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Abstract

In this paper, we apply the lens of Construction
Grammar to provide linguistically-grounded
evidence for the recently introduced view of
LLMs that moves beyond the ‘stochastic parrot’
and ‘emergent Artificial General Intelligence’
extremes. We provide further evidence, this
time rooted in linguistic theory, that the capabil-
ities of LLMs are best explained by a process of
context-directed extrapolation from their train-
ing priors. This mechanism, guided by in-
context examples in base models or the prompt
in instruction-tuned models, clarifies how LLM
performance can exceed stochastic parroting
without achieving the scalable, general-purpose
reasoning seen in humans. Construction Gram-
mar is uniquely suited to this investigation, as
it provides a precise framework for testing the
boundary between true generalization and so-
phisticated pattern-matching on novel linguis-
tic tasks. The ramifications of this framework
explaining LLM performance are three-fold:
first, there is explanatory power providing in-
sights into seemingly idiosyncratic LLM weak-
nesses and strengths; second, there are empow-
ering methods for LLM users to improve per-
formance of smaller models in post-training;
third, there is a need to shift LLM evaluation
paradigms so that LLMs are assessed relative
to the prevalence of relevant priors in training
data, and Construction Grammar provides a
framework to create such evaluation data.

1 Introduction

Understanding how Large Language Models
(LLMs) solve complex tasks is a critical yet un-
settled question, and the field remains divided be-
tween two primary viewpoints. One perspective
characterizes LLMs as ‘stochastic parrots,” which
do little more than generate statistically probable
outputs based on their training (Bender et al., 2021;
Bender and Koller, 2020; Mitchell and Krakauer,
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2023). The opposing view contends that with suf-
ficient scale in parameters and data, LLMs ex-
hibit ‘emergent reasoning’ (Brown et al., 2020a;
Wei et al., 2022b; Srivastava et al., 2023a), a phe-
nomenon claimed to be ‘sparks of Artificial Gen-
eral Intelligence’ (AGI) (Bubeck et al., 2023).

Our recent work (Tayyar Madabushi et al.,
2025b) has sought to bridge this divide with an al-
ternative framework.! Rather than viewing LLMs
as either ‘stochastic parrots’ or as possessing ad-
vanced, human-like reasoning, we contend that the
capabilities and limitations of these models are
best explained by context-directed extrapolation
from their training priors. In our framework, the
necessary context is supplied by in-context learn-
ing examples for base models, or directly by the
prompt for instruction-tuned models.

This position paper first summarizes the frame-
work proposed in Tayyar Madabushi et al. (2025b)
(Section 2). We then present our working defi-
nition of reasoning and generalization while pro-
viding linguistic examples of the generalization
of constructions (Section 3). We discuss the two
prevalent views of LLLM capabilities along with
evidence from CxG rsearch for and against each
view. First, we explore stochastic parroting and
present evidence of LLLM success in solving diffi-
cult, non-memorizable problems that require more
than next-token prediction (Section 4). Second, we
explore the possibility of AGI, where we present re-
search demonstrating that models are incapable of
completing certain tasks that are trivial for humans
(Section 5). This pattern, we will argue, suggests a
specific shortcoming in what is termed ‘advanced
reasoning.” We then present new evidence from
Construction Grammar (CxG) that substantiates
this view (Section 6) and provides insights into the
limitations of the more extreme, alternative views.

"Mentions of our past research have been de-anonymized
after double-blind review and paper acceptance.
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From this foundation, we turn to the problem
of evaluation. We argue that even though LLMs
have mastered many superficial linguistic elements,
sound linguistic theory provides the necessary tools
to test their deeper reasoning (Sections 7, 8). Specif-
ically, we demonstrate how the principles of CxG
can be used to design precise tests that probe the in-
herent capabilities of these models, and we suggest
extensions informed by usage-based theories.

2  Context-Directed Extrapolation from
Training Priors

In the framework of context-directed extrapolation,
an LLM makes use of the entire prompt context
to generate its output. This process is straightfor-
ward in base models, which are trained exclusively
on the next-token prediction objective. For base
models, the input prompt provides the sequence
context from which the most probable subsequent
token is generated. However, dealing with the more
common models, which are additionally trained
to follow instructions (instruction-tuned models),
the instructions in the prompt establish a semantic
context. This context is then used to extrapolate
from relevant priors acquired during pre-training,
as opposed to treating the prompt merely as a token
sequence.

