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Abstract

The paper outlines an account of how the brain
might process questions and answers in linguis-
tic interaction, focusing on accessing answers
in memory and combining questions and an-
swers into propositions. To enable this, we pro-
vide an approximation of the lambda calculus
implemented in the Semantic Pointer Architec-
ture (SPA), a neural implementation of a Vec-
tor Symbolic Architecture. The account builds
a bridge between the type-based accounts of
propositions in memory (as in the treatments of
belief by Ranta, 1994 and Cooper, 2023) and
the suggestion for question answering made
by Eliasmith (2013), where question answer-
ing is described in terms of transformations of
structured representations in memory provid-
ing an answer. We will take such representa-
tions to correspond to beliefs of the agent. On
Cooper’s analysis, beliefs are considered to be
types which have a record structure closely re-
lated to the structure which Eliasmith codes in
vector representations (Larsson et al., 2023).
Thus the act of answering a question can be
seen to have a neural base in a vector trans-
formation translatable in Eliasmith’s system to
activity of spiking neurons and to correspond to
using an item in memory (a belief) to provide
an answer to the question.

1 Introduction

Understanding how semantic representations are
instantiated in biological neural networks remains
a fundamental challenge in cognitive science. The
Semantic Pointer Architecture (SPA) has been used
to build what is currently the world’s largest func-
tional brain model (Spaun; Eliasmith, 2013; Elia-
smith et al., 2012; Voelker and Eliasmith, 2023),
which includes perception, decision making, and
motor control systems integrated in a cognitive
model that is implemented in spiking neurons
and captures detailed anatomical and physiolog-
ical characteristics of the mammalian brain. The

SPA’s structured representations are a neural im-
plementation of a Vector Symbolic Architecture
(VSA; Gayler, 2003; Schlegel et al., 2022). The
basic strategy of the SPA, as we explain below, is
to combine a VSA’s algebraic structure on a vec-
tor space, with coding and decoding operations
into ensembles of neurons. In this way, one can
retain compositional analyses of natural language
in a transparent way that contrasts with LLM ap-
proaches, while retaining the robustness and the
continuity vectors provide in semantic space. In
this paper, we begin to address this challenge by fo-
cussing on the processing of questions and answers
within a VSA approach, using a VSA approxima-
tion of the lambda calculus, and how it can be
imlemented in neural network simulations.

Plate (2003, §3.4) and Eliasmith (2013, §4.4)
discuss how structured representations encoded as
vectors can be manipulated to support reasoning.
In particular, on pp. 135ff Eliasmith gives a sim-
ple suggestion of how some aspects of question
answering could work. In terms of vectors it in-
volves a convolution of a proposition expressed as
superpositions of role–filler pairs with another vec-
tor corresponding to the question in order to obtain
a vector which approximately encodes the answer.
However, as Eliasmith (p. 139 2013) himself notes,
this model “does not have a solid linguistic justifi-
cation”. Accordingly, VSA approaches to date lack
a semantically motivated representation of ques-
tion and question answering (QA). In particular,
some aspects of question and answer processing
are still missing, specifically (1) how a proposition
containing an answer to a question can be found in
memory and (2) how a question and an (elliptical)
answer can be combined into a proposition upon
hearing the answer. Here we attempt to fill this gap
by bridging between a type-based semantic theory
of questions and the computational neuroscience
VSA approach of the SPA.

The memory which is being probed for answers
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can be thought of as a collection of proposition
encodings – in some cases long term memory (e.g.,
(1a)), in others working memory, at times a combi-
nation thereof (e.g., (1b)).

(1) a. What is the capital of Togo?
b. Are you aware of the wasp on your nose?

Of course, we may not have precisely the propo-
sition we need in memory but may need to reason
from a proposition we have to the proposition we
need to answer the question.

In this paper we will first explain the formal and
conceptual backgrounds that are synthesized in this
paper (section 2), including SPA and Type Theory
with Records, the semantic framework whose en-
tities underpin our discussion here. We will then
explain the previous work on question answering
in terms of flat role–filler structures (section 3). Fi-
nally, we propose a more comprehensive account
of questions and answers using our type-based ap-
proach, where we use a SPA approximation of the
lambda calculus to handle both question answering
and semantic ellipsis resolution (section 4). Sec-
tion 5 presents a toy model implementation that
illustrates and evaluates some features of the SPA-
TTR hybrid approach to QA. We conclude in sec-
tion 6.

