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Abstract

This paper proposes a formal framework based
on Tree Adjoining Grammar (TAG) that aims
to incorporate central tenets of Construction
Grammar while integrating mechanisms from a
psycholinguistically motivated variant of TAG.
Central ideas are (i) to give TAG-inspired
tree representation to various constructions in-
cluding schematic constructions like argument
structure constructions, (ii) to link schematic
constructions that are extensions of each other
within a network of constructions, (iii) to make
the derivation proceed incrementally, (iv) to al-
low the prediction of upcoming constructions
during derivation and (v) to introduce the incre-
mental extension of schematic constructions to
larger ones via extension trees in a usage-based
manner. The final point is the major novel con-
tribution, which can be conceptualized as the
on-the-fly traversal of the inheritance links in
the network of constructions. Moreover, we
present first experiments towards a parser im-
plementation. We report preliminary results of
extracting constructions from the Penn Tree-
bank and automatically identifying construc-
tions to be added during incremental parsing,
based on a generative language model (GPT-2).

1 Introduction

Theories of construction grammar (Goldberg, 1995,
2003) posit that the building blocks of language are
constructions, or form-meaning pairs at various lev-
els of abstraction: not only words but also phrasal
or larger patterns, from multi-word expressions
and collocations to syntactic patterns like argument
structures. In this approach, those constructions
are combined to form representations linked to
sentences in a manner constrained by semantic or
pragmatic compatibilities as well as usage. It is
further hypothesized that these constructions are
cognitively organized as a network, whose links
represent inheritance relations.

Despite the strong concern with cognitive plau-
sibility in construction grammar, psycholinguistic
evaluation of its tenets seems to be done mainly
on qualitative predictions (Bencini and Goldberg,
2000; Perek, 2025), while more quantitative evalua-
tion with psycholinguistic data has been attempted
for other grammar formalisms (Roark et al., 2009;
Padó, 2007; Konieczny, 1996; Stanojević et al.,
2023; Brennan et al., 2016). This is not surpris-
ing, given that the existing formalized variants of
construction grammar (Bergen and Chang, 2005;
Steels, 2017; Boas and Sag, 2012) and studies of
computational extraction of constructions (Dunn,
2017) appear to lack broad coverage and psycholin-
guistically plausible parsers.

In this regard, Tree Adjoining Grammar (TAG,
Joshi et al., 1975) seems to be a promising frame-
work to formalize and implement construction
grammar, as has been suggested in Kallmeyer and
Osswald (2013) and Lichte and Kallmeyer (2017)
among others. Moreover, there is a psycholin-
guistically motivated variant of TAG with an in-
cremental broad-coverage parser (Psycholinguis-
tically motivated TAG, PLTAG, Demberg et al.,
2013; Demberg-Winterfors, 2010). PLTAG, how-
ever, does not take into account all the key tenets
of construction grammar.

Thus, we will develop Psycholinguistically mo-
tivated Construction-based TAG, or PLCxTAG, a
formalization of construction grammar inspired by
PLTAG. In addition, we will present a preliminary
implementation of the framework leveraging a neu-
ral language model (LM) as a proof of concept,
including a lexicon automatically extracted from
the Penn Treebank (Marcus et al., 1993, PTB) and a
broad-coverage supertagger based on a decoder LM
(GPT-2, Radford et al., 2019), which will comprise
the core of an incremental parser for psycholinguis-
tic evaluation to be conducted in future work.
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2 Related work

2.1 Construction grammar

Key tenets of construction grammar. The focus
of our approach is on the following five key tenets
of construction grammar (Goldberg, 2003). First,
the grammar is viewed as the composition of con-
structions, which are form-meaning pairs stored
in memory. This requires that phrasal or larger
patterns can be directly associated with meaning.
Also, the constructions are combined depending
on the semantic compatibility among them, reject-
ing the autonomy of syntax. Second, schematic
constructions such as argument structure construc-
tions (Goldberg, 1995) are also memorized. These
capture the regularities traditionally described in
syntax. Third, construction grammar is generally
surface-oriented (Goldberg, 2003). Great empha-
sis is placed on the surface generalization, without
resorting to assumptions about deep structure from
which surface structures might be derived. Also,
phonologically null elements like traces, PRO or
null function heads are avoided. Fourth, the theo-
ries of construction grammar often take a usage-
based approach (Langacker, 1987; Bybee, 2010;
Tomasello, 2005), which postulates that specific us-
ages are memorized according to their frequencies,
and more general constructions like schematic con-
structions arise in a bottom-up manner. Finally,
the lexicon of constructions is postulated to be
structured as a network of constructions (Diessel,
2023), where constructions are connected based
on inheritance relations among them, where more
specific constructions “inherit” information from
abstract constructions. This network captures how
schematic constructions, such as argument struc-
ture constructions, productively license quite rare
but grammatical uses, e.g. “sneeze the foam off
the cappuccino” or “kick Bob a ball” (Goldberg,
1995).

