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Abstract

We present CoGS-NLI, a Natural Language
Inference (NLI) evaluation benchmark test-
ing understanding of English phrasal construc-
tions drawn from the Construction Grammar
Schematicity (CoGS) corpus. This dataset of
1,500 NLI triples facilitates assessment of con-
structional understanding in a downstream in-
ference task. We present an evaluation bench-
mark based on the performance of two lan-
guage models, where we vary the number and
kinds of examples given in the prompt, with
and without chain-of-thought prompting. The
best-performing model and prompt combina-
tion achieves a strong overall accuracy of .94
when provided in-context learning examples
with the target phrasal constructions, whereas
providing additional general NLI examples
hurts performance. This evidences the value
of resources explicitly capturing the semantics
of phrasal constructions, while our qualitative
analysis suggests caveats in assuming this per-
formance indicates a deep understanding of
constructional semantics.

1 Introduction

This research addresses the challenge of how we
determine what computational systems know of a
language; specifically, we focus on the large por-
tion of the English language in which meaning goes
beyond the sum of lexical parts—phrasal construc-
tions. Whereas our past NLP tools were developed
and therefore grounded in some form of grammat-
ical theory (e.g., phrase structure or dependency
parsing), LLMs lack grounding in linguistic the-
ory. Instead, their development is based on the
encoder-decoder architecture, which was originally
designed for sequence-to-sequence tasks, specif-
ically translation (Bahdanau et al., 2016). This
dichotomy impedes methods for evaluating LLMs,
as their performance on meta-linguistic tasks, such
as semantic role labeling, which previously served

Premise I had brushed my hair smooth.
Hypothesis I had smooth hair because

I brushed it.
Relation Entailment

Table 1: CoGS-NLI example for a premise including
the Resultative cxn; inferring the entailment relies upon
recognition of the constructinoal semantics.

as benchmarks for the individual components in an
NLP pipeline, are poor predictors of LLM fluency
on downstream applications.

Although LLMs lack theoretical grounding, eval-
uation of language proficiency benefits from anal-
ysis through a particular theoretical lens, which
enables one to hypothesize the appropriate formal
units of a language and the way in which meaning
is associated with those formal units. We leverage
Construction Grammar (CxG) to analyze language
(specifically English) as a set of constructions (cxn),
or pairings of meaning and form at any structural
level, including morphemes, lexemes, and phrases.
As a usage-based linguistic theory, CxG provides
an experimentally-validated framework for how
speakers acquire language and generalize knowl-
edge of frequently heard cxns to totally creative
and novel instantiations (e.g., Tomasello (2009);
Johnson and Goldberg (2013)). CxG research
demonstrates that speakers attribute meaning
to special syntactic templates (phrasal cxns)—
meaning that goes beyond that of the individ-
ual lexical items alone; CoGS-NLI allows us to
evaluate if LLMs also attribute the appropriate
meaning to phrasal cxns.

We leverage Construction Grammar Schematic-
ity (CoGS) corpus instances (Section 2) as the
premises in the subsequent development of a com-
prehensive dataset of 1500 Natural Language Infer-
ence (NLI) triples (see Table 1), which serves as
a downstream test of functional understanding of
cxns (Section 3). We benchmark performance on
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this task with two models (GPT-3.5-turbo, GPT-40),
and demonstrate that including examples with con-
structional premises in few-shot prompting boosts
performance to reach a top-end accuracy of .94
(Section 4).! This shows first that resources ex-
emplifying the target constructional semantics are
beneficial to performance, and second that con-
structional premises do not pose a problem for
state-of-the-art models in this task. However, there
is qualitative evidence that tempers the conclusion
that models must grasp constructional semantics
in order to perform successfully on the task (Sec-
tion 5). We close with recommendations for future
steps in evaluating constructional understanding
(Section 6).