2 Background

In this section we describe vector symbolic ar-
chitectures that mediate between symbolic and
distributive representations, neural networks that
implement such representations, and finally type-
theoretic semantics, specifically the framework
Type Theory with Records. In the following, we
briefly discuss each of these backgrounds.

2.1 Holographic Reduced Representations
(HRR)

Holographic Reduced Representations (HRR;
Plate, 2003) are a particular implementation of
compressed representations, that is, (higher-order)
semantic representations that are obtained by “com-
pressing” (lower-level) semantic representations
(Hinton, 1990). HRR achieve this by circular con-
volution: a multiplication operation that binds high-
dimensional vectors of dimension d into a new
vector of dimension d. Thus, HRR is a true-to-
dimension instance of a Vector Symbolic Archi-
tecture (VSA; Gayler, 2003), in contrast to, for
instance, tensor products (Smolensky, 1990).

The vector algebra of HRR includes the follow-
ing operators (a, b, . . . are vectors, i.e., lists of
numbers of length d, the dimension of the vector;
in the following we usually assume normalized unit
vectors, i.e. vectors whose length is 1)1:

• +: a+b = [a0+b0,a1+b1, . . . ,ad−1+bd−1]
• −: a−b = [a0−b0,a1−b1, . . . ,ad−1−bd−1]

• ⊛: c = a⊛b : c j =
d−1
∑

k=0
akb j−k (mod d)

• inverse: a′ = [a0,ad−1,ad−2,ad−3, . . . ,a1]

Basic properties of HRR vector manipulations
(Plate, 2003): Circular convolution can be regarded
as a multiplication operator for vectors. It has many
properties in common with both scalar and matrix
multiplication. It is commutative, associative, and
bilinear. There is an identity vector and a zero
vector and each vector has an approximate inverse
(‘involution’). Involution distributes over addition
and convolution, and is its own inverse. It is note-
worthy that the true-to-dimension HRR vector ma-
nipualtions are lossy: in particular the inverse a′
of a vector a is not the exact inverse but approxi-
mates it. This “lossiness” introduces the need for
clean-up memories when using it in cognitive VSA
architectures like the SPA (see below).

2.2 Neural Engineering Framework (NEF)
The Neural Engineering Framework (NEF; Elia-
smith and Anderson, 2003) implements vectorial
representations and manipulations in neural simu-
lations.2 The basic idea is that high-dimensional
vectors figure as the currents that are processed
(encoded and decoded) by ensembles of neurons in
real time.

2.3 Semantic Pointer Architecture (SPA)
Semantic pointers (Eliasmith, 2013) are structured
representations (they can be “dereferenced” to ac-
cess the more extensive information folded into
them) in a (high-dimensional) vector space that
function as symbols in cognitive processing and are
processed as activity patterns in neural networks.
In implementational terms, a semantic pointer can
be conceived as a “vector with a name” (it can
be addressed); the collection of semantic pointers
in this sense make up a “dictionary”. In the Se-
mantic Pointer Architecture (SPA; Eliasmith, 2013)

1The Euclidian length, ∥ · ∥, of a vector is the square
root of the sum of the squares of its dimension: ∥a∥ =√

a2
0 + . . . +a2

d−1.
2See https://www.nengo.ai/.
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of cognitive functions, questions and answers are
modeled as semantic pointers (see section 3). SPA
uses HRR as default operation for binding (denoted
by “⊛”) and unbinding (i.e., binding with the in-
verse vector, below notated with a prime) vectors
(see section 2.1), though other algebras can be used
in the SPA as well.

Since HRR is lossy (see above), processing with
circular convolution “degrade[s] gracefully in the
presence of noise” (Plate, 2003, p. 141). To dis-
tinguish random noise from “allowable represen-
tations”, the high-dimensional vectors that are ob-
tained from vector manipulations (carried out by
ensembles of neurons in NEF, see section 2.2) are
compared to “valid representations” from the vo-
cabularies of semantic pointers (Eliasmith, 2013,
§4.6). This validation is derived from inclusion in
clean-up memory: the noisy processed vector is
validated against the semantic pointers (now con-
ceived as vectors) in the vocabulary of semantic
pointers. Technically this is spelled out as the dot
product (the standard measure of vector similarity)
of the processed vector and the named vectors in
the semantic pointer vocabulary.

