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Abstract
We probe large language models’ ability to
learn deep form-meaning mappings as defined
by construction grammars. We introduce the
ConTest-NLI benchmark of 80k sentences cov-
ering eight English constructions from highly
lexicalized to highly schematic. Our pipeline
generates diverse synthetic NLI triples via tem-
plating and the application of a model-in-the-
loop filter. This provides aspects of human val-
idation to ensure challenge and label reliability.
Zero-shot tests on leading LLMs reveal a 24%
drop in accuracy between naturalistic (88%)
and adversarial data (64%), with schematic pat-
terns proving hardest. Fine-tuning on a sub-
set of ConTest-NLI yields up to 9% improve-
ment, yet our results highlight persistent ab-
straction gaps in current LLMs and offer a
scalable framework for evaluating construction-
informed learning.

1 Introduction and Motivation

Human intelligence is often attributed to our ca-
pacity for language — and, in particular, our abil-
ity to generalize abstract, compositional meaning
from surface structure (Pinker, 2003). Construc-
tion Grammar (CxG) (Goldberg, 1995; Croft, 2001;
Tayyar Madabushi et al., 2020) (See also Section
2) formalises this by treating linguistic knowl-
edge as form-meaning pairings — constructions
— that range from single words to complex syntac-
tic frames. Understanding whether large language
models (LLMs) acquire such abstractions remains
a fundamental question at the intersection of lin-
guistics and artificial intelligence.

In CxG, each construction pairs a convention-
alised form with an associated meaning. The form
is the syntactic configuration, possibly including
fixed lexical items, while the meaning is provided
by the construction as a whole rather than from
the individual lexical items. For example, the Re-
sultative construction has the form Noun Phrase

Model Constr.
Semantics

Constr.
Distinction

Prior work (Scivetti et al., 2025)
GPT-4o 0.88 0.58
GPT-o1 0.90 0.46
Llama 3 70B 0.74 0.52
Human 0.90 0.83

This work
Llama-3.1-8B

(baseline)
0.57 0.33

Llama-3.1-8B
(fine-tuned)

0.66 0.39

Table 1: Comparison of model performance on construc-
tional (constr.) understanding. The top section, with
results from prior work Scivetti et al. (2025), shows that
LLMs struggle with the constructional distinction task
compared to the human baseline. The bottom section
presents our results, showing that this shortcoming per-
sists despite fine-tuning. See Section 6 for full results.

(NP), Verb (V), Noun Phrase (NP), Adjective (ADJ)
and the meaning “the action described by the verb
causes the object to enter the state described by the
adjective” (Goldberg, 1992). In “She hammered
the metal flat,” the state ‘flat’ is the result of the
hammering event, a meaning supplied by the Re-
sultative.

While each construction has a specific form, dif-
ferent constructions can share the same syntactic
structure. For instance, the Depictive construction
also uses the NP V NP ADJ form but has a distinct
meaning (Goldberg and Jackendoff, 2004). In the
Depictive, the adjective describes the state of the
noun during the action of the verb, not as a result of
it. This is illustrated by the example, “A famous em-
peror buried scholars alive.” Here, ‘alive’ describes
the state of the scholars while they were being
buried; crucially, the act of burying did not cause
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Construction Premise Hypothesis Label

Resultative Through
effort, the
gardener
cultivated
the garden
lush.

The gar-
dener
worked hard
to create
a vibrant
outdoor
space.

Entailment

Caused Motion The ma-
gician
levitated the
rabbit into
the hat.

The magi-
cian placed
the rabbit on
the table.

Contradiction

Causative With In no time,
the magician
had filled
the audito-
rium with
applause.

The ma-
gician
performed
in different
auditori-
ums.

Neutral

Table 2: Examples drawn from the ConTest-NLI train-
ing set, with one instance of each NLI label from distinct
constructions.

them to become alive. This distinction highlights
how syntactically identical sentences can convey
vastly different meanings based on the underlying
construction.

