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Abstract

Linguistic theories and models of natural lan-
guage can be divided into two categories, de-
pending on whether they represent and process
linguistic information numerically or symbol-
ically. Numerical representations, such as the
embeddings that are at the core of today’s large
language models, have the advantage of be-
ing learnable from textual data, and of being
robust and highly scalable. Symbolic represen-
tations, like the ones that are commonly used to
formalise construction grammar theories, have
the advantage of being compositional and in-
terpretable, and of supporting sound logic rea-
soning. While both approaches build on very
different mathematical frameworks, there is no
reason to believe that they are incompatible. In
the present paper, we explore how numerical, in
casu distributional, representations of linguis-
tic forms, constructional slots and grammatical
categories can be integrated in a computational
construction grammar framework, with the goal
of reaping the benefits of both symbolic and nu-
merical methods.1

1 Introduction

Linguistic theories and models of natural language
typically fall into one of two categories. The first
category represents and processes linguistic infor-
mation symbolically, adopting formal logic as the
underlying framework. The second category repre-
sents and processes linguistic information numeri-
cally, adopting the framework of linear algebra.

The symbolic approach is widely used to for-
malise construction grammar theories (Fillmore,
1988; Kay and Fillmore, 1999; Steels and De Beule,

*Joint last authors.
1The authors declare that this paper was conceived and

written without the assistance of generative writing aids.

2006; Michaelis, 2008; Sag, 2012), with symbolic
programming techniques forming the backbone of
their computational implementations (Bergen and
Chang, 2005; Steels and De Beule, 2006; van Trijp
et al., 2022). Symbolic representations bring the
advantage of being compositional and interpretable,
and of supporting sound logic reasoning.

The numerical approach is widely adopted in the
field of natural language processing (NLP), and lies
for example at the core of today’s large language
models (LLMs) (Mikolov et al., 2013; Vaswani
et al., 2017; Lenci, 2018; Devlin et al., 2019). In
essence, numerical representations of linguistic in-
formation are learnt from textual data, thus based
on the distribution of tokens with respect to each
other. Apart from being learnable from raw tex-
tual input, distributional representations bring the
advantage of being robust against noise, of gener-
alising well to new data, and of scaling effectively
with respect to growing amounts of input data from
different domains.

As both approaches are rooted in very different
mathematical frameworks, namely formal logic ver-
sus linear algebra, the integration of concepts and
techniques from both fields is not straightforward.
At the same time, logic-based and distributional
approaches are widely regarded as complementary,
and there exists no a priori reason to believe that
they would be in any way incompatible.

In this paper, we explore how distributional rep-
resentations can be integrated in a computational
construction grammar framework, and how this in-
tegration of symbolic and numerical methods can
enhance the robustness and generality of construc-
tional language processing. In particular, we show
how distributional representations of (i) linguis-
tic forms, (ii) constructional slots, and (iii) gram-
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matical categories can be integrated into the data
structures and algorithms that underlie Fluid Con-
struction Grammar (FCG) (Steels, 2004; Beuls and
Van Eecke, 2023). Through a variety of exam-
ples, we demonstrate how this integration can ben-
efit a broad-coverage FCG grammar learnt from
PropBank-annotated corpora. Finally, we conclude
that the future of construction grammar is neither
symbolic nor numerical, but lies in a combination
of both paradigms.

2 Background

For the purposes of this exploration, we start from
a symbolic construction grammar that was learnt
from a collection of corpora in which English ut-
terances were semantically annotated with Prop-
Bank rolesets (Palmer et al., 2005).2 The gram-
mar was learnt using the Fluid Construction Gram-
mar framework (Beuls and Van Eecke, 2023) and
holds 21,052 constructions that can be used to an-
notate open-domain English utterances with argu-
ment structure information in the form of semantic
frames.

