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Abstract

The empirically established null subject (NS)
stage, lasting until about 4 years of age, in-
volves frequent omission of subjects by chil-
dren. Orfitelli and Hyams (2012) observe that
young English speakers often confuse imper-
ative NS utterances with declarative ones due
to performance influences, promoting a tem-
porary null subject grammar. We propose a
new computational parameter to measure this
misinterpretation and incorporate it into a sim-
ulated model of obligatory subject grammar
learning. Using a modified version of the Vari-
ational Learner (Yang, 2012) which works for
superset-subset languages, our simulations sup-
port Orfitelli and Hyams’ hypothesis. More
generally, this study outlines a framework for
integrating computational models in the study
of grammatical acquisition alongside other key
developmental factors.

1 Introduction

The Null Subject (NS) stage is a well-researched
phenomenon in child language acquisition, char-
acterized by young children sometimes forming
declarative sentences without subjects. This is
expected in children exposed to null subject lan-
guages but contentious in obligatory subject lan-
guage environments. The NS stage challenges
the Subset Principle (Gold, 1967; Berwick, 1985;
Manzini and Wexler, 1987; Valian, 1990; Déprez
and Pierce, 1993; Fodor and Sakas, 2005) — chil-
dren learning obligatory subject languages exhibit
NS-like sentences (a superset language), which
gradually shift to non-NS (subset language) with
time. This phenomenon puzzles learning theorists.
Explanations vary, with some attributing the NS
stage to differences between children’s internal
grammar and adult target grammars (Yang, 2012;
Orfitelli and Hyams, 2008; Valian, 1990), while
others cite extrasyntactic factors like memory and
processing constraints (Bloom, 1970, 1990; Valian,

1991; Wang et al., 1992). Rizzi (2005a,b) con-
nects a performance account of a limited produc-
tion system with its consequence of the varying
grammatical competence we see in children. In
this paper, we model the grammatical theory of the
NS stage in children using a developmental param-
eter and the Variational Learner (VL)(Yang, 2012),
a well-known computational model of language
acquisition. More generally, this study outlines a
framework for integrating computational models in
the study of language acquisition alongside other
key developmental factors.

2 Background

2.1 Orfitelli & Hyams (2012) Experiment 2

The two distinct theories of performance and gram-
matical competence present distinct explanations
for children’s comprehension of subject-lacking
sentences (NS sentences, such as imperatives in
English). Grammatical theories propose that young
English speakers view NS sentences akin to gram-
matically correct declaratives, similar to adults in
null subject languages. Conversely, performance
theories attribute omissions to production limita-
tions, suggesting children interpret NS sentences
as adults do in obligatory subject languages, lim-
iting English-speaking children’s interpretations
to imperatives or diary forms. To explore this,
Orfitelli and Hyams (2012, Experiment 2) used a
truth-value judgment (TVJ) experiment (Crain and
McKee, 1985; Crain and Fodor, 1993). In Experi-
ment 2, a child watched a narrative, then listened
to a puppet’s (Mr. Bear) comment, and judged the
comments’ accuracy relative to the story. The child
corrected Mr. Bear by indicating the correctness of
his statements, with explanations. Thirty children
from Los Angeles daycare centers were involved,
divided into three age groups (2;6-2;11, 3;0-3;5,
and 3;6-3;11) to represent early, middle, and late
NS stages. Details on age range and distribution
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Group Age Range Mean Age N

2;6-2;11 2.54-2.96 2.73 10
3;0-3;5 3.12-3.48 3.3 10
3;6-3;11 3.64-3.98 3.82 10

Total 2.54-3.98 3.28 30

Table 1: Orfitelli and Hyams (2012)[Experiment 2] par-
ticipant details.

are in Table 1, adapted from Orfitelli and Hyams
(2012, Table 6).

The children underwent assessment on 24 gram-
matical items (sentences), equally split between
correct and incorrect true/false responses. There
were 8 NS condition sentences, while the remain-
ing 16 items were evenly divided among the re-
maining four conditions. Orfitelli & Hyams (O&H)
classified the children’s responses to NS condition
sentences into three categories based on interpreta-
tion:

• Consistently imperative: 7-8 out of 8 NS
sentences interpreted as imperative.

• Both interpretations allowed: 2-6 out of 8
NS sentences interpreted as imperative.

• Consistently declarative: 0-1 out of 8 NS
sentences interpreted as imperative.

2;6-2;11 3;0-3;5 3;6-3;11

Imperative
(7-8 imp)

0% (0) 40% (4) 80% (8)

Both
(2-6 imp.)

80% (8) 60% (6) 20% (2)

Declarative
(0-1 imp.)

20% (2) 0% (0) 0% (0)

Table 2: Individual performance on the NS condition
sentences in Orfitelli and Hyams (2012)[Table 8].

Additional details regarding the performance of
children on the task are illustrated in Figure 1. The
performance on the NS items varied with age as
O&H reported that the youngest group assigned an
imperative (adult) interpretation to NS items 40%
of the time on average, while the middle age group
assigned an imperative interpretation 64% of the
time. While O&H do not report an average number
for the performance on NS items for the oldest age

Figure 1: Performance on NS condition sentences from
Orfitelli and Hyams (2012)[Figure 5].

group, from Figure 1 we can estimate the average
performance to be close to 90%. For concreteness,
we adopt 90% for this age group from this point
on.