Recent evaluation work (Scivetti et al., 2025),
which used the downstream task of Natural Lan-
guage Inference (NLI) to create a test of the func-
tional understanding of LLMs, reveals that while
LLMs can correctly interpret an entrenched con-
struction like the Resultative even with unusual
lexical items, their generalization ability is lim-
ited. Specifically, when presented with creative
instances of a less entrenched construction like
the Depictive, LLMs tend to overgeneralize and
assign the meaning of the more frequent, or en-
trenched, Resultative construction. Indeed they
overgeneralise to such an extend that they show
a performance drop of over 40% on on this task,
when compared to the original task of interprating
the meaning of entrenched constructions. These
findings are summarized in Table 1. This failure to
use lexical and pragmatic cues to resolve syntac-
tic ambiguity, a task at which native speakers can
perform quite easily, demonstrates that the mod-
els’ grasp of abstract meaning remains brittle and
overly dependent on statistical patterns rather than
a robust, human-like linguistic competence.

While Scivetti et al. (2025) identify this short-
coming, they leave the reasons for this specific
failure to future work. Therefore, this work aims to
answer this question by examining the model’s ex-
pertise with the task. Specifically, we hypothesize

and investigate if training the model on explicit
NLI examples will help the model better ‘under-
stand’ creative, less entrenched constructions in
the presence of a more frequent distractor. A
positive result would offer a clear-cut path to im-
proving these models’ understanding, whereas a
negative result would point to a more fundamental
issue that needs to be addressed.

To this end, this paper introduces ConTest-
NLI (Constructional Test Natural Language In-
ference), a scalable dataset designed to evaluate
whether LLMs internalize the semantics of linguis-
tic constructions or rely solely on surface heuristics.
ConTest-NLI specifically targets systematic gener-
alization across unseen verbs, arguments, and con-
structions. This provides a scalable way to inform
LLMs of specific construction examples, allowing
a new control for deeper research into semantic
understanding of linguistic theory.

One key empirical finding is that LLMs fail
to generalize constructional semantics across
syntactically identical but semantically distinct
constructions. For example, models trained to
detect entailment violations in the Resultative con-
struction show no improved performance on the
Depictive construction, despite their shared syntax.
This lack of transfer reveals that current models
do not acquire construction-general semantics, but
instead overfit to narrow instantiations.

To test our hypothesis at scale, we use a semi-
automated pipeline that facilitates generation of
synthetic constructional NLI triples: ConTest-NLI.
Example data is shown in Table 2. Our pipeline
leverages syntax-informed template generation of
eight core constructions and model-in-the-loop fil-
tering to identify deceptive false positives.

We compare ConTest-NLI to two existing CxG
benchmarks from Scivetti et al. (2025): the manu-
ally curated Construction-NLI (CxN-NLI), and the
more challenging Construction-NLI-Distinction
(CxN-NLI-Distinction), which introduces false
positives that share syntax but diverge in seman-
tics. While those datasets offer excellent linguistic
control, they remain small and difficult to scale.
ConTest-NLI complements them by enabling con-
trolled experiments across a broader constructional
space, yielding more robust insights into model
generalization.

We fine-tune small-scale LLMs (LLaMA 3.1 8B
Instruct, Mistral 8B Instruct) on ConTest-NLI ex-
amples and evaluate their performance across both
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seen and unseen constructions. While models im-
prove (≤9pp) on the trained construction, their fail-
ure to generalise — especially to constructions with
shared syntactic structure — suggests a fundamen-
tal limitation in semantic abstraction.

ConTest-NLI is thus shown to be useful for eval-
uating systematic language understanding in LLMs,
bridging the scale of automated generation with the
precision of theoretical linguistics. In our experi-
ment, we use ConTest-NLI to gather direct empiri-
cal evidence that shows, without further architec-
tural or training innovations, LLMs do not acquire
transferable constructional semantics — highlight-
ing a key divergence from human-like generaliza-
tion.

