Can Constructions “SCAN” Compositionality ?

Ganesh Katrapati and Manish Shrivastava
International Institute of Information Technology Hyderabad

ganesh.katrapati@research.iiit.ac.in

Abstract

Sequence to Sequence models struggle at
compositionality and systematic generalisation
even while they excel at many other tasks.
We attribute this limitation to their failure
to internalise constructions—conventionalised
form—meaning pairings that license productive
recombination. Building on these insights, we
introduce an unsupervised procedure for min-
ing pseudo-constructions: variable-slot tem-
plates automatically extracted from training
data. When applied to the SCAN dataset, our
method yields large gains out-of-distribution
splits: accuracy rises to 47.8% on ADD JUMP
and to 20.3% on AROUND RIGHT without
any architectural changes or additional super-
vision. The model also attains competitive per-
formance with < 40% of the original training
data, demonstrating strong data efficiency. Our
findings highlight the promise of construction-
aware preprocessing as an alternative to heavy
architectural or training-regime interventions.

1 Introduction

Compositionality is the principle that the meaning
of a complex expression is determined by the mean-
ings of its parts and the rules used to combine them
(Fodor and Pylyshyn, 1988; Marcus, 2003; Partee
et al., 1990). It enables systematic generalisation:
the ability to understand and produce novel combi-
nations of familiar elements, a hallmark of human
language competence.

Despite the impressive empirical performance
of sequence to sequence models such as RNNs,
LSTMs, and Transformers, studies have consis-
tently found that they struggle with tasks requir-
ing compositional generalisation (Lake and Baroni,
2018; Hupkes et al., 2020; Keysers et al., 2020).
When faced with inputs that combine known primi-
tives in unseen ways, these models frequently fail
to extrapolate correctly.
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Cognitive and Construction Grammar treat con-
structions as form—meaning pairs composed of con-
ventionalised components that combine with lexi-
cal items (Goldberg, 1995; Langacker, 1987; Croft,
2001). For successful communication, speakers
must have access to these conventionalised con-
structions shared within their linguistic community.
The degree of conventionalisation varies across
construction types: for example, idiomatic expres-
sions like “kick the bucket” are fully fossilised
and resist internal modification, whereas partially
filled constructions such as “the Xer the Yer” con-
tain open slots that can be flexibly filled to pro-
duce complete surface forms (Fillmore et al., 1988;
Goldberg, 2006).

Inspired by this notion, we propose that mod-
elling constructions is essential to solving the prob-
lem of compositionality. We choose the SCAN
dataset - a canonical testbed for evaluating compo-
sitionality in neural models - to demonstrate our ap-
proach. We introduce a simple yet effective method
of mining pseudo-constructions and show that mod-
els trained on segmented data achieve significant
improvements over standard baselines on SCAN’s
ADD JUMP and AROUND RIGHT splits.

Furthermore, we demonstrate strong data ef-
ficiency: by leveraging the compositional struc-
ture, our method requires substantially less data
to achieve competitive performance, especially on
simpler splits. Our results suggest that carefully
exposing compositional patterns during training
can yield robust improvements without resorting to
complex interventions.

2 Related Work

There have been a number of benchmarks and
tasks to evaluate whether modern NLP methods
including deep neural networks such as RNNs (El-
man, 1990), LSTMs (Hochreiter and Schmidhuber,

Proceedings of the Second International Workshop on Construction Grammars and NLP, pages 165-171
September 24, 2025, Licensed under the Creative Commons Attribution 4.0 International License


https://creativecommons.org/licenses/by/4.0/

1997) and Transformers (Vaswani et al., 2017) ex-
hibit compositional behaviour. SCAN (Lake and
Baroni, 2018), COGS (Kim and Linzen, 2020) ,
CFQ (Keysers et al., 2020), PCFG (Hupkes et al.,
2020) and similar benchmarks focus on sequence
prediction tasks where input sequence must be pro-
cessed in a compositional manner to yield the cor-
rect sequence on the target side.