The fact that in O&H’s study children compre-
hend NS sentences differently than an adult, rein-
forces the grammatical account of the NS stage.
However, O&H also argue for performance limita-
tions which create the illocutionary force ambiguity
associated with the imperative NS sentences result-
ing in the NS stage.

2.2 Language Acquisition in P&P Framework

The study of language acquisition presents an ex-
traordinary challenge for scientific inquiry. It re-
quires that a child, over a remarkably short period,
must develop a grasp of a grammar system capable
of producing and interpreting a set of utterances
comparable to those produced by adults within
their linguistic surroundings.1 The child’s cogni-
tive mechanisms for language learning achieve this
despite having limited or no exposure to sentence-
level linguistic phenomena, and without the capac-
ity to perceive intrinsic properties of the latent struc-
tures that generate the surface forms of utterances
(see Fodor 1998 for reference). This restricted in-
teraction with sufficient surface forms forms the
core of the argument known as the poverty of the
stimulus (Chomsky, 1981, 1955, 1965, 1986).

This argument has been instrumental in advo-
cating for an intrinsic language faculty that im-
parts universal structural principles (such as the
notion that all languages possess subjects) and pa-
rameters, which dictate language-specific structural
traits (e.g., whether SpecIP is initial or final) that
are adjusted during the language acquisition pro-
cess.,The framework of principles and parameters

1Or nearly identical, encompassing microvariations within
linguistic communities.
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(P&P), as introduced by (Chomsky, 1981), was de-
signed to streamline the language learning process
by:

• Limiting the potential scope of grammatical
possibilities, transitioning linguistic theory
from a potentially limitless universe of human
grammars to a explicitly finite set

• Simplifying complex structural phenomena
into parameter values, which vary between
languages. This framework comprises a set
of foundational principles that “sharply re-
strict the class of attainable grammars and nar-
rowly constrain their form, but with parameter
[values] that have to be fixed by experience”
(Chomsky, 1981).

Essentially, the child is inherently equipped with
these principles, while parameter values are influ-
enced by the linguistic input they encounter in their
environment.2 We align with Fodor’s interpreta-
tion of parameter values within the P&P model
(Fodor and Sakas 2005): Universal Grammar (UG)
endows parameters with two possible, albeit mu-
tually exclusive, structural "treelets" – elements
of grammatical architecture – that serve as tools
for both linguists and children acquiring language
to distinguish between different human languages.
Subsequently, (Howitt et al., 2021) suggest that pa-
rameter values should be seen not as simple binary
choices between parametric treelets, but rather as
points within a gradient spectrum between these
discrete choices, viewing parameter values as dy-
namically adjustable along a continuum.

2.3 Variational Learner
Yang (2002a, 34) argues for the necessity of learn-
ers to perform well in domains without unambigu-
ous inputs (see Clark 1992; Clark and Roberts 1993
who argue against the general existence of unam-
biguous evidence). He proposes a parameter setting
reward-based algorithm that converges to a target
grammar despite the presence of ambiguous evi-
dence (Straus, 2008). His Variational Learning
(VL) model posits that a child accesses multiple
grammars, competing throughout learning. When
encountering a sentence, the child uses her current
grammar hypothesis for parsing. Success results
in rewards; failure incurs penalties. Competing
grammars vie to become the next hypothesis, with

2For the sake of simplicity, linguistic learnability typically
presumes the language environment as monolingual.

the most rewarded becoming the adult grammar. In
VL, a learning rate R̂ dictates grammar rewards
or penalties. Each grammar Gi is linked to a prob-
ability Pi, indicating past rewards and penalties.
At time t, this probability Pi depends on linguistic
exposure Et and grammar performance. Imple-
menting variational learning with Principles and
Parameters involves managing 2n probabilities for
grammars in an n-parameter space, exceeding a bil-
lion in a 30-parameter P&P domain. Yang suggests
maintaining one weight (wi) per parameter (pi).
Like non-parametric VL, parameters are adjusted
based on parsing outcomes, modifying weight (wi)
accordingly. Each pi is binary, with value (pvi ) of
0 or 1. Grammar probabilities form a weight vec-
tor (W ) of size n, where wi aligns with parameter
pi. Weights encode cumulative parametric reward
and penalty results at time t after Et. In P&P VL,
Yang (2002a) details two weight update methods
following a sentence parse (st) at time t. Weights
vector W = [w1, w2...wn] is adjusted, rewarding
successful parsing by Gcurr = [pv1, p

v
2...p

v
n] and

penalizing failures. Updated weights then define
new Gcurr. Yang (2012) describes a reward-only
VL where unsuccessful parsing leaves weights un-
altered. Following Sakas et al. (2017), we adopt
and modify principles and parameters reward-only
VL for simulations.

The reward scheme of the reward-only VL fol-
lows the (LR−P ) scheme of Bush and Mosteller
(1955). If a parameter value, pvi , in Gcurr is 0 and
wi is to be rewarded, the weight is nudged towards
0 according to Equation (1):

wt+1
i = wt

i − R̂ · (wt
i) (1)

If a parameter value, pvi , in Gcurr is 1 and wi

is to be rewarded, the weight is nudged towards 1
according to Equation (2):

wt+1
i = wt

i + R̂ · (1− wt
i) (2)

Where wt
i denotes weight wi in the vector of

weights W at time instance t. wt+1
i is the weight

after the update when encountering the input sen-
tence st at time instance t.