2 Related Work

CxG is a linguistic theory that positions construc-
tions — form-meaning pairings — as the funda-
mental units of language. A construction, as de-
fined within this framework, is any linguistic pat-
tern whose meaning is not fully predictable from
its individual components (Goldberg, 1995; Croft,
2001; Tayyar Madabushi et al., 2020).

Further cognitive and usage-based studies within
CxG emphasize that humans generalize construc-
tional meanings from frequency of exposure and
exemplar experiences. Psycholinguistic research,
notably by Bencini and Goldberg (2000), showed
that participants’ interpretations of sentence mean-
ings significantly reflect constructional semantics
rather than just verb meanings alone. In their ex-
periment, participants grouped sentences primarily
by the underlying constructional meaning, demon-
strating that constructions themselves carry cogni-
tive reality independent of specific lexical content
(Kaschak, 2007; Goldberg et al., 2007).

This perspective is particularly relevant for eval-
uating language comprehension in computational
models. Recent computational linguistic research
leverages CxG to systematically assess language
understanding in large language models. Studies
such as those by Tayyar Madabushi et al. (2020)
and Scivetti et al. (2025) illustrate how CxG pro-
vides a robust theoretical grounding to create tar-
geted, semantically-rich evaluations for LLMs.
These studies specifically demonstrate the utility
of construction-based Natural Language Inference
(NLI) tasks, highlighting significant limitations of
LLMs in generalizing abstract constructional se-
mantics when faced with novel linguistic contexts

or minimally represented constructions (Bonial and
Tayyar Madabushi, 2024).

Thus, CxG not only provides insights into human
linguistic competence but also offers a rigorous
toolset for probing and understanding the bound-
aries of true semantic generalization in language
models — a foundational concern of contemporary
NLP research.

Also, constructional semantics provide a con-
trolled yet diverse linguistic testbed. Constructions
vary significantly in their schematicity — from
highly substantive, lexically fixed forms, such as
the Let-alone construction, to more abstract and
schematic patterns such as Resultative or Caused-
motion constructions (Bonial and Tayyar Mad-
abushi, 2024; Scivetti et al., 2025). Evaluations
across this spectrum enable systematic testing of
LLMs’ capacity for abstract semantic generaliza-
tion. Crucially, previous computational studies
demonstrate that while LLMs may perform well on
lexically anchored constructions due to frequency
and memorization, their performance substantially
deteriorates when faced with more schematic and
less frequent constructions (Weissweiler et al.,
2022; Scivetti et al., 2025).

Despite the promise of construction grammars
as a diagnostic for true semantic generalization, ex-
isting computational CxG evaluations remain nar-
rowly focused, limited in scale, or insufficiently
controlled. This project fills that gap by introduc-
ing a semi-automated pipeline that combines high-
variance templating to produce large-scale CxG
evaluation data.

3 ConTest-NLI Dataset Development

ConTest-NLI is designed as a scalable, high-
variance training resource for probing whether
LLMs can learn and generalise the semantics of
English constructions beyond rote lexical recall. It
forms the centrepiece of a broader multi-corpus
strategy, enabling both in-domain fine-tuning and
rigorous, out-of-distribution testing. This is essen-
tial: single-source datasets are prone to heuristic
exploitation, whereas orthogonal axes — synthetic
vs. natural, fluent vs. adversarial — allow us to
pinpoint exactly where generalisation succeeds or
fails.

We adopt the eight English constructions from
Scivetti et al. (2025), spanning the substantive–
schematic continuum (e.g., Let-alone vs. Resul-
tative). Construction details and examples are pro-
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vided in Appendix A. Each construction is instan-
tiated by ≥10,000 examples, generated from ≥8
canonical templates varying surface order, clause
type, and optional modifiers.

