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Abstract

This project note describes challenges and pro-
cedures undertaken in annotating an audio-
visual dataset capturing a multimodal situated
collaborative construction task. In the task, all
participants begin with different partial infor-
mation, and must collaborate using speech, ges-
ture, and action to arrive a solution that satis-
fies all individual pieces of private information.
This rich data poses a number of annotation
challenges, from small objects in a close space,
to the implicit and multimodal fashion in which
participants express agreement, disagreement,
and beliefs. We discuss the data collection pro-
cedure, annotation schemas and tools, and fu-
ture use cases.

1 Introduction
In collaborative tasks, participants may convey
their beliefs, desires, and intentions (BDI) through
language, gesture, gaze, and action. These modal-
ities communicate explicit beliefs, disambiguate
references, and signal implicit attitudes, enabling
participants with different backgrounds or knowl-
edge to build a shared common ground—the set of
task-relevant facts and evidence jointly accepted
by the group. The Edinburgh Map Task (Anderson
et al., 1991) is a well-known example of multi-
modal, conversational, collaborative task annota-
tion and has long served as a benchmark for study-
ing dialogue, spatial reference, and grounding. Our
work builds on this tradition with a more complex,
co-situated construction task with multiple instruc-
tion givers and integrates gesture, speech, and ac-
tion while supporting the study of common ground
under structural and spatial ambiguity.

In this project note, we briefly describe the col-
lection and annotation of a novel collaborative prob-
lem solving dataset centered around this task. The
data is being annotated with multiple modal chan-
nels, and the process implicates a number of inter-

Figure 1: Left to right: a builder and 3 directors par-
ticipating in the collaborative construction task with a
partially-completed structure on the board. Director 1
(second from left) is indicating the position of a block
using a combination of language and gesture with the
accompanying utterance “Coming towards me then it’s
the red long block.”

esting challenges toward creating semantic annota-
tions that are interoperable across modalities.

The problem of common ground tracking (CGT)
has been addressed in previous work such as Clark
and Brennan (1991); Traum (1994); Ginzburg et al.
(1996); Stalnaker (2002); Asher and Gillies (2003);
Traum and Larsson (2003), and Hadley et al.
(2022). Multimodal approaches to common ground
tracking include Khebour et al. (2024b) and Vander-
Hoeven et al. (2025). However, the tasks addressed
in these and similar approaches (Khebour et al.,
2024a) suffer from a number of drawbacks, includ-
ing problems with 1) agreement/disagreement:
there are few opportunities for disagreement as
the task is well-structured with clear solutions at
each step; 2) complexity: cognitive and interpre-
tive complexity is low as disagreements typically
center questions of single-step procedures or com-
putations; 3) reusability: once a group has com-
pleted the task, they know the answer and cannot
organically perform the task again. Our task has
been designed to mitigate these shortcomings to to
enable the robust study of common ground tracking
in multimodal dialogue.
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Figure 2: 3 individual side views of a complete structure, each given to a director.

2 Task Description

The task we focus on is a group collaborative con-
struction task structured to satisfy the three con-
ditions enumerated in Sec. 1, that we previously
identified as being shortcomings in existing tasks
used in the study of multimodal CGT. Namely, we
designed the task to create meaningful disagree-
ments within the group about the right course of
action, be sufficiently complex such that there are
multiple likely solutions toward the goal, and al-
low participants to do the task multiple times by
creating a novel goal each session.

The task is designed for 4 people: 3 directors
and 1 builder (see Fig. 1). Each builder receives a
different side view of a 3D structure made of large
blocks (see Fig. 2; the directors receive their im-
ages on a personal tablet). There are an assortment
of blocks on the table before the group, but only
the builder (identified in Fig. 1 as the only person
without a tablet) is allowed to touch the blocks.
The directors are not allowed to show their private
images to each other or to the builder. The group
must then collaborate to instruct the builder to build
a single coherent structure that is consistent with
the images given to all the directors. Dialogue is
free form and there are no restrictions on what the
participants may say, do, or ask each other, as long
as the directors do not touch the blocks or show
their private images to anyone else. Since there are
four sides to the structure but only three images
provided, there may be multiple valid solutions. A
novel test pattern is generated at the beginning of
each session. Thus this task satisfies the 3 desider-
ata listed above by distributing partial information
throughout the group, and also simulates a sce-
nario in which a group of people with different
background knowledge, expertise, and skills must
collaborate to solve a problem.