The basic architecture of the grammar is laid
out in Figure 1. The input to the grammar con-
sists of an utterance, in this case “The doctor wrote
him a prescription.”, which is analysed on the fly
into its immediate constituents using the Berke-
ley neural parser (Stern et al., 2017) (see Step
1 ). A first type of construction identifies possible

frame-evoking elements based on their lemma and
part-of-speech tag. Here, the WRITE(V)-CXN indi-
cates that the constituent ‘unit-4’ might represent a
frame-evoking element by adding the for now un-
derspecified roleset feature to this unit, along
with a lexical category proper to the WRITE(V)-
CXN (see Step 2 ). The resulting unit is shown
as ‘unit-4a’. The addition of a lexical category
unlocks the application of a second type of con-
struction that attributes semantic roles based on
an utterance’s constituent layout. In the example,
a ditransitive construction that is compatible with
the category contributed by the WRITE(V)-CXN

respectively attributes the roles ‘arg0’ (prototypi-
cal agent),‘arg1’ (prototypical patient) and ‘arg2’
(prototypical beneficiary) to the constituents ‘unit-
2’, ‘unit-6’ and ‘unit-5’. The ditransitive construc-

2In particular, the examples throughout this paper were
selected from the test sets of the OntoNotes (Weischedel et al.,
2013) and English Web Treebank (EWT) (Bies et al., 2012)
corpora, while the grammar itself was learnt from the training
sets of the same corpora.

tion also contributes its own grammatical category
to the unit containing the frame-evoking element
(see Step 3 ). The result is shown as ‘unit-4b’.
A final construction that is compatible with both
the lexical category contributed by the WRITE(V)-
CXN and the grammatical category contributed by
the ditransitive construction fills out the value of
the roleset feature, in this case PropBank’s
write.01 roleset (see Step 4 ). The result is
shown as ‘unit-4c’. As the example utterance only
expresses a single frame, the construction appli-
cation process stops here. The resulting frame is
then extracted and rendered into a more human-
readable format (see Step 5 ). All constructions
as well as the categorial links that express compat-
ibility between constructional units were learned
from corpus data using FCG’s fcg-propbank
subsystem (Van Eecke and Beuls, 2025).

3 Distributional Representations of
Linguistic Forms

A classical argument against symbolic methods
revolves around their reliance on exact matches be-
tween symbols. For example, the symbol DOG is
in its representation not any more closely related
to the symbol PUPPY than it is to the symbols CAT

or PHILOLOGY. Representationally, symbols are
either equal to or different from each other. Stan-
dard FCG builds on this property for implementing
the process of construction application, where fea-
tures and values in the pre- and postconditions of
constructions are unified with their counterparts
in the transient structure based on the equality of
symbols (Steels and De Beule, 2006). The clas-
sical argument against symbolic methods points
to the brittleness of relying on exact matches, as
symbolic models tend to have difficulties handling
input that even slightly deviates from what is ex-
pected. Distributional methods on the other hand
represent linguistic forms in a vector space, where
forms are compared in terms of distributional simi-
larity rather than representational equality. In such
models, the distance between DOG and PUPPY will
effectively be smaller than the distance between
DOG and PHILOLOGY.

Take for example the utterance “So I mean
that right there it enraged me.” (OntoNotes
bc/cnn/00/cnn 0000), which expresses an in-
stance of the mean.01 roleset and an instance of
the enrage.01 roleset. The base grammar from
the previous section however, only retrieves the

76



unit-1
string: “the doctor wrote him a prescription”
pos: sentence

write(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-1

?unit-a
lemma: write
pos: verb

unit-4a
string: “wrote”
pos: verb
lemma: write
roleset: ?tbd
lex-cat: cat-1

unit-4b
string: “wrote”
pos: verb
lemma: write
roleset: ?tbd
lex-cat: cat-1
roles:
   arg0: unit-2
   arg1: unit-6
   arg2: unit-5
gram-cat: cat-2unit-4c

string: “wrote”
pos: verb
lemma: write
roleset: write.01
lex-cat: cat-1
roles:
   arg0: unit-2
   arg1: unit-6
   arg2: unit-5
gram-cat: cat-2

unit-4
string: “wrote”
pos: verb
lemma: write

unit-6
string: “a prescription”
pos: np

arg0(np)-v(v)-arg2(np)-arg1(np)-cxn

?unit-d
pos: verb
lex-cat: cat-2

?unit-b
pos: np

?unit-e
pos: np

?unit-f
pos: np

?unit-a
pos: sentence

?unit-c
pos: vp

?unit-d
roles:
   arg0: ?unit-b
   arg1: ?unit-f
   arg2: ?unit-e
gram-cat: cat-2

unit-2
string: “the doctor”
pos: np

unit-3
string: “wrote him a prescription”
pos: vp

unit-5
string: “him”
pos: np

?unit-a
pos: verb
lex-cat: cat-3
gram-cat: cat-3
roleset: ?tbd

?unit-a
roleset: write.01

write.01-cxn

?unit-a = unit-4

?unit-d = unit-4a
cat-2 ~ cat-1

?unit-a = unit-1
?unit-b = unit-2
?unit-c = unit-3
?unit-e = unit-5
?unit-f = unit-6

