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Introduction

We are excited to welcome you to BriGap-2, co-located with IWCS 2025, in Düsseldorf, Germany!

This second edition of the workshop on Bridges and Gaps between Formal and Computational Lingui-
stics follows up on the first edition in 2022. We have implemented a number of changes that we hope will
reflect the diverse communities that we aim to bring together in this event. In particular, we have worked
towards designing an inclusive and welcoming submission policy, soliciting archival papers to be publi-
shed in the ACL Anthology, non-archival abstracts describing work in progress, as well as presentations
of already published articles that would be of interest to our audience.
We are especially proud of the success encountered in this second edition, with 11 publications presented
at the workshop, 10 of which are included in these proceedings. The works range across a number of
topics, including but not limited to Dependent Type Semantics, the syntactic abilities of LLMs, Lexical
Functional Grammer, as well as the use NLP systems for cognitive science. We hope that future editions
of the workshop will be able to build upon this success and continue to foster the diversity of topics
addressed.
Beyond these 11 presentations, the workshop also includes two invited talks. Anna Rogers (ITU Co-
penhagen) will discuss data contamination in the age of LLMs, whereas Kees van Deemter (University
of Utrecht) will address hallucinations and how to classify them. Both keynotes provide valuable per-
spectives on pitfalls and caveats of modern NLP technology, and provide an excellent starting point for a
broader discussion on how to build successful interactions between formal and computational linguistics.

The BriGap-2 workshop was made possible thanks to the financial support of RT LIFT2, a France-based
research group aiming to bring together researchers in computational linguistics, formal linguistics, and
field linguistics around shared questions, data, and tools.
We also want to thank our colleague Grégoire Winterstein, who helped us put together the workshop
proposal before withdrawing from the organizing committee due to an excessive workload.

Timothée Bernard, Timothee Mickus, Program Chairs
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Keynote Talk
Studying Generalization in the Age of Contamination

Anna Rogers
IT University of Copenhagen

2025-09-24 09:30:00 – Room: Room 3

Abstract: In the age of Large Language Models, we can no longer be sure that the test data was not
observed in training. This talk discusses the main approaches to studying generalization, and presents a
new framework for working with controlled test-train splits across linguistically annotated data at scale.

Bio: Anna Rogers is an tenured Associate Professor at the IT University of Copenhagen is one of the
foremost experts in Natural Language Processing (NLP). Her expertise ranges from ethics in NLP to
frame semantics, and from computational social science to interpretability. Her contribution to the field
goes beyond widely acclaimed scientific articles; she has also taken on significant responsibilities within
the community, including heading the scientific committee of the 61st Annual Meeting of the Association
for Computational Linguistics (ACL 2023), and more recently taking on the role of co-editor-in-chief for
the ACL Rolling Review platform.
Her recent work at the IT University of Copenhagen focuses on understanding large language models
from a sociotechnical perspective. This has led her to studying the impact of data on what these models
converge to, as well as how to make NLP models more efficient, transparent and reliable.
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Keynote Talk
Classifying Hallucinations in Data-Text NLG: Avoiding the

Pitfalls
Kees van Demter

Universiteit Utrecht
2025-09-24 14:20:00 – Room: Room 3

Abstract: Algorithms that produce textual output can sometimes “hallucinate”, producing texts that
express information that differs from what is required. In this presentation, I will talk about hallucination
in Data-Text NLG, focusing on situations in which the task of the algorithm is to express a known body
of information both fully and accurately. Various attempts have been made to clarify the notion of
hallucination, and to distinguish between different types of hallucinations that can occur in the above-
mentioned situations. I will examine some of these classifications and ask:
(1) Are the existing classifications well defined? (2) How feasible in practice is it to apply these classifi-
cations to concrete cases of Data-Text NLG? (This is joint work with Eduardo Calo and Albert Gatt, both
at Utrecht University.) (3) How useful are the distinctions that these classifications make, for example
for determining the seriousness of a hallucination, or for redesigning the NLG algorithm so as to avoid
hallucinations? And finally, if time permits (4) What does our investigation tell us about hallucinations
in other NLG situations, for instance in Question-Answering?

Bio: Kees van Deemter is an Emeritus Professor at the University of Utrecht, where he has been a major
support and proponent of research in computational linguistics since 2018. As a long-standing expert
in the area of Natural Language Generation, he focuses on structured inputs and their limits: his work
ranges from logic-to-text systems to vagueness in natural language, and from referring expressions to
some of the caveats of modern neural NLP systems.
Luckily for us, he has recently written an “autoworkography”, so we can point you to his own words,
which without a doubt will do a much better job of retracing his steps than we can: https://arxiv.
org/abs/2504.04142.
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Natural Language Inference with CCG Parser
and Automated Theorem Prover for DTS

Asa Tomita and Mai Matsubara and Hinari Daido∗ and Daisuke Bekki
Ochanomizu University

{tomita.asa, matsubara.mai, hinari.daido, bekki}@is.ocha.ac.jp

Abstract

We propose a natural language inference (NLI)
system that operates on the principles of compo-
sitional semantics. The system integrates light-
blue, a syntactic and semantic parser grounded
in Combinatory Categorial Grammar (CCG)
and Dependent Type Semantics (DTS), with
Wani, an automated theorem prover for De-
pendent Type Theory (DTT). A key feature of
this system is that each computational step cor-
responds to a specific theoretical assumption,
allowing the system’s evaluation to function as
a form of hypothesis verification. We evaluate
our inference system using the Japanese Seman-
tic Test Suite (JSeM) and demonstrate how error
analyses can provide feedback for refining both
the system and its underlying linguistic theory.

1 Introduction

With the advancement of Natural Language Pro-
cessing (NLP), the gap between formal linguistics
and computational linguistics has been widening.
Historically, computational linguistics was deeply
intertwined with theoretical linguistics, serving as a
means to implement and empirically verify formal
linguistic theories. However, the field’s focus has
progressively shifted towards engineering-oriented
approaches, a trend significantly accelerated by the
rise of large language models (LLMs).

While LLMs have achieved impressive perfor-
mance on a wide range of NLP tasks, including nat-
ural language inference (NLI) (Cobbe et al., 2021;
Wei et al., 2022), their reasoning processes are
largely associative rather than formally grounded.
As a result, their inferences are not based on
whether a hypothesis is formally deduced from
given premises. Although their outputs are often
plausible, concerns persist regarding the reliability
and explainability of their inferential processes.

∗This work was conducted independently and does not
reflect the views or positions of Amazon Web Services.

In contrast, inference systems based on formal
linguistic theories (Bos, 2008; Chatzikyriakidis and
Luo, 2014; Abzianidze, 2017) can output formal
proof diagrams that explicitly detail the steps of syn-
tactic, semantic, and theorem proving analysis. A
notable example is ccg2lambda (Mineshima et al.,
2015; Martínez Gómez et al., 2016), an inference
system the syntactic parser of which employs Com-
binatory Categorial Grammar (CCG; Steedman,
1996, 2000), a lexicalized grammar that associates
syntactic and semantic information with lexical en-
tries. It generates higher-order logical forms, which
are then processed by the Coq theorem prover (The
Coq Development Team, 2021).

Despite its theoretical foundation, ccg2lambda
has limitations stemming from its bi-LSTM-based
syntactic parser (Yoshikawa et al., 2017). As CCG
concentrates linguistic information within the lex-
icon, neural parsers make it difficult to precisely
diagnose errors at the lexical level. In practice, cor-
recting parsing errors often requires modifying the
treebank and retraining the model, which hinders
its utility for empirical theory verification.

We conceptualize inference as the ability to for-
mally deduce the semantic representation of a hy-
pothesis from that of the premises. To address the
aforementioned challenge, we propose an inference
pipeline (Figure 1) that combines lightblue (Bekki
and Kawazoe, 2016), a robust syntactic and seman-
tic parser based on CCG and Dependent Type Se-
mantics (DTS; Bekki, 2014; Bekki and Mineshima,
2017), with Wani (Daido and Bekki, 2017), an
automated theorem prover for DTS. We evaluate
this pipeline along with a detailed error analysis.

2 Theoretical Background

2.1 Combinatory Categorial Grammar (CCG)
CCG is a lexicalized grammar that models syn-
tactic structures through a lexicon and a set of
combinatory rules. We adopt CCG as our syntac-
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tic framework, because it allows for the explicit
encoding of syntactic and semantic information
within lexical items, providing a clear and localized
representation of linguistic structure. This design
is particularly well-suited for computational imple-
mentations aimed at the empirical verification of
linguistic theories, as parsing errors can often be
directly attributed to specific lexical entries, facili-
tating targeted revision.

2.2 Dependent Type Semantics (DTS)

DTS is a type-theoretical framework for natural
language semantics based on Dependent Type
Theory (DTT; Martin-Löf, 1984). In DTT, the
Curry–Howard correspondence establishes an iso-
morphism between types as propositions, and be-
tween terms as proofs. A key feature of this system
is its ability to allow types (propositions) to be
dependent on terms (proofs). This property al-
lows DTS to represent propositions (types) that
contain a reference to a proof from a preceding dis-
course, Consequently, it reduces phenomena such
as anaphora and presupposition resolution to proof
search. Since this proof search mechanism is used
to validate inferences from premises to conclusions,
DTS provides a unified, proof-theoretic account
of meaning. Beyond its handling of anaphora
and presupposition resolution, the type-theoretical
foundation of DTS also allows for the use of type-
checking to ensure the consistency of semantic
representations. We will examine this property in
detail in Section 3.1.2.

3 Inference Pipeline

3.1 Syntactic/Semantic Parser lightblue

lightblue1 is a syntactic and semantic parser that
integrates CCG-based syntactic parsing with DTS-
based semantic composition. The syntactic parsing
is grounded in the formalization of Japanese CCG
as described in Bekki (2010), and it is capable of
generating syntactic structures enriched with de-
tailed syntactic features. Furthermore, lightblue
incorporates the anaphora resolution mechanism
based on type inference to identify anaphoric re-
lations within discourse. The system also verifies
the consistency of the derived semantic representa-
tions by performing type checking (Bekki and Sato,
2015).

1https://github.com/DaisukeBekki/lightblue

3.1.1 Anaphora and Presupposition
Resolution with lightblue

In DTS, type checking is employed to verify whether
a semantic representation, obtained through seman-
tic composition, is of type type in DTT. This
condition is referred to as the Semantic Felicity
Condition (SFC). Consequently, this process re-
trieves the contexts that are available for resolving
anaphora and presuppositions.

Pronouns and presupposition triggers introduce
underspecified terms into the semantic representa-
tions. Following semantic composition, lightblue
performs type checking, in which each underspec-
ified type launches a proof search, and the Wani
system calculates a corresponding (possibly empty)
set of proof terms.

The proof terms derived from the above process
are used to rewrite underspecified terms, resulting in
fully specified semantic representations. This is the
first system to implement anaphora and presupposi-
tion resolution in DTS, according to its theoretical
formulation. This implementation was made pos-
sible by the seamless integration of lightblue and
Wani.

3.1.2 Type Checking for Evaluating Semantic
Analysis

In CCG, semantic composition is derived from
the syntactic structure through a homomorphic
mapping. Consequently, any ill-formedness in
the resulting semantic representations indicates an
inconsistency in the corresponding lexical entries.
Therefore, the failure of the SFC, as described in the
previous section, directly points to an error in some
semantic representation specified in the lexicon. In
this way, type checking serves as a valuable tool
for verifying the internal consistency of the overall
implementation.

3.2 Automated Theorem Prover Wani
Wani (Daido and Bekki, 2017) is an automated
theorem prover designed for a specific fragment of
DTS. Given a set of premises and a conclusion, both
formulated as propositions in DTT, Wani attempts
to construct a proof. If a proof is found, it outputs
the corresponding DTT proof diagram.

Wani performs proof search by applying DTT in-
ference rules to the premises and the conclusion. It
combines forward reasoning and backward reason-
ing strategies. Forward reasoning proceeds from
the premises, applying elimination rules to derive

2
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Syntactic / Semantic
Analysis

lightblue

Type  Checking

Γ ⊢ 𝑀 ∶ 𝒕𝒚𝒑𝒆	?𝑆 ∶ 𝑀

Input
Premise 1

Premise n
…

Hypothesis

wani

Γ ⊢	? : 𝐴

Proof Search

Output

Inference Result

- CCG Syntactic  Structure
- DTS Semantic Representation

- Type Check Query
- Type Check Diagram
- Proof Search Query
- Proof Search DiagramAnaphora Resultion

𝑥!:𝑀!, … , 𝑥":𝑀" ⊢? :𝑀#

Proof Search

Inference Result  
−	Yes
−	No
−	Unknown

Inference

𝑆 ∶ CCG syntactic structure  
𝑀:	DTS semantic representation 
𝐴: type (proposition) 
𝑥: term (proof) 

Figure 1: NLI pipeline with lightblue and Wani

their consequences and expand the set of avail-
able propositions. In contrast, backward reasoning
starts from the conclusion, iteratively working back-
ward to identify the propositions required to apply
the rules that would derive it. Wani implements
backward reasoning as a depth-first search.

Proof search in DTT is known to be undecidable.
To ensure the practical feasibility of Wani, we
introduced the following constraints on the search
process:

Time and Depth Limits To prevent non-
termination, we implemented upper bounds on
both the computation time and the number of back-
ward inference steps (i.e., depth). The search is
terminated if either of these thresholds is exceeded.

Forward vs. Backward Reasoning While for-
ward reasoning is less flexible, it guarantees termi-
nation for elimination rules. Conversely, backward
reasoning, while more versatile, can lead to nonter-
mination. To balance these trade-offs, Wani uses
forward reasoning for the elimination rule of Σ
types and for both the introduction and elimination
rules of identity types. All other inference rules are
handled via backward reasoning.

Pruning We applied branch pruning to specific
backward inference rules for to enhance search
efficiency.

3.3 Pipeline Design
The pipeline of the natural language inference sys-
tem, which utilize lightblue and Wani, is depicted
in Figure 1. The process take a set of n-premise
sentences and one hypothesis sentence as input,
which are then passed to lightblue. For each sen-
tence, lightblue performs syntactic and semantic
analyses to compose a semantic representation. A
subsequent type-checking procedure is then ap-
plied to each semantic representation to ensure that

it has the type type. At this stage, a context for
anaphora and presupposition resolution is incremen-
tally constructed by sequentially adding previously
type-checked (fully-specified) semantic representa-
tions. This allows type-checking to serve as both a
consistency check and a mechanism for anaphora
and presupposition resolution. Once all sentences
have successfully passed the type-checking phase,
Wani is called upon to conduct a proof search. Dur-
ing the search, Wani attempts to construct a proof
term of type Mh (the semantic representation of the
hypothesis) from the semantic representations of
the premise sentences M1, . . . ,Mn. If a proof term
is found, Wani returns a proof diagram as output.
Based on the output from Wani, lightblue assigns
one of three inference labels:

yes: A proof term of type Mh is constructed (i.e.,
the hypothesis is entailed)

no: A proof term of type ¬Mh is constructed (i.e.,
a contradiction)

unknown: No proof term is constructed.

Finally, lightblue provides a structured output
containing the following information:

Syntactic Structures / Semantic Representations
The CCG syntactic structures and DTS semantic
composition for the premises T1, . . . , Tn and the
hypothesis H

Type Checking Information Type checking
queries and the corresponding proof diagrams

Proof Search Information Proof search queries
and the corresponding proof diagrams

Inference Result The inference label assigned by
the system.
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JSeM ID:693, Answer:Yes
Premise
ITEL-wa 1993-nen-ni MTALK-o tsukut-ta.
ITEL-TOP 1993-year-in MTALK-ACC
make-PST
(ITEL made MTALK in 1993.)
Hypothesis
ITEL-wa 1993-nen-ni MTALK-o tsukuri-oe-ta.
ITEL-TOP 1993-year-in MTALK-ACC
make-finish-PST
(ITEL finished making MTALK in 1993.)
JSeM ID:703, Answer:Unknown
Premise
Taro-ga Hanako-o sikat-ta.
Taro-NOM Hanako-ACC scold-PST
(Taro scolded Hanako.)
Hypothesis
Taro-ga sikara-re-ta.
Taro-NOM scold-PASSIVE-PST
(Taro was scolded.)

Table 1: Examples in the JSeM dataset

4 Evaluation Experiment
4.1 Dataset: JSeM
The evaluation was conducted on the JSeM
dataset (Kawazoe et al., 2015)2, an inference dataset
for Japanese. The dataset contains a mixed set of
inference problems: some are direct translations of
the English FraCaS test suite (Cooper et al., 1996),
while others are specifically designed to address
semantic phenomena unique to Japanese. Each
problem consists of a set of premises, a hypothesis,
and an inference label (yes, no, unknown, or un-
def, which denotes unacceptable sentences). The
problems are further organized into sections cate-
gorized in accordance with linguistic phenomena.
Examples of data labeled as yes and unknown are
shown in Table 1.

4.2 Experiment Setup
We evaluate our system on the 36 problems from
the “Verbs” section of JSeM dataset (see Table 1 for
examples). This section was selected as it represents
the most basic subset of inference problems.

We report the following evaluation metrics: pars-
ing success rate, type-checking success rate, and
overall accuracy, precision, recall, and F1 scores.

2https://github.com/DaisukeBekki/JSeM

The parsing success rate measures the proportion
of problems for which a full syntactic and semantic
parse was successfully obtained, as this is a prereq-
uisite for inference. The type checking success rate
measures the number of cases where the semantic
analysis yielded a well-formed and internally con-
sistent semantic representation. Macro averages
treat each class equally, while weighted averages
reflect the actual label distribution. Given the class
imbalance in the dataset, we report both macro- and
weighted-averaged scores for a balanced evaluation.

We emphasize that the 36-problem evaluation set
was not used for any system tuning. All components,
including parsing, semantic composition, and infer-
ence, were applied uniformly without task-specific
adjustments.

4.3 Result

Results are shown in Table 2. The evaluation set
comprises 72 sentences (36 premises and 36 hy-
potheses), lightblue generated full parsed trees in
65 sentences, achieving a parsing success rate of ap-
proximately 90%. When restricting the evaluation
to the 52 unique sentences by removing duplicates,
the system achieved full parsed trees for 48, corre-
sponding to a 92.3% success rate. Moreover, type
checking succeeded for all parsed sentences, indi-
cating that semantic representations obtained from
our semantic analysis satisfied the Semantic Felic-
ity Condition (SFC) and were well-formed. The
inference component correctly answered 24 out of
the 36 problems. Compared to ccg2lambda, our
system demonstrated superior performance across
all evaluation metrics: accuracy, recall, precision,
and F1 score.