Specifically, for base models, while there is wide
debate over how LLMs function, their capabilities
and their ability to truly generalize, their capacity
for in-context learning (ICL) is an indisputable
fact (Brown et al., 2020b; Olsson et al., 2022). ICL
is an ability of LLMs to learn a new task on the fly,
simply by being given a few examples within the
prompt. To illustrate this, Tayyar Madabushi et al.
(2025b) use the example of a modified addition
task. In this task, when provided with the input
prompt:

14+3=57+12=20;8+3=

LLMs, trained only on the next token prediction
task, can infer the novel pattern (¢ + b 4 1) from
the examples and produce the correct, non-obvious
answer of 12.

In Tayyar Madabushi et al. (2025b), we derive
the notion that ICL is a method of solving tasks by
extrapolating from pre-training priors from a con-
vergence of several distinct theories. We note that
research consistently supports this view, whether
by directly linking ICL to the distributions in pre-
training data (Chan et al., 2022; Hahn and Goyal,
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2023), or by explaining it through frameworks like
Bayesian inference (Zhang et al., 2023; Xie et al.,
2021) and Probably Approximately Correct (PAC)
learning (Li et al., 2023b). This conclusion is re-
inforced by other studies that liken ICL to fine-
tuning (Dai et al., 2023) or show that it can im-
plicitly perform gradient descent, a process linked
to meta-learning (Akyiirek et al., 2023; Li et al.,
2023a; Zhang et al., 2024; Von Oswald et al., 2023).
Ultimately, we argue that regardless of the specific
mechanism, all existing research indicates that ICL
fundamentally relies on priors from pre-training
data, with the in-context examples serving to guide
the model toward the relevant priors needed for the
task at hand.

2.1 Context-Directed Extrapolation in Base vs
Instruction-Tuned Models

A critical observation is that LLMs trained solely
on next-token prediction (i.e. base models) are by
construction nothing more than sequence comple-
tion engines. However, these base models cannot
solve tasks that require abstract reasoning without
being provided with examples through in-context
learning (ICL) (Lu et al., 2023). Consider, for in-
stance, the following logical deduction problem
from the Big-Bench benchmark:

Question: On a shelf, there are five
books: a gray book, a red book, a pur-
ple book, a blue book, and a black book.
The red book is to the right of the gray
book. The black book is to the left of the
blue book. The blue book is to the left
of the gray book. The purple book is the
second from the right.

Targets: ‘“The gray book is the leftmost.”:
0; ‘The red book is the leftmost.”: 0; ‘The
purple book is the leftmost.’: 0; ‘The
blue book is the leftmost.”: 0; ‘“The black
book is the leftmost.”: 1

Base models fail on such reasoning tasks when pre-
sented without examples, however, they can solve
this task when presented with a prompt that in-
cludes examples. Central to our augment is the fact
that, instruction-tuned models can solve this task
without examples based purely on a description of
the task (Lu et al., 2023).

Context-directed extrapolation from training
data priors offers a unifying framework to explain
both the capabilities and, importantly, the limi-
tations of LLMs: In base models, the in-context



examples provide the context direction to allow the
model to infer and solve the relevant task at hand.
In instruction-tuned models, however, the process
of instruction tuning allows the models to interpret
the semantic context of the prompt without explicit
examples, and similarly direct extrapolation. We
contrast our framework with that of stochastic par-
roting in Section 4.1.

2.2 Extrapolation and Grounding

An important implication of context-directed ex-
trapolation is that it allows for a limited form of
grounding. By this we do not mean that models
achieve grounding in the human sense of connect-
ing language to embodied experience. Rather, be-
cause the mechanism involves extrapolating from
priors activated by the prompt, information that
is not explicitly present in surface form can nev-
ertheless become available to the model. For ex-
ample, when confronted with a nonce verb whose
definition is provided in the prompt, the model
can project that meaning into novel contexts and
apply it productively. Indeed, this same process
allows models to respond effectively in tasks such
as the Sally—Anne test (Wimmer and Perner, 1983),
enabling models to succeed on certain Theory of
Mind evaluations that would be inaccessible to
‘stochastic parroting” (Kosinski, 2024).

This is categorically different from stochastic
parroting. A purely parroting mechanism cannot
accommodate genuinely novel input that falls out-
side its memorized distribution. The fact that LLMs
can extend prompt-based definitions, apply abstract
patterns, and generate context-appropriate interpre-
tations indicates that extrapolation yields access
to extrapolatable information that is not reducible
to surface statistics. In this sense, context-directed
extrapolation provides a pathway to limited ground-
ing, albeit one constrained by the priors in training
data and the context supplied at inference time.