?unit-a = unit-4b
cat-3 ~ cat-1
cat-3 ~ cat-2

output: write.01

FEE: “wrote”
arg0: “the doctor”
arg1: “a prescription”
arg2: “him”

input: “the doctor wrote him a prescription”1

3

4

2

5

Figure 1: Illustrative example of the symbolic base grammar comprehending “The doctor wrote him a prescription.”
1 . The WRITE(V)-CXN identifies a potential frame-evoking element 2 . A ditransitive construction then attributes

the semantic roles of agent (‘arg0’), patient (‘arg1’) and beneficiary (‘arg2’) to particular constituents 3 . The
WRITE.01-CXN determines the roleset (write.01) of the evoked frame 4 , after which the result is shown 5 .

instance of the mean.01 roleset. Upon closer in-
spection, it turns out that the verb “enrage” did not
occur anywhere in the training corpus and that con-
sequently no construction was learnt that identifies
“enraged” as a possible frame-evoking element. At
the same time, many constructions were learnt for
other verbs that are distributionally close to “en-
rage” (such as “anger“, “madden” or “infuriate”)
and that even appear in similar argument structure
constructions (“NP:Arg0 (angers — maddens —
infuriates) NP:Arg1”). The reason why these con-
structions cannot apply is simply that there is no
exact match between the lemma of the observed to-
ken (“enrage”) and the lemmas incorporated in the
constructions (“anger”, “madden” and “infuriate”).

As a first step in the integration of symbolic and
distributional methods, we will represent lemmata
distributionally rather than symbolically in FCG
constructions and transient structures. Concretely,
we substitute the lemma features in the units of
the input transient structure by embedding fea-
tures that hold as their value pointers to pre-trained,
100-dimensional GloVe embeddings of the orig-
inal lemmata (Pennington et al., 2014). This is
shown for the example utterance “So I mean that

right there it enraged me.” in Step 1 of Figure 2.
Likewise, we substitute the lemma features in the
constructions of the grammar by embedding fea-
tures that point to pre-trained GloVe embeddings
(see Step 2 ). The INFURIATE(V)-CXN thereby
does not match on the symbol INFURIATE any
more but on the GloVe embedding for the form
“infuriate”. We also modify FCG’s unification al-
gorithms in such a way that they no longer com-
pute symbol equality when handling vectors, but
compute their cosine similarity. These similarities
are then used to create scored unification results
and rank possible construction applications. In
the example, the highest-ranked result is yielded
by the INFURIATE(V)-CXN, which matches on the
unit holding “enraged” with a cosine similarity of
0.84. Then, the transitive construction that was
learned during training to be compatible with the
INFURIATE(V)-CXN can apply, followed by the
INFURIATE.01-CXN. This results in the extrac-
tion of an instance of the infuriate.01 roleset,
with “enraged” as the frame-evoking element and
“it” and “me” respectively as its ‘arg0’ (‘causer of
anger’) and ‘arg1’ (‘angry entity’).

This example demonstrates how constructions
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unit-4
string: “.”
embedding: .
pos: .

unit-1
string: “[…] it enraged me.”
pos: sentence

unit-5
string: “enraged”
embedding: enrage
pos: verb

arg0(np)-v(v)-arg1(np)-cxn

?unit-d
pos: verb
lex-cat: cat-5

?unit-b
pos: np

?unit-e
pos: np

?unit-a
pos: sentence

?unit-c
pos: vp

?unit-d
roles:
   arg0: ?unit-b
   arg1: ?unit-e
gram-cat: cat-5

?unit-a
pos: verb
lex-cat: cat-6
gram-cat: cat-6
roleset: ?tbd

?unit-a
roleset: infuriate.01

infuriate.01-cxn ?unit-d = unit-5a
cat-5 ~ cat-4

?unit-a = unit-5b
cat-6 ~ cat-4
cat-6 ~ cat-5

output: infuriate.01

FEE: “enraged”
arg0: “it”
arg1: “me”