Although GPT-4o achieves the highest scores on
all metrics, these results should be interpreted as
reference values rather than a direct comparison.
This is because our research aims at transparent and
linguistically grounded inference, which contrasts
with the black-box nature GPT-4o. In our frame-
work, a prediction is considered correct only if the
system can successfully parse the input, assign a
consistent semantic representation, and construct
a formal proof. From this perspective, predictions
made without a derivable proof, such as GPT-4o’s
“yes” without an explicit reasoning trace, cannot be
fully trusted as valid inferences. Thus, our system
prioritizes explainability and credibility based on
evidence, over mere surface-level agreement with
the correct label.

4
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System ccg2lambda Our System GPT-4o Majority
Parsing - 0.90 - -
Type Check - 1.0 - -
Accuracy 0.556 0.667 0.861 0.806
Precision (macro | weighted) 0.250 | 0.806 0.342 | 0.877 0.438 | 0.951 0.201 | 0.806
Recall (macro | weighted) 0.172 | 0.556 0.397 | 0.667 0.349 | 0.861 0.250 | 1.000
F1 (macro | weighted) 0.204 | 0.658 0.319 | 0.700 0.382 | 0.897 0.223 | 0.892

Table 2: Performance comparison with other systems. Among ccg2lambda and our system, the higher value for each
metric is underlined. The “Majority” baseline, which assignes the most frequent label (“yes”) to all the problems, is
also included for reference. For GPT-4o model, we set the temperature to 0.7 and the maximum token limit to 1000.
The confusion matrix and the precise prompt used for inference are shown in Table 3 and Figure 2 in the Appendix.

4.4 Error Analysis
Out of the 12 problems with incorrect answers,
7 were attributed to the lack of external world
knowledge, 2 to current limitations in Wani’s proof
search, and the remaining 3 to parsing errors.

4.4.1 External world knowledge
An example of an error attributed to a lack of world
knowledge is the following problem:3

P: ITEL owned APCOM from 1988 to 1992.

H: ITEL owned APCOM in 1990.

To Correctly infer the hypothesis from the premise,
the system requires temporal world knowledge –
that 1990 falls within the range from 1988 to 1992
– which is not explicitly encoded.

Incorporating external knowledge presents a well-
known challenge. While several studies have ex-
plored integrating knowledge bases into their in-
ference systems (Martínez-Gómez et al., 2017;
Yoshikawa et al., 2019), these approaches often
involve a trade-off where improving recall can lead
to a decrease in precision. Therefore, simply inject-
ing more knowledge into the system is insufficient
to increase the number of provable cases.

4.4.2 Parsing Error
In our system, we observed parsing errors related to
the interpretation of case marks. A representative
example is the following sentence4:

P: Taro-wa
Taro-NOM

Jiro-kara
Jiro-from

Hanako-o
Hanako-ACC

syookaisa
introduce

-re
PASSIVE

-ta
PST

‘Taro was introduced to Hanako by Jiro.’

3JSeM ID: #698
4JSeM ID: #717

In this case, the parser failed to correctly recog-
nize that kara (“from”) in the passive construction
semantically corresponds to the dative argument in
the active counterpart. It is known that kara-NP is
not fully interchangeable with the dative NP, and
is not always licensed as a verbal argument. Con-
sequently, resolving such errors requires a deeper
linguistic analysis of selectional restrictions and
case-marking behavior for specific verbs, rather
than a simple modification or addition of lexical
entries for kara.

5 Conclusion
This paper has presented a linguistically-grounded
natural language inference system, which inte-
grates syntactic parsing, semantic composition,
type checking, and proof search. Our proposed
pipeline demonstrated improved inference accuracy
over existing formal systems.

This system offers a promising avenue for bridg-
ing the gap between linguistic theory and large
language models. Given that all of its technical
components are based on hypotheses from formal
linguistics, improvements to the system directly con-
tribute to the refinement of theoretical assumptions.
Furthermore, lightblue can serve as a novel tool
for verifying the outputs of LLMs, thereby facili-
tating systematic comparisons between data-driven
inferences and theory-driven predictions.
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A Appendix

GPT 4o ccg2lambda lightblue
Yes No Unk Other Yes No Unk Other Yes No Unk Other

Ground
Truth

Yes 28 0 1 0 20 0 1 8 17 0 12 0
No 0 0 0 0 0 0 0 0 0 0 0 0
Unk 0 4 3 0 0 0 0 7 0 0 7 0
Other 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Confusion matrix of inference systems

与えられた文のペアについて、文Aが文Bを含意するかどうかを判定し、そのペア
に〈DATASET_LABEL〉を付けてください。〈DATASET_LABEL〉は以下のいずれかです：
yes：前提が仮説を含意する
no：前提が仮説の否定を含意する
unknown：前提が仮説を含意せず、その否定も含意しない
undef：与えられた情報のみからは判断ができない

文A：〈PREMISE_SENTENCE〉
文B：〈HYPOTHESIS_SENTENCE〉
####
〈DATASET_LABEL〉のみ出力してください。

—- English Translation —–
Given a pair of sentences, determine whether Sentence A entails Sentence B, and assign a
〈DATASET_LABEL〉 to the pair.〈DATASET_LABEL〉 must be one of the following:
yes: the premise entails the hypothesis
no: the premise entails the negation of the hypothesis
unknown: the premise entails neither the hypothesis nor its negation
undef: it is not possible to determine based on the given information alone

Sentence A: 〈PREMISE_SENTENCE〉
Sentence B: 〈HYPOTHESIS_SENTENCE〉

####
Only output 〈DATASET_LABEL〉.

Figure 2: Prompt designed for LLMs to assign the entailment relation label <DATASET_LABEL>, and its English
translation
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Abstract

Recent studies employing Large Language
Models (LLMs) to test the Argument from the
Poverty of the Stimulus (APS) have yielded
contrasting results across syntactic phenom-
ena. This paper investigates the hypothesis
that characteristics of the stimuli used in re-
cent studies, including lexical ambiguities and
structural complexities, may confound model
performance. A methodology is proposed for
re-evaluating LLM competence on syntactic
prediction, focusing on GPT-2. This involves:
1) establishing a baseline on previously used
(both filtered and unfiltered) stimuli, and 2)
generating a new, refined dataset using a state-
of-the-art (SOTA) generative LLM (Gemini 2.5
Pro Preview) guided by linguistically-informed
templates designed to mitigate identified con-
founds. Our preliminary findings indicate that
GPT-2 demonstrates notably improved perfor-
mance on these refined PG stimuli compared
to baselines, suggesting that stimulus quality
significantly influences outcomes in surprisal-
based evaluations of LLM syntactic compe-
tency.

1 Introduction

The Argument from the Poverty of the Stimulus
(APS) remains a central topic in linguistics and cog-
nitive science, and proposes that human linguistic
competence extends beyond that supported by di-
rect evidence available during acquisition, thereby
implying contributions of innate knowledge to lan-
guage learning (Chomsky, 1980). Using artificial
neural networks as proxies for unbiased learners,
recent studies have explored the generalizations
that Large Language Models (LLMs) form about
linguistic phenomena. A promising line of research
compares token probabilities in minimal pairs (e.g.,
(Linzen et al., 2016; Futrell et al., 2019; Wilcox
et al., 2024; Lan et al., 2024)) following Elman’s
1990 recommendation that language models be

treated as human subjects in psycholinguistic stud-
ies.

Wilcox et al. (2024) provide significant findings
in this area, demonstrating that LLMs can achieve
high performance on various English filler-gap de-
pendencies and island constraints, as measured by
surprisal metrics applied to critical regions of mini-
mal pairs of sentences (Wilcox et al., 2024). Their
results challenge the necessity of linguistic innate-
ness for these particular syntactic structures.

Building on this work, Lan et al. (2024) inves-
tigate more complex, lower frequency syntactic
constructions, notably parasitic gaps (PGs) and
across-the-board (ATB) movement, but argue that
the observed failures of LLMs (including GPT-2) to
adequately learn these structures support the APS.

This paper limits its scope to the evaluation of
PGs in the context of Lan et al.’s 2024 analysis.
We argue that while their work addresses crucial
linguistic questions, a critical examination of their
PG stimuli reveals characteristics that may inter-
fere with LLM performance. These characteristics
include: 1) unintended lexical ambiguities, 2) the
structural complexity of the noun phrases hosting
parasitic gaps, and 3) potential alternative repairs
to ungrammaticality.

The central aim of this research is to investi-
gate the extent to which such properties affect an
LLM’s predictive power in critical regions of PGs.
We propose a methodology centred on generat-
ing controlled stimuli using a SOTA generative
LLM (Gemini 2.5 Pro Preview) guided by precise,
linguistically-informed templates. This approach
seeks to mitigate the identified potential confounds
while allowing for some flexibility in generation.
We present preliminary findings, comparing model
performance on our dataset to baselines derived
from the original Lan et al. (2024) PG data. Our re-
sults suggest that stimulus quality has a significant
impact on surprisal scores in critical regions, with
implications for the broader APS debate and for
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researchers interested in applying surprisal-based
methods to the investigation of LLM capabilities.

2 Parasitic Gap Stimuli

Using a Context-Free Grammar (CFG), (Lan et al.,
2024, Table 2, p. 16) generated a total of 8,064 sen-
tence tuples each comprised of ±Filler, ±Gap
variations, exemplified in Table 1. While this ap-
proach allows for controlled generation, close ex-
amination reveals characteristics of the resulting
PG stimuli that may influence model performance
independently from the core syntactic properties of
PG licensing.

2.1 Unintended Ambiguity
This section identifies two ambiguities prevalent in
Lan et al.’s PG dataset. A particularly prominent ex-
ample involves the use of possessive gerunds (e.g.,
“John’s talking”) within the subject noun phrase
(NP) that hosts the first gap (G1).

(1) *I know who [John’s talking to _] is going
to annoy you soon.

Here, “John’s” is ambiguous between a contrac-
tion of “John is” and the possessive “John + GEN”.
If interpreted as “John is talking to _,” the em-
bedded phrase might not form the intended island
structure necessary for a PG, or its grammatical-
ity profile changes. Conversely, if interpreted as a
possessive, it forms the intended complex NP is-
land. Given that the stimuli presented to the LLMs
were unbracketed and unannotated (as confirmed
by the project’s public repository), the model must
disambiguate this string without a forced reading
of sentence structure. Similarly, constructions such
as “intent to” (e.g., in “I know who Bob’s intent
to talk to _ is about to bother soon” include the
same ambiguity with the addition of a potential
alternative rescue for the sentence’s overall gram-
maticality (e.g., “intent on talking to” or “intention
of talking to”) that might alter processing ease.

2.2 Structural Complexity of Noun Phrases
The parasitic gap (G1) in Lan et al. stimuli
is embedded within a subject NP that forms
an island, derivable from their CFG rules such
as “(NP_COMPLEX) -> (N_EMBEDDED) ‘to’
(V_EMBEDDED)” (Lan et al., 2024, Table 2, p. 16),
leading to structures such as the underlined portion
of

(2) I know who Bob’s decision to dance with _
is likely to bother eventually.

While subject NPs are indeed syntactic is-
lands, the internal complexity of these specific
NP_COMPLEX structures (involving nominals fol-
lowed by an infinitival phrase) introduces a de-
gree of structural depth that goes beyond the more
canonical adjunct PG constructions often cited as
core examples in the literature (Culicover et al.,
2001). This complexity might itself be a confound-
ing factor for LLMs.

3 Method

To investigate the impact of stimulus characteris-
tics on LLM performance for PG constructions, an
experiment was designed to compare model perfor-
mance across three datasets: the original Lan et al.
stimuli, a filtered version of this original set, and a
new, refined set generated for this study. For our
analysis, we selected GPT-2 as the primary evalua-
tion model. This choice is motivated by two factors:
first, its use in both Wilcox et al. (2024) and Lan
et al. (2024) provides a direct point of comparison
with prior findings. Second, while GPT-2 possesses
sophisticated language capabilities, it precedes the
current era of massive-scale models. This makes
it a more suitable testcase for hypotheses related
to the Argument from the Poverty of the Stimulus,
as it is less likely to have encountered rare syntac-
tic constructions, such as parasitic gaps, at a high
frequency during its training.

3.1 Evaluation Metric: Surprisal
Our primary measure of model performance is sur-
prisal, which quantifies how unexpected a given
word (wi) is in its preceding context (C). Follow-
ing standard practice (Wilcox et al., 2024; Lan et al.,
2024), surprisal is calculated as the negative log
probability, in bits:

S(wi | C) = − log2 P (wi | C) (1)

Lower surprisal values indicate that a word is more
predictable. We used this metric to calculate the
∆ and Difference-in-Differences (DiD) metrics
as proposed by Lan et al. (2024), where ∆ =
S(-Gap Continuation) − S(+Gap Continuation).
Model success in modelling the relevant grammat-
icality judgement is indicated by ∆+filler > 0 and
DiD = (∆+filler −∆−filler) > 0.

3.2 Datasets
We compare GPT-2’s performance across three dis-
tinct datasets for PGs:
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Table 1: Example paradigm for parasitic gaps. Underlined words indicate the filler alternations. Boldfaced words indicate the
critical region that shows whether the continuation is gapped or not. Reproduced from Table 4 Lan et al. (2024, p. 19).

+Gap -Gap

+Filler I know who John’s talking to is about to annoy soon. I know who John’s talking to is about to annoy you soon.

-Filler I know that John’s talking to Mary is about to annoy
soon.

I know that John’s talking to Mary is about to annoy you
soon.

(a) Original Lan et al. (2024) Stimuli: The full
dataset generated from their CFG (N=8064
items), extracted from their publicly available
materials.

(b) Filtered Lan et al. (2024) Stimuli: A sub-
set of the original dataset (N=5760 items) ex-
cluding all items containing the specific am-
biguous constructions identified in Section 2,
namely those following the pattern: “NAME’s
VERBing to”.

(c) Refined Stimuli (This Work): A new, con-
trolled dataset of subject PG constructions
generated using Gemini 2.5 Pro Preview (see
Appendix A for the full prompt template).
This generation was guided by precise struc-
tural templates designed to mitigate the con-
founds present in the original dataset, in-
cluding using unambiguous “the [NounHead]
of/about G1” structures for the subject is-
land, ensuring pragmatically plausible co-
indexation, and using single-word critical re-
gions for the main clause gap (G2) compari-
son. All such generated items underwent man-
ual review for grammaticality.

3.3 Experimental Procedure

For each dataset, we followed an identical experi-
mental procedure:

(1) Data Preprocessing: Stimuli are formatted
into a long-format CSV with columns for
sentence_type, item_id, condition, and
full_sentence.

(2) Surprisal Extraction: BPE-level surprisals
for each sentence are obtained from GPT-2
using a Python pipeline leveraging the lib.py
framework from Lan et al.’s (2024) repository.

(3) Critical Region Aggregation: Surprisals for
the single-word critical regions (the overt ob-
ject NP in ‘-Gap‘ conditions or the post-gap
adverb in ‘+Gap‘ conditions) are calculated
by summing the surprisals of their constituent
BPEs.

(4) Analysis: The ∆ and DiD metrics, along with
accuracies and one-sample t-tests, are calcu-
lated for each dataset to allow for direct com-
parison.

4 Preliminary Findings and Discussion

Following the methods outlined in Section 3, we
conducted a preliminary evaluation using GPT-2.
The primary focus was to assess whether refining
the stimuli for PG constructions, specifically ad-
dressing the potential confounds identified in Lan
et al.’s 2024 dataset, would lead to a different pat-
tern of performance for GPT-2.

4.1 GPT-2 Performance on Original, Filtered,
and Refined PG Stimuli

Lan et al. (2024) originally reported that GPT-2
performed poorly on PG stimuli, with key met-
rics around 5.6% accuracy for the ∆+filler > 0
criterion and 68.8% accuracy for the Difference-
in-Differences (DiD) criterion (Lan et al., 2024,
Figs. 5 & 6, pp. 18, 21). This was presented as
support for APS.

To establish a direct baseline, our pipeline con-
firmed these findings on the unfiltered original Lan
et al. (2024) dataset (N=8064), yielding an accu-
racy of 5.61% for ∆+filler > 0 and 68.75% for
the DiD metric. Next, GPT-2’s performance on the
filtered subset (N=5760) was analysed. On this fil-
tered set, accuracy for the ∆+filler > 0 criterion im-
proved to 7.01% (χ2(1) = 11.2381, p = 0.0008),
and for the DiD criterion, accuracy improved to
72.93% (χ2(1) = 28.0780, p < 0.0001). These
results provide initial empirical support for the iden-
tified constructions acting as confounds.

Finally, GPT-2 was evaluated on newly gener-
ated, refined subject_pg stimuli (N=10 items).
This yielded significant further improvement: for
the ∆+filler > 0 metric, accuracy rose to 60.0%
(t(9) = 1.66, p = 0.066, one-tailed), and for the
DiD metric, accuracy reached 80.0%, a statisti-
cally significant effect (t(9) = 2.64, p = 0.013,
one-tailed; 95% CI [0.39, 5.01]). These compara-
tive accuracy scores are visualized in Figure 1.
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Figure 1: Comparison of GPT-2 accuracy on Parasitic Gap
constructions. Accuracy is shown for the ∆+filler > 0 and
Difference-in-Differences (DiD) > 0 criteria across the original
(Lan et al., 2024) dataset, a filtered version, and our own
refined stimuli. Error bars represent 95% confidence intervals.

4.2 Discussion

The preliminary findings from our refined
subject_pg dataset indicate a marked improve-
ment in GPT-2’s performance compared to the re-
sults reported by Lan et al. (2024) for their original
PG stimuli using the same model. The DiD accu-
racy increased from ∼69% to 80%, and notably, the
direct preference accuracy (∆+filler > 0) jumped
from ∼6% to 60%.

While these results are based on an initial set
of refined stimuli and a single model, they sug-
gest that characteristics of the test stimuli play a
substantial role in LLM evaluations of complex
syntax. The reduction of lexical ambiguities (like
the “John’s” issue) and the use of more canoni-
cal island structures for the G1-hosting subject NP
may have allowed GPT-2 to better demonstrate any
underlying sensitivity it has to PG constructions.

These findings do not nullify Lan et al.’s (2024)
broader arguments regarding the APS, that more
complex linguistic phenomena may be better suited
to test learnability. However, they do suggest that
conclusions about an LLM’s failure to acquire a
phenomenon might be premature if based on stim-
uli containing significant potential confounds. If an
LLM’s performance is demonstrably better on re-
fined, unambiguous stimuli, it points to the model’s
sensitivity to these confounds, and implies that
at least some of the previously observed “failure”
might be attributable to the nature of the test items
themselves rather than to incomplete generalization.
This suggests that the introduction of unintended
complexities, not directly targeted by the parasitic
gap investigation, may obscure an LLM’s under-

lying sensitivity to PG licensing, analogous to the
effect of increased structural complexity (e.g., em-
bedding depth) Wilcox et al. (2024) in reducing
wh-effects in filler-gap dependencies.

The approach of using a SOTA generative LLM
(Gemini 2.5 Pro Preview) guided by precise lin-
guistic templates for creating these refined stimuli
shows promise as a method for developing more
robust and theoretically sound evaluation protocols.
This can help in disentangling true model capa-
bilities from noise introduced by problematic test
data.