3 Data Collection
Data was collected at 2 sites, both universities in the
United States. The task takes place on a tabletop
and is captured using 3 Microsoft Kinect Azure
cameras to capture different angles of the task
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Figure 3: Dependencies between annotations of differ-
ent modalities. Arrows represent required inputs to the
target annotation. Boxes with bolded text are each de-
scribed in subsections in Sec. 4.

space. Audio is recorded on a single conference-
style tabletop microphone. The study was approved
by university Institutional Review Boards (IRBs)
and participants received USD 15.00 each.

Novel test structures were generated for each
group, either manually by the researchers, or pro-
cedurally using a script written in the Unity game
engine. Test structures consist of blocks arranged
in a 3D grid configuration, and screenshots of 3
side views are taken and distributed to the 3 direc-
tors. Each session consists of two phases. In the
first phase, the test structure contains strictly square
or rectangular blocks arranged in a 3× 3× 3 grid
(wdh – see Fig. 2), with no gaps permitted in the
structure. In phase 2, the footprint of the structure
is expanded to 4× 4× 3, the blocks involved may
have curved or angled components, and gaps in the
structure are permitted.

In total, after removing recordings with technical
or procedural errors, 38 usable group recordings
were retained. Most were 20-40 minutes in length.

4 Annotation Schemas
The technical challenges in annotating this data are
manifold. Speech overlaps, the objects are close
together, actions and gestures may have multiple
physical manifestations and interpretations. Ad-
ditionally, complete annotation of one modality
frequently depends on information from another
modality, creating dependencies in the annotation
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pipeline (Fig. 3). Finally, the sheer amount of data
makes purely manual annotation an infeasible task.
Therefore, for most modalities, we adopt a semi-
automated machine annotation with human vali-
dation and post-correction strategy. Specific chal-
lenges and methods for each individual modality
are given in their respective sections below.

4.1 Speech Transcriptions

Spoken dialogue is transcribed via automatic tran-
scription with the Whisper ASR model (Radford
et al., 2023), combined with PyAnnote (Plaquet
and Bredin, 2023) for speaker diarization. Annota-
tors review the ASR transcriptions while watching
the relevant video, and correct errors in segmenta-
tion, transcription, or speaker attribution. We save
both the manually-corrected and automatic tran-
scriptions, as research has shown that automated
segmentation and transcription errors can have an
impact on downstream task performance (Terpstra
et al., 2023; Ibarra et al., 2025; VanderHoeven et al.,
2025; Venkatesha et al., 2025a), but training mod-
els against noisy transcriptions can mitigate this ef-
fect (Nath et al., 2025). A zero-shot LLM (Llama-
3.1-8B-Instruct) is then used to extract relations
among blocks referenced in dialogue, which con-
stitute the project’s primary task-relevant signal.
All outputs were subsequently manually reviewed
and corrected by a human annotator, with omitted
instances added, yielding a curated annotation set.

4.2 Gestures

Participant gestures are annotated using Gesture
AMR (GAMR; Brutti et al. (2022)), an abstract
meaning representation format designed to cap-
ture gesture semantics. Gestures may be deic-
tic, iconic, or emblematic, indicating structural
descriptions (e.g., side by side), block attributes
(e.g., square, curved), or actions (e.g., bring for-
ward/backward, rotate). These annotations are
time-stamped against the video, enabling align-
ment with utterances and actions. Annotation is
performed while watching the video, with access
to object IDs so that gestures referring to specific
objects can be concretely recorded. For example, a
GAMR annotation:
(d / deixis-GA

:ARG0 (d1 / director-1)
:ARG1 (bs1 / blue-square-1)
:ARG2 (g / group))

indicates that Director 1 (ARG0) is pointing not
just at a generic blue square, but at a specific block
(ARG1), with the intended recipient of this refer-

Figure 4: Structure Annotation Tool. A: Video Player,
B: Interactive Area, C: 3D View.

ence being the group (ARG2). In practice, we treat
deictic references as pointing to objects or loca-
tions. More fine-grained distinctions—such as path
or manner— are considerably harder to interpret.
While GAMR could in principle encode these with
roles like :manner or :mode, we do not capture
them in our current annotations.