Formalizations of construction grammar.
There are three major computational theories of
construction grammar: Embodied Construction
Grammar (ECG, Bergen and Chang, 2005; Chang,
2008; Feldman, 2022; Bryant, 2008), Fluid Con-
struction Grammar (FCG, Steels, 2017; Beuls and
Van Eecke, 2023) and Sign-Based Construction
Grammar (SBCG, Boas and Sag, 2012). All
of them have parser implementations, but no
incremental parser exists for FCG nor SBCG to
our knowledge, though Müller (2017) suggests

that existing incremental parsers for Head-driven
Phrase Structure Grammar (e.g. Konieczny, 1996)
could be adapted to SBCG. ECG does have a
psycholinguistically motivated incremental parser,
“constructional analyzer” (Bryant, 2008), but the
scalability of the parser appears limited due to
the need of manually writing the grammar and
defining parameters for some phenomena of
interest (Bryant, 2008, p. 156).

There have also been attempts to extract con-
structions automatically with a view to making the
study of constructions scalable and not limited to
a handful of constructions selected by linguists
(Dunn, 2017). Still, it is by no means obvious how
these constructions can be combined to form actual
sentence representations.

2.2 Modeling human sentence processing

Properties of human sentence processing. Ac-
cumulating studies in psycholinguistics have not
only identified various psycholinguistic phenom-
ena, such as garden path, indicating the preferences
of certain structures over others, but also demon-
strated three general principles of human sentence
processing (Demberg and Keller, 2019). First, the
parse is built incrementally, updated for every new
word (Konieczny, 2000; Tanenhaus et al., 1995).
Second, it is known that the mismatch of subject
and reflexive pronoun affects the reading time even
before the VP is completed with the second PP
object, suggestive of connected syntactic structure
facilitating such agreement (Sturt and Lombardo,
2005). Finally, parsing proceeds based on predic-
tions, e.g. by anticipating the argument of a verb be-
fore encountering it (DeLong et al., 2005; Kamide
et al., 2003; Staub and Clifton, 2006).

PLTAG. PLTAG is a psycholinguistically mo-
tivated variant of TAG (Demberg et al., 2013;
Demberg-Winterfors, 2010), which is designed to
satisfy the three properties described above.

There are crucial innovations to maintain in-
crementality and connectedness during derivation,
such as the prediction-verification scheme. More-
over, the grammar has been automatically extracted
from the PTB, and a broad-coverage parser was im-
plemented based on it, which was then evaluated
on reading time data.

Yet, there is some room for exploring alterna-
tive formalizations, and more importantly, PLTAG
does not satisfy some key tenets of construction
grammar, e.g., there is no network of constructions
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and null elements are used extensively (though this
latter property is not inherent to the PLTAG formal-
ism, i.e., it would be straightforward to choose a
grammar without null elements).

3 Formal framework

Our formalization is guided by the principles of
linguistic and psycholinguistic plausibility. Condi-
tions for linguistic plausibility consist of the five
tenets of construction grammar: (i) Grammar as
the composition of constructions, (ii) Schematic
constructions, (iii) Surface-oriented approach, (iv)
Usage-based approach and (v) Network of con-
structions. As conditions for psycholinguistic plau-
sibility, three properties of human sentence process-
ing are chosen: (a) incremental, (b) connected and
(c) predictive.

Our formalization incorporates on the one hand
aspects of constructions and their composition, and
on the other hand aspects of incremental processing
that lead to incremental extension of constructions
(along the network of constructions) and additional
prediction of upcoming constructions.

CxTAG: Constructions and their composition.
Our starting point is the use of (lexicalized) TAG
(LTAG) and frame semantics for modeling con-
structions along the lines of Kallmeyer and Oss-
wald (2013) and Lichte and Kallmeyer (2017). In
that approach, the elementary trees of TAG are
paired with frame-semantic representations (for-
malized as extended attribute value structures) to
elementary constructions (or lexicalized construc-
tions), in which specific nodes of the tree can
be linked to specific components of the semantic
frame. The tree-combining operations substitution
and adjunction go along with the unification of the
associated frames. (In our case, substitution and
sister adjunction are used.1) In the present paper,
we keep the semantic side of constructions largely
aside since our primary focus is on the formal as-
pects of incremental syntactic processing as well
as on the extraction of the form aspect of construc-
tions from treebanks. Note, however, that in the
ongoing parsing implementation (Section 5), se-
mantics is implicitly covered both at the lexical as
well as at the constructional level via the embed-
dings learned in the model.

1Substitution consists of inserting a tree at a non-terminal
leaf, i.e., filling an argument slot. Sister adjunction merges
the root of the adjoining tree with an internal node, thereby
introducing additional subtrees below that internal node.