2.3 A Mechanistic Basis for Context-Directed
Extrapolation

To understand the underlying mechanics of this
capability in LLMs, in Tayyar Madabushi et al.
(2025b), we first point to the foundational work of
Olsson et al. (2022), who systematically showed
that LLMs could complete abstract patterns with
random tokens (e.g., given a sequence [A][B]...[4],
LLMs correctly respond with [B]). While this com-
pellingly refutes the ‘stochastic parrot’ notion by
suggesting an algorithmic capability, we introduce

a crucial caveat from recent research (Niu et al.,
2025): this pattern-matching ability degrades sig-
nificantly as the tokens become less frequent in the
pre-training data. This finding demonstrates that
even this seemingly abstract skill is fundamentally
tethered to the model’s training priors.

We then argue that this powerful, data-dependent
pattern-matching ability is the same core mech-
anism that allows LLMs to solve more complex
tasks via ICL. This view is substantiated by ev-
idence showing that ICL remains effective even
when the labels in the examples are manipulated,
such as being flipped between positive and negative
or replaced with entirely unrelated words like ‘Foo’
and ‘Bar’ for a sentiment classification task (Wei
et al., 2023). Therefore, in Tayyar Madabushi et al.
(2025b), we conclude that ICL, while impressive,
is a sophisticated but ultimately constrained pro-
cess. We argue that because its operation is always
guided by the user-provided examples and bound
by the limits of its training data, it fails to meet
the requirements for advanced, generalizable rea-
soning. In this setting, the model never gains true
‘agency, as its performance is always a function of
the input, preventing it from making the leap from
guided pattern-matching to unguided, human-like
cognition.

3 Construction Grammars and
Generalization

In this section, we outline our definition of human-
like reasoning and provide insights into such rea-
soning in linguistic settings from CxG. Follow-
ing our work in Tayyar Madabushi et al. (2025b),
we embrace a definition of advanced reasoning
that requires mastery and understanding of knowl-
edge taken from one set of members instantiating
a class, and then generalization and application of
that knowledge to a novel set of items. In terms of
CxG, constructions (defined as pairings of mean-
ing and form at any level—morphological, lexical,
phrasal (Goldberg, 2003; Hoffmann and Trousdale,
2013)) should be thought of as classes, and mem-
bers are certain instantiations or realizations of that
construction/class. Psycholinguistic evidence from
child language acquisition demonstrates that chil-
dren acquire frequently-heard constructions first
and initially only use the member instantiation that
they have heard (Tomasello, 2009). For example,
a child’s first Resultative construction will likely
involve the high-frequency verb “make” along with
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other lexical items the child is frequently exposed
to: “Mommy made me mad.” An ‘understanding’
of this construction is achieved when a speaker can
recognize the similarity of other instantiations of
this construction, which generally involve some
kind of verb of change-of-state semantics within
the structure (e.g., “Berries turned me blue!”). True
generalization of the construction requires abstract-
ing and applying knowledge of the construction
from heard instantiations to novel items—in this
example, novel instantiations of the phrasal con-
structions where the individual lexical items have
likely not been experienced within that construc-
tion before: e.g., “The dog barked me awake.”
Over the next sections, we will discuss the more
extreme viewpoints of LLM performance as ei-
ther “stochastic parrots” or advanced general intel-
ligence. In each section, we will close with rele-
vant research from CxG. Our review of work on
CxG will reveal a mixed picture: models can make
the required generalization in some instances, but
fail in others. However, based on our framework
of context-directed extrapolation, these seemingly
contradictory performances become explainable.

4 LLMs are NOT Stochastic Parroting

While the ‘Stochastic Parrots’ paper from Bender
et al. (2021) rightly identifies the risks of bias prop-
agation in large-scale models, its claim that these
models merely generate the next most likely to-
ken is demonstrably false, as we will show. We
define stochastic parroting as the mechanism of
generating the precise statistically most likely next
token given the immediate input sequence. In this
view, an instruction is merely more text to be com-
pleted. In the following sections we contrast this
view, with our view that LLMs solve tasks using
context-directed extrapolation from training priors.

4.1 Stochastic Parroting vs. Context-Directed
Extrapolation

Functional Commonalities. From the perspec-
tive of the performance of base models, there is
no functional difference between context-directed
extrapolation and stochastic parroting. Base mod-
els consistently fail tasks such as the one described
in Section 2.1 when presented without examples.
One can argue that the examples simply form a
long context, where the correct answer is the most
probable sequence completion. This makes both
theories appear to describe the same mechanism:

the model completes a given sequence based on
statistical patterns. Consequently, the two views
are indistinguishable when analyzing this alone.