They showed that the models do not generalise
systematically: when confronted with new combi-
nations of words or phrases that were absent from
the training data, their performance breaks down.
Subsequent studies on a variety of datasets (Li and
colleagues, 2021; Sinha et al., 2019; Liska et al.,
2018), have reported similar findings. Informed by
these limitations, recent work has led to multiple
methods to improve compositional generalisation
abilities of neural network models.

Multiple studies have focused on disentangling
syntax and semantics - (Russin et al., 2019) in-
troduced a dedicated syntactic channel boosts
SCAN accuracy dramatically , separating prim-
itive—function pathways pushes performance to
near-perfect levels (Li et al., 2019; Jiang and
Bansal, 2021). Rather than separating syntax and
semantics, some studies have focused on syntactic
guidance. (Hupkes et al., 2019; Baan et al., 2019;
Kim et al., 2021; Zanzotto et al., 2020).

Data-centric approaches improve composition-
ality by augmenting the training corpus with sys-
tematically recombined examples: GECA (An-
dreas, 2020), automatically mined lexical symme-
tries (LEXSYM; Akyiirek and Andreas, 2022), and
grammar-based generators such as CSL (Qiu et al.,
2022) all substantially cut error rates on SCAN,
COGS, and CLEVR. Herzig et al. (2021) insert a
reversible or lossy intermediate representation be-
tween the input and the target program, doubling
accuracy on CFQ MCD splits and adding 15-20
points on text-to-SQL.

Treating compositionality as a transferable skill,
Meta learning approaches (Zhu et al., 2021; Lake,
2019; Lake and Baroni, 2023) push transformers
beyond 70 % accuracy on the hardest SCAN and
COGS splits.

Apart from this, several studies have proposed
significant modifications to the neural network ar-
chitecture (Csordds et al., 2022; Huang et al., 2024)
and neural-symbolic designs such as NMN, MAC,
NLM, LANE, program-synthesis grammars, and
the Neural-Symbolic Recursive Machine (Andreas

et al., 2017; Hudson and Manning, 2018; Dong
et al., 2019; Liu et al., 2022; Nye et al., 2020; Li
et al., 2022) which achieve (near-)perfect composi-
tional generalisation on datasets like SCAN, COGS
and CFQ.

While many of these approaches achieve near-
perfect accuracy in datasets like SCAN and COGS,
they either require data augmentation, which likely
translates into training bigger models for a longer
time, or they propose drastic architectural changes
which have not been proven to scale beyond these
benchmarks. Our method does not employ data
augmentation or complex architectural changes.
Our aim is show that taking insights from Cog-
nitive Grammar and the notion of Constructions
leads to building models more capable of composi-
tional generalisation.

Recent work on integrating Construction Gram-
mar (CxG) with neural models has been encourag-
ing: fine-tuning BERT on construction-annotated
corpora sharpens its encoding of construction
identity and slot fillers (Tayyar Madabushi et al.,
2020), a Mandarin CxLM leverages more than ten-
thousand schemata to boost cloze accuracy (Tseng
et al., 2022). Yet no study has directly shown that
construction-aware training itself improves system-
atic compositional generalisation on classic out-of-
distribution tests and bridging that gap remains a
challenge.

3 Data

Introduced by (Lake and Baroni, 2018), SCAN con-
tains pairs of simple navigation commands with
action sequences; primitives like “jump” map to
“I_JUMP”, while modifiers such as “left”, “right”,
“opposite”, and “around” compose these primitives
into longer actions.

The original paper showed that models excel on
a random split yet falter on novel combinations.
In the ADD JUMP split, models see the primitive
“jump” during training but must execute composed
forms (e.g., “jump twice”) at test time. Loula et al.
(2018) extended this with the AROUND RIGHT
split: training includes “walk left”, “walk right”,
“jump around left”, and so on, while testing requires
generalising to “jump around right”, forcing the
model to learn that “around” modifies directions
and that “left” and “right” are symmetric.

