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Abstract
Large language models excel at statistical pat-
tern recognition but may lack explicit under-
standing of constructional form-meaning cor-
respondences that characterize human gram-
matical competence. This paper presents
Construction-Aware LoRA (CA-LoRA), a
parameter-efficient fine-tuning method that in-
corporates constructional templates through
specialized loss functions and targeted param-
eter updates. We focus on five major English
construction types: ditransitive, caused-motion,
resultative, way-construction, and conative.
Evaluation on BLiMP, CoLA, and SyntaxGym
shows selective improvements: frequent pat-
terns like ditransitive and caused-motion show
improvements of approximately 3.3 and 3.5
percentage points respectively, while semi-
productive constructions show minimal ben-
efits (1.2 points). Overall performance im-
proves by 2.4 percentage points on BLiMP and
2.4 points on SyntaxGym, while maintaining
competitive performance on general NLP tasks.
Our approach requires only 1.72% of trainable
parameters and reduces training time by 67%
compared to full fine-tuning. This work demon-
strates that explicit constructional knowledge
can be selectively integrated into neural lan-
guage models, with effectiveness dependent on
construction frequency and structural regular-
ity.

1 Introduction

Construction Grammar fundamentally reconceptu-
alizes linguistic knowledge as a network of form-
meaning mappings called constructions, ranging
from morphemes to abstract syntactic patterns
(Goldberg, 1995; Fillmore et al., 1988). This theo-
retical framework proposes that speakers acquire
grammatical competence through learning conven-
tionalized associations between linguistic forms
and their semantic interpretations, treating all lin-
guistic knowledge as constructions of varying com-
plexity and schematicity.

The constructionist approach offers several theo-
retical advantages for computational language mod-
eling. Unlike generative approaches that separate
lexicon from grammar, Construction Grammar pro-
vides a unified framework for both compositional
and non-compositional linguistic phenomena. Con-
structions explicitly encode form-meaning corre-
spondences, making them ideal candidates for inte-
gration into neural architectures that traditionally
rely on implicit pattern recognition. The usage-
based orientation of Construction Grammar aligns
naturally with statistical learning paradigms under-
lying modern language models.

Despite these theoretical advantages, main-
stream natural language processing has largely
overlooked Construction Grammar insights. Cur-
rent transformer-based models learn linguistic pat-
terns through statistical exposure to large corpora
but lack explicit representation of constructional
knowledge (Brown et al., 2020; Devlin et al., 2018).
This creates a disconnect between theoretical under-
standing of grammatical competence and practical
implementation in language technology.

Recent work has demonstrated the potential for
integrating linguistic theory into neural language
models through parameter-efficient fine-tuning ap-
proaches (Hu et al., 2021). These methods enable
targeted adaptation of large models while preserv-
ing general capabilities and maintaining computa-
tional efficiency. However, previous approaches
have focused primarily on syntactic constraints
rather than constructional form-meaning mappings.

This paper addresses this gap by introduc-
ing Construction-Aware LoRA (CA-LoRA), a
parameter-efficient fine-tuning approach that ex-
plicitly integrates Construction Grammar princi-
ples into transformer-based language models. Our
method treats constructions as learnable templates
that specify both formal patterns and semantic in-
terpretations, enabling models to develop explicit
constructional competence.

34

https://creativecommons.org/licenses/by/4.0/


Benchmark RoBERTa-large Standard LoRA CA-LoRA

BLiMP Overall 76.8 77.4 79.2
Argument Structure 73.2 74.1 76.4
Filler-Gap Dependencies 74.6 75.3 77.1
Island Effects 69.7 70.2 71.8

CoLA (MCC) 0.618 0.631 0.649
SyntaxGym 69.3 70.1 71.7

Table 1: Performance on linguistic evaluation benchmarks

We make four primary contributions to
construction-aware language modeling. First, we
develop a framework for representing major En-
glish constructions as explicit templates that can
be integrated into neural training processes. Sec-
ond, we present CA-LoRA, a parameter-efficient
method that embeds constructional knowledge into
language models through targeted parameter up-
dates and specialized loss functions. Third, we
demonstrate that constructional fine-tuning im-
proves performance on linguistic benchmarks that
test understanding of argument structure and form-
meaning correspondences. Finally, we show that
our approach maintains computational efficiency
while achieving these linguistic competence gains.