Yang (2002b) hypothesized that a child is unable
to distinguish between English grammar and its NS
counterpart early on (imperfect learning), while
in later stages of acquisition the corrective force
of grammar competition sets the target parameter
correctly.
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3 Computational Modelling of NS
utterance interpretation

The remainder of this paper presents a simula-
tion study which models the work of Orfitelli and
Hyams (2012). Specifically, we model the increase
of a child’s ability to interpret imperative sentences
in an adult manner and observe the change in a
simulated learner’s (an e-child’s) competence over
the course of language acquisition in an English-
like abstract linguistic environment. We run sim-
ulation experiments employing a computational
models of syntactic parameter setting: The Vari-
ational Learner (Yang, 2002a, 2012; Sakas et al.,
2017) which we modify to incorporate (a version
of) the Subset Principle. These experiments are run
on the English-like language drawn from a large
domain developed at the City University of New
York (CUNY). The study presents a computational
investigation of how performance factors might
influence competence longitudinally.

3.1 The CUNY-CoLAG language domain
The CUNY-CoLAG domain is a database of word
order patterns that children could be expected to
encounter, together with all syntactic derivations
of those patterns and the syntactic parameter val-
ues which generated each derivation. The multi-
language domain is large, containing 3,072 artifi-
cial languages, 48,077 distinct word order patterns,
and 93,768 distinct syntactic trees. Germane to
this article, is CoLAG English (Sakas et al., 2017),
most English-like language in the domain. A more
thorough overview of the domain and how the mul-
tilingual derivations were generated can be found
in Sakas (2003) and the most recent version of the
CUNY CoLAG domain (hereafter, simply CoLAG)
is comprehensively presented in Sakas and Fodor
(2011, 2012).3 4

3.2 Subset-superset languages and the
Variational Learner

Yang’s Variational Learner is highly regarded in
terms of bringing statistical methods to the table
together with generative grammar. However, the
VL cannot distinguish between superset and subset

3The domain is available for download at: https://bit.
ly/3nGdhPc.

4While we acknowledge that CoLAG is an artificial do-
main, natural language domains like CHILDES(MacWhinney,
2000) has been explored with the VL in (Sakas et al., 2017).
The CoLAG domain is used to prove a theoretical point and
test the convergence pattern of model with a wide variety of
distributions reminiscent to the study in (Howitt et al., 2021).

Figure 2: The SSVL with a conservative learning rate of
r = 1.24× 10−7. The NS parameter weight is plotted
on the y-axis and the number of utterances on the x-axis.
Additionally, 6 month intervals from age 2;6 to 4;0 as
measured in number of utterances are marked.

grammars and cannot be prevented from converg-
ing on an incorrect superset hypothesis. However,
a version of Yang’s learner that does distinguish be-
tween superset and subset grammars and avoid con-
vergence on an incorrect superset hypothesis can
be envisioned: Whenever the learner encounters a
sentence licensed by a current grammar hypothe-
sis which generates a superset language, it checks
if the sentence can be parsed by a subset hypoth-
esis of the current grammar. If the sentence can
be parsed by the subset grammar the learner picks
the subset grammar choice, rather than the current
(superset) grammar hypothesis for adjusting the
weights (Yang, p.c.).

We embrace this strategy, however, we found a
need to augment it. The strategy focuses on ac-
quiring a target subset grammar and is potentially
detrimental, in the worst case fatally, when the VL
is faced with a superset target grammar. Suppose an
e-child employing the VL is trying to learn a super-
set target grammar. Every time the e-child hears an
utterance that can be parsed by the subset grammar,
the learner adjusts its weights in the direction of the
subset grammar. Thus, convergence towards the
superset is dependent on the order, and the ratio of
sentences unambiguously licensed by the superset
grammar to those licensed by the subset grammar.

To confirm our suspicions we ran this version of
the Variational Learner with a 100 e-children ac-
quiring CoLAG Null Subject English (NS-English),
i.e., a language that has all the CoLAG English pa-
rameter settings except for Null Subject which has
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Algorithm 1 Superset-Subset Yang’s Variational
Learner reward only.
W is the array of weights Gcurr is the current grammar, i.e.
vector of parameter values
n is the number of parameters
for each wi in W do

wi ← 0.5
end
for each input sentence s do

pick Gcurr ← [pv1 , ... ,pvn] according to Algorithm 3 if
Gcurr can parse s then

for wi in W do
if pi is a not superset-subset parameter or pvi is
the subset value then

Adjust wi conservatively towards pvi
else // pvi is the superset value

Gtemp ←[pv1 , ...,1− pvi , ... pvn] // 1−
pvi =subset value

if Gtemp can parse s then
Adjust wi conservatively towards 1−
pvi ;

else
Adjust wi aggressively towards pvi ;

end
end

end
end

a value of 1 allowing null subjects in declaratives.
All 100 e-children converged incorrectly on the
subset value of the Null Subject parameter.5

We propose an adaptation of the VL which al-
lows it to consistently converge to the correct pa-
rameter setting of a superset-subset parameter. The
approach we adopt is to ensure that whenever the
VL encounters a sentence that can be parsed only
by the superset grammar, we reward it at a higher
rate in comparison to the rate used for the sub-
set value. The idea is to have two learning rates
— a higher rate for rewarding the superset and a
lower rate for rewarding the subset. Following
Howitt et al. (2021), we will call them the “ag-
gressive" (R) and “conservative" learning rates (r)
respectively. To test this idea, we again ran simula-
tions involving a 100 e-children acquiring CoLAG
NS-English with learning rates of R = 0.008 and
r = 0.001.6 This learning strategy is successful
— the Superset-Subset Variational Learner (SSVL)
successfully converges on the target superset value
for the Null Subject parameter for all e-children
acquiring CoLAG NS-English, see Figure 2.