2 Related Work

Related work in the area of evaluating LLMs
through the lens of CxG fall broadly into two types
of research: i. testing for LLM recognition and
classification of certain cxns; and ii. testing for
LLM functional understanding

In the first area, Tayyar Madabushi et al. (2020)
demonstrated that a variety of base and fine-tuned
BERT models are able to distinguish between sen-
tences that instantiate a particular cxn and those
that do not. Li et al. (2019) recreate a psycholin-
guistic test in which models of varying sizes are
tested for their ability to group sentences by se-
mantic similarity, where some sentences include
the same cxn (e.g., Caused-motion), and others
involve different cxns but semantically similar lex-
ical verbs (e.g., sneeze, burp). The authors find
that while the smallest language model with 1 mil-
lion parameters, MiniBERTas (Pérez-Mayos et al.,
2021), groups the sentences according to lexical
semantics, the largest model with 30 billion pa-
rameters, ROBERTa (Liu et al., 2019), groups sen-
tences according to constructional semantics. Of
particular relevance to this research, Bonial and
Tayyar Madabushi (2024a) develop the initial test
set of corpus examples of cxns later released as the
CoGS corpus, and test larger models (GPT-3 and
4) for recognition of sentences containing a cxn.
The authors find a clear trend demonstrating that
the models can recognize substantive cxns with
some fixed words (e.g., Much-less), but have in-
creasing difficulty recognizing cxns of increasing
schematicity or variability.

'"The evaluation data subset, prompts, and outputs
can be found here: https://github.com/melissatorgbi/
from-form-to-function

Overall, the research in the first area demon-
strates that while models can recognize and classify
some cxns, more abstract cxns present a problem
for recognition. Furthermore, studies of recogni-
tion and classification do not directly demonstrate
whether or not LLMs are proficient users of the
cxns of a language; i.e. whether or not the models
“understand” the constructional semantics.

Thus, we emphasize the importance of the sec-
ond area of research, which aims to test LLM
functional understanding of cxns in a downstream
task. Both Weissweiler et al. (2022) and Zhou et al.
(2024) set up evaluations of formal recognition
of cxns as well as semantic understanding of the
Comparative-correlative and Causal-excess cxns
respectively. In both cases, the authors find that
models are able to distinguish the cxns, but perform
poorly on tests of semantic understanding in the
form of downstream questions. Similarly, Scivetti
et al. (2025a) finds that smaller-scale LLMs are sen-
sitive to the formal properties of the Let-alone cxn,
but reflect no sensitivity to the semantic properties,
again in a set of downstream questions testing for
understanding.

3 Dataset Development

NLI is a task in which a premise is presented fol-
lowed by a hypothesis, and the task is to determine
if the hypothesis i. must be true given the premise
(entailed); ii. may or may not be true given the
premise (neutral); iii. cannot be true given the
premise (contradicted). We base our task guide-
lines on the Stanford NLI (SNLI) corpus, which
was developed to test semantic representations, as
the authors consider understanding entailment and
contradiction to be fundamental to natural language
understanding (Bowman et al., 2015). NLI has
since been adopted as a relatively common test of
semantic understanding with several community
evaluations (e.g., Marelli et al. (2014); Lee et al.
(2024)). As a result, there is widespread availabil-
ity of NLI data on the web, and it is a relatively
common benchmark for LLMs. This also influ-
enced our choice—as there is abundant data on
LLM performance for the NLI task, we can distin-
guish baseline abilities of models on this task from
performance on the constructional variant (Sarlin
et al., 2020; Raffel et al., 2020; Wei et al., 2022).
We draw our premises from the corpus instances
of the 10 cxn types in CoGS (Bonial and Tay-
yar Madabushi, 2024b); there are about 50 unique
corpus instances of each cxn type, giving us about
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500 unique premises. The cxns in CoGS vary in
schematicity (how many words of constructional
slots are substantive/fixed or schematic/variable),
which enables us to test constructional understand-
ing for fixed-word cxns in which meaning is con-
sistently associated with a particular form, as well
as variable-word cxns, in which meaning is asso-
ciated with templatic syntactic patterns (such as
the DITRANSITIVE: The student [noun phrase]
handed [verb] the teacher [noun phrase] a book
[noun phrase]—i.e., NP V NP NP). A listing of all
cxns and example NLI triples from CoGS-NLI is
given in Appendix B, Table 4.

One native English speaker (and author of this
paper) with an undergraduate degree in Linguistics
(but no training in CxG specifically) was given a
spreadsheet of the CoGS premises and asked to pro-
duce 3 NLI triples—an entailed, neutral, and con-
tradicted hypothesis for each premise; thus, the cor-
pus totals 1500 triples associated with 500 unique
premises. We provide guidelines adapted from
SNLI definitions of the relations. The NLI author
selected triples to create in any order desired to pre-
vent getting stuck on more difficult cases. Depend-
ing on the length and complexity of the premise, the
hypotheses could take several minutes to process,
or come to the author immediately. Overall, the
development of the CoGS-NLI corpus was done
over the course of a year to prevent fatigue and
degraded quality.