input: “[…] it enraged me.”1

3

4

5

unit-2
string: “it”
embedding: it
pos: np

unit-3
string: “enraged me”
pos: vp

unit-6
string: “me”
embedding: I
pos: np

2 infuriate(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-4

?unit-a
embedding: infuriate
pos: verb

?unit-a   =    unit-5
0.84infuriate enrage ~

unit-5a
string: “enraged”
pos: verb
embedding: enrage
roleset: ?tbd
lex-cat: cat-4

unit-5b
string: “enraged”
pos: verb
embedding: enrage
roleset: ?tbd
lex-cat: cat-4
roles:
   arg0: unit-2
   arg1: unit-6
gram-cat: cat-5?unit-a = unit-1

?unit-b = unit-2
?unit-c = unit-3
?unit-e = unit-6

unit-5c
string: “enraged”
pos: verb
embedding: enrage
roleset: infuriate.01
lex-cat: cat-4
roles:
   arg0: unit-2
   arg1: unit-6
gram-cat: cat-5

Figure 2: Schematic illustration of the integration of distributional token representations in constructional language
processing. The INFURIATE(V)-CXN identifies “enraged” as a possible frame-evoking element based on the high
cosine similarity between the embeddings for “enrage” and “infuriate”, recovering from the absence of the token
“enrage” in the training corpus.

can apply without requiring a perfect symbolic
match, relying on the distributional closeness of
forms, in this case the lemmata of potential frame-
evoking elements. This was achieved by integrating
numerical representations of linguistic information
(i.c. word embeddings) and operations over them
(i.c. cosine computation) with symbolic represen-
tations (i.c. feature structures) and operations over
these (i.c. unification). In fact, this integration
can be considered an extension of the way matches
between categories in the categorial network of a
grammar were already integrated into FCG’s unifi-
cation algorithms (see Van Eecke, 2018).

4 Distributional Representations of
Constructional Slots

Now that we have represented the substantive
material in constructions, such as word forms and
lemmata, using word embeddings, we take the
same idea a step further and integrate distributional
representations of constructional slots. Let us con-
sider as an example the utterance “Jesus taught the
people in the Temple area every day.” (OntoNotes
ontonotes/pt/nt/42/nt 4219). The base
grammar yields two competing analyses which
it considers equally fit. Both analyses identify

an instance of the teach.01 roleset, in which
“Jesus” takes up the role of ‘arg0’ (‘teacher’).
One analysis assigns the role of ‘arg1’ (‘subject’)
to “the people”, while the other assigns it the
role of ‘arg2’ (‘student(s)’). The two analyses
differ in the argument structure construction
that is used. In the first analysis, a transitive
construction applies that maps the noun phrase
after the verb to the ‘arg1’ role, whereas in
the second analysis, a construction applies that
maps this noun phrase to the ‘arg2’ role. Both
constructions can be traced back to utterances in
the training corpus, such as “Her mother taught
[Sunday School]arg1 for 50 years.” (OntoNotes
bn/cnn/03/cnn 0324) and “You teach
[others]arg2, so why don’t you teach [yourself]arg2

?” (OntoNotes pt/nt/45/nt 4502). This
ambiguity cannot be resolved on the level of the
morphosyntactic structure of the utterances and
necessitates modelling the lexical content of the
slot fillers.

We extend the idea of including an embedding
feature to the units in the initial transient structure
also to phrasal units. The embeddings on phrasal
level are in this prototype computed as the sum
of the GloVe embeddings of the lemmas of their
constituent parts (see Step 1 in Figure 3). In each
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unit-4a
string: “taught”
pos: verb
embedding: teach
roleset: ?tbd
lex-cat: cat-7

unit-4
string: “taught”
embedding: teach
pos: verb

unit-1
string: “Jesus taught the people […]”
embedding: Jesus + teach + the + people + […]
pos: sentence

unit-4c
string: “taught”
pos: verb
embedding: teach
roleset: teach.01
lex-cat: cat-7
roles:
   arg0: unit-2
   arg2: unit-5
gram-cat: cat-8