5Following (Sakas et al., 2017), the simulations were run
on a uniform distribution of CoLAG English sentences with a
learning rate of 0.001 and successful convergence was defined
as the weights reaching within 0.02 threshold of the target
parameter values.

6In line with Footnote 5, the aggressive rate of 0.008 was
chosen through trial and error for the learner to converge with
a conservative rate of 0.001.

Pseudocode for the SSVL is given in Algorithm
1. The initialization of the weights and the pick of
Gcurr is identical to Algorithm 3 (Yang’s Reward-
only VL). After every sentence, if the input sen-
tence can be parsed by Gcurr, the SSVL checks
all pvi in Gcurr for superset-subset values, if any.
If pi is not a superset-subset parameter or if pi is
a superset-subset parameter and pvi is the subset
parameter value, wi is rewarded conservatively to-
wards pvi . Otherwise, pvi is a superset value. In
that case, the SSVL checks if the current grammar
with the superset value of pi flipped (Gtemp in Al-
gorithm 1) to the subset value 1 − pvi can parse
the current input sentence, if so, wi is rewarded
conservatively towards the subset value, Otherwise
wi is rewarded aggressively towards the superset
value. As with the original reward-only VL, if the
current input sentence can not be parsed by Gcurr

no weight updates occur.
The weights in W are rewarded as follows:

• Reward aggressively: Replace R̂ by the ag-
gressive rate R in Equation (1) or (2) and up-
date wi accordingly.

• Reward conservatively: Replace R̂ by the
conservative rate r in Equation (1) or (2) and
update wi accordingly.

The original Variational Learner follows the
Naive Parameter Learning (NPL) model, which
assumes that when the composite grammar success-
fully parses the incoming sentence, all parameter
values are rewarded. However, as seen in our exper-
iments involving CoLAG English and NS-English,
for successful convergence on either the superset
or subset grammar, the VL cannot not afford to
be “naive”. Specifically, it requires knowledge of
which parameter values are in superset-subset re-
lationship and exactly how to reward the relevant
value.

3.3 A performance parameter: IARC
Orfitelli and Hyams (2012) based on their TVJ ex-
periment, observe that there is a misinterpretation
of illocutionary force in null subject sentences due
to performance limitations in children and conjec-
ture that adults and children have different gram-
mars. This section outlines the modeling approach
we adopt to capture this observation.

Table 2 presents data that show that children’s
ability to correctly interpret imperative illocution-
ary force changes over time. This change is almost
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linear: Children between ages 2;6-2;11 show 40%
adult interpretation of NS utterances on average,
while children between ages 3;0-3;5 show 64% and
3;6-3;11 show 90%.

‘We computationally model the interpretation of
the illocutionary force of an e-child by introducing
imperative NS sentences labeled with declarative
illocutionary force into the e-child’s linguistic en-
vironment. This “noisy” input to an e-child can
be manipulated to mirror the data in Table 2 by
decreasing the noise as the e-child matures. Em-
ploying this simulated performance factor, we map
the pathway the NS parameter takes during the ac-
quisition of CoLAG English. The question we are
asking is — Assuming English children do indeed
have a declarative interpretation of imperative NS
sentences — how can we model the change in the
Null Subject parameter, a parameter whose acqui-
sition is affected by these NS sentences, to come
to a conclusion regarding its target setting? And
given the projected trajectory of this developmen-
tal change, what course would the trajectory of NS
parameter acquisition take?

In learning CoLAG English, reliance must be
placed on declarative utterances with subjects. Mis-
understanding imperative NS forms as declaratives
impairs learning, treating some NS utterances as
noise and incorrectly shifting the parameter to-
ward the null subject superset. In obligatory sub-
ject languages for adults, mature children’s transi-
tion should reflect a shift from superset (optional
subject) to subset (obligatory subject) grammars.
Drawing on Orfitelli and Hyams (2012)’s TVJ ex-
periment, we introduce the Illocution Ambiguity
Resolution Coefficient (IARC) for measuring chil-
dren’s misinterpretations of imperatives. An IARC
of 1 indicates perfect recognition of imperative
NS as such, whereas an IARC of 0 signifies total
misinterpretation as declaratives. An IARC of 0.2
suggests 20 out of 100 NS imperatives are correctly
understood, with 80 misunderstood as declaratives.
Our goal is to explore NS parameter acquisition
in CoLAG English, considering these performance
limitations.