Most LLMs in wide use, such as public chat
models, undergo instruction fine-tuning after their
initial pre-training so they can ‘understand’ and
follow instructions presented within their prompts
(Wei et al., 2022a). This additional training, how-
ever, complicates their evaluation. It becomes diffi-
cult to tell whether a model’s success on a new task
is a sign of genuine emergent reasoning or simply
a consequence of its training on similar tasks.

This issue was explored in a systematic study
by Bigoulaeva et al. (2025), who fine-tuned over
90 models and demonstrated that the performance
of instruction-tuned models is strictly correlated
with that of base models. This suggests a single
underlying mechanism is at play in both. Building
on this, in Tayyar Madabushi et al. (2025b), we
argue that this mechanism is context-directed ex-
trapolation from pre-training data. We propose that
instruction-tuning simply allows the model to per-
form the same kind of extrapolation from a natural
language prompt, rather than needing the explicit
in-context examples that base models require.

Functional Difference. The functional differ-
ence between these two views becomes apparent
with instruction-tuned models. A base model, pro-
vided with enough examples, generates the cor-
rect output because it becomes the most proba-
ble completion of that long sequence. In contrast,
the context-directed extrapolation view posits that
instruction-tuning enables a different mechanism.
It allows the model to interpret an instruction not
as a literal sequence to be continued, but as a di-
rective to construct an implicit context for a task.
This allows the model to activate relevant priors
(just as examples do for base models) from its pre-
training data to perform the task specified by the
prompt, rather than simply completing the text
of the prompt itself. Critically, the evidence for
this distinction is that instruction-tuned models can
solve the logical deduction (and similar) problems
presented in Section 2.1 without any examples (Lu
etal., 2023). This phenomenon cannot be explained
by stochastic parroting, but is directly accounted
for by context-directed extrapolation.

This distinction becomes even more stark in
tasks involving novel words, as this eliminates the
model’s ability to rely on pre-existing statistical
associations. The Winodict benchmark (Eisensch-
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los et al., 2023), for instance, modifies Winograd
schemas by replacing a critical verb with a nonce
word defined within the prompt. Consider:

The verb ‘to plest’ means to be scared
of... The city councilmen refused the
demonstrators a permit because they
plested violence.”

To correctly resolve the pronoun “they,” the model
cannot use any stored knowledge about the word
“plest.” It must parse the definition provided in the
prompt and apply that meaning to the sentence. The
success of models on this task provides compelling
evidence that the model is not merely predicting a
statistically likely token, but is using the in-prompt
definition to build a context and reason accordingly.
The ability of LLMs to successfully solve this task
is directly explained by context-directed extrap-
olation as it allows models to extropolate mean-
ing from context. In contrast, a pure stochastic
parroting mechanism based on predicting the next
likely token along cannot account for this ability.
As discussed previously, unlike base models (Sec-
tion 2), instruction-tuned models succeed on tasks
such as logical deduction without explicit exam-
ples (Section 4.1), a result that cannot be explained
by stochastic parroting. The Winodict benchmark
illustrates this distinction especially clearly. By re-
placing a key verb with a nonce word defined only
within the prompt, the task prevents the model from
relying on stored associations. Yet models are still
able to resolve the pronoun correctly by project-
ing the definition into novel contexts (Section 6), a
behavior that cannot be accounted for by a purely
stochastic parroting mechanism. Indeed, mecha-
nistic studies exploring ‘induction heads’ further
support this view (Section 2.3). In what follows,
we turn to CxG research relating to the notion of
stochastic parroting.

4.2 CxG & Stochastic Parroting

There is relevant research demonstrating first that
information on certain constructions is present in
pre-training data, such that models may rely on
stochastic parroting to provide the impression of
proficiency with the constructions of the language.
Tayyar Madabushi et al. (2020) probe a variety
of BERT-based models for access to knowledge
of several constructions proposed in Dunn (2017).
In this work, Tayyar Madabushi et al. (2020) test
BERT models on their ability to distinguish sen-
tences that are instances of a given construction

from those that are not. Alongside the base model,
the authors trained several BERT “clones” with
additional exposure to constructional information,
varying the frequency of constructions during pre-
training so that some clones saw high-frequency
items and others saw low-frequency ones. The
expectation was that clones trained on rarer con-
structions would benefit most, since such items
were unlikely to appear often in the original pre-
training data. However, the results showed little im-
provement over the base BERT model, leading the
authors to conclude that constructional knowledge
was already accessible to BERT. It is worth noting,
though, that the constructions targeted were iden-
tified in a data-driven way using the methods pro-
posed by Dunn (2017), and typically involved fixed
lexical items. More schematic phrasal patterns,
such as argument structure constructions (Gold-
berg, 1992), were not included. As a result, it is
plausible that the constructions tested were already
present in the base model’s pre-training corpus at
sufficient frequencies to allow strong performance
through context-directed extrapolation rather than
deeper generalization.