Gesture signals are inherently context-dependent
and do not provide direct evidence for belief states
alone. To address this, we adopt a two-pass contex-
tualization procedure. In the first pass, emblematic
attitudinal gestures (e.g., nods, head-shakes) are
identified, as these directly license belief updates
from gesture evidence. In the second pass, gestures
are aligned with the discourse and action layers
to assess co-occurrence and temporal contingency
(e.g., accompanying an utterance or preceding an
action). When such alignment holds, we annotate
the corresponding gesture-derived belief state.

4.3 3D Structure

3D structure annotations are intended to capture the
state of the board after each time the builder places,
moves, or removes a block. To capture these we
created a Structure Annotation Tool (SAT), whose
interface is shown in Fig. 4. The SAT interface
consists of a Video Player (A), an Interactive Area
(B), and a 3D View (C). The Video Player displays
the video being annotated and the annotator can
scrub back and forth as needed. The Interactive
Area is a drag-and-drop tool where, if a block is
placed on the board in the video, the annotator
chooses the color (red, orange, yellow, green, blue)
and shape (square, long, single curve, and double
curve) of the block and places it on a grid repre-
senting the placement board. Blocks can be placed
on the bottom level or on top of other blocks in the
top-down view, and can then be selected, moved,

87



rotated, or deleted. The 3D view shows the current
structure in 3D, which is rotatable for better visibil-
ity. Any actions taken in the Interactive Area are
instantly reflected in the 3D View. The construc-
tion history is autosaved to JSON as timestamped
data that contains all actions along with object IDs
and coordinate information on the grid.

4.4 Actions
Annotator actions in the Structure Annotation Tool
reflect block placement, movement, or removal
actions in the task video. Therefore, actions are
automatically extracted from the saved structure
annotations. If a block appears at a location where
there was none previously, a put action is regis-
tered. If a block disappears from a location, a
remove action is registered. move can be consid-
ered a combination of remove and put such that
move(b, ℓ1, ℓ2) can be reified to remove(b, ℓ1) fol-
lowed by put(b, ℓ2). Locations may be absolute
coordinates or relational predicates extracted over
coordinates. Relational predicates are restricted to
a fixed set such as on and left to avoid creating
ambiguous annotations, e.g., where left(a, b) and
right(b, a) refer to the same configuration.

4.5 Object Identification
Since the small size of individual objects and the
dense configurations of stuctures created during the
task pose a tractability challenge for manual annota-
tion, we use a semi-automated approach. However,
since automated object trackers struggle to reiden-
tify objects that have disappeared from view, some
level of human annotation, validation, and correc-
tion is required. We adopt a pipeline as shown
in Fig. 5 to maximize accuracy while minimizing
human labor cost. The original video is split into
30 second segments and in the first frame of each
segment, an annotator manually labels points on
distinct objects in the frame. These labeled video
segments are then fed into the Segment Anything
2 (SAM-2) model (Ravi et al., 2024) which makes
an initial prediction of bounding boxes. The same
segments are also fed to a fine-tuned instance of
YOLOv11x (Khanam and Hussain, 2024) and the
YOLO and SAM-2 bounding boxes are compared
for validation. Where SAM-2 missed detections,
the failed frames are extracted and returned to the
manual keypoints annotation stage and the process
repeats. We find that compared to strictly manual
bounding box annotation of objects, this pipeline
results in up to a 240× speed-up in processing
time. Object detection was intended to automati-

cally identify (a) the targets of deictic gestures, (b)
the targets of actions, and (c) the positions of blocks
within or outside of the structure. The broader goal
was to use automatically detected objects to gener-
ate complete 3D structures. However, this proved
challenging in practice, so to ensure usable data for
downstream annotation and analysis, we provided
teams with the 3D structure annotations directly.

4.6 Propositions
In Khebour et al. (2024b), common ground
is computed in part by extracting expressed
task-relevant propositions. Relatedly, Venkate-
sha et al. (2024, 2025b) develop propositional
extraction methods in multiple tasks that real-
ize task relevant propositions as relations be-
tween task items or between items and proper-
ties. Similarly, in this task, each proposition is
indexed by participant ID, timestamp, and the rel-
ative relation among blocks, enabling participant-
specific retrieval and temporal alignment in the
general form “<timestamps> <person> <block>

<relation> <block>”. Propositions must also
capture the perspective from which the annotated
relation is seen, and the layer of the structure.