arg0(np)-v(v)-arg2(np)-cxn

?unit-d
pos: verb
lex-cat: cat-8

?unit-b
pos: np
embedding: arg0 

?unit-e
pos: np
embedding: arg2

?unit-a
pos: sentence

?unit-c
pos: vp

?unit-d
roles:
   arg0: ?unit-b
   arg2: ?unit-e
gram-cat: cat-8

?unit-a
pos: verb
lex-cat: cat-9
gram-cat: cat-9
roleset: ?tbd

?unit-a
roleset: teach.01

teach.01-cxn

?unit-d   =   unit-4a
cat-8   ~   cat-7

output: teach.01

FEE: “taught”
arg0: “Jesus”
arg2: “the people”

input: “Jesus taught the people […]”1

3

4

5

unit-5
string: “the people”
embedding: the + people
pos: np

2 teach(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-7

?unit-a
embedding: teach
pos: verb

?unit-a   =   unit-4

unit-4b
string: “taught”
pos: verb
embedding: teach
roleset: ?tbd
lex-cat: cat-7
roles:
   arg0: unit-2
   arg2: unit-5
gram-cat: cat-8

unit-2
string: “Jesus”
embedding: Jesus
pos: np

unit-3
string: “taught the people”
embedding: teach + the + people
pos: vp

unit-6
string: “the”
embedding: the
pos: det

unit-7
string: “people”
embedding: people
pos: noun

?unit-a = unit-4b
cat-9 ~ cat-7
cat-9 ~ cat-8

?unit-a = unit-1
?unit-b = unit-2
?unit-c = unit-3
?unit-e = unit-5

arg0 Jesus ~0.60
arg2  the+people ~0.93

teach teach ~
1.0

Figure 3: Schematic illustration of the integration of distributional information for representing prototypical
slot fillers within argument structure constructions. The embeddings in the argument structure constructions are
computed based on their fillers as observed in the training corpus.

argument structure construction, we also add an
embedding feature to all units that are assigned
a role (see Step 3 ). These embeddings are com-
puted by averaging the summed embeddings of
all lemmata for all fillers observed in a particular
slot during training. For example, the value of the
embedding feature in the ‘arg1’ slot of a tran-
sitive construction would point to a vector repre-
senting the prototypical patient/undergoer that fills
that slot. The unification algorithm described in the
previous section, which computes cosine similar-
ities when handling vectors, is again used. In our
example, this leads to two construction application
results, one for each of the two argument structure
constructions, with the one where the ‘arg2’ role is
taken up by “the people” is ranked highest. Indeed,
the match between “the people” and the prototypi-
cal vector of the ‘arg2’ slot of this construction is
considerably higher than the match between “the
people” and the prototypical vector for the ‘arg1’
slot in the other construction. The highest-ranked
solution thereby yields a correct semantic role as-
signment.

While the previous section and the current sec-
tion have both integrated distributional represen-
tations into FCG constructions, the impact on the
grammar is quite different. In the previous sec-
tion, symbols representing substantive material in

constructions were substituted by pointers to em-
beddings. This has rendered the constructions more
general and less specific to particular input struc-
tures, as exact matches between symbols are no
longer a hard constraint. In the present section, the
embeddings were introduced to represent the pro-
totypical lexical content of constructional slots and
do not replace a feature that was present in the base
grammar. The constructions have thereby become
more specific, allowing for a more fine-grained
disambiguation between possible construction ap-
plication results. The integration of embeddings
should thus not be seen solely as a means to make
symbolic grammars more general, but it can also
serve to integrate more specific information into
constructions that would be considered too specific
when relying on exact matching.

5 Distributional Representations of
Grammatical Categories

In the previous sections, we have integrated pre-
trained GloVe embeddings in the base grammar
to distributionally represent linguistic forms and
prototypical slot fillers. These embeddings were
trained independently from the base grammar on
large amounts of text and mainly reflect the lexi-
cal content of words and phrases. In this section,
we explore a different approach to integrating dis-
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tributional representations in constructions. We
no longer rely on externally trained embeddings,
but model the similarity between grammatical cat-
egories based on the constructional slots they are
compatible with. A weighted graph capturing the
frequency of these slot-filler relations is built up
while the grammar is being learnt from corpus data.