3.1 Template Engineering
For each construction, we hand-crafted 8–12 canon-
ical skeletal templates encoding the obligatory syn-
tactic positions and any construction-specific func-
tion words (e.g., “The more X, the more Y” for
the Comparative Correlative). These templates are
designed to maximise controlled diversity: varying
word order, clause type, voice (active/passive), ad-
junct position, and optional modifiers ensures that
no single surface pattern dominates.

Lexical slots are populated from “mid-
frequency” lemmas (20–60th percentile in
BookCorpus) to reduce overlap with model pre-
training data. We further expand these lists using
WordNet synonyms, hyponyms, and antonyms,
while explicitly excluding the top 10,000 Common
Crawl tokens and any lexemes whose semantics
would trivially satisfy the inference (e.g., moved
in a Caused-Motion frame). Controlled adver-
bial pools (manner, time, frequency, intensity)
and automated morphological inflection via
lemminflect add stylistic variation without
altering truth-conditional content. Examples of
templates and their instantiations are provided in
Table 3, and templates for all constructions are
provided in Appendix B.

Construction Example Template / Instantiation

RESULTATIVE “The [agent] [verb] the [patient] [end-
state]” → The chef chopped the carrots
thin

CAUSED-
MOTION

“X [verb] Y into Z” → They rolled the log
into the river

CAUSATIVE-
WITH

“X filled C with S” → The artist filled the
gallery with vibrant paintings

LET-
ALONE

“Even getting X to [verb] was tough, let
alone Y” → Even getting the robot to suc-
ceed was tough, let alone the knapsack

Table 3: Sample templates and instantiations from the
ConTest-NLI generation pipeline. Note that template
filling results in some semantic infelicity, such as the
Let-alone comparison of a robot and a knapsack.

3.2 Example Generation
Each premise sentence is paired with three hypothe-
ses labelled entailment (E), neutral (N), or contra-
diction (C), with labels assigned via construction-
specific generation rules grounded in formal seman-

tics. For example, a CAUSATIVE-WITH premise
The artist filled the gallery with vibrant paintings
yields:

• (E) The gallery contained vibrant paintings

• (C) The gallery was empty of any paintings

• (N) The artist painted in a nearby studio

This approach ensures that all examples are flu-
ent and natural-sounding, while still requiring the
model to attend to the construction’s form-meaning
pairing to make the correct inference.

3.3 Manual Analysis
We conducted manual analysis to ensure the qual-
ity of the dataset along two dimensions: (i) the
generated constructions are indeed members of the
specified construction type, and (ii) the established
relation for each NLI triple is accurate. We ran-
domly sampled 100 instances of our dataset, bal-
anced across neutral, entailment, and contradiction
relations. One author and native English speaker,
trained in linguistics and CxG, provided a binary
rating for (i) and (ii), and where the author dis-
agreed with the relation provided, gave a corrected
NLI relation. The result of this analysis was that
99/100 instances were judged to be instances of
the specified construction type, and 94/100 NLI
instances were judged to have the correct relation.
This indicates the overall high quality of the devel-
oped dataset.

However, the manual analysis further revealed
two limitations of the synthetic NLI triples. First,
the data in the sample were relatively repetitive.
While we expect repetitions of the premise with
unique hypotheses representing different entail-
ment relations to the premise, we found that the
hypotheses themselves were also somewhat repeti-
tive, sometimes differing only in a single word (e.g.,
“tree trunk” vs. ”tree bark” or adding “might”). Sec-
ond, judging the entailment relation was somewhat
trivial for many triples, given that entailed hypothe-
ses were sometimes near-verbatim repetitions of
the premise, whereas contradicted hypotheses often
leveraged a single lexical item of opposite seman-
tics to a counterpart in the premise. We note that
manual development of NLI triples can also lead
to the same limitations.

3.4 Dataset Splits
We enforce a deterministic 70/15/15 train/dev/test
split within each construction. Crucially, the split is
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lexeme-held-out: any verb lemma appearing in the
test set for a given construction is entirely absent
from its train and dev sets. This protocol is ap-
plied consistently across all ConTest-NLI variants
and related evaluation sets (CxN-NLI, CxN-NLI-
Distinction), ensuring that improvements can be
attributed to constructional abstraction rather than
memorisation of specific lexical fillers.