Elementary trees are partial constituent trees
such that each tree has at least one leaf represent-
ing the head word, called a lexical anchor, and that
all of the anchor’s projections and arguments are
localized in the same tree where arguments are rep-
resented as leaves that are substitution nodes; see
the tree for ‘gave’ in Fig. 1 for illustration.2

Our theoretical judgment of what qualifies as
arguments or adjuncts is more or less in line with
standard LTAG analysis (XTAG Research Group,
1998): The subject and the objects of verbs and
the noun phrase in prepositional phrases are ar-
guments, while determiners, adjectives, adverbs,
auxiliary verbs, semi-auxiliary verbs (e.g. “used
to”), copula verbs, raising verbs, complementizers
and the infinitive marker “to” are adjuncts.

Elementary constructions also cover multi-
word expressions, collocations, and frequently co-
occurring patterns, motivated by usage-based postu-
lates. In these cases, the corresponding elementary
trees can have multiple anchors, called co-anchors.

Schematic constructions such as argument struc-
ture constructions, however, are not to be repre-
sented by LTAG elementary trees since they are
unlexicalized and lack a lexical anchor. Therefore,
in order to represent them, we employ unlexical-
ized counterparts of elementary trees known as su-
pertags in the TAG literature (Bangalore and Joshi,
2010). The parent node of a removed lexical ele-
ment in a supertag is called an anchor node and is
usually marked with a ⋄.

The network of constructions and the ‘extend’
operation. Within the (L)TAG framework, more
complex constructions can be derived from simpler
ones in a strictly compositional manner by general
tree operations such as substitution and adjunction.
How different elementary constructions are related
to each other and, in particular, how certain con-
structions can be part of certain other constructions,
are not expressed by tree operations but at a differ-
ent level of grammatical description, often called
the metagrammar (Kallmeyer and Osswald, 2013;
Lichte and Kallmeyer, 2017). The metagrammar
allows the specification of trees (and frames) by
means of expressive constraint languages (Crabbé
et al., 2013; Lichte and Petitjean, 2015).

The resulting set of schematic constructions can
2The specific categories and trees used in this paper are

to some degree influenced by the PTB (Marcus et al., 1993)
employed in Section 5. Notice, however, that the formal-
ization presented here is general and compatible with other
constituency formats.
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Figure 1: Composition of elementary trees for (1-a);
the black trees represent schematic constructions (i.e.,
‘supertags’); dashed arrows represent tree operations.

be seen as a network of constructions, whose re-
lations indicate specialization (“inheritance”) but
also more complex types of embeddings of sub-
structures. The described division of labor between
general operations on elementary constructions and
the more advanced “off-line” specification of ele-
mentary constructions and their interrelation by
means of constraints have conceptual and practi-
cal advantages. The approach falls short, however,
if we are to study in which way the network of
constructions can guide incremental language pro-
cessing.

In order to overcome this problem, we propose
an additional “operation” extend, which mimics
standard tree operations, mostly adjunction, but in
effect realizes the move from one construction to
another, usually more extended construction, which
(at least on the semantic side) is typically non-
compositional. We refer to the modified formalism
as Construction-based Tree Adjoining Grammar
(CxTAG).

Schematic, i.e., lexically unanchored construc-
tions are instantiated by lexicalized constructions
for words in context. Therefore, instead of treat-
ing elementary constructions as part of the lexicon,
we further assume here that for a given lexical ele-
ment wi, depending on its left context LC i (com-
prising w1 . . . wi and any syntactic, semantic and
pragmatic structures built so far), schematic con-
structions t⋄i are chosen with a certain probability
P (t⋄i |LC i), and also extensions tei,j of previously
chosen constructions t⋄j (j < i) to more specific
ones occur with a certain probability P (tei,j |LC i).3

This is why trees assigned to each word in the fig-
ures contain anchor nodes with ⋄.

Consider the examples in (1) for illustration,
whose derivations are shown in Figs. 1 and 2.

3In our implementation, the probabilities for schematic
constructions are estimated via fine-tuning a GPT-2 model
towards predicting them, see Section 5.
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Figure 2: Elementary trees and schematic constructions
for (1-b); the solid gray arrow indicates extension by a
benefactive NP resulting in the ditransitive construction.

(1) a. Kim gave him cookies
b. Kim baked him cookies

Both sentences are assumed to give rise to the same
syntactic trees except for the lexical head verb.
Their derivations differ, however: We may assume
that the verb ‘gave’ generally selects a ditransitive
argument structure construction with much higher
probability than a transitive construction. The di-
transitive construction then provides substitution
sites for the two remaining NP arguments. The verb
‘baked’, by comparison, would select a transitive
argument structure construction with higher proba-
bility by default as is most likely, and a benefactive
NP tree is added by means of extend, which in turn
gives rise to a structure that matches an existing
construction, namely the benefactive ditransitive
construction. In this case, we call the added NP
construction (the benefactive NP) an extension tree
and say that the transitive construction has been ex-
tended to the benefactive ditransitive construction.