Let us consider the example utterance “Try
googling it for more info.” (English Web Treebank
answers/00/20080426141111AAgPUwU
ans). The base grammar identifies “googling”
as a potential frame-evoking element, but holds
no argument structure construction that is both
compatible with the lemma google and the
imperative transitive structure in which it appears
syntactically. Consequently, no instance of the
google.01 roleset is being detected using the
base grammar and no semantic roles are assigned.
Importantly, the reason is not that the imperative
transitive construction was not learnt during
training, but that it was not learnt to be compatible
with the category proper to the GOOGLE(V)-CXN.

Based on the weighted graph that captures the
distribution of slot-filler categories over construc-
tional slots, similarity between categories can be
computed using the weighted cosine similarity met-
ric. As such, slot-filler categories that are simi-
larly distributed over constructional slots will be
closer to each other than categories that rarely oc-
cur in the same constructions. In the base gram-
mar, the category proper to the GOOGLE(V)-CXN

bears a high similarity to the category proper to
the DISREGARD(V)-CXN. Intuitively, this is not
surprising, as both verbs are strictly transitive. If
the distributions of two categories are close to
each other, which means that the two categories
behave similarly in the grammar, one could in-
fer that if one category is compatible with a spe-
cific constructional slot, the other category is also
likely to be compatible with it. In our example,
the compatibility of the category proper to the
DISREGARD(V)-CXN with the category matched by
the frame-evoking element unit of the imperative
transitive construction can be taken as an indica-
tion that this specific argument structure construc-
tion might also provide a correct role assignment
for the GOOGLE(V)-CXN. Indeed, the imperative
transitive construction here correctly assigns the
‘arg1’ role (‘target of search’) to “it”. The pro-
cessing of this example utterance is schematically
depicted in Figure 4. The link in the categorial net-

work between cat-10 (GOOGLE(V)-CXN) and
cat-11 (V(V)-ARG1(NP)-CXN), which is neces-
sary to apply the imperative transitive construction
is inferred on the fly with a graph cosine similar-
ity score of 0.3 based on the distributional simi-
larity between cat-10 (GOOGLE(V)-CXN) and
cat-21 (DISREGARD(V)-CXN).

6 Related Work

While we provide to the best of our knowledge
the first fully operational and computationally im-
plemented prototype of a symbolic construction
grammar that integrates distributional representa-
tions and processing mechanisms to enhance its
robustness and generality, many scholars have al-
ready addressed in one way or another the chal-
lenge of combining construction grammar with dis-
tributional semantics. Levshina and Heylen (2014)
pioneered the use of distributional representations
to represent the prototypical slot-fillers of construc-
tions in a corpus-linguistic study. Hilpert and Perek
(2015) and Perek (2016) have used distributional
representations to track changes in the slot-fillers of
constructions over time. In the same spirit, Lebani
and Lenci (2018) make use of distributional rep-
resentations to represent thematic roles. Rambelli
et al. (2019) and Blache et al. (2024) make a case
for integrating distributional representations into
construction grammar and present a theoretical pro-
posal of how distributional representations could
be integrated into Sign-Based Construction Gram-
mar to represent word forms and slots. Finally,
Dunn (2017, 2024) provides a grammar induction
algorithm that makes use of distributional represen-
tations to model the prototypical content of con-
structional slots. A related body of research is not
directly concerned with construction grammar, but
with the integration of formal and distributional se-
mantics (for an overview, see Boleda and Herbelot,
2016, and other papers in the same special issue).
The goal is again to combine the compositional and
inferential aspects of logic-based representations
with the machine learnability and lexical modelling
capacities of distributional representations.

A more distantly related line of research that
is concerned with both construction grammar and
word embeddings investigates the linguistic capa-
bilities of large language models from a construc-
tion grammar perspective. The goal is not to inte-
grate symbolic and distributional approaches, but to
assess to what extent distributional approaches, in
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unit-4a
string: “googling”
lemma: google
pos: verb
roleset: ?tbd
lex-cat: cat-10

unit-4
string: “googling”
lemma: google
pos: verb

unit-1
string: “Try googling it […]”
pos: sentence

unit-4c
string: “googling”
lemma: google
pos: verb
roleset: google.01
lex-cat: cat-10
roles:
   arg1: unit-5
gram-cat: cat-11