Each construction is balanced across the three
NLI labels, yielding 4,000 triples per construction
and a total of 32,000 examples. The class balance
ensures that macro-accuracy remains an unbiased
measure of model performance.

4 Fine-Tuning Method

We use a small variety of base models for our fine-
tuning experiments: Llama-3.1-8B-Instruct and
Mistral-8B-Instruct. These models, both with ap-
proximately 8.1 billion parameters, have a decoder-
only transformer architecture that has already un-
dergone instruction tuning, making them proficient
at following natural language prompts. Their rel-
atively modest size allows for experimentation on
single GPU setups, while their strong zero-shot
baseline performance on tasks like NLI ensures
that any observed gains from fine-tuning are both
conservative and meaningful. We provide hyperpa-
rameters in Appendix C, full fine-tuning details in
Appendix D, and training regimes in Appendix E.

5 Evaluation Framework

To rigorously assess our hypothesis that targeted
fine-tuning yields systematic constructional under-
standing a comprehensive evaluation framework is
employed. This framework specifies the core met-
rics for NLI tasks, outlines the use of diagnostic
benchmarks to guard against overfitting and ensure
generalization, and details essential controls and
sanity checks to validate the genuineness of ob-
served performance gains. Our primary metric to
measure success is macro-accuracy. A statistically
significant improvement of over 5% accuracy over
a model’s baseline evaluation (before fine-tuning)
would be sufficient for us to accept our hypothesis.

5.1 Diagnostic Benchmarks

To ensure that improvements are not merely task-
specific overfitting but represent genuine, trans-
ferable gains in understanding, performance on
diagnostic benchmarks is critical. For this pur-
pose we use Scivetti et al. (2025) the previously

Model Setting CxN-NLI CxN-NLI-Distinction

LLAMA-3.1-8B baseline 57 33
fine-tuned 66 39

Mistral-8B baseline 49 36
fine-tuned 63 37

GPT-4o baseline 88 64
3-shot ICL 91 65

Table 4: Results across CxN-NLI and CxN-NLI-
Distinction benchmarks using baseline and ConTest-
NLI fine-tuned models or in-context-learning (ICL) ex-
amples from ConTest-NLI.

described CxN-NLI and CxN-NLI-Distinction
datasets. These benchmarks feature out-of-
distribution compositional tasks that involve the
eight constructions targeted in fine-tuning; how-
ever, they are hand-crafted to test semantic under-
standing of the constructions.

If a model exhibits consistent performance
across all of our datasets, yet remains consistent in
these diagnostic benchmarks, we can confidently
claim the model has improved on constructional
usage; however, has not improved on the true un-
derstanding of the construction.

6 Results and Discussion

ConTest-NLI demonstrated systematic gains across
the CxN-NLI evaluation set; however, showed no
improvements at semantic understanding of the
CxN-NLI-Distinction dataset. Results are summa-
rized in Table 4.

Ultimately, this shows model reasoning is done
on surface-cues of constructions, rather than true
constructional understanding. Critically, we know
this is fundamentally different from human reason-
ing, where we are able to grasp the semantics of
constructions instead of just surface-cues.

Notably, the Llama-3-8B-Instruct model, when
fine-tuned on ConTest-NLI, showed a significant
increase in accuracy on the CxN-NLI: from 57%
to 66%. The Mistral-8B-Instruct model, with
ConTest-NLI fine-tuning, saw performance rise
from 49% to 63%. These improvements com-
fortably exceeded the hypothesized +5 percentage
point threshold.

These ConTest-NLI results illustrate that fine-
tuning on natural-sounding premises yields in-
domain accuracy gains — key evidence that LLMs
can internalize form-meaning mappings and struc-
tures when they encounter sufficiently varied,
human-plausible NLI examples.