4.3 Limitations and Future Directions
Future work based on these preliminary findings
will involve:

• Expanding the refined dataset to include more
items and other PG structures (e.g., adjunct
PGs).

• Testing a wider range of LLMs, including
more recent architectures and models trained
on smaller datasets.

• Conducting a more detailed error analysis on
the original Lan et al. (2024) PG dataset us-
ing our full pipeline to quantify the impact of
specific item characteristics.

• Further refining the LLM-based stimulus gen-
eration methods.

5 Conclusion

This work investigated the impact of stimulus qual-
ity on the evaluation of LLM knowledge of com-
plex syntax, focusing on parasitic gaps as studied
by Lan et al. (2024). Potential confounds in their
stimuli were identified, and it was demonstrated
that GPT-2’s performance on parasitic gap con-
structions improves significantly when evaluated
on a refined dataset designed to mitigate these is-
sues.

Preliminary results suggest that conclusions
about an LLM’s failure to acquire a phenomenon
may be premature if based on stimuli with con-
founds. This underscores the critical importance of
stimulus design. The initial results reported here
underscore the critical importance of stimulus qual-
ity in the evaluation of LLM syntactic abilities and
have direct bearing on debates surrounding linguis-
tic nativism and learnability.
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A Prompt Template for Stimulus Generation

Prompt for data generation:

Your task is to generate 10 unique item sets for testing parasitic gap constructions
in English. Each item set must consist of exactly four sentences , following a

$2 \times 2$ factorial design: +/- Filler and +/- Main Clause Gap (G2). The
output should be formatted as a series of comma -separated lines , with each line
representing one sentence.

** Objective :**

The primary goal is to create natural -sounding and grammatically clear sentences.
The `+Filler , +Gap` sentence in each set must be a canonical parasitic gap
construction where the wh-filler "who" is co-indexed with two gaps: G1 (the
parasitic gap within a subject NP island) and G2 (the host gap , object of the
main embedded verb). This co-indexed reading should be pragmatically plausible.
The critical material differentiating the `+G2` (gapped) and `-G2` (filled)
conditions for the main clause verb must be a single word.

**Core Sentence Structure for Parasitic Gap (`+Filler , +Gap ` condition):**

`[Preamble] who [SubjectNP containing G1] [MatrixVerbPhrase licensing G2] [
ADV_Post_G2_Gap].` (Note: The gap for G2 is implied before the ADV_Post_G2_Gap).

** Detailed Constraints for Sentence Components :**

1. ** Preamble :** Choose from simple introductory phrases like: "I know", "She heard
", "They believe", "The report suggested", "It is clear".

2. ** Filler/Complementizer :**
* `+Filler ` conditions use: "who"
* `-Filler ` conditions use: "that"
3. ** Subject NP containing G1 (The Island):**
* This NP must be the subject of the matrix verb phrase. The gap G1 is the object of

the preposition.
* Structure: "the `[NounHead]` `[Preposition]`" (The gap G1 is implied after the

preposition).
* `[NounHead]`: Use common nouns that naturally take a PP complement with "about" or

"of" where the object of the preposition can be a person. Examples: "story", "
report", "book", "article", "picture", "critique", "rumor", "discussion", "
painting", "description ".

* `[Preposition]`: Use **only "about" or "of"**. Select the preposition that forms
the most natural phrase with your chosen `[NounHead]`.

4. ** Matrix Verb Phrase (licensing G2):**
* Structure: `[LinkingVerb] [TransitiveVerb_G2]` (The gap G2 or object

G2_FillerObject follows this).
* `[LinkingVerb]`: Use common linking phrases like: "is likely to", "is going to", "

is expected to", "will probably", "might".
* `[TransitiveVerb_G2]`: Use common transitive verbs that naturally take a person as

a direct object (for G2). Examples: "upset", "amuse", "delight", "interest", "
surprise", "anger", "please", "concern", "bother", "disturb", "fascinate ".

5. ** Critical Word for +G2 (Gapped) Condition :**
* `[ADV_Post_G2_Gap]`: When G2 is gapped , the sentence should continue immediately

after `[TransitiveVerb_G2]` with a single , common adverb from the following list
ONLY: "soon", "eventually ". This adverb signals the gapped G2.

6. ** Lexical Items for Filled Gaps :**
* `[G1_FillerName]` (fills G1 in `-Filler ` conditions that also have G1 filled): Use

common , simple proper names (e.g., "Mary", "John", "Sarah", "the manager ").
* `[G2_FillerObject]` (fills G2 in `-G2` conditions): **Use ONLY a single common

proper name from a list such as: "Anna", "Ben", "Chris", "Dana", "Leo", "Sara",
"Tom", "Paul", "Nina". Please vary the names used. Avoid using "Kim" for this
slot if other simple names from this list or similar common single names are
suitable .** The goal is a single -word proper name.

* Ensure `[G1_FillerName]` and `[G2_FillerObject]` are different within the same
item set.

** Factorial Design - Sentence Patterns for Each Item Set:**
(Note: Gaps are implied by the structure and absence of overt objects .)
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1. **`PFPG ` (`+Filler , +G1_gap , +G2_gap `):**
`[Preamble] who the [NounHead] [Preposition] [LinkingVerb] [TransitiveVerb_G2] [

ADV_Post_G2_Gap].`
*Example: I know who the story about is likely to amuse soon.*
2. **`MFPG ` (`-Filler , +G1_filled , +G2_gap `):**
`[Preamble] that the [NounHead] [Preposition] [G1_FillerName] [LinkingVerb] [

TransitiveVerb_G2] [ADV_Post_G2_Gap].`
*Example: *I know that the story about Mary is likely to amuse soon.*
3. **`PFMG ` (`+Filler , +G1_gap , -G2_filled `):**
`[Preamble] who the [NounHead] [Preposition] [LinkingVerb] [TransitiveVerb_G2] [

G2_FillerObject] [ADV_Post_G2_Gap].`
*Example: *I know who the story about is likely to amuse Anna soon.*
4. **`MFMG ` (`-Filler , +G1_filled , -G2_filled `):**
`[Preamble] that the [NounHead] [Preposition] [G1_FillerName] [LinkingVerb] [

TransitiveVerb_G2] [G2_FillerObject] [ADV_Post_G2_Gap].`
*Example: I know that the story about Mary is likely to amuse Anna soon.*
** Output Format and Instructions for Generation :**

Please provide 10 unique item sets. For each item set , output four lines , each
corresponding to one of the conditions below. Each line must follow this exact
comma -separated format:

`sentence_type ,item_id ,condition ,full_sentence `
* **`sentence_type `**: Use the value "subject_pg" for all sentences.
* **`item_id `**: Use a unique integer for each set (e.g., 1 for the first set of

four sentences , 2 for the second set , and so on, up to 10).
* **`condition `**: Use the labels "PFPG", "MFPG", "PFMG", "MFMG" respectively for

the four sentences in each item set , corresponding to the patterns defined above
.

* **`full_sentence `**: The generated sentence string , ending with a period.

** Example of desired output format for ONE item set (item_id 1):**
subject_pg ,1,PFPG ,I know who the story about is likely to amuse soon.
subject_pg ,1,MFPG ,I know that the story about Mary is likely to amuse soon.
subject_pg ,1,PFMG ,I know who the story about is likely to amuse Anna soon.
subject_pg ,1,MFMG ,I know that the story about Mary is likely to amuse Anna soon.

** Crucial Reminders for Generation :**
* Vary lexical choices for `[Preamble]`, `[NounHead]`, `[Preposition]` (choose 'of '

or 'about '), `[G1_FillerName]`, `[LinkingVerb]`, `[TransitiveVerb_G2]`, `[
G2_FillerObject]` (from the restricted list of names), and `[ADV_Post_G2_Gap]` (
from the restricted list) across the 10 item sets to ensure diversity.

* All `PFPG ` sentences must be natural , unambiguously grammatical parasitic gap
constructions with a pragmatically plausible co-indexed reading for "who". The
subject NP containing G1 must clearly function as a syntactic island.

* All grammatical sentences (PFPG and MFMG) must be clearly grammatical;
ungrammatical sentences (MFPG and PFMG) must be clearly ungrammatical due to the
specified filler/gap violations.

Listing 1: Gemini 2.5 Prompt Template
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Abstract
In the field of natural language processing, the
construction of “linguistic pipelines”, which
draw on insights from theoretical linguistics,
stands in a complementary relationship to the
prevailing paradigm of large language mod-
els. The rapid development of these pipelines
has been fueled by recent advancements, in-
cluding the emergence of Dependent Type Se-
mantics (DTS) — a type-theoretic framework
for natural language semantics. While DTS
has been successfully applied to analyze com-
plex linguistic phenomena such as anaphora
and presupposition, its capability to account for
modal expressions remains an underexplored
area. This study aims to address this gap by
proposing a framework that extends DTS with
modal types. This extension broadens the scope
of linguistic phenomena that DTS can account
for, including an analysis of modal subordi-
nation, where anaphora interacts with modal
expressions.

1 Introduction

In recent computational linguistics research, a new
approach to natural language processing has seem
rapid progress: the use of linguistic pipelines
(Abzianidze, 2015; Mineshima et al., 2015). These
pipelines combine theoretical linguistic insights
with computational methods. A key driver of
this progress is Dependent Type Semantics (DTS)
(Bekki and Mineshima, 2017), a framework for
natural language semantics that is rooted in De-
pendent Type Theory (DTT) (Martin-Löf, 1984).
Drawing upon the rich tradition of type theory in
programming semantics, DTS provides a composi-
tional framework for the analysis of anaphora and
presupposition, which exploits theorem provers in
analyzing both anaphora resolution and general in-
ference. By a systematic mapping from formal
syntax to semantic interpretation, DTS bridges a
significant gap between linguistic theories and com-
putational implementation.

In DTS, the semantic representation (SR) of a
sentence corresponds to a type in DTT. The de-
pendency of a type on terms allows reference to
terms constructed from the context, thereby reduc-
ing both anaphora resolution and presupposition
binding to problems of proof search. While DTS
provides compelling analyses of complex linguistic
phenomena, empirical research on modal expres-
sions remains largely unexplored (but see Tanaka
et al. 2015), with existing studies primarily focus-
ing on propositions that abstract away from modal
expressions. This study aims to extend DTS by pro-
viding an analysis of phenomena involving modal
expressions.

Modal expressions, which pertain to the notions
of possibility and necessity, have been a central
research topic in formal semantics. One of the
most discussed phenomena is modal subordination
(MS), which, since the pioneering work by Roberts
(1989), has been investigated by many researchers
(Frank and Kamp, 1997; Kaufmann, 2000; van
Rooij, 2005; Asher and McCready, 2007; Keshet
and Abney, 2024). (1) and (2) illustrate MS.

(1) [A wolf]i might come in. Iti would growl.

(2) [A wolf]i might come in. #Iti growls.

As illustrated in (1), an indefinite introduced within
the scope of might brings a “hypothetical entity”
into the discourse1. To anaphorically refer to this
entity, the subsequent discourse must align with
the hypothetical scenario in which the entity is as-
sumed to exist, which is typically signaled by the
use of would in English. The absence of would, as
demonstrated in (2), blocks this alignment, thereby
preventing the pronoun from referring to the indefi-
nite and resulting in a failure of MS.

1Here, we focus on the analysis of the de dicto reading.
While example (1) also allows a de re reading, where a wolf
scopes over might, a detailed analysis of this reading within
DTS is beyond the scope of this paper.
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2 Dependent Type Semantics

DTS is a framework developed within the
propositions-as-types paradigm. In DTS, the no-
tion of existential quantification ∃x ∈ A.B is repre-
sented by the dependent product types (x : A)×B,
which are types of pairs (a, b) such that a is of type
A and b is of type B(a). The SR of the unmodal-
ized sentence in (3a) is given in (3b). We employ
vertical notation for the dependent product type
in the subsequent discussion, and π1 denotes the
proof constructor that yields the first projection of
such a pair.

(3) a. A wolf came in.

b.


 u :

[
x : entity
wolf(x)

]

comeIn(π1(u))




Bekki (2023) analyzes pronouns as introducing
underspecified types, written as (x@A)×B. Here,
the variable x functions as a placeholder that is to
be replaced by a proof of type A from a given con-
text. Example (4) briefly illustrates how anaphora
resolution proceeds in DTS.

(4) [A wolf]i came in. Iti growled.

a.




v :


 u :

[
x : entity
wolf(x)

]

comeIn(π1(u))





 w@

[
z : entity
¬ human(z)

]

growl(π1(w))







b.


 v :


 u :

[
x : entity
wolf(x)

]

comeIn(π1(u))




growl(π1π1(v))




The underspecified type in (4a) is eliminated
through type-checking, a process that validates
whether an SR is a well-formed type under a
given context. Upon encountering w@((z :
entity) × ¬human(z)), the type-checking algo-
rithm attempts to find a proof of type (z : entity)×
¬human(z). In this specific case, such a proof is
successfully found and substituted for the variable
x. Subsequently, π1π1(v), which corresponds to
the entity x (i.e., the first element of π1(v)), serves
as the argument of the predicate growl, thereby
resolving the pronoun it.

3 Modal DTS

To account for modal expressions within DTS, we
propose Modal DTS, an extension grounded in
Contextual Modal Type Theory (CMTT) (Nanevski

et al., 2008). Modal DTS introduces two novel type
constructors: [Ψ] for necessity and ⟨Ψ⟩ for possibil-
ity, both of which are parameterized by a context Ψ.
In a manner analogous to possible worlds seman-
tics, Ψ serves as a proxy for a domain of possible
worlds; accordingly, [Ψ] and ⟨Ψ⟩ indicate that the
propositions within their scope hold in all or some
worlds, respectively, where Ψ is true. As an exam-
ple, Figure 1 illustrates the SR of (1).




v: ⟨Ψ⟩


 u :

[
x : entity
wolf(x)

]

comeIn(π1(u))




[Ψ]


 w@

[
z : entity
¬ human(z)

]

growl(π1(w))







Figure 1: SR of (1) before anaphora resolution

As described in § 2, a dependent product type is a
type of pairs where the second conjunct depends
on the first element of the pair, i.e., the second con-
junct is within the scope of the dependent product
type. Accordingly, in Figure 1, where the SR of the
first sentence forms the first conjunct, and that of
the second sentence the second conjunct, the con-
tinuation it would growl quantifies over the subset
of possible worlds in which a wolf came in.

3.1 Contextual Modal Type Theory

Intuitionistic modal logic for necessity is founded
on the judgmental notion of categorical truth.
Nanevski et al. (2008) examined the consequences
of relativizing these notions of categorical truth to
explicitly specified contexts, resulting in the for-
mulation of contextual modal logic and its type-
theoretic counterpart. Nanevski et al. (2008) ad-
vanced the structural approach to intuitionistic
modal logic by allowing arbitrary contexts to be
internalized within propositions. From a type-
theoretic standpoint, CMTT is based on contex-
tual modal logic and provides formal definitions
for proof term assignment, substitution on terms,
proof reductions and expansions, as well as strong
normalization. From a logical standpoint, CMTT
constitutes a relativized variant of the intuitionistic
modal logic S4.

Modal DTS is a framework that uniquely inte-
grates the dependent types of DTS with the modal
types of CMTT. The newly introduced types are
grounded in the notions of contextual necessity and
contextual possibility as defined in CMTT. Con-
textual necessity, denoted as [Ψ]A, indicates that
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v : ⟨Ψ⟩
[

u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

] σ
′
: Ψ σ : Ψ

1

σ
′
: Ψ

( w ) v′ :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

] 1

⟨ σ′
, v

′⟩ :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

]
poss ⟨ σ′

: Ψ ⟩

( poss I )

letdia ( v, ⟨ σ, v′⟩.⟨ σ′
, v

′⟩ ) :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

]
poss ⟨ σ′

: Ψ ⟩

( 3 E ), 1

p2 ( letdia ( v, ⟨ σ, v′⟩.⟨ σ′, v′⟩ )) ( ≡ D ) :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

]

...

( π1π1(D), f(π1(D)) ) :

[
z : entity
¬ human(z)

]

( poss E )

Figure 2: A part of the proof search for (1) A wolf might come in. It would growl.

A is true in all worlds in Ψ. Contextual possibil-
ity introduces a new judgment, A poss⟨Ψ⟩, which
expresses existential quantification over possible
worlds: the judgment A poss⟨Ψ⟩ holds if there
exists a world in which both Ψ and A are simulta-
neously true. This judgment is internalized via the
type operator ⟨Ψ⟩A.

3.2 New rules added to DTS

DTT defines types using three rules: the formation
rule, the introduction rule, and the elimination rule.
The formation rule specifies the conditions under
which a type is well-formed; the introduction rule
describes how a type can be constructed; and the
elimination rule explains how a type can be used.

For the modal types [Ψ]A and ⟨Ψ⟩A, we define
their formation rules independently, while adopt-
ing their introduction and elimination rules from
CMTT. In the case of A poss⟨Ψ⟩, we define its
formation and elimination rules independently, and
adopt its introduction rule from CMTT 2.

4 Analysis

Our account treats anaphora resolution as the spec-
ification of an underspecified type by proof con-
struction. The issue of anaphora accessibility in
MS, as observed in examples (1) and (2), is thereby
reduced to the question of whether the placeholder
can be filled by replacing the variables of under-
specified types with concrete proof terms during
type-checking.

4.1 Sentence to be modally subordinated

As an example of successful proof construction,
we consider (1). Figure 2 illustrates how the vari-

2For details on the new rules added to DTS, please refer to
https://github.com/iimuraaoi/modal_dts.git

able w associated with the underspecified type
in Figure 1 is removed by a proof of type (z :
entity)× ¬human(z). Here, letdia denotes the
proof term for the elimination rule of ⟨Ψ⟩, and p2
denotes that for the elimination rule of poss.

The strategy for constructing the proof is to first
obtain D (p2 ( letdia ( v, ⟨ σ, v′⟩.⟨ σ′, v′⟩ ))) in
Figure 2, which is a proof of the SR of the first
sentence with the modal expression eliminated, i.e.,
(u : ((x : entity) × wolf(x))) × comeIn(π1(u)).
The proof search then proceeds as a standard proce-
dure in DTT without involving modal expressions.
Consequently, as illustrated by the dotted line in
Figure 2, it is sufficient to find a proof of type
(z : entity)× ¬human(z) using only the existing
rules for dependent types.

Let us follow the proof diagram in Figure 2 step
by step. Since the SR of the second sentence can
depend on the proof of the first, the SR of the first
sentence can be used in the proof of the second.
To utilize the SR of the first sentence within the
scope of possibility, we apply the elimination rule
for ⟨Ψ⟩ (= 3E). This application requires that the
SR of the sentence be introduced within a poss en-
vironment, as derived from CMTT. Therefore, we
apply the introduction rule for poss (= poss I) to
introduce the poss environment, using the context
σ′ : Ψ provided by the formation rule for neces-
sity associated with the second sentence’s modal
expression [Ψ]. Finally, the elimination rule for
poss (= poss E) is applied to eliminate the poss
environment, and we seek the proof D of the SR of
the first sentence, stripped of its modal expression.