In Bonial et al. (2025), we provide evidence from
Multi-Word Expression (MWE) constructional tem-
plates, which demonstrate that LLM abilities must
go beyond stochastic parroting. While it is ex-
pected that the conventional meanings of common
MWE:s such as “spill the beans” (meaning to tell a
secret) would be encoded in LLLMs, we show that
they can use in-context learning and a single ex-
ample to teach models entirely novel MWEs, such
as “winking at pringles” (meaning to indulge in
frivolity). Not only can the models explain the
meaning of a new (non-verbatim) usage of the
novel MWE, GPT-4o is able to answer targeted
questions about the new usage, for example that
“a meeting where everyone is winking at a bunch
of chips” is probably not a productive use of time.
Thus, this research demonstrates that ICL in the
form of a definition of the novel MWE and sin-
gle usage example facilitates performance that can-
not be dismissed as stochastic parroting, as these
novel MWE:s are guaranteed not to be found in pre-
training data. Table 1 presents further examples
from this work.

5 LLMs are also NOT AGI

On the other end of the spectrum, some research
argues that models, when scaled up, gain abilities
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MWE Definition & Example

Novel Usage

GPT4o Interpretation

Annotator Interpretation

Expression: to send one’s LLM
(instead)

Meaning: Not worth one’s time.
Usage: There’s no way I’m at-
tending that meeting, I’ll proba-
bly send my LLM

Expression: dance with the
deer

Meaning: to have a deep and
meaningful conversation, espe-
cially about something one is
passionate about.

Usage: When they were plan-
ning their research, they often
danced with the deer.

The bank teller
seems to have
sent his LLM to
work today.

I don’t think
they were danc-
ing with the
same herd of
deer, possibly
not even the
same species.

The statement means that the
bank teller seems disengaged or
inattentive, implying they are
not putting in effort or paying at-
tention, as if they had metaphor-
ically ‘sent their LLM’ to do
their job instead of being present
themselves.

The statement implies that the
individuals involved were hav-
ing deep and meaningful conver-
sations, but their passions, ideas,
or perspectives were signifi-
cantly different—perhaps even
fundamentally incompatible. It
suggests a lack of alignment in
their discussions or goals.

Annotator 1: The bank teller
is not putting effort into their
work, relying on rote memoriza-
tion of their tasks, thereby mak-
ing many mistakes and poten-
tially misunderstanding some of
their interactions.

Annotator 1: Although all par-
ties are interested and passionate
about their topic of conversation,
they have not reached common
ground as to what the underly-
ing meaning and implications of
what the others are saying.

Table 1: Sample evaluation results from Bonial et al. (2025), in which we tested the ability of LLMs to generalize
to novel MWEs, given and defined in the first column. Note that models could not have been exposed to these
specific MWEs during pretraining, yet the interpretation of the novel usage (second column) is quite similar to that

of human annotators.

akin to high-level human reasoning (Brown et al.,
2020b; Wei et al., 2022b; Srivastava et al., 2023b;
Lu et al., 2024; Wei et al., 2024).

In Tayyar Madabushi et al. (2025b), we argue
that high-level reasoning is demonstrated only
when a model solves tasks it was not explicitly
trained for, distinguishing genuine cognitive appli-
cation from simpler forms of understanding (Krath-
wohl, 2002). In line with Chollet (2019), we note
that a model trained solely to master a single task
such as chess, even to a superhuman level, does
not exhibit the kind of reasoning that matters here,
since it is not generalizing knowledge to a truly
new domain. To make this distinction precise, here
and in Tayyar Madabushi et al. (2025b), we adopt
the framework of Krathwohl (2002), a revision of
Bloom’s original taxonomy of educational objec-
tives (Bloom et al., 1956), which defines advanced
reasoning as the ability to apply and extend knowl-
edge beyond familiar instances to novel contexts.

To argue that LLMs are not performing advanced
reasoning, we point to two key shortcomings: mod-
els’ tendency for hallucination and their failure
on seemingly simple tasks. First, LLM halluci-
nations—outputs that are not aligned with real-
ity—are cited as a major piece of evidence against
advanced reasoning (Huang et al., 2025). We
argue this phenomenon should not be confused
with human confabulation, as there is no evidence
for LLM agency (Lu et al., 2024), and these er-
rors can be traced to the model defaulting to sta-
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tistical patterns from its training data when the
prompt’s context is insufficient (Hanneke et al.,
2018). Second, we highlight that LLMs often
fail at tasks that are trivial for humans (Nezhu-
rina et al., 2025). For instance, even top models
perform poorly on clinical psychology faux-pas
tests compared to children (Shapira et al., 2023),
and they are significantly outperformed by non-
expert humans in simple Al planning domains like
Blocksworld (Valmeekam et al., 2023).