We conducted several quality checks of the
CoGS-NLI corpus by comparing agreement on
the assigned relation of subsets of data (totaling
441 NLI instances) across three annotators (and
authors of this paper) against the author’s origi-
nally assigned relation. Percentage agreement on
the initial set of triples ranged from 71-80%, or
.55-.70 when measured as Cohen’s x, indicating
substantial agreement. All disagreements were re-
visited, and a second author reworded the hypothe-
ses. Agreement on the reworded hypotheses then
reached 89%, or .84 Cohen’s k, indicating very
strong agreement equal to the published agreement
of individual annotators with respect to gold rela-
tion for SNLI.

4 Evaluation Experiments

4.1 Methodology

We provide a performance benchmark by testing
models on the same subset of the data that was eval-
uated for human agreement. Specifically, we hold
out 50 instances for in-context learning and use
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Setting IC Data GPT-3.5 GPT-4o0
0-shot  None 0.74 0.89
I-shot  CoGS-NLI 0.78 0.91
3-shot  CoGS-NLI 0.83 0.94
I-shot  SNLI 0.70 0.89
3-shot  SNLI 0.69 0.90

Table 2: Evaluation results, reported in accuracy, on the
CoGS-NLI dataset. “IC Data" refers to the type of data
used as in-context examples.

the remaining 391 instances as the test set. The in-
context learning examples were randomly chosen
where each example contains a single premise with
a neutral hypothesis, entailment hypothesis and
contradiction hypothesis. The in-context learning
examples provided are paired with target phrasal
cxns in the test set in order to provide clear exam-
ples of the phrasal constructional semantics within
the NLI task.

We evaluate GPT-40-2024-05-13 and GPT-3.5-
turbo-0125 models; these models were chosen as
representatives of LLM capabilities due to their
large size. The temperature is set to 0 to minimize
randomness in the model outputs.

We compared results for six different prompt
variations, with and without explicitly prompting
for Chain of Thought (CoT). We report results
for our best-performing prompt, provided in full
in Appendix A. We also experimented with O-
shot through 3-shot learning, with two different
sources of examples: held-out examples from the
CoGS-NLI dataset and selected examples with full-
sentence premises from the SNLI corpus. We con-
duct this comparison in order to determine if the
constructional examples boost performance, or if
general SNLI examples are sufficient. Note that
the CoGS-NLI examples include the target phrasal
cxns included in the evaluation, providing clear
examples of how these cxns should be interpreted
with respect to the NLI task. While the SNLI ex-
amples also include cxns of English, they do not
include the target phrasal cxns of CoGS.

4.2 Results

Results are reported in Table 2. We see a 5-point
boost in performance in the 3-shot setting with
constructional examples and achieve a top-end per-
formance of 94% accuracy from GPT-40. We do
not see an equivalent boost in GPT-40 performance
in the 3-shot setting with general SNLI examples.
The constructional examples are even more helpful
for GPT-3.5, where 3-shot outperforms zero-shot



Constance squeezed her way

Premise 1  down the platform looking for
the first-class carriages.
Hypothesis Constance waited in l'ine
for the first-class carriages.
Relation Gold: Contradiction;
GPT-40: Neutral
. The 23 frantically scrambled to
Premise 2
the rear of the sub.
Hypothesis The 23 were calm at the rear of
the sub.
Relation Gold: Contradiction;

GPT-40: Contradiction

Table 3: Premise 1 exemplifies an error for the most
frequently mis-analyzed cxn (Way-manner). Premise
2 (Intransitive-motion) exemplifies a hypothesis with
information outside of the constructional semantics that
cues the contradiction (i.e. “frantically” vs. “calm”.)

by 9 points. Notably, the 3-shot setting with SNLI
examples actually hurts performance by 5 points.

5 Discussion

Given that the CoGS developers found that mod-
els were able to recognize and classify substantive
cxns (with fixed words) with much greater accuracy
than schematic cxns (with no fixed words and only
variable syntactic-semantic slots) (Bonial and Tay-
yar Madabushi, 2024a), we also assessed if there
were performance differences in CoGS-NLI for
those cxns classed as fully fixed/substantive, par-
tially fixed, or fully variable/schematic. In con-
trast to the earlier findings, we do not find a no-
table difference in performance based upon the
schematicity level of the cxn in the premise (see
Appendix B Table 5 for performance results sep-
arated by phrasal cxn type). However, when we
analyze distinct cxns, GPT-40 achieves the high-
est accuracy on the fully variable Resultative cxn
(see Table 1) and the lowest accuracy on the par-
tially variable Way-manner cxn. We provide an
error case in (Premise 1) of Table 3. The stronger
performance that we see on schematic cxns like
the Resultative in the functional understanding NLI
task may relate to the frequency of the cxn—LLMs
may be better at “understanding” more frequent
cxns with greater representation in pretraining data,
and the fully schematic argument structure cxns of
CoGS are also some of the most frequent cxns of
English. We begin to explore this question further
in ongoing research (Scivetti et al., 2025b).