184



6.1 Error Analysis

We provide full error analysis in Appendix F. The
six examples outlined in Table 8, each drawn from
a different construction in the ConTest-NLI training
set, illustrate the central weakness our paper identi-
fies: the model’s reliance on surface-level lexical
and syntactic cues rather than robust, construction-
general semantic reasoning. In each case, the
model either (a) overfit to familiar lexical frames
without integrating their semantic consequences,
(b) failed to connect constructional form to the
entailments it licenses (e.g., way-manner imply-
ing location change, resultatives implying caused
state), or (c) ignored clear scalar or negation cues
when they appeared in less frequent or slightly var-
ied contexts. That these errors occur across all
eight constructions — rather than being isolated to
a single form — reinforces our quantitative finding:
fine-tuning improved in-domain recognition but
did not instill transferable, abstract constructional
understanding.

6.2 Summary and Discussion

The fine-tuned model’s improvement over the base
model was 6% — above the 5% bar for the CxN-
NLI evaluation set, but notably smaller than the
gains on the CxN-NLI-Distinction dataset. This
discrepancy implies that while the model does in-
ternalise certain abstract features of the construc-
tions, a portion of the performance boost stems
from adaptation to the repeated surface patterns
and lexical distributions encountered during fine-
tuning.

7 Future Work and Conclusions

Our investigation demonstrates that explicitly
grounding LLM supervision in CxG yields mea-
surable gains in systematic generalization, yet also
exposes persistent limits of current models’ abstrac-
tion capabilities. By fine-tuning small-scale LLMs
on a CxG-informed corpus — ConTest-NLI — we
show that targeted constructional supervision de-
livers substantial improvements (9% on existing
CxG-NLI benchmarks), but that these gains attenu-
ate on out-of-distribution and adversarial challenge
items (CxN-NLI-Distinction dataset). These find-
ings carry two broader implications for cognitive
modeling.

First, our results suggest that, unlike human
learners who extract and re-apply abstract form-
meaning pairings across lexemes and structures,

LLMs continue to rely on residual surface cues
even after targeted fine-tuning. This divergence
highlights the need for cognitive models of learn-
ing to account for both exemplar-driven acquisition
and the development of schematic templates, of-
fering a new benchmark against which to evaluate
theories of human grammatical abstraction.

Second, the semi-automated pipeline we intro-
duce — combining model-in-the-loop adversar-
ial filtering and human validation — provides a
scalable methodology for instilling constructional
knowledge in models. Integrating such CxG-
grounded datasets into training regimens can drive
more robust semantic generalization, informing fu-
ture architectures that more closely mirror human-
like compositional reasoning.
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A Constructions of Focus

The constructions that we develop training data and
test on are detailed in Table 5.

B ConTest-NLI Templates

Causative-With • Prompt: Describe a situa-
tion where something causes a place or
thing to have a new feature or quality.
Example: The party filled the room with
laughter and music.

• Prompt: Write about an action that
makes an object filled or loaded with
something else.
Example: She packed the suitcase with
clothes for the trip.

• Prompt: Imagine someone causing a
change by adding something to a space.
Describe it.
Example: They stocked the pantry with
canned goods before the storm.

Caused-Motion • Prompt: Write about some-
one making something move to a new
place.
Example: He pushed the broken car into
the garage.

• Prompt: Describe an action that results
in an object being relocated somewhere.
Example: She threw the ball across the
yard.

• Prompt: Tell a short story where an ac-
tion causes an object to end up some-
where else.
Example: The wind carried the leaves
onto the porch.

Comparative-Correlative • Prompt: De-
scribe a situation where two things
change together — as one increases or
decreases, so does the other.
Example: The more he practiced, the
better he became at playing the piano.

• Prompt: Write a sentence showing how
more or less of one thing affects another
thing.
Example: The less she slept, the
grumpier she got.