2 Construction Grammar Framework

2.1 Theoretical Foundations

Construction Grammar emerged from recognition
that traditional linguistic theories inadequately
account for the pervasive role of learned form-
meaning pairings in language use (Fillmore et al.,
1988; Goldberg, 1995). The theory posits that
linguistic knowledge consists entirely of construc-
tions—conventionalized associations between form
and meaning that speakers acquire through expo-
sure to usage events.

Constructions exhibit several key properties
that distinguish them from traditional grammatical
rules. They represent holistic form-meaning map-
pings that cannot be derived purely through com-
positional processes from their component parts.
They exist at multiple levels of abstraction, from
fully specified lexical items to highly schematic
syntactic patterns. They contribute meaning in-
dependently of their lexical fillers, explaining co-
ercion phenomena where verbs acquire construc-
tional semantics not present in their basic mean-
ings.

The ditransitive construction exemplifies these
principles. The pattern [Subject Verb Object1 Ob-
ject2] carries inherent transfer semantics regard-

less of the specific verb involved. This explains
how “She baked him a cake” receives a transfer
interpretation despite bake not being inherently a
transfer verb. The construction contributes trans-
fer meaning through coercion, demonstrating how
form-meaning mappings operate independently of
lexical semantics.

2.2 Argument Structure Constructions

Argument structure constructions represent a well-
studied domain within Construction Grammar, en-
compassing basic clause-level patterns that specify
participant roles and event semantics (Goldberg,
1995). These constructions demonstrate clear form-
meaning correspondences that extend beyond what
can be predicted from lexical properties alone.

Our framework focuses on five major English
argument structure constructions that exhibit sys-
tematic form-meaning relationships:

Ditransitive Construction: [NP-Agent V
NP-Recipient NP-Theme] ↔ TRANSFER(agent,
theme, recipient)

This pattern encodes successful transfer events,
as in “She gave him the book” and “He taught her
Spanish”. The construction contributes transfer
semantics that may be absent from the verb’s core
meaning.

Caused-Motion Construction: [NP-Agent V
NP-Theme PP-Goal] ↔ CAUSE-MOVE(agent,
theme, goal)

This construction expresses caused motion
events, exemplified by “He kicked the ball into
the net” and “She pushed the cart down the aisle”.
The pattern can coerce non-motion verbs into mo-
tion interpretations.

Resultative Construction: [NP-Agent V NP-
Patient XP-Result] ↔ CAUSE-BECOME(agent,
patient, result-state)

Resultative patterns encode causation of result
states, as in “They painted the house red” and “He
wiped the table clean”. The construction provides
result-state meaning that extends basic action se-
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mantics.
Way-Construction: [NP-Agent V Poss way

PP-Path] ↔ MANNER-MOTION(agent, manner,
path)

This semi-productive pattern expresses manner
of motion, illustrated by “She danced her way
across the stage” and “He fought his way through
the crowd”. The construction creates motion inter-
pretations for non-motion verbs.

Conative Construction: [NP-Agent V at NP-
Target] ↔ ATTEMPTED-ACTION(agent, target)

The conative alternation expresses attempted
rather than successful action, contrasting “She shot
the deer” (successful) with “She shot at the deer”
(attempted). The prepositional marking contributes
aspectual meaning.

2.3 Constructional Templates

We formalize constructions as structured templates
that specify both formal constraints and semantic
interpretations. Each construction C is represented
as:

C = ⟨Φ,Σ,Θ⟩ (1)

where Φ defines the formal template includ-
ing syntactic categories and linear order, Σ speci-
fies the semantic frame with participant roles and
event structure, and Θ represents frequency-based
weighting derived from corpus observations.

For the ditransitive construction, this yields:

Cditrans = ⟨[NPagent V NPrecipient NPtheme], (2)

TRANSFER(agent, theme, recipient),
(3)

θtransfer = 0.34⟩ (4)

This representation captures both the syntactic
pattern and associated semantic frame while incor-
porating usage frequency information that influ-
ences constructional processing priorities.

3 Construction-Aware LoRA

3.1 Parameter-Efficient Constructional
Integration

We develop Construction-Aware LoRA (CA-
LoRA), a parameter-efficient fine-tuning method
that integrates constructional templates into
transformer-based language models. CA-LoRA

operates on the principle that constructional com-
petence can be achieved through targeted parame-
ter updates that encode form-meaning correspon-
dences without disrupting general language capa-
bilities.