Note that in general extension trees could also
add another co-anchor to extend constructions to
those representing multi-word expressions. From
the perspective of usage-based approach, exten-
sion trees can be seen as secondary generalizations
that emerge through the comparison of existing
schematic constructions, which are themselves gen-
eralizations from instantiations, along with the for-
mation of the network, and they are often inter-
pretable as constructions themselves.4

PLCxTAG: Incremental extension of construc-
tions and prediction of upcoming constructions.
In the following, we extend the CxTAG formalism
in the spirit of PLTAG (Demberg et al., 2013). So
far, the order of the derivation steps in CxTAG is

4We avoided referring to extension trees as constructions
categorically, since extension trees may not always qualify as
independent constructions from a semantic viewpoint.
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not restricted, but in order to achieve psycholinguis-
tic plausibility, we extend the formalism towards
allowing derivations that build connected parses
incrementally. This not only imposes constraints
on how syntactic operations can be applied but also
requires additional mechanisms and operations.

At the same time, our formalism departs from
PLTAG in that it aims to capture the key tenets of
construction grammar. Crucially, the extension of
schematic constructions is an integral part of the
incremental derivation: For each word, a supertag
representing some schematic construction is added
given the context up to it, and it can be extended
later to match the appropriate construction by the
end of the sentence in a way described in CxTAG.
This incremental extension might be conceptual-
ized as the traversal of inheritance links during the
derivation.

The overall idea of our psycholinguistically mo-
tivated modification of CxTAG is that at each word,
we add a new elementary tree and at most one exten-
sion tree via substitution or sister adjunction, where
the operation can be in both directions (i.e., the
already derived tree added to the new one by substi-
tution/adjunction or vice versa). These derivation
steps are restricted in such a way as to add material
only to the right of the rightmost lexical node in the
already derived tree. As an example, Fig. 3 shows
the sequence of derived trees we obtain with such a
derivation when combining the constructions from
Fig. 2. The (orange) tree fragment representing the
supertag added at ‘baked’ is extended to a larger
supertag at ‘him’. The words (in green) above the
; arrows indicate the next word, whose processing
triggers the next derivation step.

Such an incremental connected derivation is,
however, not always possible: When the elemen-
tary tree of a word should be combined with a node
in an elementary tree of a future word, it is im-
possible to create a connected partial parse. For
example, in “John often smiles”, the supertags for
words up to “often” cannot be combined without
the S and VP nodes from the supertag for “smiles”
(see Fig. 4).

To remedy this, we employ a restricted ver-
sion of the prediction-verification scheme pro-
posed in PLTAG (Demberg et al., 2013; Demberg-
Winterfors, 2010) and a new scheme, delay, to com-
pensate for the restriction.

The prediction-verification scheme consists of
two steps: prediction and later verification. In pre-
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Figure 3: Incremental and connected derivation for
(1-b): Incremental extension for inheritance
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V⋄
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Figure 4: Intervening nodes come from the supertag for
a subsequent word

diction, for each word, an additional supertag is
optionally selected as a prediction tree, such that
it contains all the nodes missing at that point but
necessary for a connected partial parse. We assume
here that the prediction trees are chosen probabilis-
tically, depending on the left context.5 They are
attached via substitution or sister adjunction to the
partial parse while keeping track of the fact that
they are only predicted. At a later stage, such a
prediction tree has to be verified by a matching su-
pertag that is anchored by an actual word. Note that
a supertag used to verify a prediction tree will not
be attached to the partial parse via substitution or
adjunction. Instead, the nodes from the prediction
tree have to be mapped to corresponding nodes in
the verifying supertag in such a way that labeling
and structural relations are preserved. A sample
derivation is given in Fig. 5. The prediction tree
is the upper-left tree (depicted in gray) and the
mapping performed in the verification operation is
indicated by dotted arrows. The red numbers at the
arrows indicate the order of derivation operations.

Prediction trees can be extended to larger su-

5Estimated by the second classification head of the fine-
tuned GPT-2 model in our implementation, see Section 5.
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Figure 5: PLCxTAG derivation of ‘Kim often eats ...’

pertags due to verification, in cases where the two
trees are not isomorphic. For instance, to attach an
adverb after a subject NP, as in Fig. 5, it is enough
to use an intransitive supertag as the prediction tree,
even if the following verb is actually transitive. In
this case, the prediction tree is extended during
verification due to the verb’s transitive supertag.

For prediction-verification, it is an open ques-
tion how to configure the granularity of predic-
tions: Even though we decided to use supertags as
prediction trees, one could also create a separate
lexicon of tree fragments that only contain the nec-
essary nodes, as in PLTAG (Demberg et al., 2013;
Demberg-Winterfors, 2010).