• Prompt: Imagine a cause-and-effect re-
lationship where two actions or qualities
are linked. Explain it.
Example: The more it rained, the faster
the river rose.

Conative • Prompt: Write about someone try-
ing to interact with an object but not nec-
essarily succeeding fully.
Example: He tugged at the door, but it
wouldn’t budge.

• Prompt: Describe an action where a per-
son touches or tries to affect something
without completely changing it.
Example: She tapped at the microphone
to check if it was working.

• Prompt: Imagine someone fiddling with
or attempting to do something to an ob-
ject — describe it.
Example: He poked at the firewood, try-
ing to get the flames to grow.

Intransitive Motion • Prompt: Describe a
person, animal, or thing moving from
one place to another.
Example: The cat wandered into the
kitchen.

• Prompt: Write about a movement where
the focus is on someone or something
changing location.
Example: The children raced down the
hill.

• Prompt: Tell a short story about a jour-
ney or movement from one place to an-
other.
Example: The balloon drifted across the
blue sky.

Let-Alone • Prompt: Describe a situation
where something is already hard or un-
likely — and an even harder thing is even
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Construction Example Sentence

LA (Let Alone) I can’t knit a scarf, let alone sew a quilt.
CC (Comparative Correlative) The faster you run, the sooner you tire.
CWT (Caused Motion with Theme) She filled the bucket with sand.
CON (Conative) The boxer punched at the heavy bag.
WAY (Way Construction) She danced her way to fame.
IM (Intransitive Motion) The children ran into the park.
CM (Caused Motion) They rolled the log into the river.
RES (Resultative) He hammered the metal flat.

Table 5: Eight challenge constructions ordered from most lexically substantive (top) to most schematic (bottom).
Each example instantiates the construction in context.

less likely.
Example: He couldn’t finish a page of
his homework, let alone the entire assign-
ment.

• Prompt: Write about two related actions
or qualities, where the second is even
more extreme than the first.
Example: I can barely manage to jog a
mile, let alone run a marathon.

• Prompt: Imagine someone struggling
with one task — and an even harder task
is even more impossible. Describe it.
Example: She had trouble cooking
pasta, let alone baking a soufflé.

Resultative • Prompt: Describe an action that
causes something to change its state or
condition.
Example: He wiped the counter clean.

• Prompt: Write about an event where
someone does something that makes an
object end up different than before.
Example: She hammered the metal flat.

• Prompt: Tell a story where an object
transforms because of someone’s ac-
tions.
Example: They painted the walls bright
yellow.

Way-Manner • Prompt: Describe someone
making progress by doing an action re-
peatedly or in a special way.
Example: He elbowed his way through
the crowded hallway.

• Prompt: Write about someone moving
through space by performing an activity

along the way.
Example: She laughed her way down
the mountain trail.

• Prompt: Imagine someone reaching a
destination while doing something un-
usual — describe it.
Example: They danced their way to the
front of the stage.

C Hyperparameters

Hyperparameters and justifications are given in Ta-
ble 6.

D Fine-Tuning Details

Given the size of our labeled fine-tuning data, full
fine-tuning of all model parameters would be com-
putationally expensive, prone to overfitting, and
very inflexible for our experiments. Therefore, we
employ LoRA; This approach significantly miti-
gates the risk of overfitting on smaller, highly struc-
tured datasets like ours.

LoRA modules (rank r=16, scaling factor α=32,
dropout p=0.05) are specifically injected into the
attention layers and multi-layer perceptron projec-
tions of layers 12 through 20 of the Llama-3-8B-
Instruct model.

Layers 12-20 in a 32-layer transformer model,
such as Llama 3.1 8B, are roughly in the middle of
the network. Prior research shows that middle and
upper-middle layers often encode a mix of syntac-
tic and semantic abstractions - ideal for adapting
models to semantic tasks like NLI, especially for
constructional generalization (Liu et al., 2019).