3.4 Growth of IARC
In this section, we develop a framework for quanti-
fying how the performance parameter IARC grows
as a function of age, measured here by the cumu-
lative utterances heard by a child at the end of age
range i (Ui). Recall that IARC is a probability
measure and hence is bound within the values 0

and 1. As discussed in Section 2.1, the average
values of IARC between the age ranges of 2;6-
2;11, 3;0-3;5 and 3;6-3;11 exhibit almost linear
growth (0.4 to 0.64 to 0.9). Thus, a natural way
to model IARC would be as a bound function of
Ui, 0 ≤ IARC ≤ 1 with IARC linearly increasing
with respect to Ui. One such approach is presented
in Equation (3), where m is the slope, and c is the
intercept of a linear function of IARC growth.

IARClinear(Ui) =





0 Ui ≤ − c
m

mUi + c − c
m ≤ Ui ≤ 1−c

m

1 Ui ≥ 1−c
m

(3)

In addition to the IARClinear function, we
also employ a logistic function implementation
of IARC, IARClogistic as shown in Equation (4)
bound by 0 and 1, with growth rate m and midpoint
c. The logistic function exhibits an s-shaped (sig-
moid) curve. For a sufficiently low m, the logistic
function behaves almost linearly across the mid-
point c and is asymptotic at the (0 and 1) endpoint
values.

IARClogistic(Ui) =
1

1 + e−m×(Ui−c)
(4)

3.5 Simulation of a 100 e-children
Building on the research presented in Pearl and
Sprouse (2021); Hart and Risley (1995, 2003),
our estimate is that by age 5;0, a child from a
professional-class background has been exposed
to 10,054,267 utterances. To depict the variabil-
ity among children noted in O&H’s Experiment 2,
we simulate 100 virtual children using a truncated
Gaussian age distribution for each age category
listed in Table 1, which specifies the minimum,
maximum, and mean ages. Constructing a trun-
cated Gaussian demands parameters such as range,
mean (µ), and standard deviation (σ). O&H pro-
vide age ranges and mean ages (µage) in Table 1,
but omit standard deviations for each group (σage).
We approximate these standard deviations (σage) as
0.1 for all age groups based on available age ranges.
According to Gleitman et al. (1984), imperatives
make up about 16% of the language input a child
receives until age 2. Earlier, Newport et al. (1977)
estimated an 18% imperative usage beyond age 2.
With IARC = 0, this reflects the expected level of
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(a) Frequency histogram of ages. (b) Frequency histogram of IARC values.

Figure 3: Performance of 100 e-children with a bin size of 20 and the Gaussian kernel estimation of the probability
density function (PDF) across 3 age groups generated using a truncated Gaussian distribution emulating O&H.

2;6-2;11 3;0-3;5 3;6-3;11

IARC Range 0-0.75 0.25-1 0.25-1

Tail end probability (< 0.25)
= 0.2

(> 0.75)
= 0.4

(< 0.75)
= 0.2

µIARC 0.4 0.64 0.9

σIARC 0.1785 0.43 0.179

Table 3: Table depicting the calculation of standard de-
viation of the Gaussian distribution of IARC parameter
over age ranges.

noise (imperatives misunderstood as declaratives)
encountered by the learner. Our simulations modu-
late the IARC parameter following Equations (3) or
(4), assuming an imperative exposure rate of 16%
up to age 2 (approximately 3,566,210 utterances)
and 18% thereafter.

Similar to the age data, O&H do not provide
the standard deviation of IARC (σIARC) for the
3 age groups. However, O&H do provide some
additional distributional data which can be used to
estimate the standard deviation. The O&H IARC
data, presented in Table 2, has been recast as dis-
tributional metrics in Table 3. We infer the tail end
probabilities of the IARC distribution from Table 2
in order to calculate the standard deviation (σIARC)
of each age group. We observe that for ages 2;6-
2;11, 20% of the children correctly interpret less
than 2 out of 8 imperatives (IARC value less than
0.25), i.e., the probability that IARC is less than
0.25, P (IARC) < 0.25, is 0.2 (20% of the chil-
dren). In addition, the mean IARC (µIARC) of this
age range is 0.4 as reported in Section 2.1. With

this tail end probability and the mean (µIARC),
the standard deviation of the Gaussian distribution
of the children’s IARC value (σIARC) for the age
range 2;6-2;11 was estimated to be 0.1785. The
tail end probabilities for the other age groups were
similarly inferred7 and the standard deviations of
all three age ranges are calculated and compiled in
Table 3.

Using the parameters discussed above, a trun-
cated Gaussian distribution in Scipy was used to
generate an age distribution and an IARC distribu-
tion using two growth functions — IARClinear

and IARClogistic, of a 100 e-children across 3
age groups as depicted in Figures 3a and 3b re-
spectively. After a 100 age and IARC values for
each of the three age groups were generated, we
sort the ages and the IARC values within each
group. To approximate the longitudinal devel-
opment of the IARC value for each e-child in
the pool of a 100 e-children, we generate three
(IARC, age) pairs for each e-child, one from each
age group, using the sorted IARC and age values.
The first (IARC, age) value in each of the three
lists is used to generate e-child 1, the second three
(IARC, age) pairs are used to generate e-child
2, etc. Using these three (IARC, age) pairs for
each e-child, the optimal parameters for the two
growth functions — IARClinear and IARClogistic

— were calculated as outlined previously in this sec-
tion. We then proceed to simulate the acquisition
of the NS parameter for each of the resulting 100
e-children.