We focus on improving the accuracy for both
these splits.
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4 Approach

Definition (Pseudo-construction). A pseudo-
construction is a partially specified template in-
duced from training data, containing fixed words
alongside one or more slots represented by place-
holders (e.g., _ or W_n). Unlike fully convention-
alised constructions, pseudo-constructions are de-
rived automatically and capture recurring structural
patterns that can generalise to novel inputs when
the slots are filled with appropriate lexical items.

4.1 Mining Pseudo-constructions

A SCAN train or test set consists of both a source
file, which consists of commands (“jump”) and a
target file which consists of actions (“I_JUMP”).
Given a SCAN split, we take the source file of the
training set, and follow a series of steps to obtain
partially filled pseudo-constructions.

» Extracting Candidates: For every sentence
in the train source file, we extract spans of
up to length of 4 tokens and add them to
the candidate list. We also generate masked
spans in which one or more non-consecutive
words are replaced by the the token “_”, ef-
fectively forming a slot in a partially filled
pseudo-construction. The candidates are then
ranked according to their probabilities.

* Beam Decoding: We use beam search to seg-
ment an input sentence into the best scoring
sequence of pseudo-constructions and words.
Test source files are not used for mining
pseudo-constructions. They are segmented
only using the ones induced from the training
set.

* Encouraging Alignment with Target: Par-
tially filled pseudo-constructions like ‘_
around _ twice” are advantageous because the
same template applies for any fully filled vari-
ant - a simple word replacement on the target
side works well. However, simple masking
also produces “look _ left - which produces
widely different targets for different values of

_and _. Consider,

look around left — I_TURN_LEFT I_LOOK
I_TURN_LEFT I_LOOK I_TURN_LEFT
I_LOOK I_TURN_LEFT I_LOOK

look opposite left — I_TURN_LEFT
I_TURN_LEFT I_LOOK

To discourage picking candidates like the
latter one, we compute an alignment dis-
tance between the candidate and its equiv-
alent on the target side. For each candi-
date P, gather the set of source sentences
S(P) = {s1,s2,...,sn} in which the pattern
occurs, with each source sentence s; paired to
a target sentence t;. For every s; € S(P),
calculate its Levenshtein (edit) distance to
every other s; (j # i) in the same set and
select the nearest neighbour, NN(s;)—the
source sentence that minimises this distance.
Let (t;,t;) denote the target sentences aligned
with (SZ’, NN(Si)).

Define
A; = [len(t;) — len(t;)]

as the absolute difference in their word counts.
The resulting misalignment score (M S) for
pattern P is the average of these differences:

A lower misalignment score indicates that
source sequences are more aligned to the tar-
get sequences. A pseudo-construction has a
low misalignment score when swapping dif-
ferent words into its slots still produces target
sentences that look much the same. We add
this score as a penalty to the beam search to
pick candidates which are more aligned.

Once the source files (train and test) are seg-
mented, we prepare the data for the next stage. For
every sentence in the source files, we replace the
underscores with slot tokens such as W_n where n
refers to the slot number. We save the mapping
between the slot tokens and the original words.

The SCAN data consists singleton rules such as
Jjump — I_JUMP. We treat this as a bidirectional
lexicon. Whenever a token in a target sentence
appears in the lexicon, we lookup the source word
and then replace it with the associated slot token.
For example:

4.2 Training

We use the sequence to sequence transformer archi-
tecture as the base model for training purposes, and
use the JoeyNMT toolkit (Kreutzer et al., 2019)
to train all the models. The model architecture
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has an encoder and a decoder each with 4 layers
and 4 attention heads with embedding size of 256
and the feed forward layer with the size of 1024.
The models are trained for 30 epochs using the
NOAM scheduler (Vaswani et al., 2017). Prior to
evaluation, we swap back the slot tokens predicted
sequence through the mapping saved earlier.