After returning to a general proof search without
modal expressions, we search for a proof of type
(z : entity)× ¬human(z), using the information
“if something is a wolf, then it is not human” as a
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v : ⟨Ψ⟩
[

u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

] σ : Ψ
1

v′ :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

] 1

⟨ σ, v′⟩ :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

]
poss ⟨ σ : Ψ ⟩

( poss I )

letdia ( v, ⟨ σ, v′⟩.⟨ σ, v′⟩ ) :

[
u :

[
x : entity
wolf(x)

]

comeIn(π1(u))

]
poss ⟨ σ : Ψ ⟩

( 3 E ), 1

Figure 3: A part of the proof search for (2) A wolf might come in. #It growls.

global function f in the context. As a result, the
variable w associated with the underspecified type
in Figure 1 is removed, yielding Figure 4.


 v: ⟨Ψ⟩


 u :

[
x : entity
wolf(x)

]

comeIn(π1(u))




[Ψ] growl(π1π1(D))




Figure 4: SR of (1) after anaphora resolution

4.2 Sentence not to be modally subordinated

On the other hand, the anaphora in (2) is unaccept-
able. Modal DTS analyzes anaphora accessibility,
as DTS does, in terms of proof constructability.




v: ⟨Ψ⟩


 u :

[
x : entity
wolf(x)

]

comeIn(π1(u))





 w@

[
z : entity
¬ human(z)

]

growl(π1(w))







Figure 5: SR of (2) before anaphora resolution

The reason why proof construction is blocked in the
anaphora resolution of (2) lies in the rule (poss E),
which is defined independently in Modal DTS. The
application of (poss E) imposes a restriction: the
proof term corresponding to the context used to
introduce the poss environment must appear as a
free variable in the overall proof term prior to the
application of (poss E). In Figure 2, for example,
the application is permitted because this condition
is satisfied.

σ′ ∈ letdia ( v, ⟨ σ, v′⟩.⟨ σ′, v′⟩ )
Stated differently, this constraint effectively re-

quires that if the antecedent sentence contains a
modal expression, then the consequent sentence
must also contain a modal expression. In Fig-
ure 3, which illustrates the proof search for (2),
the only candidate for a modal expression intro-
duced into the poss environment is the antecedent

might, which fails to satisfy the condition necessary
for eliminating the poss environment.

σ /∈ letdia ( v, ⟨ σ, v′⟩.⟨ σ, v′⟩ )
In other words, the underspecified types in Figure 5
cannot be removed during the type-checking pro-
cess, which accounts for the unacceptability of the
sentence.

5 Conclusion

Modal DTS is more than a computational frame-
work for modal expressions; it also offers a theo-
retical contribution that puts forth empirical claims
within formal linguistics, thereby bridging the com-
putational and empirical domains of natural lan-
guage semantics.

Our future work will extend Modal DTS to pro-
vide a unified account of sentences involving modal
expressions such as may and will, which present
distinct contexts from those of might and would.
Furthermore, given a variety of analyses of modal
subordination proposed in formal semantics, a next
step will be to conduct empirical comparisons with
these alternative accounts.
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Abstract
Recent studies probing the Argument from
the Poverty of the Stimulus (APS) have ap-
plied Large Language Models (LLMs) to test
the learnability of complex syntax through
surprisal-based metrics. However, divergent
conclusions raise questions concerning the in-
sights these metrics offer. While Wilcox et al.
(2024) used direct minimal pair comparisons
(the “wh-effect”) to demonstrate that models
successfully generalise knowledge of filler-
gap dependencies, Lan et al. (2024) used a
Difference-in-Differences (DiD) metric and
found that models largely fail on parasitic gaps
(PGs). This paper argues that the direct min-
imal pair approach offers greater diagnostic
transparency. We demonstrate this by generat-
ing a full 8-permutation paradigm of refined PG
stimuli and evaluating the GPT-2 model used
in previous studies with a systematic Wilcox-
style wh-effect analysis. Our results show that
GPT-2 succeeds across all four tested condi-
tions, indicating robust knowledge of filler-gap
licensing principles even in complex PG envi-
ronments. This finding, which contrasts with
the more ambiguous results from DiD-style
metrics, suggests that the choice of evaluation
metric is critical for assessing an LLM’s syn-
tactic competence.

1 Introduction

The evaluation of syntactic knowledge in Large
Language Models (LLMs) has become a crucial
area of research for understanding their capabil-
ities and for empirically addressing foundational
questions in linguistics, such as the Argument from
the Poverty of the Stimulus (APS). Surprisal, the
negative log probability of a word given its context,
has emerged as a key psycholinguistic metric for
these evaluations (Linzen et al., 2016; Futrell et al.,
2019; Wilcox et al., 2024).

Recent work has employed surprisal-based met-
rics to test LLM knowledge of complex de-
pendencies, yet has adopted different evaluation

paradigms. Wilcox et al. (2024) investigated var-
ious filler-gap dependencies by measuring a “wh-
effect,” a direct surprisal comparison between min-
imal pairs that differ only in the presence of a wh-
filler versus a complementizer that. Their findings
generally indicated that LLMs successfully acquire
knowledge of these structures.

In response, Lan et al. (2024) tested more com-
plex phenomena—parasitic gaps (PGs) and across-
the-board (ATB) movement. To do so, they intro-
duced a Difference-in-Differences (DiD) metric, a
statistical tool designed to measure an interaction
effect across a 2 × 2 paradigm of stimuli. Their
findings, showing poor LLM performance on PGs
and ATB movement, were interpreted as support
for the APS.

While both approaches have merit, this paper ar-
gues that they differ greatly in their diagnostic trans-
parency. The direct minimal pair approach allows
for clear, interpretable tests of specific linguistic
hypotheses. We apply this more direct framework
to the PG phenomenon and find that the model’s
knowledge is more robust than suggested by prior
work, indicating that the choice of metric can sig-
nificantly shape conclusions about model compe-
tence.

2 Analysis of Evaluation Paradigms

Though Lan et al. (2024) and Wilcox et al. (2024)
both rely on surprisal-based evaluation of LLMs
on syntactic phenomena, the specific comparisons
made differ in their diagnostic power. Here, we
detail the distinct approaches taken by each paper,
summarised in Table 1.

The method used by Wilcox et al. (2024) relies
on direct minimal pair comparisons where only a
single variable is manipulated while the critical
region remains identical. This approach offers high
interpretability, as the resulting surprisal difference
(the wh-effect) can be uniquely attributed to the
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Paper Prediction Metric / Evaluation Method

Wilcox et al.
(2024)

1. Gaps require an upstream filler. Wh-Effect (+gap): The surprisal at post-gap material should be
lower with a wh-filler than with that.
Metric: S(w+|Cwhat)− S(w+|Cthat) < 0

2. Fillers require a downstream gap. Wh-Effect (-gap): The surprisal at an overt NP filling a potential
gap site should be higher with a wh-filler than with that.
Metric: S(w−|Cwhat)− S(w−|Cthat) > 0

Lan et al.
(2024)

1. An LLM should prefer the grammatical
multi-gap PG structure over its ungrammat-
ical counterpart where the main clause gap
(G2) is filled.

Direct Preference: Compares the surprisal of the gapped vs.
ungapped G2 continuation in a +Filler context.
Metric: ∆+filler > 0, where ∆ = S(ungapped)− S(gapped).

2. The model’s preference for a gapped G2
should be stronger when licensed by a wh-
filler than when it is absent.

Difference-in-Differences (DiD): Compares the preference for a
gap (∆) across +Filler and -Filler contexts.
Metric: ∆+filler > ∆−filler

Table 1: Comparison of core predictions and evaluation metrics. Wilcox et al. (2024) focus on direct minimal pairs where only
the filler is manipulated. Lan et al. (2024) use a 2× 2 paradigm to calculate an overall interaction effect (DiD).

model’s reaction to the manipulated variable.
In contrast, the DiD metric employed by Lan

et al. (2024) is necessitated by a paradigm where
the critical words being compared are not identi-
cal. Here, direct comparison is confounded by the
baseline lexical probabilities of the differing criti-
cal words. To illustrate, consider the representative
example (item 2 from the Lan et al. (2024) project’s
dataset) shown in Table 2

Condition Critical Word Surprisal (bits)

‘+Filler, +Gap1, -Gap2’ “you” 4.14
‘+Filler, +Gap1, +Gap’ “soon” 22.98
‘-Filler, -Gap1, -Gap’ “you” 5.77
‘-Filler, -Gap1, +Gap2’ “soon” 23.34

Table 2: Surprisal values for the critical word in each of
the four conditions for “I know who/that Bob’s talking to
(Jennifer) is about to bother (you) soon.”

Calculating their direct preference metric,
∆+filler = S(you) − S(soon), yields a heavily
skewed value of 4.14 − 22.98 = −18.84 bits. A
large negative result like this, which may well re-
sult from the much lower frequency of the word
“soon” than “you” in training data, makes it impos-
sible to interpret the simple delta as a meaningful
measure of syntactic preference. This is not an
isolated case; out of the 8,064 items, we find an
average baseline surprisal difference of approxi-
mately 11.5 bits between the adverbial (gap) and
nominal (-gap) critical words across all conditions.

The DiD metric aims to resolve this issue by
measuring the interaction effect, partially control-
ling for this baseline difference. However, this
approach obscures the specific linguistic knowl-
edge being tested. A large DiD effect shows that

the model is sensitive to the filler’s role, but does
not, on its own, disentangle the distinct principles
of PG licensing. This is further complicated by the
fact that the ‘-Filler’ conditions also manipulate the
status of the G1 gap, preventing a clean baseline.

3 Methods

To achieve a more diagnostically precise evaluation
of LLM knowledge of PGs, our approach centres
on direct minimal pair comparisons. This requires
a full set of stimuli to test the distinct syntactic con-
straints that constitute knowledge of the complex
domain of parasitic gaps.

3.1 Stimulus Dataset

Using Gemini 2.5 as the generative model, we cre-
ated a controlled dataset of 40 items (320 sentences
total), containing all 8 permutations for each PG
item given the variable conditions: ±filler, ±gap
1, and ± gap 2. The stimuli used unambiguous
subject island structures (e.g., “the story about _”)
and were manually vetted for pragmatic plausibil-
ity. From this set, 33 well-formed items (264 sen-
tences) were used for analysis after excluding 7 for
verb selection issues that rendered some conditions
ungrammatical (see Appendix A for a sample of
the resulting data).

3.2 Analytical Framework and Procedure

Our framework applied the wh-effect metric
(S(+Filler) − S(-Filler)) across the four possible
gap configurations present in our 8-permutation
paradigm. This resulted in four direct minimal pair
tests (P1–P4), outlined in Table 3.
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Test Gap Context Minimal Pair Comparison Expected Outcome

P1 +G1, +G2 ‘+F, +G1, +G2’ vs. ‘*-F, +G1, +G2’
Licensing (Full PG) Tests if the wh-filler licenses the full grammatical

PG dependency compared to ‘that‘.
S(+F) < S(-F)

P2 -G1, +G2 ‘+F, -G1, +G2’ vs. ‘*-F, -G1, +G2’
Licensing (Simple Ext.) Tests if the wh-filler licenses a simple host gap (G2)

when the parasitic gap (G1) is filled.
S(+F) < S(-F)

P3 +G1, -G2 ‘*+F, +G1, -G2’ vs. ‘*-F, +G1, -G2’
Violation (PG, No Host) Tests the effect of a wh-filler when the host gap is

filled, leaving an unlicensed PG.
(Exploratory)

P4 -G1, -G2 ‘*+F, -G1, -G2’ vs. ‘-F, -G1, -G2’
Violation (No Gaps) Tests if a wh-filler creates surprisal when no gaps

are available to be licensed.
S(+F) > S(-F)

Table 3: Proposed Wilcox-style minimal pair comparisons for parasitic gaps. Each test compares a ‘+Filler’ sentence (‘who’) to
a ‘-Filler’ sentence (‘that’) while holding the gap configuration constant. The expected outcome refers to the surprisal at the
identical critical region.

The procedure was as follows: (1) We obtained
BPE-level surprisals from GPT-2 for all 264 sen-
tences. (2) Surprisals were aggregated for pre-
defined critical regions by summing the surprisals
of their constituent BPEs. A critical region was
defined as the overt NP filling a gap (for ‘-gap’
conditions) or the material immediately following
the gap (for ‘+gap’ conditions). (3) For each hy-
pothesis (P1–P4), we calculated the per-item sur-
prisal difference between the two sentences in the
minimal pair. (4) one-sample t-tests were used to
evaluate the significance of these mean differences.

4 Results

We evaluated GPT-2 on our new dataset, using the
33 well-formed items that passed our grammatical-
ity checks. This section first presents the results us-
ing the ∆-based metrics before applying the more
diagnostically expressive minimal pair framework.

4.1 Applying Metrics from Lan et al. (2024) to
the Dataset

We calculated the direct preference (∆+filler) and
DiD using the four paradigm conditions corre-
sponding to the 2× 2 design. The accuracy scores
are presented below, and visualised in Figure 1.

• For the direct preference criterion (∆+filler >
0), GPT-2 achieves an accuracy of only
51.5%, which is at chance level. The mean ef-
fect is positive but not statistically significant
(Mean = 2.17 bits, t(32) = 1.49, p = .072).

• For the DiD criterion (∆+filler > ∆−filler),
GPT-2 achieves an accuracy of 87.9%. The
mean DiD effect is large and highly significant
(Mean = 5.17 bits, t(32) = 7.11, p < .0001).

While the highly significant DiD result might
indicate that GPT-2 has acquired robust knowledge
of PGs when tested on this dataset, the chance-
level performance on the direct preference metric
provides no real insight concerning the linguistic
capabilities of the model.

Success Rate for +filler > 0 Success Rate for DiD > 0
Metric
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Figure 1: Results of Lan et al. metrics on our dataset

4.2 Fine-Grained Minimal Pair Analysis
We applied the Wilcox-style wh-effect analysis
across the four gap configurations in our paradigm.
The results, summarised in Table 4 and visualised
in Figure 2, reveal a consistent pattern of success.

Hypothesis Mean (bits) t-statistic p-value

P1 (+G1, +G2) -2.61 -5.95 < .0001
P2 (-G1, +G2) -3.50 -7.59 < .0001
P3 (+G1, -G2) 1.32 4.12 0.0002
P4 (-G1, -G2) 4.22 10.02 < .0001

Table 4: Mean Wilcox-style wh-effects (S(+F)− S(-F)) and
statistics from one-sample t-tests (N=33 items). Significant
results (p < .05) are in bold.

The results show a clear pattern of success. In
the two grammatical licensing contexts, P1 (full
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PG) and P2 (simple extraction), the model correctly
finds the sentences with a wh-filler significantly less
surprising than their ungrammatical counterparts
with that, as indicated by the large negative mean
effects (p < .0001 for both).

Furthermore, in the two violation contexts, the
model performs as expected. For P4, where there
are no gaps to license, the model finds the sentence
with a wh-filler significantly more surprising than
the grammatical baseline with that (p < .0001).
For the exploratory P3 context, where the parasitic
gap is unlicensed, the model also shows a signif-
icant positive wh-effect, robustly penalising the
‘+Filler’ condition (p = 0.0002). These results
indicate that GPT-2 has acquired a generalisable
knowledge of filler-gap licensing that applies con-
sistently across these complex structural variations.

P1 (+G1, +G2) P2 (-G1, +G2) P3 (+G1, -G2) P4 (-G1, -G2)
Gap Configuration
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Figure 2: Mean wh-effects for the four gap configurations.
Error bars represent 95% confidence intervals. All effects are
in the predicted direction and statistically significant.

5 Discussion

Our fine-grained analysis, using direct minimal pair
comparisons in the style of Wilcox et al. (2024),
reveals a consistent and surprisingly systematic
knowledge of filler-gap dependencies in GPT-2,
even within the complex syntactic environment
of parasitic gaps (PGs). The model correctly dis-
tinguished grammatical from ungrammatical sen-
tences across all four of our targeted licensing and
violation contexts (P1–P4), with all effects being
highly statistically significant.

This finding is particularly striking when con-
trasted with prior work. An unexpected out-
come of our study emerged when we applied the
∆-based metrics to our dataset. GPT-2’s accu-
racy on the Difference-in-Differences (DiD) metric
rose to 87.9% from the 68.8% reported by Lan

et al. (2024) on their stimuli. Even more dramati-
cally, the direct preference accuracy (∆+filler > 0)
jumped from a reported 5.6% to 51.5% on our
dataset.

We hypothesize that this marked improvement
is not necessarily because the underlying linguistic
challenge was simplified, but because the stimuli
themselves are more representative of canonical
PGs and free from specific confounds. This sug-
gests that surprisal-based evaluations of complex
syntax are highly sensitive to stimulus quality. The
original conclusion that GPT-2 fails to learn PGs
may have been at least partially influenced by unin-
tended lexical ambiguities and structural complexi-
ties in the test data, rather than solely due to failure
to acquire the syntactic generalisation itself.

This highlights the primary methodological take-
away: the choice of evaluation metric profoundly
impacts the conclusions drawn about a model’s ca-
pabilities. While a single interaction metric like
the DiD can identify a general sensitivity to a li-
censor, it can obscure the details of what a model
has learned. Our fine-grained P1-P4 analysis, by
isolating specific linguistic principles, provides a
more transparent and diagnostically powerful tool
for building a more accurate picture.

6 Conclusion

This paper contrasted two prominent methods for
evaluating LLM syntactic knowledge and argued
for the superior diagnostic clarity of a fine-grained
analysis based on direct minimal pair comparisons.
Our results, using a new controlled dataset, indicate
that GPT-2’s knowledge of the principles govern-
ing parasitic gaps is more robust than previously
shown. This suggests that conclusions about model
capabilities are highly sensitive to both stimulus
quality and the chosen evaluation metric.