7For the middle age group, the right tail was used rather
than the left.
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Algorithm 2 Simulation of one e-child incorporat-
ing IARC.
Gtarg is the target grammar IARC is the probability of
interpreting an imperative sentence correctly as an imperative
m and c are the optimal parameters for IARC growth
Gtarg ← CoLAG English, i.e., 0001001100011
IARC ← 0
num_sentences← 10,054,267, i.e., cumulative utterances
by age 5;0
for i in range(num_sentences) do

calculate IARC using m and c accordingly if i <
3, 566, 210, i.e., age < 2; 0 then

s← sentence from the target language with 16 per-
cent probability of being an imperative

end
else

s← sentence from the target language with 18 per-
cent probability of being an imperative

end
if s is imperative then

with probability of, 1-IARC, interpret s as a declara-
tive

end
Run SSVL on s

end

We conducted 2 experiments with a pool of 100
e-children employing the SSVL acquiring CoLAG
English with 2 growth functions IARClinear and
IARClogistic. The e-children were generated ac-
cording to the methodology described above. The
simulations used an aggressive rate (R) of 2×10−4

and a conservative rate (r) of 5× 10−6. 8 The NS
parameter weight / confidence values of these 100
e-children over time are plotted on the y-axis of
the graphs presented in Figures 4a and 4b with
the x-axis representing the number of cumulative
utterances encountered. To show the variation of
the e-children, all 100 are plotted with the fastest,
the slowest, and the median e-child, in terms of
convergence speed, demarcated.

4 Results

In the work of Orfitelli and Hyams (2012), a signif-
icant empirical discovery regarding developmental
constraints is presented, specifically focusing on
the differential interpretation of Null Subject (NS)
sentences between adults and children. The NS
stage arises from an intricate interplay of grammati-
cal and performance elements. The objective of the
study’s simulations is to replicate this early-stage
developmental constraint and the ensuing partial
learning observed over time. The objective was to
create electronic children, or e-children, whose lin-
guistic development could accurately reflect the

8The choice of learning rates was derived through trial and
error.

longitudinal findings of O&H. The simulations
were conducted using a specifically adapted varia-
tional learning model (SSVL) incorporating super-
set and subset language frameworks, alongside two
distinct models of IARC growth (IARClinear and
IARClogistic). The experiments with the SSVL
model (illustrated in Figures 4a and 4b) reveal a
particular behavior of the Null Subject parameter:
it begins at an initial value of 0.5, then swiftly as-
cends to approximately 0.8, before subsequently
declining, which mirrors the observed decrease in
the employment of null subjects among English-
speaking children. A minor resurgence occurs
around age 2;0 due to a simulated increase in imper-
ative sentence exposure experienced by an e-child,
as elaborated in Section 3.5. This phenomenon is
supported by findings from two distinct studies on
imperatives directed at young children, one before
the age of 2;0 and the other thereafter. Further-
more, we also performed simulations of the SSVL
model in a noiseless setting within the CoLAG en-
vironment acquiring NS-English. Under noiseless
conditions, SSVL demonstrates that the NS param-
eter promptly converges well before the e-children
reach 2;0, the age traditionally associated with the
onset of the NS stage.

5 Summary and Discussion

Orfitelli and Hyams (2012) observe that young
English-speaking children often misinterpret (sub-
jectless) imperative utterances as declaratives (e.g.,
Play with blocks.), which could potentially lead
them to initially acquire an NS grammar. The
present study computationally models the findings
of Orfitelli and Hyams (2012). More generally, it
establishes a framework for simulating a develop-
mental ‘performance parameter’ and its influence
on acquisition. The performance parameter rele-
vant to Orfitelli and Hyams (2012) and the compu-
tational work reported here we coin the Illocution
Ambiguity Resolution Coefficient (IARC) — a mea-
sure of a child’s ability to correctly disambiguate
between imperative and declarative illocutionary
force in utterances without a subject.

We computationally model the performance pa-
rameter IARC, based on empirical data from Or-
fitelli and Hyams (2012), and study its effect during
acquisition of the NS syntactic parameter. Employ-
ing a modified version of the Variational Learner
(VL, Yang 2002a, 2012), we simulate the change
over time in the confidence value associated with
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(a) IARClinear growth function (b) IARClogistic growth function

Figure 4: The SSVL employing the with learning rates R = 2× 10−4, and r = 5× 10−6 for 100 e-children. The
fastest, the slowest and the median e-children, in terms of convergence speed, are highlighted.

the NS parameter in simulated ‘e-children’ acquir-
ing an English-like language in an artificial lan-
guage domain (Sakas and Fodor, 2011). The VL
cannot reliably learn languages in superset/subset
relationships Sakas et al. (2017), which is critical
to modeling the acquisition of the NS parameter.
To employ the VL paradigm in this context, we
develop the Superset/Subset Variational Learner
(SSVL) — a version of the VL that can effectively
distinguish superset and subset grammars and suc-
cessfully acquire them.