We also note that training is conducted using
mixed-precision, with weights in BFLOAT16 and
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Parameter Value Justification
temperature 0.8 maximises lexical variety without destabil-

ising syntax
max tokens 500 covers premise + three hypotheses with

margin
rare-lemma seed list 5 376 nouns/verbs/adjectives reduces overlap with pre-training corpora

Table 6: Generation parameters and their justification.

activations in INT8, to further reduce memory foot-
print and improve training efficiency. Additional
fine tuning hyperparameters are found in Table 7.

E Training Regimes

To systematically investigate how and where con-
structional knowledge is acquired and represented,
three distinct training regimes are employed. These
regimes are designed to disentangle the effects of
weight updates, classifier head architecture, and
dataset characteristics.

Shared-Head: Updates the model with a single
shared three-way NLI head for all construc-
tions. This is the canonical regime, testing if
a unified representation can be learned across
all constructions.

Per-construction Heads: Updates the model with
8 independent NLI heads (one per construc-
tion). This explores whether separate, special-
ized classifier heads better capture construc-
tional nuances.

In-Context Few-Shot: No weights are updated.
Predictions are made via prompting (8-shot).
This baseline tests learning from examples in
context, without training.

All fine-tuning regimes are run for a maximum
of 5 epochs over the training data. By comparing
performance across these regimes, we can draw
more nuanced conclusions: for example, if the
Shared-Head regime significantly outperforms In-
Context Few-Shot, it suggests that explicit weight
updates are beneficial. The Per-construction Heads
condition offers insights into the potential modu-
larity of learned constructional knowledge. This
comprehensive experimental design ensures that
claims about improved constructional understand-
ing are robust and well-substantiated.

F Full Error Analysis

The examples extracted and displayed in table 8
each illustrate a distinct type of model failure iden-
tified in our study.

In the Conative and Way-manner cases, the
model recognised the action but failed to apply
constructional entailments — ongoing effort should
contradict “gave up”, and the Way construction im-
plies location change. The Caused-motion and Re-
sultative examples show that the model often con-
flates transformation events with generic processes,
ignoring the causative semantics that the construc-
tion encodes. The Let-alone example reveals a
missed scalar inference, treating “barely managed”
as isolated from the second clause. Finally, the
Intransitive-motion case highlights a negation cue
failure, where “without a destination” was incor-
rectly aligned with a positive statement due to lex-
ical overlap. Across constructions, these failures
demonstrate that improvements from fine-tuning
largely reflect memorisation of surface patterns
rather than abstraction of form–meaning pairings.
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Optimizer and Hyperparameters

Optimizer AdamW
β1 0.9
β2 0.999
ϵ 1e− 8

Regularization and Early Stopping

BookCorpus in minibatches 33% (for anti-forgetting)
BookCorpus loss weight 0.25
Label smoothing (NLI heads) 0.1
Gradient clipping (max norm) 1.0
Weight decay (LoRA matrices) 0.01

Table 7: Hyperparameters from fine-tuning experiments

Construction Premise Hypothesis Gold Label Model Label

Conative The carpenter repeatedly
hammered at the stubborn
nail.

The carpenter gave up try-
ing to fix the nail.

Contradiction Neutral

Way-manner The detective elbowed his
way to the front of the
crowded room.

The detective stayed at the
back of the room.

Contradiction Neutral

Caused-
motion

The artist painted the mu-
ral into a vibrant master-
piece.

The artist worked on the
mural for a week.

Neutral Entailment

Let-alone He barely managed to tie
his shoelaces, let alone
complete the marathon.

He found tying his
shoelaces easy.

Contradiction Neutral

Intransitive-
motion

Without a destination, the
traveler wandered through
the forest.

The traveler had a clear
destination in mind.

Contradiction Entailment

Resultative A few strikes were enough:
the blacksmith hammered
the iron flat.

The iron became flat. Entailment Neutral

Table 8: Examples of failed NLI cases from the ConTest-NLI training set.
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