We advocate that future research adopt more di-
rect and interpretable tests. A logical next step
is to apply this framework to the other models
tested by Lan et al. (2024), which performed even
more poorly on the original dataset, to see whether
performance there is similarly sensitive to stimu-
lus design, or whether fine-grained analysis pro-
vides insights into what aspect of the PG licensing
the model has failed to acquire. This approach
promises a more rigorous foundation for claims
about model capabilities and their implications for
debates concerning the Argument from the Poverty
of the Stimulus.
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A Sample of Generated Stimuli

Below is a sample of our generated dataset presented in comma-separated value format. Note that Item
2, which uses the anti-rogative “believed,” is included here as an example of one of the 7 item sets
excluded from our final analysis. This item was excluded because the main verb does not license a
wh-complement, rendering the ‘+filler’ conditions ungrammatical and thus unsuitable for the intended
minimal pair comparisons.

sentence_type ,item_id ,condition ,full_sentence
subject_pg_full ,1,plusF_plusG1_plusG2 ,The investigators know who the story about is

likely to damage severely.
subject_pg_full ,1, plusF_plusG1_minusG2 ,The investigators know who the story about is

likely to damage the campaign severely.
subject_pg_full ,1, plusF_minusG1_plusG2 ,The investigators know who the story about

the politician is likely to damage severely.
subject_pg_full ,1, plusF_minusG1_minusG2 ,The investigators know who the story about

the politician is likely to damage the campaign severely.
subject_pg_full ,1, minusF_plusG1_plusG2 ,The investigators know that the story about

is likely to damage severely.
subject_pg_full ,1, minusF_plusG1_minusG2 ,The investigators know that the story about

is likely to damage the campaign severely.
subject_pg_full ,1, minusF_minusG1_plusG2 ,The investigators know that the story about

the politician is likely to damage severely.
subject_pg_full ,1, minusF_minusG1_minusG2 ,The investigators know that the story about

the politician is likely to damage the campaign severely.
subject_pg_full ,2,plusF_plusG1_plusG2 ,The audience believed who the picture of might

have flattered greatly.
subject_pg_full ,2, plusF_plusG1_minusG2 ,The audience believed who the picture of

might have flattered the director greatly.
subject_pg_full ,2, plusF_minusG1_plusG2 ,The audience believed who the picture of the

actor might have flattered greatly.
subject_pg_full ,2, plusF_minusG1_minusG2 ,The audience believed who the picture of the

actor might have flattered the director greatly.
subject_pg_full ,2, minusF_plusG1_plusG2 ,The audience believed that the picture of

might have flattered greatly.
subject_pg_full ,2, minusF_plusG1_minusG2 ,The audience believed that the picture of

might have flattered the director greatly.
subject_pg_full ,2, minusF_minusG1_plusG2 ,The audience believed that the picture of

the actor might have flattered greatly.
subject_pg_full ,2, minusF_minusG1_minusG2 ,The audience believed that the picture of

the actor might have flattered the director greatly.
subject_pg_full ,3,plusF_plusG1_plusG2 ,The board understood who the critique of would

probably anger immensely.
subject_pg_full ,3, plusF_plusG1_minusG2 ,The board understood who the critique of

would probably anger the CEO immensely.
subject_pg_full ,3, plusF_minusG1_plusG2 ,The board understood who the critique of the

new project would probably anger immensely.
subject_pg_full ,3, plusF_minusG1_minusG2 ,The board understood who the critique of the

new project would probably anger the CEO immensely.
subject_pg_full ,3, minusF_plusG1_plusG2 ,The board understood that the critique of

would probably anger immensely.
subject_pg_full ,3, minusF_plusG1_minusG2 ,The board understood that the critique of

would probably anger the CEO immensely.
subject_pg_full ,3, minusF_minusG1_plusG2 ,The board understood that the critique of

the new project would probably anger immensely.
subject_pg_full ,3, minusF_minusG1_minusG2 ,The board understood that the critique of

the new project would probably anger the CEO immensely.

Listing 1: Sample of Gemini 2.5 Generated Data
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Abstract
The aim of this paper is to present a case study
of a fruitful and, hopefully, inspiring interaction
between formal and computational linguistics.
A variety of NLP tools and resources have been
used in linguistic investigations of the symme-
try of coordination, leading to novel theoretical
arguments. The converse impact of theoretical
results on NLP work has been successful only
in some cases.

1 Introduction

Coordination, as in Lisa, Bart, and Maggie, is
a controversial theoretical linguistic phenomenon,
with no agreement on its structure and properties.
The two most common structures assumed in con-
stituency syntax are those in (1)–(2), with variants
of the binary structure in (1) almost universally as-
sumed in Chomskyan linguistics, and variants of
the flat structure in (2) universally adopted in LFG
(Bresnan 1982, Dalrymple et al. 2019; see Pate-
juk 2023) and HPSG (Pollard and Sag 1987, 1994;
see Abeillé and Chaves 2024).

(1) NP

CoP

CoP

NP

Maggie

Co
and

NP

Bart

NP

Lisa

(2) NP

NP

NP

Maggie

Co
and

NP

Bart

NP

Lisa

Similar disagreement is observed in theoretical
dependency linguistics, see (4)–(6), and – conse-
quently – in dependency corpora, where the current
annotation standard, Universal Dependencies (UD),
assumes (3), with Enhanced Dependencies (Schus-
ter and Manning 2016) adding elements of (6),
Surface-syntactic Universal Dependencies (Gerdes
et al. 2018, 2021) adopts a variant of (4), and orig-
inal Prague Dependency Treebanks (Hajič et al.
2006) assume (5).

(3) Bouquet/Stanford (de Marneffe et al. 2021):

I saw Lisa, Bart, and Maggie.

(4) Chain/Moscow (Mel’čuk 1988, 2009):

I saw Lisa, Bart, and Maggie.

(5) &-headed/Prague (Sgall et al. 1986):

I saw Lisa, Bart, and Maggie.

(6) Multi-headed/London (Hudson 1984, 1990):

I saw Lisa, Bart, and Maggie.

This variety of structures reflects the lack of
agreement regarding the fundamental issue of the
symmetry of coordination: are all conjuncts syn-
tactically equal? On some approaches, e.g., (1)
and (3)–(4), the first conjunct is (closest to) the
head of the coordinate structure and so it largely
determines the properties of coordination. On other
approaches, e.g., (2) and (5)–(6), all conjuncts de-
termine such properties to the same extent.

This issue is related to another bone of con-
tention: do conjuncts have to be alike, or can unlike
categories or different grammatical functions be
coordinated? Assuming that unlike category co-
ordination is possible, as in the attested (7) (from
the English Web 2015 corpus1), asymmetric ap-
proaches predict that the whole coordinate struc-
ture is an NP, while on symmetric approaches it
has features of both NP and CP; see Figure 1.

(7) I understand [[NP those concerns] and
[CP that they are sincerely held]].

For decades, these issues have been discussed
on the basis of a handful of – usually constructed –

1http://www.sketchengine.eu (Jakubíček et al. 2013)
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(a) NP

CoP

CP

that they are sincerely held

Co
and

NP

those concerns

(b)

CP

CP

that they are sincerely held

Conj
and

NP

those concerns

Figure 1: The structure of the coordination in (7) on the
asymmetric approach of Munn 1993 (in (a)) and on the
symmetric approach of Neeleman et al. 2023 (in (b))

examples and have remained unresolved. This pa-
per shows that employing computational linguistic
tools and resources makes it possible to construct
novel theoretical arguments and that, conversely,
awareness of theoretical issues may sometimes in-
fluence such tools and resources.

2 Morphosyntactic Corpora

The most basic use of NLP technologies that a the-
oretical linguist can make is the use of annotated
corpora, often created with NLP applications in
mind and/or annotated with NLP tools. There is sur-
prisingly little awareness of morphosyntactically
annotated corpora among generative syntacticians
and of the power that lies in their associated query
languages. Learning a given tagset and a given
query language takes time, and tagsets and query
languages may differ considerably even for a single
language,2 but doing so is well worth the effort.

For example, for many decades generative lin-
guists believed, following a remark in Chomsky
1957, that only the same syntactic categories can
be coordinated, a belief that was elevated to the
status of a universal law (Williams 1981) and de-
fended against some constructed counterexamples
(e.g., in Sag et al. 1985) as recently as in 2020
(Bruening and Al Khalaf 2020). In particular, Sag
et al.’s (1985) examples were claimed to involve the
coordination of “supercategories” Predicate (in (8))
and Modifiers (in (9)), with no similar coordination

2For example, those of The Corpus of Contemporary Amer-
ican English (COCA; Davies 2008–2025) are very different
from those of enTenTen English corpora made available via
SketchEngine (see fn. 1).

of different categories possible in true argument
positions.

(8) Pat is [[NP a Republican] and [AP proud of it]].

(9) We walked [[ADVP slowly] and [PP with great
care]].

This long-held myth was refuted in Patejuk and
Przepiórkowski 2023 – a paper in a prominent gen-
erative journal – on the basis of a few dozen attested
examples; the effectiveness of this rebuttal was ad-
mitted by an erstwhile advocate of the refuted view,
Bruening (2025): “[Patejuk and Przepiórkowski
(2023)] are correct, and there is no requirement
that conjuncts match in syntactic category”.3

As coordination of unlikes is textually very rare,
this would not be possible without an advanced use
of morphosyntactically annotated corpora. In this
case, the English Web 2015 corpus was queried
with queries of varying complexity, e.g., (10) used
to find examples such as (11), or (12) to find exam-
ples such as (13). Note that such queries require
not only the basic knowledge of the query language
and the relatively standard Penn Treebank (PTB;
Marcus et al. 1993) tagset, but also the knowledge
of regular expressions, not universally mastered by
theoretical linguists.4

(10) [lemma="with"] [lemma="respect|dignity"]

[tag="CC"] [tag="RB"]

(11) . . . not all of us treat our animals
[[PP with respect] and [ADVP humanly]]!

(12) [lemma="teach" & tag="VV.*"]

[tag="N.*|P.*|JJ.*|DT|CD.*"]{1,5} "that"

[tag="N.*|P.*|JJ.*|DT|CD.*"] []{1,5}

[word=","]? [tag="CC"] [tag="TO"]

(13) You teach me [[CP that hard work pays off ]
and [INFP to never give up on a goal]].

Among the claims of likeness of conjuncts is the
claim that, in languages with rich nominal morphol-
ogy, only the same grammatical cases can be coor-
dinated (Weisser 2020). Advanced queries applied
to the National Corpus of Polish (Przepiórkowski
et al. 2011, 2012) and the Turkish Web 2012 cor-
pus (Baisa and Suchomel 2012) helped to show
that both kinds of coordination of unlikes – un-
like categories and unlike cases – are readily found

3See also Przepiórkowski and Patejuk 2025.
4While “[tag="N.*|P.*|JJ.*|DT|CD.*"]{1,5}” in

(12) is a very poor regular definition of a nominal phrase, it
returns a reasonable number of true positives.
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in Polish (Przepiórkowski 2022) and in Turkish
(Şenşekerci and Przepiórkowski 2024). Again, the
intimate knowledge of relevant tagsets and query
languages was crucial – for example, the awareness
of the special feature of the Poliqarp search engine
(Janus and Przepiórkowski 2007) of the Polish cor-
pus, which makes it possible to use variables to
specify that a given token must have a different
case value than some other token.5

3 Valency Dictionaries

A resource that could be useful in an investiga-
tion of unlike category coordination is a valency
dictionary, i.e., a lexicon containing information
about arguments of verbs (and possibly predicates
of other categories). Such a lexicon could encode
information that a given argument of a given verb,
e.g., the object of understand (cf. (7) above), could
be realized as, say, an NP or a CP, which would
make it worth checking whether this argument can
be realized as NP and CP coordinated. Unfortu-
nately, neither traditional valency dictionaries, nor
machine-readable lexicons such as VerbNet (Kip-
per et al. 2006), contain such information.

Fortunately, however, the development of the
largest and most detailed Polish valency dictionary,
Walenty (Przepiórkowski et al. 2014, 2017), was
informed by this issue, which resulted in the fol-
lowing unique feature. In this human- and machine-
readable lexicon, arguments are described as sets
of categories, often singleton sets, signaling that
a given argument must bear a specific category, e.g.,
an NP. However, when there is corpus evidence
that a given argument may be realized by a number
of categories and, importantly, by coordinations of
such unlike categories, this argument is described
as a set of these categories.

For example, a valency schema for zapowiedzieć
‘announce’ contains information about the follow-
ing two arguments (where . . . indicates that more
elements of the set are specified in the dictionary
but omitted here for clarity), among others:

(14) a. subj{np(str)}

b. obj{np(str);cp(int);cp(że);. . . }

(14a) specifies one argument as a structural (i.e.,
normally nominative) NP subject, while (14b) spec-
ifies another argument as an object which may be
realized as a structural (normally accusative) NP,

5https://nkjp.pl/poliqarp/help/ense3.html/
#x4-90003.4

an interrogative CP, a CP with the complementizer
że ‘that’, etc. This information is supported with
example (15) from the National Corpus of Polish.

(15) Pan
Mr.

prezydent
president

zapowiedział
announced

[[NP swój
self’s

patronat. . . ]
patronage

oraz
and

[CP że
that

takiej
such

ustawy
bill

na
for

pewno
certain

nie
not

podpisze]].
sign

‘The president announced [[NP his patron-
age. . . ] and [CP that he will definitely not
sign such a bill]].’

The developed valency dictionary has been
used in subsequent theoretical publications (e.g.,
Przepiórkowski 2022), as a rich source of examples
of coordination of unlikes in Polish.

4 Implemented Grammars

As this valency dictionary is used by a number of
grammar-based syntactic parsers of Polish (Patejuk
2015, Woliński 2015), these tools are able to parse
sentences containing unlike category coordination,
for example, the parse in Figure 2 produced by the
Świgra 2 parser (Woliński 2019).

Moreover, one of these parsers, the LFG parser
POLFIE (Patejuk and Przepiórkowski 2012c,a,
2017b), has in turn been extensively used to ver-
ify a number of theoretical linguistic proposals,
including analyses of agreement, predication, nega-
tion, numeral phrases, so-called reflexive markers,
coordination of different grammatical functions,
gapping, etc. (Patejuk and Przepiórkowski 2012b,
2014, 2015, 2017a, 2018, Przepiórkowski and Pate-
juk 2012, 2015, 2023).

Hence, in cases described in §§3–4, theoretical
considerations fruitfully influenced the develop-
ment of NLP resources (valency dictionary) and
tools (syntactic parsers), which in turn helped in
exemplifying and verifying theoretical analyses.

5 Syntactic Corpora

The possibility of theoretical influence on NLP
tools and resources depends crucially on the stage
of development of these tools and resources. For ex-
ample, the representation of coordination in UD has
various problems, e.g., it does not distinguish flat
coordinations from certain nested coordinations.
This problem was discussed – and solutions were
proposed – in Przepiórkowski and Patejuk 2019,
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Figure 2: Parse of a much simplified version of example (15) produced by Świgra 2

but they have not been adopted by the UD com-
munity, probably because at this stage UD had
already been employed in a number of corpora
and was perceived as stable. Also other propos-
als, stemming from considerations of head-final
languages (Kanayama et al. 2018), from the coor-
dination of unlike grammatical functions (Patejuk
and Przepiórkowski 2019), as in [What and when]
to eat to stay healthy, and from the incompatibility
of coordination with UD’s core/non-core distinc-
tion (Przepiórkowski and Patejuk 2018), have not
been adopted in UD.

Nevertheless, syntactic corpora – including UD
corpora – were the basis for a novel theoretical
argument against asymmetric approaches to coor-
dination, described below.

6 Trained Parsers

Dependency Length Minimization (DLM) is a ro-
bustly demonstrated tendency for natural languages
to strive for maximally local – shortest possible –
dependencies.6 Przepiórkowski and Woźniak 2023
argue that, given DLM, the distribution of lengths
in binary coordinations in PTB& – a version of
PTB with enhanced annotation of coordination (Fi-
cler and Goldberg 2016) – is compatible with sym-
metric approaches to coordination, but not with
asymmetric approaches.

6See, e.g., Temperley and Gildea 2018 and references there,
as well as Futrell et al. 2020.

Specifically, they show that when the length dif-
ference between the two conjuncts increases, the
tendency for the shorter constituent to be the initial
conjunct also increases, but only when the gov-
ernor is on the left (as in I saw Bart and Lisa) or
absent (as in Bart came and Lisa left), and not when
the governor is on the right (as in Bart and Lisa
laughed). This tendency was observed whether the
length of conjuncts was measured in the number
of words, syllables, or characters; see Figure 3 in
Appendix A. On various assumptions about the
exact nature of DLM this observation is compat-
ible with symmetric dependency representations
such as (5)–(6) (and, by extension to constituency
representations, (2)), but on no reasonable assump-
tions about DLM is it compatible with asymmetric
representations such as (3)–(4) (and (1)).

This argument was reproduced on the basis of
a variety of other manually annotated corpora for
a number of languages, including UD corpora
(Przepiórkowski et al. 2024b). However, in each
case, the sparseness of data7 resulted in some ten-
dencies being only very weakly statistically signifi-
cant and/or in the need to aggregate results in a way
that might have influenced the final results.

To ameliorate this problem, a large portions of
the COCA corpus of American English Davies
2008–2025 were automatically parsed with the

7The relevant corpora had roughly between 15K (K = thou-
sand) and 2,250K sentences, which translates into between 5K
and 90K extracted coordinations.
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Stanza dependency parser (Qi et al. 2020) trained
on UD and SUD corpora, as well as with the Berke-
ley Neural Parser (BNP; Kitaev and Klein 2018,
Kitaev et al. 2019) with the benepar_en3 con-
stituency model (Przepiórkowski et al. 2024a,b).8

As these parsers produced much noise, imple-
menting various filters removing obviously wrong
parses was necessary. Nevertheless, the final results
confirmed the earlier results based on manually
parsed corpora, and – as was expected – all results
turned out to be highly statistically significant.

While these relatively recent results have so far
been only published in the proceedings of confer-
ences devoted to NLP tools and resources (ACL,
LREC-COLING, TLT), they are of vital impor-
tance for theoretical analyses of coordination, as
they provide a novel argument not only against
the most common treatment of coordination in cor-
pora (both UD and SUD) and in a relatively niche
theoretical dependency framework (Mel’čuk 1988,
2009), but also – by extension – against the asym-
metric approaches almost universally assumed in
Chomskyan linguistics.

7 Conclusion

This paper demonstrates that bridging the gap be-
tween theoretical and computational linguistics can
be fruitful for both, but especially for theoretical
linguistics. The awareness of traditional NLP re-
sources (corpora, dictionaries) and tools (especially,
parsers) among theoretical linguistics is too little,
given how useful they can be for constructing and
verifying theoretical arguments.

We conclude by noting that the NLP tools and
resources used in the investigation of coordination
described in this paper all date from the pre-LLM
era. This is a feature, not a bug. It is not clear to
us how LLMs could similarly support theoretical
linguists in theory development.

8The relevant portions had roughly between 20M (M =
million) and 70M sentences, which translates into 10–15M
extracted binary coordinations.
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Figure 3: Modelled proportions of coordinations in PTB& with left conjuncts shorter, depending on the absolute difference of conjunct lengths, with confidence bands
(Przepiórkowski and Woźniak 2023).
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Abstract

This paper presents a computational resource
for exploring semantic parsing and reasoning
through a strictly formal lense. Inspired by the
framework of Lexical Functional Grammar, our
system allows for modular exploration of dif-
ferent aspects of semantic parsing. It consists
of a hand-coded formal grammar combining
syntactic and semantic annotations, producing
basic semantic representations. The system pro-
vides the option to extend these basic semantics
via rewrite rules in a principled fashion to ex-
plore more complex reasoning. The result is
a layered system enabling an incremental ap-
proach to semantic parsing. We illustrate this
approach with examples from the Fracas test-
suite, demonstrating its overall functionality
and viability.