On the other hand, we forbid adding several
prediction trees in a row, following PLTAG. This
means that if the nodes needed for a connected
partial parse come from multiple supertags, one
prediction tree is not enough in our framework. In
the example in Fig. 6, the boxed AP and NP nodes
are both necessary in order to combine the supertag
for ‘very’ with the partial parse.

NP
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VP

NPV⋄
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NP

AP∗
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NP∗

AP

large

NP

N⋄

cars

Figure 6: Nodes from multiple supertags

To address such cases, we decided to relax the
incrementality condition and allow the delayed at-
tachment of a word’s supertag: The creation of a
connected partial parse is suspended, waiting for
necessary nodes to appear in supertags assigned to
subsequent words. To be more precise, we attach
the supertag in question to the supertag for the next
word first, which in turn will be combined with the

partial parse. If needed, we might allow further
delays. Our hypothesis is that most actually occur-
ring cases are covered with a maximal delay of 1,
based on the inspection of the data from the PTB
used in Section 5 below.

The resulting extension of CxTAG is called Psy-
cholinguistically motivated CxTAG (PLCxTAG).

4 Sample derivations involving various
constructions

For further illustrations, let us look at a few more
interesting examples. It should be noted that the
derivations presented below are not prescriptive,
and PLCxTAG can be employed to represent alter-
native analyses.

Argument structure constructions without co-
anchors. Let us first consider examples of argu-
ment structure constructions: caused motion con-
struction and resultative construction.

(2) a. Kim kicked the ball over the fence
b. Kim sneezed the foam off the cappuccino
c. Kim painted the barn red
d. Kim kicked his feet sore

Derivations for (2-a) and (2-b) are given in Fig. 7–
8. The red numbers indicate the order of derivation
steps. Dashed arrows indicate substitutions and
sister adjunctions that are standard combinations
of elementary trees. In contrast, solid gray arrows
indicate operations that extend an already chosen
elementary tree to a larger one such as the caused
motion construction or the resultative construction
with extension trees. For the sake of readability,
some of the sub-derivations are omitted, i.e., only
their result is displayed.

In Fig. 7, the transitive tree selected for ‘kick’
is extended to the caused motion construction by
adding a path PP.

NP

Kim

S

VP

NPV⋄

kicked

NP
VP∗

PP

NP

the ball

PP

over the f.

1

3

2 4

Figure 7: PLCxTAG derivation of (2-a)

The derivation of (2-b) extends an intransitive
tree (the ‘sneezed’ supertag) to the caused motion
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construction where slots for both mover (NP) and
path (PP) are added. The derivation for resulta-

NP

Kim

S

VP

V⋄

sneezed

NP

VP∗

PPNP

NP

the foam

PP

off the c.

1

2

3
4

Figure 8: PLCxTAG derivation of (2-b)

tive constructions such as (2-c) and (2-d) would
look very similar to the two derivations in Fig. 7
(where the object NP is already introduced with
the verb) and Fig. 8 (where the object NP is intro-
duced via the extension), except that the result is
an AP. Semantically, caused motion and resultative
constructions differ as a matter of course.

Constructions with co-anchors. In the follow-
ing, we will discuss analysis options for two exam-
ples involving co-anchors, (3-a) and (3-b).

(3) a. Kim elbowed his way through the crowd
b. Kim kicked the bucket

The respective complete elementary trees for the
two verbal construction would be as in Fig. 9. Note,
however, that (3-a) is not restricted to a single verb
while ‘kick the bucket’ is a fixed idiomatic expres-
sion. Concerning the latter, it can also have a lit-
eral meaning, but our analysis here is about the
idiomatic meaning, to which we assign an indepen-
dent elementary tree with co-anchors.

S

VP

PPNP

N⋄

way

V⋄

elbowed

NP

S

VP

NP

N⋄

bucket

V⋄

kicked

NP

Figure 9: Complete elementary trees for the multi-
anchored constructions in (3-a) and (3-b)

If we assume a strictly incremental derivation
with prediction trees whenever words cannot be
connected yet, we could choose an analysis as in
Fig. 10. Step 5 in this case is special since it not
only verifies the predicted NP tree but also reana-
lyzes its substitution (operation 3 in this derivation)
as a substitution that is an extension. This latter
is something that is not yet covered by the above
definition of PLCxTAG but that could be added.
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2

4

3

5
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6

1 substitution

2 extend via sister adjunction

3 substitution of prediction tree

4 sister adjunction

5 verification and reanalyze 3 as extend

6 substitution

Figure 10: PLCxTAG derivation of (3-a) with verifca-
tion and reanalyze as extension

The difficulty here comes from the fact that ‘his’
has to be attached before seeing ‘way’, a difficulty
that could be avoided with a delay for this attach-
ment. In general, it might be justified to adopt a de-
lay for all cases of functional operator attachment.
If we do this, we can actually adopt an analysis as
in Fig. 11, where the extension tree anchored at
‘way’ extends the verbal tree.
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elbowed

NP
VP∗

PPNP

N⋄

way
NP

his

PP

through the c.