The performance of both models on the CoGS-

175

NLI dataset is comparable to performance on
SNLI (Ye et al., 2023; OpenAl et al., 2024);
thus, we can conclude that including constructional
premises does not pose a significant challenge in
this task. We note two intertwined limitations in
drawing the strong conclusion that these models
therefore have a functional understanding of the
semantics of the cxn. First, in the NLI task gener-
ally, models may rely on spurious features (e.g., the
number of tokens) of the premise and hypothesis to
solve the task without actually understanding the
constructional semantics (Gururangan et al., 2018).
Second, the hypotheses may probe other aspects
of meaning of the premise outside of the construc-
tional semantics. Premise 2 in Table 3 provides an
example where the hypothesis includes the modi-
fier “calm” which contradicts the modifier “franti-
cally” in the premise, but bears no relation to an
understanding of the Intransitive-motion construc-
tional semantics. Taken together, these limitations
mean that NLI task solvability generally, including
that of CoGS-NLI, may be correlated with features
outside of a deep semantic understanding.

Thus, on the whole, our results demonstrate that
while constructional resources are needed for boost-
ing performance on downstream tasks in which
language includes phrasal cxns (note that this is
not rare—argument structure cxns are some of the
most common phrasal cxns of English), more pre-
cise probing evaluations are needed for assessing
constructional understanding.

We take steps to craft hypotheses that more pre-
cisely target the constructional semantics in Scivetti
et al. (2025b). This research also leverages a sub-
set of the CoGS corpus for premises in setting up
an NLI evaluation of constructional understand-
ing; however, unlike the present research, we semi-
automatically generate the NLI triples by lever-
aging templates for the neutral, contradicted and
entailed hypotheses across all instances of a given
cxn type. We note that the templatically generated
NLI triples may inadvertently simplify the task by
consistently patterning different types of hypothe-
ses. In contrast, CoGS-NLI enables testing under-
standing through NLI while leveraging free-form,
human-authored triples. Together, CoGS-NLI and
the templatically-generated NLI dataset of Scivetti
et al. (2025b) provide complementary evaluation
resources.



6 Conclusions & Future Work

The evaluation of constructional information en-
coded in LLMs has been approached in several
ways. A significant limitation of early methods,
such as probing internal model weights, is that
discovering the presence of constructional informa-
tion encoded in weights does not guarantee it is
functionally utilized. While prompting allows us
to observe how models interact with cxns, meta-
linguistic tasks that test an LLM’s ability to identify
sentences as instances of the same cxn measure a
classificatory skill, not whether the model can make
use of that cxn’s meaning to solve a problem.

Our work directly addresses this gap by focus-
ing on the functional application of constructional
knowledge. To this end, we created an NLI dataset
where premises are carefully selected to feature
specific cxns. Our results show that including ex-
amples with constructional premises does boost
performance, indicating a value to constructional
resources like CoGS-NLI. While our results sug-
gest that current models can often correctly solve
this task, we recognize that the NLI task does not
always isolate the exact semantic meaning carried
by the cxn itself. Therefore, in our ongoing and
future work we are developing more targeted evalu-
ations to verify that an LLM’s reasoning is guided
by the precise meaning conveyed by a grammatical
cxn (Scivetti et al., 2025b).

Furthermore, any claim about an LLM’s under-
standing must contend with recent findings that
their performance relies on “context-directed ex-
trapolating from training data priors” (Tayyar Mad-
abushi et al., 2025). Therefore, to genuinely test a
model’s reasoning capabilities, it is not enough to
evaluate it on problems for which priors readily ex-
ist in model training data. A systematic evaluation
must present novel scenarios with minimal or non-
existent priors, forcing the model to demonstrate
inherent ‘reasoning’ or ‘understanding’ rather than
relying on statistical shortcuts. We will continue to
leverage CxG as a formalism for targeting language
that is creative and novel, but readily understand-
able by people in order to support such systematic
evaluation.
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A Prompts

The following prompt was the best performing vari-
ation, achieving .94 accuracy with gpt-4o.