1 Introduction

Formal approaches to computational linguistics
have been surpassed by quantitative methods in
the fast-paced task-driven field of NLP. However,
modern NLP approaches trade explainability and
interpretability for performance gains. This puts a
larger burden on researchers who need to evaluate
whether a system captures the expected linguistic
generalizations, and limits the possibility to test
the effect of small tweaks to a system. Thus, un-
derstanding and exploring patterns in syntax and
semantics is challenging and potentially affected
by confounding factors (e.g., McCoy et al. 2019).

Formal approaches inherently require accu-
rate descriptions of patterns. Computational ap-
proaches, in particular, often highlight wanted and
unwanted interactions between linguistic descrip-
tions. Detecting these is an essential skill of (com-
putational) linguists and, thus, we deem it a worth-
while goal to make corresponding resources acces-
sible. Concretely, we present a system for semantic
parsing and reasoning based on Lexical Functional

Grammar (LFG; Kaplan and Bresnan 1982).1 LFG
is characterized by modular but interconnected lin-
guistic descriptions, allowing researchers to make
comparatively simple statements about particular
domains of language. We build on XLE+Glue (Dal-
rymple et al., 2020) designed for exploring the syn-
tax/semantics interface in LFG. However, while
XLE+Glue has been used in formal semantic re-
search to verify analyses, it has not been used in a
task oriented setting as is typical in computational
linguistics and NLP. This is the main drawback
that this paper attempts to address by extending
the XLE+Glue2 pipeline to also incorporate reason-
ing tools, particularly, the Vampire theorem prover
(Kovács and Voronkov, 2013). This allows us to lay
the foundation for task-oriented semantic parsing
(i.e., for NLI). We take inspiration from the sem-
inal work on semantic parsing by Blackburn and
Bos (2005) but also consider more recent proposals,
particularly Haruta et al. (2020, 2022).

The contribution of this paper is a comprehen-
sive implementation of semantic parsing that is
grounded in a rigorous formal framework. The
system is designed to be accessible and extensible,
building on the discipline of grammar engineering.
It enforces incremental development of linguistic
analyses and enables testing the interplay of these
analyses in a task-oriented fashion. The paper is
structured as follows: section 2 presents LFG as
the formal foundation of our system. Section 3
describes the full system, focusing on the novel
interface between XLE+Glue and Vampire. Sec-
tion 4 presents a qualitative evaluation of the sys-
tem based on examples from the Fracas testsuite.
Section 5 discusses some limitations and, finally,
section 6 concludes.

1For recent introductions see Börjars (2020); Asudeh
(2022), or Dalrymple (2023).

2https://github.com/Mmaz1988/xleplusglue/tree/
2024 inference
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2 Formal background

Lexical Functional Grammar (LFG) is a grammar
formalism that is well-known for its formal rigor, al-
lowing for a faithful computational implementation
in the form of the Xerox Linguistics Environment
(XLE; Crouch et al. 2017). From its beginnings,
it has established itself as a crosslinguistically vi-
able tool for describing language. This is partic-
ularly highlighted by the ParGram project (Butt
et al., 2002) which produced computational LFG
grammars illustrated by virtue of the ParGramBank
(Sulger et al., 2013).3

2.1 Lexical Functional Grammar

The main appeal of LFG lies in its modular archi-
tecture that allows researchers and grammar en-
gineers to make comparatively simple statements
about linguistic facts in one domain of analysis
(e.g., syntax), while maintaining a clearly defined
mapping to other aspects of grammar (e.g., prosody,
semantics). This design is sometimes called paral-
lel projection architecture. To make this intuition
more clear, let us first look at the syntactic compo-
nent of LFG which consists of two individual pro-
jections: c(onstituent)- and f(unctional)-structure.
C-structure is stated in terms of phrase structure
rules and captures information about constituency
and linear order. F-structure captures information
about grammatical functions, such as SUBJ, OBJ

(i.e., dependencies; Meurer 2017), as well as func-
tional features such as number and tense. It is
stated in terms of the quantifier-free logic of equal-
ity (Kaplan, 1989). More concretely, equality terms
are co-descriptively added to phrase structure rules
and lexical entries using the meta variables Ò and
Ó. Ò points at the c-structure node of the mother
and Ó at the current node. Thus, The NP rule in
(1), for example, states that the determiner and the
noun equally contribute to the f-structure of the
NP. There, the lexical entry of the determiner in (2)
specifies a substructure, SPEC, subordinating the
determiner to the content word.

(1)

S Ñ NP
pÒ SUBJq = Ó

VP
Ò“Ó

NP Ñ (D)
Ò = Ó

N
Ò“Ó

VP Ñ V
Ò = Ó

AP
pÒ PREDLINKq “Ó

3Hosted at https://clarino.uib.no/iness/page
(Rosén et al., 2012).

(2) the D (Ò SPEC PRED) = ‘the’
%ft = (GF+ Ò)
λP.λQ.DxrP pxq ^Qpxqs :
pÒe⊸Òtq⊸ pÒe⊸ %ftq⊸ %ft

cat N (Ò PRED) = ‘cat’
λx.catpxq : Òe⊸Òt

is V (Ò PRED) =
‘beă(Ò PREDLINK)ą(Ò SUBJ)’
(Ò PREDLINK SUBJ) = (Ò SUBJ)

fast A (Ò PRED) = ‘fastă(Ò SUBJ)ą’
λx.fastpxq :
pÒ SUBJqe ⊸ Òt

Generally, by resolving equalities, meta variables
pointing at individual c-structure nodes are re-
solved to f-structure indices (many-to-one map-
ping). This process is visualized in Figure 2. As
the figure indicates, the dependencies that LFG’s f-
structure captures are more articulated than classic
dependencies as they can share structures across
different PREDs, as annotated in the lexical entry
for is. For a more comprehensive comparison in-
volving further differences between f-structure and
dependencies see Haug (2023).

2.2 Glue semantics
LFG’s Glue semantics (Asudeh, 2023) specifies
meaning representations, called meaning construc-
tors (MCs).4 They can be defined in two ways: co-
descriptively, i.e., in parallel to c- and f-structure
information in the lexicon (highlighted in blue in
(2)) and phrase structure, or via description-by-
analysis, which takes an assembled f-structure as
input and rewrites it into a semantic representation.
As we propose a hybrid approach (Wedekind and
Kaplan, 1993), this warrants further explanation.

Description-by-analyis (DBA) rules provide in-
dependent way of introducing meaning construc-
tors to syntactic representations, here f-structures
(e.g, Andrews 2010).5 Compared to co-descriptive
semantics, they are more suitable to capture varia-
tion in the immediate syntactic and semantic con-
text that affects semantic interpretation (Zymla,
2017). For example, the comparative complemen-
tizer than in Figure 2 is interpreted differently de-

4A more comprehensive introduction can be found in Dal-
rymple (1999). See also Dalrymple et al. (1993).

5DBA is technically a framework agnostic way of intro-
ducing meaning constructors that can be applied to different
types of syntactic representations. Notably, It has been applied
to Universal Dependency parses Findlay et al. (2023); Zymla
(2018).
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pending on its complement (e.g., elided VP vs
overt VP). A simplified rule that produces the MC
used in Figure 2 is illustrated in Figure 1. There,
#f...#j are variables over f-structure nodes which
are related via the given relation labels. Thus, the
left-hand side can be understood as a query search-
ing for a matching graph structure. Given that it
matches the f-structure in Figure 2, the MC on
the right is added to the premise set, essentially en-
abling the interpretation of the comparative clause.6

#f PREDLINK #h SUBJ #g & #h DEGREE 'comparative'
& #h ADJUNCT #a in_set #o OBL-COMP #i OBJ #j ==>

#i GLUE
λR.λx.λy.DδrRpδqpxq ^ ␣Rpδqpyqs :
p#gd ⊸ #ge ⊸ #ftq⊸ p#ge ⊸ #je ⊸ #ftq.

Figure 1: DBA-rule for the comparative construction

MCs separate the logic of composition (linear
logic; Girard 1995) and meaning language, allow-
ing for some flexibility in the choice of the lat-
ter. Composition is resource-sensitive and flex-
ible.7 The Curry-Howard isomorphism (Curry
et al., 1958; Howard, 1980) postulates parallels
between lambda calculus operations and deduction
processes in linear logic proofs. Thus, example
(3) draws the parallel between function applica-
tion and implication (⊸) elimination, and example
(4) describes the parallels between lambda abstrac-
tion and implication introduction. Consequently,
Glue semantics is compatible with any meaning
language whose combinatorial possibilities can be
stated in λ-terms. We use λ-FOL (first-order logic)
and λ-DRT (discourse representation theory; Kamp
and Reyle 1993) to illustrate this.

(3) f : A ⊸ B a : A ⊸E
fpaq : B

(4)

[x : A]i...
fpxq : B ⊸I,i

λx.fpxq : A ⊸ B

6 The first argument of the comparative semantics is the
semantic contribution of the adjective. However, the rule
requires a predicate with a degree variable which is not pro-
vided by the lexical entry in (2). Reconciling this mismatch is
discussed in section 4.

7Linear logic is commutative and non-associative by de-
fault. According to Moot and Retoré (2012), this is too flexible.
However, this issue has been at least partially addressed in,
e.g., Lev (2007); Findlay and Haug (2022); Zymla (2024)
from a computational perspective. We do not explore this
point further in this paper.

2.3 Reasoning

Reasoning based on XLE’s LFG grammars has
been pursued, for example, by Bobrow et al. (2007)
and Lev (2007). These two works represent two
general approaches respectively: i) reasoning via
rewriting with a focus on intensional semantics
(see also, e.g., Condoravdi et al. 2001), and ii)
reasoning with theorem provers. The work pre-
sented here aligns with Lev’s (2007) approach. Fur-
thermore, it is inspired by more recent work in
formal computational semantics by Haruta et al.
(2020, 2022), who compose meanings via categori-
cal grammar parsers and use the Vampire theorem
prover to prove inferences by refutation (Kovács
and Voronkov, 2013). As the focus of this paper is
the educational value of computational tools based
on formal linguistics, we also draw parallels to
Blackburn and Bos (2005), who developed a con-
versational agent, CURT (clever use of reasoning
tools), and highlighted how reasoning may affect
dialogue interactions.

Consequently, two categories of reasoning can
be considered: reasoning for natural language infer-
ence (NLI) and reasoning in dialogue. The first one
is aptly exemplified by the Fracas testsuite (Cooper
et al., 1996), which consists of examples like:

(5)

A Swede won a Nobel prize.
Every Swede is a Scandinavian.
Did a Scandinavian win a Nobel prize?

Ñ YES

As (5) shows, NLI examples consist of one or more
premises, a conclusion, and a label corresponding
to the entailment status of the conclusion (YES,
NO, Don’t know; MacCartney and Manning 2009).
The goal of the task is to predict the correct label.

As part of their dialogue system, Blackburn and
Bos (2005) establish informativity (+/-I) and con-
sistency (+/-C) checks as essential tasks for reason-
ing in dialogue.8 The NLI task can also be broken
down to consist of these two tasks:

(6)
NLI

´C contradiction

`C
´I entailment

`I unknown

8While these checks are too strict to model the nuances of
real world data, they provide useful insights into the incremen-
tal tracking of (shared) knowledge in dialogue settings.
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λQ.Dxrcatpxq ^Qpxqs :
pge ⊸ ftq⊸ ft

λQ.Dxrdogpxq ^Qpxqs :
pje ⊸ ftq⊸ ft

λR.λx.λy.DδrRpδqpxq ^ ␣Rpδqpyqs :
pgd ⊸ ge ⊸ ftq⊸ pge ⊸ je ⊸ ftq

λδ.λx.fastpx, δq :
gd ⊸ ge ⊸ ft ⊸E

λx.λy.Dδrfastpx, δq ^ ␣fastpy, δqs :
ge ⊸ je ⊸ ft

rXsi : ge
⊸E

λy.DδrfastpX, δq ^ ␣fastpy, δqs :
je ⊸ ft

rY sj : je
⊸EDδrfastpX, δq ^ ␣fastpY, δqs :

ft ⊸I,j
λy.DδrfastpX, δq ^ ␣fastpy, δqs :

je ⊸ ft ⊸EDyrdogpyq ^ DδrfastpX, δq ^ ␣fastpy, δqss :
ft

⊸I,i

λx.Dyrdogpyq ^ Dδrfastpx, δq ^ ␣fastpy, δqss :
ge ⊸ ft ⊸EDxrcatpxq ^ Dyrdogpyq ^ Dδrfastpx, δq ^ ␣fastpy, δqsss :

ft

Figure 2: LFG example derivation: The cat is faster than the dog. This example illustrates the modular
representation of c-structure, f-structure, and compositional semantics in LFG. C-structure captures linear order and
constituency. F-structure abstracts away from surface form via a many-to-one mapping from c- to f-structure nodes.
The semantics use f-structure indices as linear logic resources to encode combinatory possibilities which are stated
in terms of a prooftree. Generally, hierarchical structures are broken down and re-assembled.

3 Computational implementation

This section presents our system that computation-
ally implements the pipeline described in Figure
(3). The main innovation presented in this paper
is the use of LiGER (Linguistic graph expansion
and rewriting) to mediate between syntax, compo-
sitional semantics and reasoning. Furthermore, we
put some focus on the Blackburn and Bos (2005)-
style interface to the Vampire theorem prover. How-
ever, we also briefly discuss the contribution of the
other components.

3.1 Parsing via XLE+Glue

We build on computational Glue resources that
have been developed in the past few years, pri-

marily, the Glue semantics workbench (GSWB;
Meßmer and Zymla 2018), a Glue prover heavily
inspired by Lev’s (2007) work, building on Hepple
(1996), and an interface to XLE called XLE+Glue
(Dalrymple et al., 2020).9 Generally, the current
main use of these tools is the verification of anal-
yses with a focus on semantics and its interfaces,
e.g., Przepiórkowski and Patejuk (2023). Recently,
Butt et al. (2024) have presented a system that al-
lows for the incorporation of prosodic information
to disambiguate semantic analyses of questions in
Urdu, thus, covering the full pipeline from speech
signal to semantic parsing.

9While XLE itself is available only under a restrictive
license, the semantic resources developed for it are all open
source, including the new tools presented in this paper.
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Figure 3: The XLE+Glue pipeline: three modular systems cover syntax, semantics, and reasoning. The syntax
is specified in terms of LFG grammars written in the XLE. The XLE also specifies a core semantics that can be
enriched and contextualized via LiGER. The GSWB calculates DRT-style meaning representations following Glue
semantics principles. The DRSs are resolved in the reasoning module and translated into FOL for reasoning. LiGER
optionally contributes additional axioms which are triggered by specific syntactic and semantic configurations to
ensure correct reasoning.

.

The work presented in this paper is based on a
newly developed Grammar for English that covers
part of the Fracas testsuite, particularly, the section
on quantifiers and the section on adjectives. With-
out going into detail, this grammar makes use of the
various tools that XLE provides to develop larger-
scale grammars, particularly, morphological ana-
lyzers, templates, parameterized rules, and more.
To constrain ambiguities it makes use of OT-marks
(loosely based on optimality theory). In terms of
the presented syntactic analyses, it closely follows
the large English ParGram grammar and Butt et al.
(1999), but is extended with a co-descriptive se-
mantics (cf. examples (1) and (2)). The semantics
are resolved by the GSWB which generates Boxer-
style DRT representations via a simple interface to
Blackburn and Bos’s Prolog code.10

3.2 Simple reasoning

For reasoning, DRSs are translated into first-order
logic and then to the TPTP format (Sutcliffe et al.,
2006). We built a Python interface that queries the
Vampire theorem prover (Kovács and Voronkov,
2013) with positive and negative consistency and
informativity checks. The positive checks rely on
model building rather than satisfiability checking.
Vampire supports this in addition to several other
proof search strategies, but is mainly geared to-
wards finding proofs via refutation.

10Various aspects of the code have been adapted in accor-
dance with the GNU license. The original files are available at
https://www.let.rug.nl/bos/comsem/software2.html.

(7) For some (set of conjoined) premise(s) p
and a hypothesis q:
a. ␣ppÑ qq +informative
b. pÑ q -informative
c. p^ q +consistent
d. pÑ ␣q -consistent

We extract meaningful labels from the Vampire out-
put to present to users, concretely: the termination
reason, whether a finite model was found, and the
SZS status (Sutcliffe, 2008).11 From these labels,
we heuristically determine the success of the indi-
vidual checks, and, consequently, the status with
respect to the NLI task (cf. example (6)).

3.3 Extended reasoning mediated by LiGER
The system so far is essentially a re-implementation
of Blackburn and Bos (2005) modeling the syn-
tax/semantics interface in a different manner.
While we believe that this has merits in its own
right (particularly, the modularization of syntax and
semantics), we extend its coverage with a princi-
pled approach to tackling more complex reasoning
problems, such as those presented in Haruta et al.
(2022). The key tool for this is LiGER which al-
lows for the specification of rewrite rules to apply
to f-structures. It plays two roles: i) non-invasively
extending the semantics, and ii) determining rele-
vant axioms needed for correct reasoning.

11Vampire’s termination reason describes its result which
also includes technical reasons, e.g., timeouts, whereas the
SZS status focuses on the outcome of the reasoning process.
Although there generally is a clear mapping from termination
reason to SZS status, we use both for maximal informativity.
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The first role is simply a rendering of the
description-by-analysis idea presented in section
2.2. The important conceptual idea here is that
the base grammar is self-sufficient, i.e., it produces
semantic representations which can be optionally
extended via DBA (see section 4).

The second role is inspired by Bobrow et al.
(2007), who use DBA as an interface to external
resources to enrich semantic representations. Con-
cretely, we re-model Haruta et al.’s (2022) system
for interpreting gradable adjectives and general-
ized quantifiers (a Python interface between a CCG
parser and Vampire) into a system that is extensi-
ble and variable without the need to understand a
complex code structure. To illustrate this, let us
look at a core component of Haruta et al.’s (2022)
analysis of gradable adjectives, particularly, their
comparative use: the consistency postulate.

(8)
(CP) @x@yrDδrApx, δq ^ ␣Apy, δqs Ñ

@δrApy, δq Ñ Apx, δqss,
where A is an arbitrary gradable adjective.
(Haruta et al., 2022, p. 148)

The axiom in (8) is not intuitively part of the
compositional semantics of an utterance, but rather
is required for the semantics of gradable adjectives
to fall out correctly. However, it essentially requires
quantification over properties (indicated by the use
of the variable A). This is accounted for in terms
of a DBA rule of the following kind:

#a PRED %adj #a DEGREE 'comparative' ==>

#a AXIOM
@x@yrDδr%adjpx, δq ^ ␣%adjpy, δqs
Ñ @δr%adjpy, δq Ñ %adjpx, δqss.