1
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3

4

Figure 11: PLCxTAG derivation of (3-a) with delayed
attachment of ‘his’

Similarly, for (3-b), we could predict an NP tree
at ‘the’, followed by a verification by a tree an-
chored by ‘bucket’, thereby reanalyzing the substi-
tution of the prediction tree as an extension. Assum-
ing, however, that the attachment of function words
can be delayed, this complication is not needed.
The corresponding derivation is given in Fig. 12.
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Figure 12: PLCxTAG derivation of (3-b) with delayed
attachment for ‘the’
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5 Implementation

In this section, we will present preliminary results
from the ongoing implementation of a PLCxTAG
parser. The details of the parser architecture are
still in development, but the core components are
to be the lexicon, the (k-best) supertagger and a
parallel parsing scheme with beam search. As the
current stage of the implementation, we present the
preliminary lexicon extraction and a supertagger.

Lexicon extraction. To extract the lexicon au-
tomatically, we used the Sections 00–24 from the
Wall Street Journal portion of the Penn Treebank
(Taylor et al., 2003). The extraction procedure is
similar to those previously used for LTAG extrac-
tion (Xia et al., 2000; Chiang, 2000; Demberg et al.,
2013): Trees in the PTB were preprocessed to suit
our linguistic analysis and nodes were marked as
head, argument and adjunct, using a modified ver-
sion of the head and argument/adjunct rules from
Collins (1999, 1997).

The preprocessing of the trees consists of five
steps, three of which were conducted before mark-
ing the nodes, and the remaining two were per-
formed afterwards.

Firstly, to be surface-oriented, (a) we deleted
all null elements (Bies et al., 1995), including
traces and PRO. Secondly, (b) we collapsed unary
branches that appear due to the previous step, while
retaining those which are already present in the
original PTB. Thirdly, (c) we relabeled the part
of speech tags of auxiliaries ‘have’, ‘be’ and ‘do’
as AUX, which are originally labeled as full verb,
because all auxiliaries including those should be
labeled as adjunct.

Then, we annotated each node of the trees ac-
cording to the head/argument/adjunct rules de-
scribed in Appendix A, making use of the tags
including function tags.

At this point, (d) we reduced the tagset by re-
moving function tags and merging some of the tags
used in the PTB (cf. Appendix B). This reduced the
number of tags from 71 to 36, which would in turn
reduce the number of supertags and thus potentially
improve the efficiency of the supertagger training
as well as the performance of the resulting model.
Then, (e) we collapsed the tree branches if the label
of the parent node is identical to that of the head
child node and no other children nodes are labeled
as argument. This is because in CxTAG sister ad-
junction is used to attach adjuncts directly to the

head phrase, without introducing new branches.
Fig. 13 illustrates the procedure with an example

from the PTB. First, (a) the * (PRO) under -NONE-
is removed, and then (b) the resulting unary branch
from S to VP is collapsed. According to the mark-
ing rules, all nodes (except the root) are labeled as
H(ead), C(omplement for argument) and A(djunct).
Finally, (d) the tagset is reduced, where function
tags like -SBJ are removed, NNP is modified along
with other subcategories of noun to N(oun) and VB
and VBD are merged into V(erb). Then, (e) the
VP above TO and its head child labeled as VP are
collapsed, since the other child is an adjunct. The
result is the middle tree in Fig. 13.

Then elementary trees were extracted based on
the annotation in a bottom-up fashion. Basically,
the tree is to be split at the nodes labeled as C or
containing children labeled as A (cf. the third tree
in Fig. 13).

The elementary trees in this version are with-
out co-anchors, excluding some well-known con-
structions like way-construction. Also, extension
trees and hence the network of constructions are
not covered yet. For those, we would need further
extraction procedures to combine or decompose su-
pertags obtained so far, depending on the statistics
of the entire treebank.

In addition to supertags, we also extracted a se-
quence of prediction trees for each sentence in the
data that the parser has to predict when process-
ing it by computing the connection path (Demberg
et al., 2013; Demberg-Winterfors, 2010) to check
for each pair of adjacent words if there are some
intervening nodes belonging to supertags to be an-
chored by subsequent words. At this point, the
delay mechanism is not implemented yet, limiting
the coverage to 33466 sentences out of 49208.

Our current lexicon extraction on the PTB yields
2663 different supertags, out of which 1293 are
also used as prediction trees.

Supertagging. The supertagger is implemented
via fine-tuning GPT-2 using multi-task learning
with two classification heads, returning a pair of
prediction tree (possibly none) and supertag for
each word. We trained the model on Sections 02–
21 for five epochs and evaluated it on Section 23.
The data consists of a sequence of pairs of predic-
tion tree/none and supertag. For more details see
Appendix C.