Prompt 1:
"You are the world’s best annotator. You are tasked
with annotating a triple for Natural Language In-
ference. You must determine the inference relation
between the Premise and the Hypothesis by select-
ing one of three numerical codes that reflect the
relationship:
0 — Entailment: The Hypothesis is definitely true
given the Premise.
1 — Neutral: The Hypothesis may or may not be
true given the Premise.
2 — Contradiction: The Hypothesis cannot be true
given the Premise.
Output a single numerical value between 0 and 2
inclusive, corresponding to the associated relation."

B CoGS-NLI Constructions: Examples &
Results by Construction

We provide a listing of all ten cxns included in
CoGS-NLI, along with example NLI triples, in Ta-
ble 4. We then provide performance results across
individual cxn types in Table 5.
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Construction Premise, Hypothesis Relation
P: When my dad catches swarms sometimes he doesn’t even wear

Much-less a veil, much less a bee suit. Entailment
H: When my dad handles swarms, he sometimes wears a veil.
P: None of these arguments is notably strong, let alone conclusive. .

Let-alone . . Contradiction
H: All of the given arguments are strong and conclusive.
P: As she felt her way forward, suddenly a knight on horseback

Way-manner  galloped past her. Neutral
H: She was moving forward when a knight on horseback
almost ran her over.

Comparative-  P: The fewer things we make the more sustainable we are. .

. . . . Entailment

correlative H: We are more sustainable if we make fewer things.

Causative- P: The waiter filled her glass with white wine. Neutral

with H: She ordered the white wine in a glass.

Conative P: He nibbled at the filet, then ate ravenously. Contradiction
H: He took big bites of the filet, then slowed down.

Ditransitive P: They threw me a SIIprise party: Contradiction
H: They forgot to give me a surprise party.

Caused- P: The MiG-25 fired an AAM at the Predator. Neutral

motion H: The MiG-25 tried to hit the Predator.

- P: Armed troops marched to the substations and turned

Intransitive- :

motion the power back on. Entailment
H: The power was turned back on by armed troops that
marched to the substations.

. P: He ate himself sick. .
Resultative Entailment

H: He felt wick from eating.

Table 4: One example for each of the ten phrasal cxns included in CoGS-NLI. Note that premises are drawn directly
from CoGS, and CoGS-NLI contributes three hypotheses for each premise: one entailed, one contradicted, and one

neutral.
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Setting IC Data Construction GPT-3.5 GPT-4o

0-shot  None Let-alone 0.79 0.92
Way-manner 0.58 0.79
Comparative- correlative  0.60 0.70
Causative- with 0.83 0.94
Conative 0.69 0.88
Caused- motion 0.78 0.92
Intransitive- motion 0.78 0.91
Resultative 0.80 0.94
1-shot  CoGS-NLI Let-alone 0.83 0.92
Way-manner 0.64 0.79
Comparative- correlative 0.57 0.73
Causative- with 0.85 0.93
Conative 0.88 0.91
Caused- motion 0.81 0.97
Intransitive- motion 0.74 0.94
Resultative 0.79 0.94
3-shot  CoGS-NLI Let-alone 0.67 0.92
Way-manner 0.79 0.85
Comparative- correlative  0.67 0.87
Causative- with 0.89 0.94
Conative 0.90 0.94
Caused- motion 0.83 0.97
Intransitive- motion 0.86 0.97
Resultative 0.80 0.98
1-shot  SNLI Let-alone 0.79 0.92
Way-manner 0.52 0.88
Comparative- correlative  0.60 0.73
Causative- with 0.78 0.93
Conative 0.69 0.86
Caused- motion 0.69 0.92
Intransitive- motion 0.78 0.93
Resultative 0.67 0.91
3-shot  SNLI Let-alone 0.62 0.92
Way-manner 0.58 0.85
Comparative- correlative 0.63 0.67
Causative- with 0.78 0.93
Conative 0.71 0.91
Caused- motion 0.67 0.92
Intransitive- motion 0.72 0.96
Resultative 0.68 0.92

Table 5: Evaluation results, reported in accuracy, on the CoGS-NLI dataset for the best performing prompt for each
individual construction. “IC Data" refers to the type of data used as in-context examples.
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