5 Results

The performance on both the splits (ADD JUMP,
AROUND RIGHT) is significantly better than the
baseline transformer (1) which indicates that we
have succeeded in encoding a degree of generali-
sation through the pseudo-constructions. Overall,
they capture reusable structure absent from the flat
surface strings, enabling the model to generalise
compositionally.

6 Data Efficiency

Compositionality theory posits that exploiting com-
positional structure enables grasping abstract pat-
terns from far fewer training examples than treat-
ing data only at the surface level (Chomsky (1957),
Chomsky (1965), Fodor and Pylyshyn (1988)). We
test this by training models with smaller samples
of the SCAN splits.

After segmentation of the training source file,
each sentence is transformed into a series of
pseudo-constructions in such a way that multiple
sentences might fall into the same resultant
sentence type.
look opposite left twice and walk twice —  (
W_1 opposite W.2 twice ) and (W.3
thrice)
jump opposite right twice and run twice —  (
W_1 opposite W.2 twice ) (W_3
thrice)

To assess the data efficiency of our method we
constructed sentence type—balanced training sub-
sets, retaining every sentence type but varying the
per-type quota k € {1, 3,5, 10, 25}. This produces
monotonic subsamples ranging from 5 % to 60
% of the original corpus while guaranteeing full
coverage. (Table 1).

On the ADD JUMP split, with only £ = 10
examples per type—approximately 39 % of the full
training data—the model attains 40.7 % accuracy,
not far from the 47.8 % trained on entire set.

For the AROUND RIGHT at the same £ = 10
mark the model reaches merely 9.4 %, less than
half of the 20.4 % full-data accuracy, and increas-

and
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Split k/type Acc. (%) Size %o
Around Right 1 2.77 741 5
3 598 2,042 13
5 8.66 3,166 21
10 9.38 5,423 36
25 10.18 9,175 60
Full 20.73 15,225 100
Add Jump 1 12.79 666 5
3 20.50 1,972 13
5 2944 3,178 22
10 40.69 5,660 39
Full 4781 14,670 100

Table 1: Accuracy as the training set is reduced to k
examples per type.

Accuracy vs. Samples per Sentence Type on SCAN Splits

Around Right
50T mmm Add Jump

Accuracy (%)

1 3 5 10 25 Full
Samples per Sentence Type (k)

Figure 1: Accuracy versus percentage of full training
data for the AROUND RIGHT and ADD JUMP SCAN
splits.

ing to k = 25 ( 60 %) yields only a marginal gain
to /0.2 %. This pronounced gap reflects the split’s
higher compositional complexity: mastering the
nested “around DIR” construction with repetition
operators may require substantially more evidence
than the shallow “add jump” pattern.

The pseudo-construction bias confers strong
sample-efficiency benefits on syntactically sim-
ple splits (ADD JUMP), but this may not scale
to harder generalisation problems (AROUND
RIGHT).

7 Conclusion

While we define pseudo-constructions opera-
tionally as automatically mined templates, they
can be seen as computational approximations to
Construction Grammar’s notion of convention-
alised form—meaning pairings. Unlike fully fos-
silised or community-shared constructions, pseudo-
constructions are data-driven and context-specific,
yet they capture structural regularities that support
compositional generalisation. Thus, while our pri-
mary aim is methodological, the results also lend
indirect support to the constructionist hypothesis



that access to reusable schematic patterns is crucial
for systematic generalisation. We leave a fuller
exploration of their linguistic plausibility and theo-
retical integration to future work.

A deeper look into errors showed us that our
method for finding pseudo-constructions can make
several mistakes. For instance, while at first sight
“turn around right” and “walk around right” seem
to follow the same pattern, their corresponding out-
puts can vary significantly - this can lead to confu-
sion and failure if the word “turn” is masked away.

We call for more robust approaches into finding
constructions in text and for future work into deeper
integration of construction processing into neural
models.
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