The per-word accuracy of the supertagger af-
ter training is 0.91 and 0.79 for prediction trees
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Figure 13: Sample extraction of supertags from a PTB tree

and supertags, respectively. Note that the accuracy
for prediction trees looks better than it actually is,
since for most words, the prediction is none, i.e.,
always predicting none could already yield an ac-
curacy of about 0.80. For supertags, our accuracy
is below the state-of-the-art for LTAG supertagging
(for instance, Bladier et al., 2019, achieved 0.81 on
French, which is usually harder than English), but
not comparable to standard supertagging results be-
cause (for the sake of psycholinguistic plausibility)
we employed a generative incremental LM as ba-
sis while Bladier et al. (2019) used a bidirectional
model. Overall, the scores we achieved with these
first experiments are quite promising.

6 Discussion and Conclusion

Summary. In this paper, we presented an alterna-
tive formalization of construction grammar guided
by linguistic and psycholinguistic plausibility.

In particular, incremental extension based on
frequencies of constructions is a novel way to for-
malize the inheritance and underspecification un-
der usage-based tenets: The selection of schematic
constructions is distributed over multiple words,
facilitated by the the network of constructions and
reflecting the predictability of constructions at each
point in the incremental derivation.

Also, the results of our preliminary implemen-
tation of PLCxTAG, extracted lexicon and the su-
pertagger, serve as a proof of concept. We are
hopeful that future implementation of PLCxTAG
will pave the way for quantitative psycholinguistic
evaluation of the tenets of construction grammar.

Future directions. We are currently building a
PLCxTAG parser which we will use to quantify
the processing difficulty in a way similar to (Dem-
berg et al., 2013; Demberg-Winterfors, 2010) for
comparison with reading time data.

To this end, we are in the process of modifying
the extraction and supertagging implementation to

include extension trees and a delay mechanism,
as well as designing the parallel parsing scheme
that decides how to combine the trees returned by
the supertagger. Concerning extension trees, the
idea is to start with the supertags extracted in the
way proposed here and train our supertagger on
it. Based on the predicted supertags, we will then
decompose some of the extracted gold supertags
into smaller supertags and extension trees.

For psycholinguistic evaluation, we plan to use
a corpus annotated with reading time data such as
that presented in Frank et al. (2013) and evaluate
along the lines of Mielczarek et al. (2025).

In addition, there are some aspects of the formal-
ism that might require further discussion and im-
provement. For instance, we have yet to see which
of the strategies sketched in Section 5 works bet-
ter for constructions with co-anchors. In this con-
text, the evaluation on psycholinguistic data will
be taken into consideration. Also, there are some
syntactic phenomena beyond the current formaliza-
tion. For example, the use of only substitution and
sister adjunction restricts the generative capacity of
PLCxTAG in such a way that phenomena of long-
distance dependencies cannot be adequatly treated.
Second, we did not explicitly model semantic rep-
resentation of constructions. Note, however, that
our supertagger produces semantic representations
of lexical anchors and, implicitly in its activation
vectors, also of schematic constructions.

Finally, we are planning to extend PLCxTAG to
other languages, in particular German and French,
where we already have experience with TAG-based
supertag extraction (Bladier et al., 2019). Ideally, in
the long run, we would like to apply the framework
also to a typologically broader set of languages
such as Japanese.
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A Appendix: Annotation of nodes as
head, argument and adjunct

As is the case in previous attempts to extract LTAG
from the PTB, we exploited the original PTB tags
including function tags to mark nodes of trees as
head, argument and adjunct.

A.1 Head rules
For the identification of heads, we followed the gen-
eral procedure described in Collins (1999), where
two head percolation tables are used, one for most
tags and another for NP.

Still, we have modified both tables (cf. Tables
1 and 2). In particular, three major changes were
made to the table for most tags.

Firstly, MD, TO and IN have been removed from
the head candidates, since modal auxiliaries, the in-
finitive marker “to” and complementizers (labeled
as IN along with prepositions) are to be adjuncts.

Secondly, -PRD is added as the candidate, since
it indicates the existence of accompanying copula-
tive verb like ‘be’ or ‘seem’. In those cases, these
verbs are to be adjuncts, even though they are la-
beled as full verb. That is why -PRD is placed
higher in priority than tags for full verbs.

Thirdly, WHNP, WHPP, WHADVP, WHADJP
and DT are removed from the candidate list for
SBAR.

A.2 Argument/adjunct rules
After annotating the heads, we marked the remain-
ing nodes as either argument or adjunct. Our rules
for arguments and adjuncts are inspired by Collins
(1997), but there are important changes to the orig-
inal procedure.