5.1 CxG & Advanced Reasoning

From a constructional perspective, Li et al. (2022)
probe models of varying sizes for access to knowl-
edge of purely schematic argument structure con-
structions, including DITRANSITIVE, RESULTA-
TIVE, CAUSED-MOTION, and REMOVAL construc-
tions. In their design, the authors adopt a sorting
task where both human participants and models are
asked to judge sentence similarity. The dataset is
deliberately constructed so that the constructions
under investigation are expressed through a range
of lexical verbs. Importantly, the verbs chosen to in-
stantiate different constructions belong to overlap-
ping semantic classes—for instance, verbs such as
cut and slice. This setup allows them to test if par-
ticipants and models cluster sentences on the basis
of verb meaning, as traditional generative grammar
would suggest, or if they recognize the broader con-
structional pattern. The findings reveal a sharp di-
vergence depending on model scale. MiniBERTas



(Warstadt et al., 2020), a model with only one mil-
lion parameters, aligns sentences primarily by verb-
level semantics, whereas the much larger ROBERTa
model (30B parameters; (Liu et al., 2021)) instead
groups them in line with constructional semantics.
While the authors do not point to this as evidence
of advanced reasoning per se, they do conclude that
larger models perform like native speakers while
smaller models perform more like second language
learners. However, we emphasize that these results
can also be interpreted as larger models success-
fully extrapolating from pre-training priors that the
smaller models do not have.

Additional studies using CxG highlight similar
limits to the reasoning abilities of LLMs. Weis-
sweiler et al. (2022a) examine the Comparative-
correlative construction (e.g., The higher you fly,
the harder you fall) as a test case for whether mod-
els can capture both its syntactic properties and
its associated semantic meaning. Their methodol-
ogy first targets the syntax by evaluating whether
models can reliably recognize instances of the
construction in natural corpus data and in con-
trolled, synthetic examples. On this task, sev-
eral BERT-based models perform well, success-
fully identifying and discriminating the construc-
tion. Such results are not unexpected given that
the Comparative-correlative includes fixed lexical
items in key structural positions. The crucial ques-
tion, however, is whether models can also handle
the semantics of the construction. To probe this,
the authors evaluate performance on a downstream
task that requires reasoning about the correlational
meaning encoded by the construction. Here the
models perform poorly, especially on nonce words,
with accuracy barely above chance, indicating that
while BERT-based models can recognize the formal
template of the Comparative-correlative, they fail
to grasp its interpretive content. We highlight that
this failure on nonce words is, yet again, indicative
of context-directed extrapolation. Similar research
evaluating both formal recognition and semantic
interpretation of the Causal-excess construction un-
derscores this finding—models can pick out the
construction but perform poorly on semantic under-
standing tests in the form of downstream questions
(Zhou et al., 2024).

6 CxG & Context-Directed Extrapolation

In Bonial and Tayyar Madabushi (2024a), we find
that even the largest models available at the time

(GPT-3.5 and GPT-4) are restricted to recogniz-
ing substantive constructions (with fixed words),
whereas schematic constructions (without fixed
words) elude recognition of either form or mean-
ing. In that research, we collect and leverage
the CoGS dataset (Bonial and Tayyar Madabushi,
2024b), which includes approximately 500 corpus
instances of 10 different phrasal constructions of
varying schematicity (i.e. some constructions are
fully fixed words, while others are argument struc-
ture constructions with no fixed words). The cor-
pus includes relatively frequent constructions, but
is limited to instantiations of those constructions
that are not the most frequent, entrenched instanti-
ations. For example, the Ditransitive construction
instances do not include usages with the verb “give,
which is the most frequent verb to instantiate this
construction: ‘“He gave me a book.” Instead, CoGS
Ditransitives include only cases where the lexical
semantics of the instantiating verb do not inher-
ently include transfer semantics: “He poured her a
martini.”” In other words, the constructions in CoGS
have high type frequency, but these particular in-
stantiations have relatively low token frequency.
Nonetheless, the fixed words of the substantive
constructions facilitate tapping into the appropriate
pre-training data in order to recognize the construc-
tion (but not necessarily a deeper understanding,
as suggested by (Weissweiler et al., 2022b)). In
contrast, although the schematic argument struc-
ture constructions are the most fundamental con-
structions of the English language with very high
type frequency (Goldberg, 1992), the models are
not able to apply generalized formal and semantic
properties of the construction to novel instantia-
tions. This suggests that models can extrapolate
to a point to account for relatively infrequent, cre-
ative instantiations of constructions, but the level
of generalization required for recognizing the struc-
tural slots and associated semantics of argument
structure constructions is beyond model abilities.