Figure 4: DBA-rule for extracting axioms

In essence, this (simplified) rule introduces an
axiom based on the presence of an adjective with
a comparative form and generates a CP axiom for
that adjective. This information is integrated with
the call to Vampire, as it affects how the prover
is called. Concretely, reasoning about degrees fol-
lowing Haruta et al. (2022) requires arithmetic rea-
soning, a non-finite domain that eliminates model
building as a proof search strategy.

In summary, LiGER is used on two fronts to
extend the expressiveness of the compositional se-
mantics and to trigger the axioms required to main-
tain correct results during inference. The LiGER
output also affects the interface to Vampire directly
to account for different input requirements and out-
puts for different kinds proofs.

Figure 5: System architecture: a modularized service
architecture that is accessed via a browser-based user
interface.

3.4 Technical details
The whole system is couched in a modular ser-
vice architecture, where individual modules are
deployed in Docker containers. A browser-based
application allows users to access the containers
and links their functionalities (see Figure 5). The
LiGER container also provides a lightweight in-
terface to XLE.12 This architecture enables cross-
platform use of the system and minimizes the need
for technical know-how. The Prolog code for
BB-DRT is not deployed in a separate container
but is copied across containers as it is relatively
lightweight, reducing traffic across containers.

3.5 User interface and visualization
The system provides seperate interfaces to i) pars-
ing, ii) regression testing, and iii) inference. Num-
ber i) and iii) are (partially) illustrated in Figure 7.
The inference interface is inspired by Blackburn
and Bos’s (2005) conversational agent CURT. It
provides access to the conversation history with the
possibility to prune it. Furthermore, it allows the
manual specification of axioms to test their effect
on reasoning (not in the picture).

We use a glyph to optionally relay the detailed
results of the inference checks to users. This is illus-
trated in Figure 6. The example there is an instance
of a contradiction, as indicated by the refuted posi-
tive consistency check and successful negative con-
sistency check. Although this makes informativ-
ity checks obsolete according to example (6), the
glyph always displays all checks, highlighting the
interplay between consistency and informativity.

12For licensing reasons, the XLE is not packed with the
system but needs to be acquired independently and added to
the repository.
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Figure 6: Reasoning result glyph: Green triangles indi-
cate positive results (satisfiability), red triangles indicate
negative results (refutation), and yellow symbol indi-
cate unknown results (timeout/saturation). The glyph
is horizontally separated into consistency (C) checks
and informativity (I) checks with negative and positive
polarity respectively. The vertical line separates satisfia-
bility checks (left) and model building attempts (right).

Generally, the various interfaces are designed
with explorative use in mind but they also enable
incremental development of analyses with the re-
gression testing interface, which is tailored towards
developing new description-by-analysis rules. This
supports the development of larger grammars.

4 Worked examples

We will now elaborate on the semantics we assume.
This includes simpler cases including reasoning
about properties and relations, but also more com-
plex cases for which we employ a version of degree
semantics following Haruta et al. (2022).

4.1 Basic semantic assumptions

Our semantics are based on a Neo-Davidsonian
event semantics rendered in DRT. The first worked
example is shown in Figure 7, demonstrating the
correct reasoning for the problem in example (5).13

Due to quantifier ambiguity, the second hypothe-
sis of (5) has two parses, presented in their equiva-
lent FOL form in (9) and (10).14 Here, the represen-
tation of be does not express anything meaningful,
just that there is a being-eventuality (in the sense
of Bach 1986) with two arguments.

(9) @yrswedepyq Ñ Dxrscandinavianpxq ^
Derbepeq ^ arg1peq “ y^ arg2peq “ xsss

(10) Dxrscandinavianpxq^@yrswedepyq Ñ
Derbepeq^arg1peq “ x^arg2peq “ ysss

13All analyses are laid out in detail in the appendix.
14Although the reading in (10) is not intuitively sensible, it

does allow for the same inference. Nonetheless, this indicates
the need for more fine-grained management of quantifier am-
biguities, wich we leave for future work (first steps are taken
in Zymla 2024).

For the inference in (5) to come out correctly, we
need to add a meaning postulate (Zimmermann,
1999), as in (11).15

(11) @x, y, erbepeq ^ arg1peq “ x^
arg2peq “ y Ñ x “ ys

This is to show that there is a wide range of axioms
that one can consider adding to an analysis. Intro-
ducing meaning postulates via DBA-rules allows
for the exploration of their impact on reasoning
before integrating them into the grammar proper.

4.2 Layered analysis

In this section, we finalize the analysis of gradable
adjectives following Haruta et al. (2022). How-
ever, note first that the Fracas testsuite contains
several examples containing gradable adjectives
that can be analyzed as simple properties, such as
(12). Here, the challenge rather lies in modeling
the syntax/semantics interface correctly to capture
the modifying nature of the relative clause (e.g.,
Heim and Kratzer 1998).

(12)
Some great tenors are Swedish.
Are there great tenors who are Swedish?

This extends to examples with more complicated
constructions like the superlative:

(13)

An Italian became the world’s greatest
tenor.
Was there an Italian who became the
world’s greatest tenor?

Thus, in many cases, reasoning via pattern match-
ing is sufficient: as the noun phrases perfectly
match, their exact semantics become less relevant.

However, often, gradable adjectives are chal-
lenging for automated reasoning because they are
highly context sensitive. To make this intuition
clear, first consider example (14), which illustrates
the context sensitivity of the adjective large, whose
meaning is mediated by the immediate context,
here the modified noun. Generally, positive in-
stances of gradable adjectives are evaluated based
on contextually determined comparison classes.16

15We use a classic analysis of be also used in Blackburn
and Bos (2005), which could also be stated directly in the
semantics.

16The examples in the Fracas testsuite determine compari-
son classes in the immediate linguistic context, but comparison
classes may be determined by the wider context, including
extralinguistic cues (e.g., Kennedy and McNally 2005).
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Figure 7: XLE+Glue browser-based user interface: On the left, the parsing interface is highly customizable and
allows for the exploration of the compositional semantics underlying a parse. On the right, the chat interface allows
for testing of the inference capabilities.

(14)
All mice are small animals.
Mickey is a large mouse.
Is Mickey a large animal? Ñ NO

By making adjectives sensitive to a comparison
class, the two different meanings of large in (14)
can be explained. Concretely, we want to express
that Mickey surpasses the threshold for a large
mouse but not the threshold for a large animal.
However, first we need to type-raise large to be-
come a degree predicate.17 The two steps can be
encoded in terms of DBA-rules that extend the
compositional semantics, as shown in Figure 8.

#a PRED %adj & #a DEGREE %d ==>

#a GLUE
λP.λδ.λx.%adjpx, δq :
p#ae ⊸ #atq⊸ p#ad ⊸ #ae ⊸ #atq.

#n PRED %pred & #n ADJ #a PRED %adj &
#a DEGREE 'positive' ==>

#a GLUE
λP.λx.Dδrδ ą θ%adjp%predq ^ P pδqpxqs
p#ad ⊸ #ae ⊸ #atq⊸ #ae ⊸ #at.

Figure 8: DBA-rule for positive gradable adjectives

17Accordingly, we have to slightly change the rule in Figure
1, which we simplified for sake of exposition. We accept this
extra step to preserve the integrity of the core grammar.

In addition to the CP (see example (8)), we need
to further specify the meaning of large a positive
adjective, and small, a negative adjective:

(15)

(up) @x, δ1rlargepx, δ1q Ñ
@δ2rδ2 ď δ1 Ñ largepx, δ2qss

(down) @x, δ1rsmallpx, δ1q Ñ
@δ2rδ1 ď δ2 Ñ smallpx, δ2qss

These axioms say that if something is large to
some degree δ it is also large to any degree smaller
than that. Conversely, if something is small to a
degree δ, it is also small to any larger degree.18

Together with axioms for the antonym relation be-
tween large and small, the inference in (14) suc-
ceeds. An appropriate DBA-rule generalizes over
positive and negative adjectives accordingly.

The type-raising rule also resolves the mismatch
mentioned in footnote 6, allowing us to deal with
comparatives as in (16) (see Appendix A.5).

18A reviewer points out that Haruta et al. (2022) show that
the CP, (8), follows from up and down questioning the neces-
sity of these axioms. However, the inverse is not true. Thus,
they are required for cases like (14) which do not contain
explicit comparatives (see Appendix A.4).
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(16)

The PC-6082 is faster than every ITEL
computer.
The ITEL-ZX is an ITEL computer.
Is the PC-6082 faster than the
ITEL-ZX? Ñ YES

5 Limitations

While the present system is developed in a task-
oriented fashion, it suffers from the usual draw-
backs of formal computational linguistics, such as
a lack of robustness (particularly, with respect to
unseen data), and tedious ambiguity management
(Bunt, 2008), particularly as one attempts to scale
up grammars (Flickinger et al., 2017). Thus, the
present system should not be seen as ready for real
NLP applications (yet). Nonetheless, it contributes
to closing the gap between formal and computa-
tional linguistics, by making the latter more acces-
sible to practitioners of the former, which should
be mutually beneficial for both disciplines (e.g.,
Bender 2008; King 2016). Furthermore, through
regression testing (Chatzichrisafis et al., 2007), the
grammar presented here, as well as the system as a
whole, are continuously expanded.

Although we see the modular architecture of
LFG as a benefit regarding the explainability of
different aspects of language that affect semantic
interpretation, the reliance on XLE can be a draw-
back. To address this, we also provide an integra-
tion of the semantics tool with Stanza’s dependency
parser (Qi et al., 2020).19 However, we do not yet
provide a reasonably-sized set of semantic rules
ready for inference testing. This is an avenue for
future work.

6 Summary

This paper presents an open source computational
resource that enables the exploration of computa-
tional semantics and reasoning through the lense of
LFG’s Glue semantics. Its hallmarks are i) an inter-
face to the Vampire theorem prover, ii) a principled
system for exploring formal semantics and their use
in automated reasoning at various levels of com-
plexity, and iii) a grounding in the seminal work on
formal approaches to natural language inference by
Blackburn and Bos (2005). These hallmarks come
with various avenues for future work. On the LFG-
side, Butt et al. (2024) integrate prosodic informa-
tion into a fully formal system for semantic pars-

19https://github.com/Mmaz1988/xleplusglue/tree/
2025 xleplusud

ing, thus, enabling a comprehensive exploration
of formal linguistic insights from the speech sig-
nal to reasoning. Linking their work with present
resources would grant an even deeper understand-
ing of the interplay between syntax, prosody, and
semantic interpretation.

On the reasoning side, the present work not only
allows users to explore Blackburn and Bos (2005),
but also extends to their (unpublished) material
on discourse representation theory, enabling, for
example, the exploration of anaphora and presup-
positions. Furthermore, this paves the way for the
exploration of discourse relations (Asher and Las-
carides, 2003) further down the line.

More speculatively, we believe that aiming for
a hybrid system, where machine-learning methods
are used to intervene at various levels of linguis-
tic analysis (syntax, semantics, pragmatics) could
be mutually beneficial, potentially increasing the
explainability of large language models (as a rep-
resentative of the most prevalent machine learning
methods in current NLP), but, importantly also im-
proving the robustness of the present system, e.g.,
by helping with disambiguation and possibly by
modulating the reasoning process.

All in all, we present a principled and thus in-
structive way to explore formal semantics and rea-
soning. The system can be locally deployed as
a browser app with an accessible user interface,
making it interesting for a broad audience within
computational linguistics and adjacent fields.
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Laura Kovács and Andrei Voronkov. 2013. First-order
theorem proving and vampire. In International Con-
ference on Computer Aided Verification, pages 1–35.
Springer.

Iddo Lev. 2007. Packed computation of exact meaning
representations. Ph.D. thesis, Stanford University.

Bill MacCartney and Christopher D. Manning. 2009.
An extended model of natural logic. In Proceedings
of the eight International Conference on Computa-
tional Semantics, pages 140–156.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 3428–3448, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Moritz Meßmer and Mark-Matthias Zymla. 2018. The
Glue semantics workbench: A modular toolkit for
exploring linear logic and Glue semantics. In Pro-
ceedings of the LFG’18 Conference, pages 249–263,
Stanford, CA. CSLI Publications.

Paul Meurer. 2017. From LFG structures to dependency
relations. Bergen Language and Linguistics Studies,
8(1).

Richard Moot and Christian Retoré. 2012. The logic of
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A Worked examples

A.1 Example (12)
(17) a. Some great tenors are Swedish.

Dx, ertenorpxq ^ greatpxq ^ swedishpeq ^ bepeq ^ arg1peq “ xs
b. There are some great tenors who are Swedish.

Dx, y, e1, e2rtenorpxq ^ greatpxq ^ swedishpeq ^ bepe1q ^ arg1peq “ x ^ bepe2q ^
arg1pe2q “ y ^ arg2pe2q “ xs

Generated semantics:
_____________

| x2 x1 |
|-------------|
| great(x2) |
| tenor(x2) |
| swedish(x1) |
| be(x1) |
| arg1(x1,x2) |
|_____________|

-------------
| x2 x4 x3 x1 |
|-------------|
| great(x2) |
| tenor(x2) |
| swedish(x4) |
| be(x4) |
| arg1(x4,x2) |
| be(x1) |
| arg1(x1,x3) |
| arg2(x1,x2) |
|_____________|

Used axioms:
fof(be_axiom, axiom,

![X,Y,Z] : ((be(X) & arg1(X,Y) & arg2(X,Z)) => Y = Z)).

Inference output:
+consistent -consistent +informative -informative

Termination reason + + - +
SZS status + + - +

Model found + + - +

A.2 Example (5)
(18) a. A Swede won a Nobel prize

Dx, erswedepxq ^ prizepyq ^ winpeq ^ arg1peq “ x^ arg2peq “ ys
b. Every Swede is a Scandinavian

@x, erswedepxq Ñ Derscandinavianpeq ^ bepeq ^ arg1peq “ xss
c. A Scandinavian won the Nobel prize.

Dx, erscandinavianpxq ^ prizepyq ^ winpeq ^ arg1peq “ x^ arg2peq “ ys
Generated semantics:

_____________
| x3 x2 x1 |
|-------------|
| swede(x3) |
| prize(x2) |
| win(x1) |
| arg1(x1,x3) |
| arg2(x1,x2) |
|_____________|

________________________________________
| |
|----------------------------------------|
| ___________ __________________ |
| | x1 | | x3 x2 | |
| |-----------| |------------------| |
| | swede(x1) | ==> | scandinavian(x3) | |
| |___________| | be(x2) | |
| | arg1(x2,x1) | |
| | arg2(x2,x3) | |
| |__________________| |
|________________________________________|

_____________
| x3 x2 x1 |
|-------------|
| scandi(x3) |
| prize(x2) |
| win(x1) |
| arg1(x1,x3) |
| arg2(x1,x2) |
|_____________|
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Used axioms:
fof(be_axiom, axiom,

![X,Y,Z] : ((be(X) & arg1(X,Y) & arg2(X,Z)) => Y = Z)).

Inference output:
+consistent -consistent +informative -informative

Termination reason + + - +
SZS status + + - +

Model found + + - +

A.3 Example (13)
(19) a. An Italian became the greatest tenor.

Dx, y, eritalianpxq ^ greatpyq ^ tenorpyq ^ becomepeq ^ arg2peq “ x^ arg1peq “ ys
b. There was an Italian who became the greatest tenor.

Dx, y, eritalianpxq ^ greatpyq ^ tenorpyq ^ becomepeq ^ arg1peq “ x^ arg2peq “ ys
_____________

| x2 x3 x1 |
|-------------|
| italian(x2) |
| great(x3) |
| tenor(x3) |
| become(x1) |
| arg2(x1,x3) |
| arg1(x1,x2) |
|_____________|

________________
| x3 x5 x4 x2 x1 |
|----------------|
| italian(x3) |
| great(x5) |
| tenor(x5) |
| become(x4) |
| arg2(x4,x5) |
| arg1(x4,x3) |
| be(x1) |
| arg2(x1,x3) |
| arg1(x1,x2) |
|________________|

Used axioms:
fof(be_axiom, axiom,

![X,Y,Z] : ((be(X) & arg1(X,Y) & arg2(X,Z)) => Y = Z)).

Inference output:
+consistent -consistent +informative -informative

Termination reason + + - +
SZS status + + - +

Model found + + - +

A.4 Example (14)
(20) a. All mice are small animals.

@xrmousepxq Ñ Dy, δ, eranimalpyq ^ smallpy, δq ^ θsmallpanimalq “ δ ^ bepeq ^
arg1peq “ x^ arg2peq “ ys

b. Mickey is a large mouse.
Dx, y, δ, erx “ Mickey ^ mousepyq ^ largepy, δq ^ θlargepmouseq “ δ ^ bepeq ^
arg1peq “ x^ arg2peq “ ys

c. Mickey is a large animal.
Dx, y, δ, erx “ Mickey ^ animalpyq ^ largepy, δq ^ θlargepanimalq “ δ ^ bepeq ^
arg1peq “ x^ arg2peq “ ys
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Generated semantics:
_____________________________________________

| |
|---------------------------------------------|
| ___________ _______________________ |
| | x1 | | x3 x4 x2 | |
| |-----------| |-----------------------| |
| | mouse(x1) | ==> | th_small(animal) = x4 | |
| |___________| | small(x3,x4) | |
| | animal(x3) | |
| | be(x2) | |
| | arg2(x2,x3) | |
| | arg1(x2,x1) | |
| |_______________________| |
|_____________________________________________|

______________________
| x2 x4 x3 x1 |
|----------------------|
| th_large(mouse) = x4 |
| large(x2,x4) |
| mouse(x2) |
| x3 = mickey |
| be(x1) |
| arg1(x1,x3) |
| arg2(x1,x2) |
|______________________|

_______________________
| x2 x4 x3 x1 |
|-----------------------|
| th_large(animal) = x4 |
| large(x2,x4) |
| animal(x2) |
| x3 = mickey |
| be(x1) |
| arg1(x1,x3) |
| arg2(x1,x2) |
|_______________________|

Used axioms:
% adjectives
tff(large_type, type, large: ($i * $int) > $o).
tff(small_type, type, small: ($i * $int) > $o).

%comparison classes
tff(large_cc_type, type, th_large: $i > $int).
tff(small_cc_type, type, th_small: $i > $int).

%predicatives
tff(be_type, type, be: $i > $o).
tff(arg1_type, type, arg1: ($i * $i) > $o).
tff(arg2_type, type, arg2: ($i * $i) > $o).

%nouns
tff(mouse_type, type, mouse: $i > $o).
tff(animal_type, type, animal: $i > $o).

%names
tff(pn_type1, type, mickey: $i).
tff(pn_type2, type, minni: $i).
tff(pn_type3, type, animal: $i).
tff(pn_type4, type, mouse: $i).

%predicative meaning postulate
tff(axiom1,axiom,(![A : $i]: (![B : $i]: (![C : $i]: ((be(A) & (arg1(A,B) & arg2(A,C))) => (B = C))))

)).