The approach extends standard LoRA (Hu et al.,
2021) by introducing construction-specific adapta-
tion matrices that capture the statistical dependen-
cies underlying each constructional pattern. For
each construction C and transformer weight ma-
trix W0 ∈ Rd×k, we define construction-specific
low-rank adaptations:

WC = W0 +

n∑

i=1

αi∆WC
i (5)

where ∆WC
i = AC

i B
C
i represents the low-rank

adaptation for construction C, with AC
i ∈ Rd×r

and BC
i ∈ Rr×k where r ≪ min(d, k). The scal-

ing factors αi control the relative influence of each
constructional adaptation.

This architecture allows multiple constructions
to be simultaneously encoded through separate
LoRA modules, enabling the model to access differ-
ent constructional patterns during inference. The
parameter-efficient nature ensures that construc-
tional knowledge can be integrated without the
computational overhead of full model retraining.

3.2 Construction-Guided Training Objective

We develop a specialized training objective that
encourages models to learn constructional form-
meaning correspondences through targeted super-
vision. The objective combines standard language
modeling with construction-specific learning sig-
nals derived from our template representations.

The total loss function integrates multiple com-
ponents:

Ltotal = LLM + β
∑

C∈C
LC (6)

where LLM represents the standard language
modeling loss, C denotes the construction inven-
tory, LC provides construction-specific supervision
for pattern C, and β is a weighting factor that con-
trols the relative importance of the construction
losses.

Each construction-specific loss component en-
courages appropriate usage of the corresponding
pattern:
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LC = −Es∼DC

[
logP (s | C)

]
(7)

+ λEs∼D¬C

[
max(0, logP (s | C)− τ)

]

(8)

where DC contains sentences that instantiate
construction C, D¬C contains sentences that vi-
olate constructional constraints, and τ represents a
margin parameter that discourages high probability
assignment to malformed patterns.

This formulation rewards models for recogniz-
ing and generating appropriate constructional pat-
terns while penalizing violations of form-meaning
correspondences. The approach enables direct su-
pervision of constructional competence without
requiring extensive manual annotation.

3.3 Multi-Construction Processing

Real language use involves interactions between
multiple constructions, requiring models to handle
constructional composition and selection. Our CA-
LoRA framework addresses this through dynamic
construction activation mechanisms that determine
which patterns are relevant for specific inputs.

We implement construction selection through
attention-based gating that computes relevance
scores for each construction given input context:

wC(x) = softmax(MLPC(pooled(x))) (9)

where x represents input embeddings and MLPC

provides construction-specific scoring. The final
representation combines weighted contributions
from all constructions:

hfinal =
∑

C∈C
wC(x) · hC(x) (10)

This approach enables flexible constructional
processing that captures the probabilistic and gra-
dient nature of constructional activation in human
language use, where multiple patterns can simulta-
neously influence interpretation and production.

4 Experimental Setup

4.1 Model Architecture and Training Data

We implement CA-LoRA using RoBERTa-large
and GPT-2 medium as base architectures, repre-
senting both encoder-only and decoder-only trans-
former variants. LoRA adaptations are applied to

attention projection matrices and feed-forward lay-
ers with rank r = 16 for attention components and
r = 32 for feed-forward networks, based on pre-
liminary experiments balancing expressivity with
efficiency.

Training data consists of carefully selected sub-
sets from BookCorpus (Zhu et al., 2015) and Open-
WebText (Gokaslan and Cohen, 2019), totaling ap-
proximately 12GB of diverse text across multiple
domains and registers. This corpus selection en-
sures exposure to varied constructional patterns
while maintaining manageable computational re-
quirements for parameter-efficient training.

The training process involves constructional
pattern identification through template matching
against our five target construction types. We use
constituency parsing and semantic role labeling
to identify potential constructional instantiations,
then apply template matching to extract positive
and negative training examples for each construc-
tion type.

Hyperparameter optimization explores construc-
tion loss weights β ∈ {0.1, 0.3, 0.5} and margin
parameters τ ∈ {0.5, 1.0, 2.0} using validation
performance on a held-out subset of training data.
Learning rates are tested across {1e−4, 3e−4, 5e−
4} with batch sizes of 16 to balance training stabil-
ity with memory constraints.

