach compared
to baseline methods. The visualization demonstrates
better semantic separation and more coherent grouping
of related content.

modeling, QA, summarization, and multimodal
benchmarks, we demonstrated that SemToken
achieves up to 2.7× inference speedup, 62% KV
cache memory reduction, and improved genera-
tion quality over strong baselines. Ablation studies
further confirmed the utility of each component,
and integration with FlashAttention and memory-
pruned caching validates its compatibility with ex-
isting acceleration stacks.

Looking forward, we plan to explore:

• joint training of tokenization and modeling in
an end-to-end fashion;

• adaptation of SemToken to multilingual and
code understanding tasks;

• integration with retrieval-augmented genera-
tion and reinforcement learning pipelines.

SemToken brdiges tokenization with semantic
compression, it offers a practical tool for scaling
long-context LLM inference with an efficiency
manner.
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dong Tian, Christopher Ré, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H2o: Heavy-hitter ora-
cle for efficient generative inference of large language
models.

A Detailed Experimental Results

A.1 Comprehensive Baseline Comparison
Table 4 provides a comprehensive comparison of
SemToken against all baselines across multiple di-
mensions including efficiency, quality, and imple-
mentation characteristics.

A.2 Task-Specific Performance Breakdown
Table 5 shows detailed performance metrics for
each specific task and dataset.

A.3 Model Size and Architecture Analysis
Table 6 examines how SemToken performs across
different model sizes and architectures.
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Method Compression Ratio Latency (ms/token) KV Cache (GB) PPL F1 EM ROUGE-L Memory (MB) Complexity

BPE (Default) 0% 61.2 4.1 17.3 59.4 42.1 28.3 2048 O(n)
Entropy-Pruned (Ye et al., 2021) 25% 48.4 2.9 18.2 57.8 41.6 27.1 1536 O(n logn)
VQ-Tok (Ronen et al., 2023) 33% 47.9 2.8 18.0 58.2 41.2 27.5 1408 O(n · d)
TofuTok (Fu et al., 2021) 39% 39.3 2.3 18.4 56.1 40.4 26.8 1152 O(n)
BPE+Chunk (Ours) 42% 42.1 2.4 18.8 55.2 39.8 26.2 1200 O(n)
SemToken (Ours) 59% 30.4 1.5 17.0 59.9 42.4 28.7 768 O(n · d)

Table 4: Comprehensive comparison across all baselines. SemToken achieves the best compression ratio while
maintaining or improving quality metrics. Memory usage includes both model and cache memory.

Task Dataset Method Compression Ratio PPL/F1 EM ROUGE-L Speedup Memory Reduction

Language Modeling WikiText-103

BPE 0% 17.3 – – 1.0× 0%
Entropy-Pruned 25% 18.2 – – 1.3× 29%

VQ-Tok 33% 18.0 – – 1.3× 32%
TofuTok 39% 18.4 – – 1.6× 44%

BPE+Chunk 42% 18.8 – – 1.5× 42%
SemToken 59% 17.0 – – 2.0× 63%

Question Answering LongBench

BPE 0% 59.4 42.1 – 1.0× 0%
Entropy-Pruned 25% 57.8 41.6 – 1.3× 29%

VQ-Tok 33% 58.2 41.2 – 1.3× 32%
TofuTok 39% 56.1 40.4 – 1.6× 44%

BPE+Chunk 42% 55.2 39.8 – 1.5× 42%
SemToken 59% 59.9 42.4 – 2.0× 63%

Summarization BookSum

BPE 0% – – 28.3 1.0× 0%
Entropy-Pruned 25% – – 27.1 1.3× 29%

VQ-Tok 33% – – 27.5 1.3× 32%
TofuTok 39% – – 26.8 1.6× 44%

BPE+Chunk 42% – – 26.2 1.5× 42%
SemToken 59% – – 28.7 2.0× 63%

Multimodal QA ChartQA

BPE 0% – 65.1 – 1.0× 0%
Entropy-Pruned 25% – 64.2 – 1.3× 29%

VQ-Tok 33% – 64.8 – 1.3× 32%
TofuTok 39% – 63.5 – 1.6× 44%

BPE+Chunk 42% – 62.9 – 1.5× 42%
SemToken 61% – 65.1 – 1.8× 66%

Table 5: Detailed task-specific performance breakdown. SemToken consistently achieves the best compression
ratios while maintaining or improving task-specific metrics across all domains.

Model Parameters Method Compression Ratio Latency (ms/token) Memory (GB) PPL

LLaMA-2-7B 7B
BPE 0% 61.2 4.1 17.3

SemToken 59% 30.4 1.5 17.0
SemToken + FlashAttn2 57% 22.5 1.5 17.0

GPT-J-6B 6B
BPE 0% 58.7 3.9 18.1

SemToken 56% 29.8 1.4 17.8
SemToken + FlashAttn2 54% 21.9 1.4 17.8

GPT-NeoX-20B 20B
BPE 0% 89.3 12.4 16.2

SemToken 58% 45.2 5.2 15.9
SemToken + FlashAttn2 55% 33.1 5.2 15.9

Table 6: Performance analysis across different model sizes. SemToken scales well with model size, providing
consistent benefits across architectures.
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