s

Similarly, Scivetti et al. (2025a) find that the
“human-scale” BabyLLM demonstrates strong for-
mal knowledge of the Let-alone construction, but
no understanding of the associated scalar seman-
tics. Further experiments on the templated evalu-
ation dataset first remove all Let-alone construc-
tions from pre-training data, as well as filtering
all related constructions (e.g., Much-less). The
authors find that this does not change BabyLLM per-
formance on formal recognition of the construction.
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The authors then remove all individual “let” and
“alone” tokens from pre-training, and this signifi-
cantly degrades performance on formal recognition,
leading us to conclude that the model is drawing
on compositional, lexical information of the indi-
vidual words as opposed to the form of the phrasal
construction as a whole. Thus, this research under-
scores the notion that generalizing the semantics
associated with syntactic slots of a construction
eludes models, and casts further doubt on whether
or not even the formal features learned by mod-
els are generalized at the constructional level or
limited to lexical, collocational features.

In Scivetti et al. (2025b), we provide further evi-
dence of both the extrapolation abilities of LLMs
when it comes to constructions, as well as the lim-
its of their generalization abilities. We leverage a
subset of the CoGS dataset described previously,
specifically using corpus constructional usages as
the premises for Natural Language Inference (NLI)
triples in which templates are leveraged to semi-
automatically generate entailed, neutral, and con-
tradicted hypotheses. In leveraging an NLI task,
we test downstream, functional understanding of
the CoGS constructions, which again are of rela-
tively high type frequency (e.g., Ditransitive: “he
gave me a book”) but the instantiations of those
constructions are relatively low token frequency
(e.g., Ditransitive: “he poured her a martini”). In-
terestingly, although we found that models failed to
recognize more schematic constructions in Bonial
and Tayyar Madabushi (2024a), in our subsequent
NLI research (Scivetti et al., 2025b), we find that
the largest models available (GPT-4 and 40) per-
form comparably on the constructional NLI and
Stanford NLI, ostensibly demonstrating that the
models are able to draw inferences correctly over
the constructional premises.

In Scivetti et al. (2025b), we then conduct follow-
on experiments where the models are evaluated
on a new set of NLI triples involving schematic
constructions that are not the high type-frequency
constructions of CoGS but are formally indistin-
guishable. For example, the Depictive construc-
tion (e.g., “She bought the apples fresh”) has the
same syntactic slots as the Resultative (e.g., “She
hammered the metal flat”), but distinct semantic
roles associated with the slots. We then test the
same models on NLI triples involving the formally
identical but semantically distinct premises, and
find that model performance drops substantially.

We posit that this research therefore demonstrates
the limits of extrapolation as opposed to true gen-
eralization of the meaning of constructions. The
strong performance on the original CoGS premises
shows that models can effectively extrapolate from
pre-training data, which is ample for these high
type-frequency constructions. However, the degra-
dation in performance on the formally identical
but semantically distinct premises shows that be-
cause models are extrapolating from the higher-
frequency constructions, they will perform the task
(incorrectly) according to those priors when faced
with lower-frequency constructions that the model
seems unable to distinguish.

Finally, in the second set of results from Bonial
et al. (2025), we extend this line of evidence. We
show that while LLMs can learn and use entirely
novel MWESs when definitions are provided in the
prompt (as discussed in Section 4.2, see also Table
1), performance degrades when models are asked
to reason across multiple MWEs at once. For ex-
ample, given novel MWE definitions for “drown
the cables” (an invented MWE defined as to sever
or overwhelm communication) and “dance with the
deer” (to have a deep, meaningful conversation),
the models were evaluated for their ability to reason
about the semantic interaction of the two MWEs
in a novel usage involving both MWEs. Human
annotators were able to do this consistently, but
even advanced models like GPT-o1 and GPT-40
faltered. This demonstrates the limits of context-
directed extrapolation, which enables models to
extend clear, explicit definitions to new usages (as
shown in this work for single MWE)), but that the
mechanism struggles once the links between con-
structions become less direct.