4.2 Baseline Comparisons

We compare CA-LoRA against several baseline
approaches that represent different methods for
incorporating linguistic knowledge into language
models. Standard LoRA fine-tuning provides a di-
rect comparison, using the same training data and
parameter-efficient architecture without construc-
tional supervision.

Full fine-tuning baselines demonstrate the com-
putational advantages of parameter-efficient ap-
proaches while providing upper bounds on poten-
tial performance gains from increased model plas-
ticity. These models are trained on identical data
with the same constructional objectives but update
all model parameters.

Prompt-based approaches, while not presented
here, test whether constructional knowledge can be
effectively communicated through natural language
descriptions rather than parameter updates, provid-
ing insights into the necessity of direct architectural
integration for constructional competence.
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Task RoBERTa-large Standard LoRA CA-LoRA

GLUE Average 84.2 84.6 84.7
Reading Comprehension (SQuAD 2.0) 81.3 81.7 81.5
Sentiment Analysis (SST-2) 91.8 92.1 92.3
Natural Language Inference (MNLI) 86.4 86.8 86.6
Semantic Similarity (STS-B) 88.1 88.4 88.5

Table 2: Performance on general NLP tasks. Differences between Standard LoRA and CA-LoRA.

Method Trainable Params Training Time Memory Usage Performance Gain

Full Fine-tuning 355M (100%) 38.7 hours 26.8 GB +2.1%
Standard LoRA 1.2M (0.34%) 12.4 hours 14.3 GB +0.6%
CA-LoRA 6.1M (1.72%) 12.8 hours 14.7 GB +2.4%

Table 3: Computational efficiency comparison for RoBERTa-large. Performance gain measured on linguistic
benchmarks relative to base model.

5 Results

5.1 Linguistic Benchmark Performance

Table 1 presents results on established linguis-
tic evaluation benchmarks, demonstrating consis-
tent improvements from constructional fine-tuning
across tasks that test grammatical competence.

CA-LoRA achieves meaningful improvements
across linguistic benchmarks, with particularly no-
table gains of 3.2 percentage points on argument
structure tasks and 2.4 points on overall BLiMP
(Warstadt et al., 2020) performance. These results
including CoLA (Warstadt et al., 2019) and Syntax-
Gym (Gauthier et al., 2020) demonstrate that ex-
plicit constructional training enhances performance
on phenomena that require understanding of form-
meaning correspondences and argument role rela-
tionships.

The improvements are most pronounced on tasks
that directly test constructional competence, such
as argument structure alternations and role assign-
ment. This suggests that CA-LoRA successfully
integrates constructional knowledge in ways that
transfer to related linguistic phenomena.

5.2 Construction-Specific Analysis

Table 4 evaluates performance on tasks specifically
designed to test each target construction type, pro-
viding detailed analysis of constructional learning
effectiveness.

CA-LoRA demonstrates variable improvements
across construction types, with gains ranging from
1.2 percentage points for way-constructions to 3.5
points for caused-motion patterns. The ditran-
sitive construction shows a 3.3 point improve-
ment (71.8 → 75.1), while resultative construc-

tions show modest gains of 1.7 points (66.4 →
68.1). These results indicate that explicit con-
structional supervision enhances competence for
well-defined form-meaning mappings, though ben-
efits vary considerably by construction type and
frequency. The performance pattern reflects both
constructional frequency and structural complex-
ity in the training data. Frequent, clearly-defined
patterns like caused-motion (3.5 point improve-
ment) and ditransitive (3.3 points) show substan-
tial gains, while semi-productive constructions like
way-constructions (1.2 points) and resultatives (1.7
points) show minimal improvement. This suggests
that template-based approaches work best for con-
structions with clear syntactic patterns and consis-
tent semantic roles, but struggle with more creative
or contextually-dependent patterns that rely heavily
on pragmatic inference.

5.3 General NLP Task Performance

Table 2 demonstrates that constructional fine-
tuning maintains competitive performance on stan-
dard NLP benchmarks while achieving specialized
linguistic competence.

The results show that CA-LoRA maintains per-
formance within typical variation margins across
standard benchmarks, indicating that construc-
tional specialization does not compromise general
language understanding capabilities. This supports
the viability of our parameter-efficient approach for
practical applications.