v(v)-arg1(np)-cxn

?unit-b
pos: verb
lex-cat: cat-11

?unit-a
pos: vp

?unit-c
pos: np

?unit-b
roles:
   arg1: ?unit-c
gram-cat: cat-11

?unit-a
pos: verb
lex-cat: cat-12
gram-cat: cat-12
roleset: ?tbd

?unit-a
roleset: google.01

google.01-cxn

?unit-b  =  unit-4a

output: google.01

FEE: “googling”
arg1: “it”

input: “Try googling it [...]”1

3

4

5

2 google(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-10

?unit-a
lemma: google
pos: verb

?unit-a  =  unit-4

unit-4b
string: “googling”
lemma: google
pos: verb
roleset: ?tbd
lex-cat: cat-10
roles:
   arg1: unit-5
gram-cat: cat-11

unit-2
string: “Try”
lemma: try
pos: vp

unit-3
string: “googling it”
pos: vp

unit-5
string: “it”
lemma: it
pos: np

?unit-a = unit-4b
cat-12  ~ cat-10
cat-12  ~ cat-11

?unit-a = unit-3
?unit-c = unit-5

cat-11
(v)-arg1(np)-cxn

cat-21
disregard(v)-cxn

cat-28
arg0(np)-(v)-arg1(np)-cxn

cat-43
arg0(np)-(v)-arg1(np)-cxn

cat-10
google(v)-cxn

cat-11 cat-10~0.3

Figure 4: Schematic illustration of the integration of distributional representations of grammatical categories. The
category that is proper to the GOOGLE(V)-CXN is not directly compatible with the category of the frame-evoking
element slot of the imperative transitive construction (see 3 ). However, this categorial link is inferred on the fly
based on the close distributional similarity between cat-10 and cat-21.

particular large language models, capture the con-
structional knowledge that is typically represented
symbolically in the construction grammar litera-
ture (see e.g. Tayyar Madabushi et al., 2020; Weis-
sweiler et al., 2022, 2023; Bonial and Tayyar Mad-
abushi, 2024; Zhou et al., 2024; Tayyar Madabushi
et al., 2025).

7 Discussion and Conclusion

We have started from the observation that linguis-
tic theories and models of natural language typi-
cally adopt either a symbolic or a numerical ap-
proach. At the same time, symbolic and numerical
approaches are widely acknowledged to be compli-
mentary to each other (see e.g. Boleda and Herbe-
lot, 2016). Symbolic approaches have the advan-
tage of supporting compositionality, interpretabil-
ity and sound logic inference, whereas numerical
approaches have the advantage of being more scal-
able, robust and easier to learn from data. The
integration of symbolic and numerical approaches
is however complicated by the fact that they are
rooted in very different mathematical frameworks,
namely formal logic versus linear algebra.

In this paper, we have explored the integration

of numerical representations, in this case distri-
butional representations of word forms, construc-
tional slots and grammatical categories, in a sym-
bolic computational construction grammar frame-
work. Concretely, we have shown how such rep-
resentations can be operationalised in Fluid Con-
struction Grammar and enhance the robustness and
generality of learned FCG grammars. In a first
experiment, we have replaced the substantive ma-
terial in the constructions of a learned, symbolic
base grammar by pre-trained GloVe embeddings of
the same material. By extending FCG’s unification
algorithms to compute cosine similarities instead
of symbol equalities during the construction appli-
cation process, we obtained a range of ranked con-
struction application results in cases where there
was no exact match, but a close match, between
the lemma required by a construction and the one
observed in the input utterance. In a second experi-
ment, we have integrated vector representations of
the prototypical lexical content of constructional
slots to aid disambiguation where competing con-
structions could apply. The vectors were computed
while the grammar was being learned, based on
pre-trained GloVe embeddings of the words and
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phrases that were observed in the respective slots
of the construction. By aggregating the cosine sim-
ilarities of slots and their fillers during construc-
tion application, we again obtained a range of con-
struction application results ranked according to
their lexical fit with the applied constructions. In
a third experiment, we no longer relied on exter-
nally trained embeddings, but have modelled the
similarity between grammatical categories based
on their observed distribution over constructional
slots. This distribution was then used to create links
on the fly in the categorial network that were never
learnt during training.

The experiences gained while working on this
initial prototype have convinced us that the future
of computational construction grammar will be hy-
brid. Yet, further research is now needed to scale
this prototype for large-scale evaluation, where the
advantages of integrating distributional representa-
tions can also be shown quantitatively.
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