Clean-up memories are a natural component of
lossy VSAs. While the need for long-term clean-
up memories is uncontroversial, it is only used
sparingly in biological systems because its mainte-
nance is neurologically costly (Stewart et al., 2011).
A clean-up memory call replaces a noisy process-
ing vector with its most similar semantic pointer
vector from the semantic pointer vocabulary. We
indicate the need (or at least the benefit) and the
use of clean-up memory as Clean(·) (or CleanD(·)
where D indicates the domain of the cleanup func-
tion, i.e. the vocabulary which the cleanup function
compares with) in the following.

Although being noisy, HRRs involve, among
other things, an associative and commutative vec-
tor combinatory operation, which is not necessarily
the case with other algebraic systems (e.g., Vector-
Derived Transformation Binding (Gosmann and
Eliasmith, 2019), which can nevertheless be neu-
rally efficient). Futhermore, the SPA (via NEF)
relates symbolic, distributional and neural levels.
For this reasons, we formulate our approach in
terms of the SPA and its default HRR algebra.

2.4 Type Theory with Records (TTR)
We give a brief sketch of those aspects of TTR
which we will use in this paper. For more detailed
accounts see Cooper (2023).

s : T represents a judgement that s is of type
T . Types may be either basic or complex (in the
sense that they are structured objects which have
types or other objects introduced in the theory as
components). One basic type that we will use is
Ind, the type of individuals; another is Real, the
type of real numbers.

Among the complex types are ptypes which are
constructed from a predicate and arguments of ap-
propriate types as specified for the predicate. Ex-
amples are ‘man(a)’, ‘see(a,b)’ where a,b : Ind.
The objects or witnesses of ptypes can be thought
of as situations, states or events in the world which
instantiate the type. Thus s : man(a) can be glossed
as “s is a situation which shows (or proves) that a
is a man”.

Another kind of complex type are record types.
In TTR records are modelled as a labelled set con-
sisting of a finite set of fields. Each field is an
ordered pair, ⟨ℓ,o⟩, where ℓ is a label (drawn from
a countably infinite stock of labels) and o is an ob-
ject which is a witness of some type. No two fields
of a record can contain the same label. Importantly,
o can itself be a record.

A record type is like a record except that the
fields are of the form ⟨ℓ,T ⟩ where ℓ is a label as
before and T is a type. The basic intuition is that
a record, r is a witness for a record type, T , just
in case for each field, ⟨ℓi,Ti⟩, in T there is a field,
⟨ℓi,oi⟩, in r where oi : Ti. (Note that this allows
for the record to have additional fields with labels
not included in the fields of the record type.) The
types within fields in record types may depend on
objects which can be found in the record which is
being tested as a witness for the record type. We
use a graphical display to represent both records
and record types where each line represents a field.
Example (2) represents the type of records which
can be used to model situations where a man runs.

(2)




ref : Ind
cman : man(ref)
crun : run(ref)




A record of this type would be of the form

(3)




ref = a
cman = s
crun = e
. . .




where a : Ind, s : man(a) and e : run(a). Detailed
accounts of questions in TTR can be found in
(Ginzburg, 2012; Ginzburg et al., 2014, 2022).
These are based on viewing questions as akin to
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propositional abstracts. This approach is the basis
for the most detailed discussion of the response
space of questions (Ginzburg et al., 2022) that we
are aware of. Another reason for using TTR is that
all complex TTR objects are constructed from la-
belled sets, which correspond to the representation
of structured objects which Eliasmith achieves us-
ing superposition and circular convolution (Larsson
et al., 2023).

2.5 Mapping TTR onto SPA
First steps towards a hybrid of formal and neural
semantics by mapping TTR to the SPA have been
taken by Larsson et al. (2023). The basic idea
was to relate type judgments (not just types) to
neural events. By this means, basic types, percep-
tual and cache-based judgements, singleton types,
record types, meet types and merging of record
types, ptypes, and subtyping have been accounted
for. However, this previous work had little to say
about functions, which we address in the following
by example of Wh-questions.