The structured propositions are extracted from
three modalities—speech, action, and gesture—and
integrate them into a unified representation format.
Annotations from each modality are first collected
independently and then merged into a single CSV
file. The entries are sorted chronologically and con-
verted into a standardized belief-annotation schema
to support common-ground computation. Speech-
based propositions are derived using off-the-shelf
large language models (LLMs). For each target
mention, the model receives a ten-utterance win-
dow (five preceding, five following) to capture dis-
course cues and resolve coreference. Generic block
descriptors are then replaced with specific block
identifiers from the action annotations, resulting
in propositions such as on(o1, y2, D3side, layer1).
Action-based propositions are converted from ab-
solute spatial coordinates to relative positions be-
tween blocks, while side information is supple-
mented using cues from the speech modality. As
gesture annotations contain only the gesturer’s iden-
tity and gesture content, we incorporate contextual
information from both speech and action to com-
plete the final set of gesture-related propositions.

4.7 Common Ground
We track participants’ epistemic state updates and
define common ground as propositions mutually
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Figure 5: Semi-automated pipeline for capturing object bounding boxes and IDs.

agreed upon. Propositions from different modal-
ities are normalized into a belief-annotation for-
mat, Bxϕ, where participant x believes (B) propo-
sitional content ϕ. Belief formation is licensed
by three axioms—Seeing is Believing (Bolander,
2014), Saying is Believing, and Acting is Believ-
ing—aligning with the three modalities from which
we extract evidence: speech, gesture, and action
(gaze is treated as implicit). For example, if partic-
ipant x asserts φ in dialogue at time t, we record
Bxφ under the axiom Saying is Believing.

Annotations across different modalities are
merged into a single chronologically ordered
file and converted into the standardized belief-
annotation schema for time-indexed computation.
A proposition is considered common ground when
the same normalized content is attributed to two or
more participants, represented as CGa,b,...ϕ, where
a, b, . . . denotes the set of participants jointly com-
mitted to proposition ϕ. In our dataset, the maxi-
mal common-ground set involves four participants.
Because beliefs are dynamic, Bx may be revised
over time as implicit intentions become explicit in
speech or as actions provide evidence that licenses
new belief updates.

To capture commitment to or rejection of oth-
ers’ propositions, our scheme further includes
ACCEPT and DOUBT labels. When a partici-
pant accepts another’s proposition, the correspond-
ing common ground annotation is updated to reflect
shared understanding; when a participant expresses
doubt, a disagreement annotation is recorded to
mark epistemic conflict.

5 Conclusion
We have outlined the desiderata, processes, and
challenges involved in annotating common ground
in a co-situated, multimodal, partially observable
collaborative problem-solving task. This type of
annotation requires integrating multiple commu-

nicative channels with converging dependencies
and raises a range of technical, design, and inter-
pretive challenges, for which we have described
our approaches and techniques. More broadly, an-
notation of data of this kind presents challenges
familiar to the annotation community, and we hope
that our experiences can serve as a useful refer-
ence point. Although a gold-standard annotation
set and corresponding inter-annotator agreement
(IAA) analysis are not yet available, developing
them remains a priority for future work. We plan
to obtain human annotations, quantify agreement
using standard measures (e.g., Cohen’s κ, Krippen-
dorff’s α), and evaluate the computed annotations
against this gold standard. The annotation remains
ongoing and a fully-annotated dataset will be re-
leased at a future date.

The task’s multi-party, partial information set-
ting represents a novel contribution in the age of
LLMs. The resulting corpus captures the conversa-
tional and information dynamics of a collaboration
that is not fully transparent to any of the partici-
pants, including any AI system observing the in-
teraction. Therefore, in the context of LLM-driven
agents for problem-solving support or human-AI
collaboration, our data captures how each partici-
pant expresses their implicit “theory of mind” of
the other participants’ beliefs and goals. The abil-
ity to infer such belief states has been shown to
be challenging for modern LLMs (Ullman, 2023;
Hu et al., 2025), and this challenge is amplified by
how even granular task-relevant propositions may
be expressed multimodally in this task, including
through speech, gesture, and actions. Thus, to fine-
tune or assess LLMs for this and similar tasks, or
to provide a modern LLM or VLM with sufficient
information to interpret participant behaviors in
context, an interoperable annotation scheme that
captures the semantic relations across modalities
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and across time, is required. The efforts described
represent a step toward a corpus that would be
suitable for fine-tuning, constructing scenarios suit-
able for assessment of zero-shot prompting, or for
benchmarking the recoverability of information in
modalities of interest from other modalities.
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