Simulating 100 SSVL e-children employing two
growth functions of IARC, we observe that the
IARC parameter’s development over time affects
each growth function in a similar fashion: Imper-
fect learning of the NS parameter early on, cor-
rected later, converging on the obligatory-subject
target grammar. Based on the psycholinguistic data
presented in Orfitelli and Hyams (2012), one would
expect to see an adjustment in the English-speaking
child’s grammar away from an NS grammar, as
children grow to interpret subjectless imperative
sentences correctly as imperatives (as modeled by
the IARC parameter). The simulations conducted
in this study reflect this trajectory of the NS param-
eter, which supports the conjecture presented in
Orfitelli and Hyams (2012) — that the misinterpre-
tation of subjectless imperatives is indeed a likely
contributor to a child’s Null Subject (NS) stage.
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A Appendix

A.1 Convergence

Convergence is the learner’s arrival at a final gram-
mar hypothesis (Gtarg). The final grammar hy-
pothesis should license nearly all utterances of the
target language and generate the same set of sen-
tences. Under standard learnability assumptions,
convergence is defined as arriving at a static gram-
mar, i.e., one that will never change within a finite
amount of time after entertaining a series of gram-
mar hypotheses — Gold (1967), c.f., PAC-learning,
Valiant (1984).

Integrating finiteness into a criterion of success
is desirable in terms of formal learnability theory,
and from an empirical standpoint — developmental
psycholinguistic studies have established a period
during which language learning occurs rapidly and
apparently effortlessly. After this critical period
(Penfield and Roberts, 1959; Lenneberg, 1967), the
learner achieves a state of maturity with less plas-
ticity in terms of language development (i.e., the
learner converges on an adult grammar).

The implementation of this finiteness criterion
varies between studies. For example, in Sakas
et al. (2017) the criterion of successful conver-
gence for the variational learner was a parametric
weight threshold of 0.02 from the target parame-
ter setting for each parameter, and in the case that
the threshold was not met, the simulations were
stopped after an e-child encountered 2 million ut-
terances. Whereas, for the No-Defaults Learner in
Howitt et al. (2021), simulations ended after an ad
hoc number of sentences (500,000) were encoun-
tered by an e-child.

Pearl and Sprouse (2021, Appendix A, Table 9),
estimate the number of sentences a real child hears
between 2;4 and 5;0. They assume learning starts
at 2;4 and calculated that from 28 months to 5 years
a child from a professional family hears roughly
5,658,535 sentences. This calculation was based
on Hart and Risley (1995, 2003), who provide data
on how many sentences professional class parents
speak to their children and Davis et al. (2004) who
provide the average total daily sleep hours for chil-
dren. In our case, however, we assume acquisition
of the NS parameter starts at birth and estimate the
number of sentences from birth to 5;0. We used
Davis et al. (2004, Figure 1), which plots daytime
and nighttime sleeping hours to plot total waking
and total sleeping hours by age, see Figure 5.

Using the data presented in Figure 5, we esti-

mate the number of sentences a child hears from
birth to age 5;0. In order to develop the relevant
calculations, we adopted three assumptions:

1. The number of waking hours of a child at age
1 month is almost the same as at birth.

2. The number of utterances per hour spoken by
a parent to a child is uniform across all ages,
i.e., 487 (Hart and Risley, 1995, 2003).9

3. The increase in waking hours across age inter-
vals is linear.

When presenting our calculations, we employ
the following notation. The age period (ai) is the
difference in years, between two points delineating
a specified age range (i). The daily waking hours
(h1i to h2i ) are the waking hours at the two endpoints
of age range i. The total waking hours of a child in
age range i is represented by Hi. Total utterances
(ui) is the total number of utterances heard by the
child in age range i while the cumulative utterances
(Ui) is the total number of utterances heard by a
child from birth to the last date of age range i.

We now turn to how we calculate some of these
variables. To calculate total utterances in age range
i (ui), and subsequently cumulative utterances by
the end of age range i (Ui), we must first calculate
the total waking hours at that age range (Hi). Fig-
ure 5 gives the number of waking hours at specific
ages. Assuming the growth of waking hours be-
tween any two adjacent ages is linear (Assumption
3) — to calculate the total waking hours between
two adjacent ages, we compute the area under the
straight “line” of growth between the two age inter-
vals and multiply the area by the number of days
in a year (365), see Equation (5).

Hi =
(h1i + h2i )

2
× ai × 365 (5)

The total utterances at age range i (ui) is then
derived, under Assumption (2) by Equation (6):

ui = ⌈Hi × 487⌉ (6)

Finally, we can then calculate the cumulative ut-
terances at the end of age range i (Ui) using Equa-
tion (7):

Ui = Ui + Ui−1 (7)

9Pearl and Sprouse (2021) make a similar assumption.
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Figure 5: Average total daily sleep and waking hours for infants and young children. Data is taken from Davis et al.
(2004).

age range
(i)

0;0 to 0;6 0;6 to 1;0 1;0 to 2;0 2;0 to 3;0 3;0 to 4;0 4;0 to 5;0

age period
(ai)

0.5 0.5 1 1 1 1

daily waking hours
(h1i to h2i )

8.5-9.5 9.5-10.25 10.25-11 11-12 12-12.5 12.5-13

total waking hours
(Hi)

1,642.5 1,802.19 3,878.13 4,197.5 4,471.25 4,653.75

total utterances
(ui)

799,898 877,665 1,888,647 2,044,183 2,177,499 2,266,376

cumulative utterances
(Ui)

799,898 1,677,563 3,566,210 5,610,392 7,787,891 10,054,267

Table 4: Estimation of number of utterances encountered over different age ranges of child language acquisition.