3 Previous work on question answering in
HRR and SPA

Modelling questions in the NEF-SPA means con-
structing a (biocognitive inspired) network that
models a question-related task. Eliasmith (2013)
illustrates such a network with question answer-
ing (QA). The idea is that the visual cortex pro-
vides statements and questions, both supplied as
semantic pointers. Statement pointers (e.g., “red⊛
circle”) represent “the world” and are sent to a
memory population of neurons (working memory).
Question pointers pose questions to memory con-
tent (e.g., “red′” ≈ “What is red?”). Basal ganglia
monitors input and determines what kind of routing
is appropriate to answer the question. The answer
is sent to the clean-up memory and the memory
item with highest similarity is sent to motor cor-
tex (i.e., the answer is given). For instance, the
simple statement “dog52 chases cat43” could be
represented as a flat role–filler structure as follows:

(4) agent ⊛ dog52 + frame ⊛ chase + theme ⊛
cat43

A fixed set of semantic role labels provides infor-
mation about where to find the desired information
in semantic pointers and can be used for modeling
questions. For example, Who-questions address
entities (persons, or animate beings in general) as-
sociated with a certain role in role–filler represen-

tations, where addressing is captured in terms of
unbinding.

Accordingly, asking the given statement (4)
“Who does dog52 chase?” amounts to unbinding
(4) with theme′ and thereby retrieving an answer:

(5) (4) ⊛ theme′ ≈ cat43

There are obvious ways to make this QA network
more complex. Firstly, more complex models need
to employ more semantic roles (e.g., location, time,
colour, shape, manner, . . . ), in particular to deal
with embedded clauses.

Secondly, a long-term memory along with the
working memory will be used. Routing through
basal ganglia will then decide when to look into
working or long-term memory to find an answer to
a given question.

QA with flat role–filler structures in the SPA
according to the pattern outlined above offers two
insights:

1. The structures of questions and answers have
to match closely: the statement pointer that is
enquired by a question pointer needs to be tai-
lored to the question asked. In this sense, the
answering statement has to be given/known in
advance.

2. QA is dynamic: regardless of the knowledge
source of the answer (e.g., actual perception
or long term memory retrieval), both the ques-
tion and the answer are rehearsed in working
memory for QA.

The first issue seems to be a limiting conse-
quence of using the inverses of “label pointers”
within flat role–filler structures as models for ques-
tions. This assumption is not shared in linguistic
semantics, which instead uses functions. Linguistic
semantics in turn ignores the dynamicity of knowl-
edge source retrieval and QA rehearsal in working
memory. Here we aim to reconcile this gap be-
tween neuro-computational and formal semantics.

4 Dealing with questions using Lambda
calculus in SPA-TTR

The role-filler approach to simple question answer-
ing outlined in section 3 assumes that you have
already found the proposition which provides the
answer and tells you where to look to find the an-
swer within the proposition. A natural language
question has to in addition give you material to find
the proposition in memory. Also, since answers
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are often semantically underspecified (and syntac-
tically elliptical) and thus need to be understood
in the context of a specific question, it must be
possible to combine questions and (underspecified)
answers into full propositions.

An account of question and answer processing
thus needs to address the following:

• How are questions and answers combined to
propositional types (ptypes)?

• How can answers to a question be found in
memory?

We address these questions in sections 4.1 and
4.5, respectively. Along the way, we also cover
typechecking of answer candidates in section 4.2,
double abstraction (“Who chases who?”) in sec-
tion 4.3, and as a preparation for section 4.5 we
also adapt the role-filler approach to extracting an
answer from a question and a ptype, in section 4.4.

We will represent questions as functions. The
body of the function tells you what would be an
appropriate proposition to find in memory. The
abstraction in the function tells you where to look
in that proposition.

4.1 Combining question and answer into a
ptype

We will start by showing how a question and a
semantically underspecified (elliptical) answer can
be combined into a TTR ptype. For simplicity, we
will assume that referents have been identified, so
that we write dog52 (a specific dog) instead of “the
dog” or “that dog”. Suppose we have the following
exchange:

(6) Q: “Who does dog52 chase?” A:“cat43”

In TTR, this would be handled by applying a ques-
tion q to an answer a to arrive at a ptype p:

(7) a. q = λv : Ind.chase(dog52,v)
b. a = cat43

c. p = q(a) = chase(dog52,cat43)

To convert this into SPA-TTR, we use the
fact that in TTR, λv : Ind.chase(dog52,v) is the
labelled set

(8)





⟨lambda,Ind⟩,

⟨body ,




⟨pred,chase⟩
⟨arg1,dog52⟩
⟨arg2,‘body.arg2’⟩



⟩





In SPA-TTR, we modify this slightly. Firstly, we
let the value of the abstracted field be I, the iden-
tity vector. Secondly, we add a field lambdapath
containing a path in the question body leading to
the abstracted field.