7 Discussion and Implications

Context-directed extrapolation explains LLM be-
havior as the use of priors activated by prompt
context. Because of this, the very same capability,
such as apparent Theory of Mind, will be observed
when the relevant priors are strong, but absent or
much weaker when priors are sparse. The same
holds for grounding: it will appear when relevant
information is easily extrapolatable from context
and fail when it is not. This means that evaluation
must carefully distinguish between cases where
models are simply drawing on rich priors and cases
where success would require true human-like gener-
alization. Counterfactuals are ideal for making this
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distinction, since they force the model to reason
beyond memorized or extropable priors, and LLMs
consistently fail on such tests despite succeeding
on superficially similar ones (Wu et al., 2024).

For decades NLP research sought to build
pipelines around symbolic templates and formal
reasoning systems. Over time the pipeline itself be-
came an end goal. LLMs now shift this landscape
by allowing us to fill templates more easily and
then use established resources, such as AMR (Ba-
narescu et al., 2013; Bonial et al., 2018) or frame
semantics (Fillmore et al., 2012), to support reason-
ing processes in systematic, verifiable ways (e.g.,
Tayyar Madabushi et al. (2025a)). Given that mod-
els continue to struggle with more advanced reason-
ing tasks, it is increasingly important to see them
as an interface between the complexity of language
and downstream formal reasoning rather than as
reasoning systems themselves.

CxG is a particularly strong testbed for this view.
It allows us to probe the line between semantics and
syntax and to see where models succeed because
of exposure to canonical patterns of language and
where they fail to generalize. Because there is al-
ready extensive evidence of how humans learn and
extend constructions (e.g., Tomasello (2009)), CxG
provides the right framework to compare human
generalization against model extrapolation and to
identify the precise gaps that remain. Usage-based
theories of learning, such as Frame Semantics (Fill-
more et al., 2012), can also be incorporated into the
design of systems. We need an interface between
the lexical, surface form of text and the higher-
level structures of meaning, and LLMs get us part
of the way there by exploiting priors in context.
Usage-based theories can then provide the concep-
tual tools to take us the rest of the way, enabling
a more systematic connection between linguistic
form, meaning, and true human-like generalization.

In sum, LLMs offer a powerful but incomplete
bridge between raw text and meaning. Their
strengths lie in exploiting priors through context,
but their limitations highlight the need for theo-
retical frameworks that go further. Usage-based
approaches such as CxG provide exactly this. By
combining the empirical reach of LLMs with the
conceptual depth of usage-based theory, we can
move toward a more systematic account of how
form and meaning connect, and build systems that
move towards human-like generalization.
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8 Conclusions & Recommendations

The ‘stochastic parrots’ versus ‘sparks of AGI’ de-
bate has become a roadblock to clarity in LLM
performance and avenues to advance performance.
This paper offers a more productive, middle-ground
theory, providing a theoretically-grounded argu-
ment for context-directed extrapolation from train-
ing priors. The implications of this are significant:
it provides a coherent explanation for the seem-
ingly idiosyncratic and unpredictable strengths and
weaknesses of LLMs, demystifying phenomena
like hallucinations and, as we have detailed, clarify-
ing their contradictory performance on CxG tasks.

Second, it suggests that meaningful improve-
ments can be achieved not just through scale, but
through better methods of directing this extrapo-
lation via prompting and fine-tuning. This under-
standing demands that we re-evaluate how we im-
prove language models. The prevailing paradigm,
which chases unpredictable ‘emergent’ abilities by
scaling up models and data, is not the only way
forward. Our work suggests a more principled ap-
proach: focusing on the ‘context’ and ‘priors’ of
the reasoning equation to achieve significant perfor-
mance gains. This shift opens exciting new avenues
for research beyond a simple reliance on scale. It
points toward a more sustainable path to innova-
tion, focused on augmenting models in novel ways,
such as by equipping them with external memory.

Finally, and most urgently, our work demands
a paradigm shift in how we evaluate LLMs. To
genuinely measure a model’s reasoning, we must
move past benchmarks that might be tainted by
training data or that only test for simple extrap-
olation. The goal should be to assess a model’s
ability to generalize and apply knowledge, not just
to understand or remember it (in terms of Bloom’s
taxonomy (Bloom et al., 1956)). We therefore rec-
ommend a new focus on out-of-distribution evalua-
tion, using grounded linguistic theory like CxG for
language tasks. By testing models on examples that
are grammatically valid but highly unlikely to be
in the training data, such as formally identical but
semantically distinct constructions, we can clearly
distinguish between true generalization and mere
pattern-matching.

Taken together, these recommendations call for a
shift from chasing scale to building a linguistically
principled science of evaluation and improvement,
where CxG and related usage-based theories play a
central role.
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