The results of these calculations are presented in
Table 4. Following Pearl and Sprouse (2021), we
take the stopping point for our simulated e-children
to be 5;0. The number of cumulative utterances at
5;0 per our calculations is 10,054,267.

We can also approximate the number of cumu-
lative utterances heard by a child at any given age.
For example, to calculate the utterances heard by
a child at age 3.3 years, we first need to approxi-
mate the waking hours at that age. The difference
between the number of waking hours between ages
3;0 (12 waking hours) and 4;0 (12.5 waking hours)
is 0.5 hours. Since we assume linear growth, we
can approximate the number of waking hours at
age 3.3 years: 12.15 = 12 + (0.3 ∗ 0.5). From
Table 4, we know that the number of cumulative

utterances at age 3 years is 5,610,392. The total
utterances a child hears between 3 years and 3.3
years can be calculated according to Equations (5)
and (6), as is illustrated in (8):

1, 322.2 =
12 + 12.15

2
× 0.3× 365

643, 918 = ⌈1, 322.2× 487⌉
(8)

The cumulative utterances heard by age 3.3
years can then be calculated using Equation (7):
6, 254, 310 = 643, 918 + 5, 610, 392.

A.2 CoLAG domain details
Thirteen syntactic parameters were used to gener-
ate the languages and derivations in CoLAG (see
Table 5). The target parameter values of CoLAG
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Parameter List
Parameter Name Abbrev Target Value = 0.0 Target Value =1.0

Subject Position (SP) Initial Final
Headedness in IP (HIP) Initial Final
Headedness in CP (HCP) Initial Final
Optional Topic (OpT) Obligatory Topic Optional Topic
Null Subject (NS) No Null Subject Optional Null Subject
Null Topic (NT) No Null Topic Optional Null Topic
Wh-Movement (WhM) Wh-Insitu Obligatory Wh Movement
Preposition Stranding (PI) Obligatory Pied Piping Optional Preposition Stranding
Topic Marking (TM) No Topic Marking Obligatory Topic Marking
V to I Movemnt (VtoI) No VtoI Movement Obligatory VtoI Movement
I to C Movement (ItoC) No ItoC Movement Obligatory ItoC Movement
Affix Hopping (AH) No Affix Hopping Affix Hopping
Question Inversion (QInv) No QInversion Obligatory QInversion

Table 5: The 13 CoLAG parameters and their corresponding target values.

English are: 0001001100011 which corresponds
from left to right, the values of the thirteen parame-
ters in Table 5 from top to bottom. CoLAG English
has word order patterns made up of the following
lexical tokens: S, 01, 02, 03, P, Adv, Aux, Verb, not,
and never. These tokens correspond to subject, di-
rect object, indirect object, object of a preposition,
preposition, adverb, auxiliary, main verb, not and
never respectively. CoLAG sentence patterns also
have an overt (audible by e-children) illocution-
ary force feature: Q, DEC and IMP for questions,
declaratives and imperatives respectively. An ex-
ample English pattern in CoLAG is: S Aux V O1
[DEC] which might correspond to the natural lan-
guage sentence: ‘The little dragon is breaking the
wall.’.

CoLAG English has 360 distinct sentence pat-
terns, 180 declaratives, 36 imperatives, and 144
questions. The Null Subject (NS) parameter is the
parameter of interest here. If a CoLAG language is
generated with NS=0 (e.g., CoLAG English), then
every declarative and question has an overt subject.
If NS=1, two versions of an utterance are generated,
one with a subject and one without. The simulation
studies detailed in this study present declaratives,
questions, and imperatives to an e-child immersed
in a CoLAG English-like language. Declaratives
and questions are presented with overt subjects in
CoLAG English. In CoLAG, imperative word or-
ders universally do not have overt subjects.

A.3 Additional Algorithms

Algorithm 3 Variational Learner reward only.
for each wi in W do

set wi to 0.5.
end
for each input sentence s do

for i in range(n) do
with probability wi, parameter value pvi ← 1 with
probability 1− wi, parameter value pvi ← 0

end
Gcurr = [pv1 , ... ,pvn]
if Gcurr can parse s then

for wi in W do
adjust wi towards pvi using Equation (1) or (2);

end
end

Algorithm 4 Simulating the TVJ experiment for a
100 e-children
IARC-list1← sorted distribution of IARC for a 100 e-children
of ages 2;6-2;11
IARC-list2← sorted distribution of IARC for a 100 e-children
of ages 3;0-3;5
IARC-list3← sorted distribution of IARC for a 100 e-children
of ages 3;6-3;11
age-list1 ← sorted distribution of ages for a 100 e-children of
ages 2;6-2;11
age-list2 ← sorted distribution of ages for a 100 e-children of
ages 3;0-3;5
age-list3 ← sorted distribution of ages for a 100 e-children of
ages 3;6-3;11
for i in range (0 to 100) do

IARC1 ← IARC-list1[i]
IARC2 ← IARC-ist2[i]
IARC3 ← IARC-list3[i]
age1 ← age-list1[i]
age2 ← age-list2[i]
age3 ← age-list3[i]
Calculate optimal m and c using (IARC1, age1),
(IARC2, age2), (IARC3, age3)
Run Algorithm 2 with optimal m and c

end
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