(9) Q =




lambdapath⊛arg2+
lambdatype⊛ Ind+

body⊛




pred⊛ chase+
arg1⊛dog52+
arg2⊛ I







with I the identity vector I = [1,0,0, . . .], such that
for any vector x, I⊛x = x. This is a variant of de
Bruijn indexing (de Bruijn, 1972), coding lambda
terms without using variables but using paths to
mark positions instead. (For a different variant
using paths see Cooper, 2023.)

For an answer like the one in (10), we want to
get the ptype in (11).

(10) A = cat43

(11) P =




pred⊛ chase+
arg1⊛dog52+
arg2⊛ cat43




In SPA-TTR, Q and A are inputs to a network for
lambda function application that combines them
into a proposition by realizing the SPA function
below:3

(12) f (Q,A) = Q⊛body′−Path+Path⊛A
where Path = Q⊛ lambdapath′

For our example above, this gets us

(13) P ≈ f (Q,A) = Q⊛body′−arg2+arg2⊛
A

This function outputs the body of the question
with the lambda abstracted variable replaced by the
argument.

For the specific Q = Q and A = A given above,
Path = Q ⊛ lambdapath′ evaluates (with some
noise) to arg2, yielding

(14) P =




pred⊛ chase+
arg1⊛dog52+
arg2⊛ I


 − arg2 + arg2⊛cat43≈




pred⊛ chase+
arg1⊛dog52+
arg2⊛ cat43




as desired. To reduce noise, we can add a Clean()
operation over the domain of possible paths:

(15) Path = CleanPaths(Q ⊛ lambdapath′)
where Paths = {arg1,arg2,pred}

3We would like to thank Chris Eliasmith for help with this
formulation.
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4.2 Typechecking

Above, we have been ignoring the typechecking
specified in (7) . One strategy for including it is to
prefix the function f in (12) with a term that returns
the identity vector I if typechecking is successful
and noise otherwise. This would mean that f re-
turns noise if typechecking fails, but if it succeeds
the result will be identical to using the definition in
(12). To achieve this, we can use the fact that the
result of binding a vector to its own (approximate)
inverse is similar to the identity vector:

(16) A′⊛A ≈ I

The idea is then to use this to compare the
type of the answer to the type specified by Q⊛
lambdatype′. To get the type of the answer, we
assume there is a vector FT which binds objects to
their types, so that that FT⊛A′ for some object A
returns the type of A (assuming for now that each
object is of exactly one type in FT):

(17) FT = . . .+ cat45 ⊛ Ind+ . . .

The typechecking needed for applying a lambda
function Q to an argument A can now be handled
by binding with

(18) (FT⊛A′)⊛ (Q⊛ lambdatype′)′

which for (12) gets us

(19) f (Q,A) =
((FT⊛A′)⊛ (Q⊛ lambdatype′)′)⊛
(Q⊛body′−Path+Path⊛A)

For Q and A as in (9) and (10), respectivly, we
have that FT⊛cat′45≈ Ind and Q⊛ lambdatype′ ≈
Ind, so that (18) evaluates to

(20) Ind⊛ Ind′ ≈ I

Since operations such as (18) and (19) introduce
a lot of noise, it might be necessary to support them
with clean-up steps. For instance, in a simple im-
plementation (see section 5) the similarity of (20)
drops to 0.39. If the two unbinding sub-steps in-
volved in (18) are cleaned-up in a memory of basic
types first, it reaches 1. In both cases, however, the
type Ind is the most similar base type for the un-
bound types of question and answer. If we assume
that abstracted arguments are of basic types4 and
take BType to be the SPA-TTR implementation of
TTR basic types, we thus replace (18) with (21).

4This assumption is not generally true, e.g. for "why"-
questions. We leave such cases for future work.

(21) CleanBType(FT⊛A′)⊛
CleanBType(Q⊛ lambdatype′)′

This provides a general method for doing type-
checking for SPA-TTR lambda functions. For
brevity, we will exclude typechecking below.