5.4 Computational Efficiency

Table 3 compares training costs across different
approaches, highlighting the efficiency advantages
of parameter-efficient constructional learning. CA-
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Construction Type Baseline CA-LoRA

Ditransitive 71.8 ± 2.1 75.1 ± 1.9
Caused-Motion 69.1 ± 3.4 72.6 ± 2.7
Resultative 66.4 ± 2.8 68.1 ± 3.2
Way-Construction 60.2 ± 4.1 61.4 ± 3.8
Conative 64.1 ± 2.6 67.2 ± 2.9
Overall Average 66.3 ± 1.8 69.0 ± 1.6

Table 4: Construction-specific performance (accuracy %). Results averaged over 5 random seeds.

LoRA achieves superior performance gains while
maintaining reasonable efficiency compared to full
fine-tuning, requiring only 1.72% of trainable pa-
rameters and 67% less training time than full fine-
tuning. While CA-LoRA uses approximately 5
times more parameters than standard LoRA, it re-
mains highly parameter-efficient relative to full
model retraining. The modest increase in mem-
ory usage (2.8%) reflects constructional process-
ing overhead without fundamentally altering the
parameter-efficient paradigm. The trade-off be-
tween CA-LoRA and standard LoRA involves ex-
changing some parameter efficiency for improved
performance on linguistically-oriented tasks.

6 Analysis and Discussion

6.1 Constructional Learning Patterns

Analysis of learned parameters reveals that CA-
LoRA develops distinct representational patterns
for different construction types. Attention weight
visualization shows increased focus on construc-
tionally relevant features, such as recipient argu-
ments in ditransitive constructions and result states
in resultative patterns.

Probing experiments using linear classifiers
demonstrate that constructional information be-
comes more linearly separable in CA-LoRA rep-
resentations compared to baseline models. This
indicates that parameter-efficient adaptation suc-
cessfully embeds constructional distinctions into
model representations in ways that support system-
atic processing.

6.2 Form-Meaning Correspondence

Qualitative analysis of model outputs demon-
strates enhanced sensitivity to constructional form-
meaning correspondences. CA-LoRA models
show improved ability to distinguish between well-
formed constructional instantiations and violations,
such as correctly rejecting *“She donated him
money” while accepting “She donated money to
him.”

The models also demonstrate better handling
of constructional coercion phenomena, correctly
interpreting sentences like “She sneezed the napkin
off the table” where the caused-motion construction
provides motion semantics absent from the verb’s
core meaning.

6.3 Limitations and Future Directions

Current CA-LoRA implementation focuses on En-
glish argument structure constructions and requires
language-specific template definitions. Extend-
ing to other languages will need development
of language-appropriate constructional inventories
and consideration of typological differences in
form-meaning mapping strategies.

The template-based approach may miss subtle
constructional distinctions that require deeper se-
mantic or pragmatic analysis. Future work should
investigate integration of richer semantic represen-
tations and world knowledge to capture the full
complexity of constructional phenomena.

Scale limitations prevent evaluation on the
largest current language models, though our
parameter-efficient approach should facilitate ap-
plication to models with hundreds of billions of
parameters. Future research should investigate how
constructional learning scales with model size and
training data volume.

7 Conclusion

This work demonstrates that Construction Gram-
mar principles can be effectively integrated
into neural language models through parameter-
efficient fine-tuning, achieving meaningful im-
provements in constructional competence while
maintaining computational efficiency and general
language capabilities. Our Construction-Aware
LoRA approach provides a practical framework
for incorporating theoretical linguistic insights into
modern NLP systems.

The key findings establish that explicit construc-
tional templates can enhance language model per-
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formance on tasks requiring understanding of form-
meaning correspondences and argument structure
relationships. Parameter-efficient methods enable
integration of constructional knowledge without
the computational overhead of full model retrain-
ing. Constructional fine-tuning improves linguistic
competence while preserving general language un-
derstanding capabilities across diverse tasks.

Future research should explore extension to
broader constructional inventories, multilingual
constructional learning, and integration with larger-
scale language models. Investigation of construc-
tional learning in very large models could reveal
whether explicit constructional guidance remains
beneficial at scale or whether implicit statistical
learning eventually captures these patterns auto-
matically.

This work represents a step toward bridging theo-
retical linguistics and computational language mod-
eling, demonstrating that Construction Grammar
insights can inform and improve neural language
processing systems. By explicitly encoding form-
meaning correspondences, we open possibilities for
more linguistically sophisticated and interpretable
language models that better align with human gram-
matical competence.
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