Collins (1997) marks only the following as argu-
ment, while marking all else as adjunct:

(a) 1. NP/SBAR/S under S
2. NP/SBAR/S/VP under VP
3. S under SBAR
if without any of the following function

tags: -ADV, -VOC, -BNF, -DIR, -EXT,
-LOC, -MNR, -TMP, -CLR and -PRP

(b) the first child following the head under PP

This procedure, however, is highly problematic
for numerous cases of coordination (especially
when no CC or CONJP is involved) and for PP
nodes with three or more children, as is exempli-
fied in Fig. 14. In the left-hand side example, two

Parent From Priority list
ADJP L NNS QP NN $ ADVP JJ

VBN VBG ADJP JJR NP
JJS DT FW RBR RBS
SBAR RB

ADVP R RB RBR RBS FW
ADVP TO CD JJR JJ IN
NP JJS NN

CONJP R CC RB IN
FRAG R
INTJ L
LST R LS :
NAC L NN NNS NNP NNPS NP

NAC EX $ CD QP PRP
VBG JJ JJS JJR ADJP
FW

PP R IN TO VBG VBN RP
FW

PRN L
PRT R RP
QP L $ IN NNS NN JJ RB DT

CD QP JJR JJS
RRC R -PRD VP NP ADVP

ADJP PP
S L -PRD VP S SBAR ADJP

UCP NP
SBAR L S SQ SINV SBAR

FRAG
SBARQ L SQ S SINV SBARQ

FRAG
SINV L -PRD VBZ VBD VBP

VB VP S SINV ADJP
NP

SQ L -PRD VBZ VBD VBP
VB VP SQ

UCP R
VP L -PRD VBD VBN VBZ

VB VBG VBP VP ADJP
NN NNS NP

WHADJP L CC WRB JJ ADJP
WHADVP R CC WRB

WHNP L WDT WP WP$
WHADJP WHPP
WHNP

WHPP R IN TO FW

Table 1: Head table for most phrasal tags, the 2nd
column gives the search order (starting from L(eft) or
R(ight))
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From Candidate list
R NN
L NNP NNPS
R NNS NX JJR PRP
L NP
R $ ADJP PRN
R CD
R JJ JJS RB QP

Table 2: Head table for parent tag NP

S children are coordinated by a semicolon labeled
as :, where the first S is already labeled as head
due to the head rule described in Table 1. In this
case, the latter S would be marked as argument of
the former, which it is not. The second example
shows an instance where the annotator placed D
and N immediately below PP without intermediate
NP, resulting in D being marked as argument and
N as adjunct.

PP

NDP-H

S

S:S-H

Figure 14: Problematic examples from the PTB.

Therefore, for (a), when candidate nodes are
coordinated, we only choose the left-most one, and
for (b), we decided to use finer-grained conditions,
depending on the number of PP’s children.

In addition to these, we decided to mark all the
nodes with some function tags like -SBJ as argu-
ment.

The resulting rules are:

(a) 1. NP/SBAR/S under S
2. NP/SBAR/S/VP under VP
3. S under SBAR
if without any of the following function

tags: -ADV, -VOC, -BNF, -DIR, -EXT,
-LOC, -MNR, -TMP, -CLR and -PRP

&
i. if not coordinated
or
ii. if the left-most coordinated element

(b) 1. the non-head child under a PP with two
children

2. the first NP child under a PP with three
or more children

(c) nodes with one of the following function tags:
-DTV, -BNF, -LGS, -PUT, -SBJ, -CLF and
-CLR

B Appendix: Tagset reduction

Tagset reduction was done by collapsing tags ac-
cording to Tables 3 and 4.

Original tags Reduced tag
JJ JJR JJS A
RB RBR RBS WRB Adv
DT PDT WDT PRP$ WP$ D
CD NN NNS NNP NNPS
PRP WP EX $ #

N

AUX MD VB VBP VBZ
VBN VBD VBG

V

Other POS tags (unchanged)

Table 3: Tagset reduction for POS tags

Original tags Reduced tag
ADJP WHADJP AP
ADVP WHADVP ADVP
NP NAC NX QP WHNP NP
PP WHPP PP
S SQ SBAR SBARQ SINV S
Other phrasal tags (unchanged)

Table 4: Tagset reduction for phrasal tags

C Appendix: Training of the supertagger

C.1 Model architecture

We modified GPT2PreTrainedModel (Radford
et al., 2019) from the transformers library (Wolf
et al., 2019) by adding the second linear classi-
fication head. The overall loss function was the
mean of two cross entropy functions, one for each
classifier.

C.2 Hyperparameters used in the training

We used the Trainer class from transformers library
to train the model. See Table 5 for values chosen
for the hyperparameters used in the training.
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hyperparameter value
learning rate 2e-05

number of epochs 5
weight decay 0.01

train batch size 8
evaluation batch size 8

seed 42
betas for ADAMW (0.9,0.999)

epsilon for ADAMW 1e-08

Table 5: Hyperparameters of supertagging
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