4.3 Double abstraction
What about questions with double abstraction,
such as “Who chased who?”? In TTR, this
is done as a double lambda term λv1,v2 :
⟨Ind, Ind⟩.chase(v1,v2). We can construct an fsim2
(along the lines of the definition of f above) to
work directly on that:

(22) Q2 =




lambdapath1⊛arg1+
lambdatype1⊛ Ind+
lambdapath2⊛arg2+
lambdatype2⊛ Ind+

body⊛




pred⊛ chase+
arg1⊛ I+
arg2⊛ I







(23) fsim2(Q,A1,A2) = Q ⊛ body′ − Path1 +
Path1 ⊛A1 −Path2 +Path2 ⊛A2

where Path1 = Q⊛ lambdapath1′,
Path2 = Q⊛ lambdapath2′

As a side note, it is also possible to abstract
over the same variable more than once, as in “Who
chases herself?”, in TTR λv : Ind.chase(v,v), as
shown in (24).

(24) Q3 =




lambdapath⊛ (arg1+arg2)+

body⊛




pred⊛ chase+
arg1⊛1+
arg2⊛1







Using our original function f in (12) to apply this
question to a single argument yields an instantiated
ptype as desired:

(25) f (Q3,cat45) =



pred⊛ chase+
arg1⊛1+
arg2⊛1


−(arg1 + arg2) +

(arg1+arg2)⊛ cat45 =

pred ⊛ chase + arg1 ⊛ cat45 + arg2 ⊛
cat45 =



pred⊛ chase+
arg1⊛ cat45+
arg2⊛ cat45




In a general account of functions and function ap-
plication, one would also like to include recursive
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function application. In SPA-TTR, a recursively
applicable function would correspond to a network
that can be applied twice, once for each argument.
We leave the specification of recursive function
application for future work.

4.4 Extracting answer from question and
ptype

If we have a ptype P that we know contains the an-
swer to a question Q, we can use a slightly modified
version of Eliasmith’s method outlined in section 3.

First, we note that the representation in example
(4) corresponds closely to our current represen-
tation of ptypes, except for the names of the la-
bels (pred instead of frame, arg1 instead of agent,
arg2 instead of theme).

However, representing the whole question as
theme does not help us in combining questions and
answers into ptypes, so instead we use the more
elaborate question seen above. Here, lambdapath
in Q is bound to arg1, and by unbinding it we end
up doing the exact same operation as suggested by
Eliasmith.

(26) fqp(Q,P) = P⊛ (Q⊛ lambdapath′)′

Using the Q and A from (9) and (10), this gets us

(27) A = fqp(Q,P) = P ⊛ (Q ⊛
lambdapath′)′ = P⊛ (arg2)′ = cat43

4.5 Extracting the answer from the question
and memory

In the general case of question answering, however,
we cannot assume we have found the ptype. The
real challenge is then to find the answer to a ques-
tion in LTM, and if you only represent the question
as theme′, this will not be possible. It needs to also
include chase and dog. Since we also have these
in our representation of the question, we can find
relevant ptypes in LTM.

We should instead only assume there is a record
with many different ptypes, one (or several) of
which may contain an answer. Previous work
(Cooper et al., 2015) developed a notion of a judge-
ment history consisting of a set of Austinian propo-
sitions encoding judgements that situations s are of
types T , s : T . Inspired by this but simplifying mat-
ters somewhat, we will here use M as a name for a
labelled set of ptypes indexed by natural numbers:

(28) M = 1⊛P1+2⊛P2+ . . .+n⊛Pn
where Pi is a SPA ptype. Given this, we can outline
a procedure for finding the answer A in M to a
question Q:

1. B = Q⊛body′

2. Find a P which is similar to B; since A+B is
similar to A and to B and to any bundle A+C,
then if for (the SPA representation of) some
natural number n we have M⊛n′ ≈ B we can
conclude that P ≈ M⊛n′ is a subtype of B

3. Let A be the value of Q⊛ lambdapath′ in P,
i.e. A = P⊛ (Q⊛ lambdapath′)′ (unless it’s
noise)

As an example, assume Q = Q as in (10) above
and 434⊛P is in M. Then

(29) a. B =




pred⊛ chase+
arg1⊛dog52+
arg2⊛ I




b. F = Q⊛ lambdapath′ ≈ arg2

Now, since there is an n = 423 for which M⊛n′ ≈
B, we conclude that

(30) P ≈ M⊛423′

A = P⊛arg2′ ≈ cat

However, the above is not quite sufficient since
it does not specify a SPA mechanism for searching
M. To address this, we can use the fact that SPA
does not distinguish TTR labels from values, so to
find the n we are looking for, we can use B as an
approximation of the ptype P we are looking for;

(31) n = M⊛B′

or more robustly

(32) n = CleanNat(M⊛B′)

so that we can define a lookup function that returns
the ptype in M which is the most similar to some
other ptype L:

(33) SearchM(L) = M⊛ (CleanNat(M⊛L′))′

so that we can get an answer A:

(34) A = SearchM(B)⊛arg2′

Based on this, we can define a function fqm(Q)
returning an answer to a question Q from M:

(35) fqm(Q) ≈ SearchM(Q ⊛ body′) ⊛ (Q ⊛
lambdapath′)′

This solution is sensitive to noise, and apply-
ing cleanup over a limited domain will help. For-
tunately, our question representation provides a
type constraint on the possible answers (the lamb-
datype field) that we can use to specify the cleanup
domain:
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(36) fqm(Q)≈CleanQ⊛lambdatype′(SearchM(Q⊛
body′)⊛ (Q⊛ lambdapath′)′)

Exploring whether this retrieval mechanism
works similarly to human associative memory is a
topic for future research.

5 A simple proof-of-concept model

To see if λ -abstracted question answering is fea-
sible with neurons, we implemented the key steps
from Section 4.5 in Nengo (https://www.neng
o.ai/).5 The “knowledge base” M from which
an answer is to be found consists of six role-filler
semantic pointers (vectors of 128 dimensions) that
correspond to the statements P1 = dog chases cat,
P2 = dog chases cow, P3 = dog sees mouse, P4 =
mouse sees cow, P5 = cat likes mouse, P6 = dog
likes cow. The inputs to the network are three ques-
tions, posed one after the other: 1. Who does the
cat like? 2. Who does the dog chase? 3. Who likes
the cow? An answer for 1. can be found in P5 (i.e.,
mouse), an answer for 3. can be found in P6 (i.e.,
dog). 2., however, is ambiguous: possible answers
are provided by P1 and P2 (i.e., cat or cow).

The networks unbinds the body and the lambda-
path from the question, substracts the lambdapath,
and involutes both to retrieve the fragment answer
(i.e., compares the resulting vector to the semantic
pointers in clean-up memory). The result is shown
in the bottom row in fig. 1 (“Answer without Mem-
ory Clean-up”) and shows that the model does not
perform well: the semantic pointer corresponding
to mouse is always returned as the answer, which
is wrong in all but one case. Apparently, the convo-
lution operations introduce too much noise.

To compensate for the noise, we introduced a
memory clean-up step (over the domain Ind, here
limited to dog, cat, cow and mouse) after unbind-
ing the questions’ bodies. The vector that is fed
into an autoassociative clean-up memory over time
is most similar to the propositions shown in the top
row of fig. 1 (“Memory Input”). The clean-up step
reinforces this input (see “Memory Output”). As
a consequence, the network now returns vectors
that are indeed most similar to the expected items
(i.e., mouse, cow or cat, and dog, see “Answer with
Memory Clean-up”). Note that the last answer is in
close competition with the wrong fragment mouse,
so a final cleanup may be required.

5The model can be obtained from https://github.com
/aluecking/QA-SPA-TTR.
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Figure 1: Retrieving a fragment answer according to sec-
tion 4.5 from a neural simulation. The neural simulation is
dynamic because it runs in real time. The elapsed time in sec-
onds is shown on the x-axis. The input to the network changes
over time: from 0s to 0.25s the input is a semantic pointer
that corresponds to the question Who does the cat like?, from
0.25s to 0.5s to the question Who does the dog chase?, and
from 0.5s to 0.72s to Who likes the cow? (no input in the
remaining quarter of a second).

6 Conclusions and Future Work

In this paper we have sketched an approach to ab-
straction, questions, and answering in SPA which
allows us to maintain compositional semantic
analyses within a biologically plausible cognitive
framework. This is of course just the first step for
such an account which one should enhance with
networks assessing whether a proposition resolves
a question or constitutes a partial or indirect an-
swer.
Work in VSAs has not to date addressed quantifica-
tion, but we take this as a first step to showing that
this can be done. We hypothesize that the non-
Generalized Quantifier TTR-based approach to
quantification developed in (Lücking and Ginzburg,
2022) affords a feasible path to this aim. Another
important step semantics involves providing an ac-
count of working memory, in order to integrate
the current insights of dynamic dialogical semantic
frameworks such as KoS (Ginzburg, Eliasmith, and
Lücking, 2024), MSDRT (Kamp, 2024), and SDRT
(Asher and Lascarides, 2003).
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