%from events to adjectives
tff(axiom2,axiom,(![A : $i]: (![B : $i]: (![C : $int]: ((arg1(A,B) & large(A,C)) => large(B,C)))))).
tff(axiom3,axiom,(![A : $i]: (![B : $i]: (![C : $int]: ((arg1(A,B) & small(A,C)) => small(B,C)))))).

tff(axiom4,axiom,(![A : $i]: (?[B : $int]: (large(A,B) & ˜ (?[C : $int]: ($greater(C,B) & large(A,C))
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))))).
tff(axiom5,axiom,(![A : $i]: (![B : $int]: (large(A,B) <=> (![C : $int]: ($lesseq(C,B) => large(A,C))

))))).

tff(axiom6,axiom,(![A : $i]: (?[B : $int]: (small(A,B) & ˜ (?[C : $int]: ($greater(B,C) & small(A,C))
))))).

tff(axiom7,axiom,(![A : $i]: (![B : $int]: (small(A,B) <=> (![C : $int]: ($lesseq(B,C) => small(A,C))
))))).

%comparison class
tff(cclass,axiom, (![D: $int, D1: $int]:((th_large(animal) = D & th_small(animal) = D1) => $less(D1,D

)))).

%antonym
tff(antonym1, axiom, ![X: $i, D: $int]: (large(X,D) <=> ˜small(X,D))).
tff(antonym2, axiom, ?[X: $i, D: $int]: (large(X,D)) <=> ?[X1: $i, D1: $int]: (small(X1,D1))).

Inference output:
+consistent -consistent +informative -informative

Termination reason - ? ? ?
SZS status - ? ? ?

A.5 Example (16)

(21) a. The PC-6082 is faster than every ITEL computer.
@yrcomputerpyq ^ kindpy, itelq Ñ Dx, δ, erfastpe, δq ^ arg1peq “ x^ x “ PC-6082^
arg2peq “ yss

b. The ITEL-ZX is an ITEL computer.
Dx, y, erx “ ITEL-ZX^computerpyq^kindpy, itelq^bepeq^arg1peq “ x^arg2peq “
ys

c. The PC-6082 is faster than the ITEL-ZX.
Dx, y, δ, erfastpe, δq ^ x “ PC-6082 ^ y “ ITEL-ZX ^ arg1peq “ x ^ arg2peq “
y ^␣De1rfastpe1, δq ^ arg1pe1q “ yss

___________________________________________________
| |
|---------------------------------------------------|
| ___________________ _____________________ |
| | x1 | | x3 x2 x6 | |
| |-------------------| |---------------------| |
| | computer(x1) | ==> | x3 = pc-6082 | |
| | rel(kind,x1,itel) | | fast(x2,x5) | |
| |___________________| | _____________ | |
| | | x4 | | |
| | __ |-------------| | |
| | | | fast(x4,x5) | | |
| | | arg1(x4,x1) | | |
| | |_____________| | |
| | be(x2) | |
| | arg1(x2,x3) | |
| |_____________________| |
|___________________________________________________|
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_____________________
| x2 x4 x1 x5 |
|---------------------|
| x2 = pc-6082 |
| x4 = itel-zx |
| fast(x1,x5) |
| _____________ |
| | x3 | |
| __ |-------------| |
| | | fast(x3,x5) | |
| | arg1(x3,x4) | |
| |_____________| |
| be(x1) |
| arg1(x1,x2) |
|_____________________|

____________________
| x2 x3 x1 |
|--------------------|
| computer(x2) |
| rel(kind,x2,itel) |
| x3 = pc-6082 |
| be(x1) |
| arg1(x1,x3) |
| arg2(x1,x2) |
|____________________|

Used axioms:
%adjectives
tff(fast_type, type, fast: ($i * $int) > $o).

%modifiers
tff(kind_type, type, kind: ($i * $i) > $o).

%predicatives
tff(be_type, type, be: $i > $o).
tff(arg1_type, type, arg1: ($i * $i) > $o).
tff(arg2_type, type, arg2: ($i * $i) > $o).

%nouns
tff(computer_type, type, computer: $i > $o).

%names
tff(pn_type1, type, 'pc-6082': $i).
tff(pn_type2, type, 'itel-zx': $i).

%predicative meaning postulate
tff(axiom1,axiom,(![A : $i]: (![B : $i]: (![C : $i]: ((be(A) & (arg1(A,B) & arg2(A,C))) => (B = C))))

)).

%from events to adjectives
tff(axiom2, axiom, (![A: $i]: (![B: $i]: (![C: $int]: ((arg1(A,B) & fast(A,C)) => fast(B,C)))))).

tff(axiom3, axiom, (![A: $i]: (![B: $int]: (fast(A,B) <=> (![C: $int]: ($lesseq(C,B) => fast(A,C)))))
)).

tff(axiom4, axiom, (![A: $i]: (![B: $i]: ((?[C: $int]: (fast(A,C) & ˜fast(B,C))) => (![D: $int]: (
fast(B,D) => fast(A,D))))))).

tff(axiom5, axiom, (![A: $i]: (?[B: $int]: (fast(A,B) & ˜(?[C: $int]: ($greater(C,B) & fast(A,C))))))
).

Inference output:
+consistent -consistent +informative -informative

Termination reason ? ? - ?
SZS status ? ? - ?

• For comparatives, only a partial answer based on the refutation of the positive informativity check is
given.

• ? refers to proof searches that have timed out.

• The search strategy differs in this examples as model building is not an option.
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Abstract
The correlation between reading times and sur-
prisal is well known in psycholinguistics and is
easy to observe. There is also a correlation be-
tween reading times and structural integration,
which is, however, harder to detect (Gibson,
2000). This correlation has been studied us-
ing parsing models whose outputs are linked to
reading times. In this paper, we study the rele-
vance of memory-based effects in reading times
and how to predict them using neural language
models. We find that integration costs signif-
icantly improve surprisal-based reading time
prediction. Inspired by Timkey and Linzen
(2023), we design a small-scale autoregressive
transformer language model in which attention
heads are supervised by dependency relations.
We compare this model to a standard variant by
checking how well each model’s outputs cor-
relate with human reading times and find that
predicted attention scores can be effectively
used as proxies for syntactic integration costs
to predict self-paced reading times.

1 Introduction

Recently, there has been increased interest in eval-
uating language models (LMs) regarding their psy-
cholinguistic plausibility, particularly in relation
to two important approaches to human sentence
processing: expectation-based (Hale, 2001; Levy,
2008) and memory-based theories (Gibson, 2000).

Expectation-based theories postulate that sur-
prisal is a good indicator of human reading times
(RTs), and that surprisal can be modelled with a
language model. A strong correlation between sur-
prisal and RTs was confirmed using state-of-the-art
transformer-based LMs (Wilcox et al., 2023). In
contrast, memory-based theories such as cue-based
retrieval (Van Dyke and Lewis, 2003) explain diffi-
culties in processing with the limitations of infor-
mation encoding and retrieval in human working
memory. In particular, Dependency Locality The-
ory (DLT) proposes that when processing a token,

longer syntactic dependencies cause higher integra-
tion costs (i.e. the online cognitive cost required to
integrate the token into the structure built so far),
thus longer reading times (Gibson, 2000).

Against this backdrop, efforts are made to unify
these approaches by constructing LMs that jointly
operationalise both paradigms and generate theory-
driven predictions aligned with human data. For
example, Ryu and Lewis (2021) show that self-
attention can be seen as cue-based retrieval. In-
spired by that, Timkey and Linzen (2023) propose
a unified cognitive model by training an LM with
only one attention head. They observe that their
model tends to attend to syntactically close tokens,
resembling expected memory effects, but they do
not leverage the attention patterns of their model
for reading time predictions.

Linguists have produced a vast collection of
work pertaining to the structures underlying lan-
guage. If these theories are indeed indicative of
the human cognitive process, incremental parsers
such as the attach-juxtapose parser (Yang and Deng,
2020; Ezquerro et al., 2024) and the PLTAG parser
(Demberg et al., 2013) should allow us to extract
measures that we could link to human RTs. How-
ever, these models do not predict next token prob-
abilities. Given the significance of the correlation
between surprisal and RTs, we are interested in
models that combine incremental parsing and next
token prediction.

This paper approaches the question of how sur-
prisal and structural integration costs contribute
to RT predictions in two ways. We first train an
LM only towards next word prediction. This LM
provides surprisal, i.e. expectation-based RT pre-
dictors. We then (i) compare RT prediction based
on surprisal only with RT predictions based on
both surprisal and structural integration cost. We
do so by obtaining surprisal from the LM and
the structural costs from parsed dependency data.
We observe that structural integration costs im-
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prove RT prediction, which leads us to (ii) de-
vise a dependency enhanced LM that outputs both
expectation-based and memory-based processing
features, which we compare in the same fashion.
Again, we observe that RT predictions are im-
proved. Finally, comparing the contributions of
surprisal and structural integration costs provided
in (i) and (ii), we note that the syntax-enhanced LM
has a better fit to self-paced reading times while
surprisal from a vanilla LM combined with parsed
data is better for eye-tracking data.

In Sections 2–3, we outline our research ques-
tions and discuss related work. We follow with an
investigation of natural data to establish the signif-
icance of memory-based reading time predictors
(see (i) above). Finally, in Section 5 we present
our dependency-enhanced neural network and in-
vestigate how well the combination of expectation-
based and memory-based features from our model
predicts reading times (see (ii) above).

2 Methodology

Research questions We aim to answer the fol-
lowing questions: [Q1] Does syntactic integration
cost reflect properties of human sentence process-
ing that are not explained by surprisal? [Q2] Can a
syntax-informed language model better capture fea-
tures of human sentence processing than a vanilla
model, both with respect to expectation-based and
memory-based costs?

We hypothesise [H1] that using syntactic integra-
tion cost improves RT predictions over a model that
only includes surprisal and [H2] that small-scale
transformers trained to attend to syntactic gover-
nors or dependents better reflect human language
processing than their unconstrained counterparts.

Proposal To answer [Q1], we estimate the joint
predictive power of surprisal and a memory-based
integration cost on eye-tracking and on self-paced
reading time data. The structural integration cost is
in this case obtained from parse trees based on an
off-the-shelf parser (silver parses). We confirm that
both expectation-based and memory-based theories
give rise to significant predictors for RTs and that
including both aspects in a linear mixed effects
model significantly improves RT predictions over
including only the expectation-based predictor.

Answering [Q2] is not easy since the inner work-
ings of a typical transformer model are widely dis-
tributed across different layers and attention heads
with millions of parameters. Large transformer

LMs are not only hard to interpret but also tend
to underestimate processing difficulties (Oh and
Schuler, 2022; Hu et al., 2025). Therefore, we de-
sign a small-scale transformer whose internals are
easy to interpret and to supervise.

Given this idea, we propose to use a language
model that utilises syntactic structure explicitly for
its next token prediction mechanism. More con-
cretely, we use a 2-head transformer-based model
and train one of its heads to attend to the syntactic
governor of the input token whenever it is accessi-
ble (i.e. to the left) and the other to attend to its syn-
tactic dependents when they are accessible. This
implements a form of incremental parsing. Now
we measure structural integration costs based on
our model, and show that the joint predictive power
of structural cost and surprisal with respect to read-
ing times is significantly larger than the one of only
surprisal (from the same model). Finally, we com-
pare the predictive power that the two measures
from our syntax-enhanced model together provide
with the predictive power that surprisal from a
language modelling-only variant of the architec-
ture yields. We establish that our syntax-informed
model captures human sentence processing on self-
paced reading times better and on eye-tracking data
worse than a vanilla model.

We make our code publicly available.1

3 Related work

It is well known that reading times correlate
with surprisal (Shain et al., 2024). But besides
frequency-based theories there are also memory-
based theories like Dependency Locality Theory
(Gibson, 2000) that establish the contribution of
structural effects on reading times. In this paper, we
are interested in predicting these effects in reading
times. Structural effects can be predicted using syn-
tactic language model parsers (Hale, 2001; Roark,
2001; Hale et al., 2018). Here we take advantage
of a relation between attention matrices used in
transformer models and attention matrices used in
graph-based parsers (Dozat and Manning, 2016)
to propose an integration of graph-based parsing
into a language model for which we can explicitly
add a supervisable structural bias. By doing this,
we are close to the recent proposal of Timkey and
Linzen (2023) who explored the use of small-sized
transformer language models that remain easy to
interpret. Our implementation can be seen as a

1https://github.com/filemon11/MITransformer
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stricter version of their retrieval-based approach
where the number of previous tokens to retrieve is
minimised and queries/keys are implicitly condi-
tioned to encode syntactic governors/dependents.

Recent work aims to bridge expectation-based
and memory-based accounts of language process-
ing by proposing unified models that constrain con-
textual representations used in prediction. Notably,
Futrell et al. (2020) and Hahn et al. (2022) develop
frameworks that formalise the trade-offs between
memory limitations and predictive efficiency, while
Kuribayashi et al. (2022) show that minimising
transformer context access generally improves RT
predictions. Yet, they also find that for specific
syntactic constructions, not strictly determined by
dependency length, longer contexts are necessary.
They suggest including syntactic biases into con-
text access - a direction our work addresses.

This work also features a form of multitask learn-
ing. Collobert and Weston (2008) pioneered the
inclusion of several objectives into neural NLP
models to improve generalisation and efficiency.
More recently, LM architectures like the trans-
former have been adapted, with approaches such as
MT-DNN (Liu et al., 2019) that combine a shared
encoder with task-specific output layers. Compared
to those approaches, where the precise effect on a
model’s internal representations remains unclear,
our parsing objective has an easily interpretable
effect, in that it directly induces patterns in the
attention weights of a transformer.

4 Can we observe (structural) effects in
reading time data?

First, we investigate the interplay of expectation-
based and memory-based theories with respect to
human reading times in natural data. In general, it
is unclear how they relate to each other. It is pos-
sible that tokens with higher integration costs and
long-range dependencies are generally rarer, and
thus naturally more surprising to the reader. Indeed,
Demberg and Keller (2008) find evidence for ef-
fects driven by integration costs only for nouns.
Thus, we need to establish to what degree RT
phenomena are exclusively explicable by costs in-
curred through memory effects in online processing
and not by predictive effects to be able to reason-
ably judge the contribution of our joint model.

Therefore, we fit linear models to predict reading
times from surprisal and dependency-based costs
calculated on silver parses. We observe that both

Peter bought a car from Abigail
1a. 0 0 0 0 0 1
1b. 1 1 0 1 0 1
2. 0 1 0 2 0 4

nsubj

obj

det

obl

case

Figure 1: An example dependency parse. Structural
integration costs are obtained by summing the linking
costs in row 1a. and the establishment costs in row 1b.
Costs assigned by leftmost connection distance (LCD)
can be found in row 2.

theories’ contributions are significant and that in-
cluding memory-based costs in a model that con-
tains surprisal as a predictor significantly improves
model fit. This leads us to believe that finding
candidates for memory-based metrics in neural lan-
guage models might allow us to build models that
better reflect human processing behaviour.

4.1 Data
We utilise the University College London (UCL)
corpus of sentences from English narrative sources
that comes with both self-paced reading times and
eye-tracking data (Frank et al., 2013). It features
361 sentences with an average length of 13.7 words.
Self-paced reading times (SPR) were provided by
117 participants while eye-tracking measures were
collected from 43 subjects. Regarding the eye-
tracking data, we use first fixation duration (FFD),
which is the duration of the very first fixation on
a word, gaze duration (GD), the summed duration
of all fixations on a word before the fixation of
any other word, and go-past time (GPT), being the
total time spent from first entering a word until
moving past it to the right, including any regres-
sions back to earlier text. We include FFD, GD
and GPT because we expect to attribute differences
in our metrics’ ability to predict these measures to
regressions or to re-fixations.

For training our model, we generate silver de-
pendency parses using the state-of-the-art spaCy
English transformer pipeline.2

4.2 Method
Our main predictors are surprisal and structural
integration cost. We calculate surprisal using a
small-scale LM consisting of an LSTM and a trans-
former layer with two heads (see Section 5.1 for

2https://spacy.io/models/en#en_core_web_trf
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more information about the model). We calculate
structural integration costs in the following way,
similar to Demberg and Keller (2008) and close
to the formulation by Gibson (2000): For a given
content word (noun or verb), we compute the num-
ber of intervening content words between it and
its leftmost preceding governor/dependent that is
also a content word (0 if none is available), and we
add an establishment cost of 1. Non-content words
receive a cost of 0. See Figure 1 for an example.

Additionally, we test a modified version of struc-
tural integration cost which we call leftmost connec-
tion distance (LCD). This metric does not ignore
non-content words. For each token, it simply yields
the distance to its leftmost governor/dependent. If
no governor/dependent to the left exists, LCD is 0.
This is motivated by Demberg and Keller (2008)’s
suggestion that there might be structural phenom-
ena for words where DLT does not predict a cost.
Additionally, in contrast to the canonical structural
cost, this metric is directly extractable from self-
attention matrices as we will discuss in Section 5.3.
Figure 1 also contains an example for LCD.

We investigate the correlation between these
predictors and human reading times using linear
mixed-effects models. Word frequency and word
length are included as baseline predictors and ran-
dom intercepts are included for the participants.

Since processing slowdown is often delayed in
RT data (Ehrlich and Rayner, 1983), we add shifted
versions of our predictors. For a given S, the
amount of spillover, for each word, we not only
use the values assigned to this word, but also those
of the S previous ones. We decide on S by first
fitting a control model to the data without spillover,
and then fitting a second model using the same
predictors plus a shifted version of the variables.
If the latter is a significantly better fit to the data,
we choose it, otherwise we stick with the control
model. As long as we get significant improvements,
we repeat this procedure – up to S = 2 in order to
avoid losing too much data. Since it generally turns
out to be best, we report results for S = 2, except
when noted otherwise. The test model uniquely
adds the metric of interest (e.g. surprisal) and its
spillover versions to the baseline.3

3We will report the following codes: *** highly significant,
** very significant, * significant, . marginally significant. Fur-
thermore, we provide the coefficient estimate (detailed results
in Appendix C), ∆LogLik, i.e. the change in log-likelihood
after adding the predictor of interest to the model (higher
= better) and ∆AIC, i.e. the Akaike Information Criterion
(lower = better). The latter two are averaged by the number of

coef ∆LogLik ∆AIC p-value
standard surprisal

SPR 0.22 1.38e-5 -4.10e-6 .
FFD 2.00 1.03e-3 -1.94e-3 ***
GD 2.85 1.03e-3 -1.95e-3 ***
GPT 3.32 1.31e-3 -2.50e-3 ***

GPT2 surprisal
SPR 0.30 1.71e-4 -3.18e-4 ***
FFD 1.34 1.47e-3 -2.82e-3 ***
GD 2.13 1.40e-3 -2.67e-3 ***
GPT 3.41 2.01e-3 -3.91e-3 ***

structural
SPR -0.14 1.28e-5 -2.13e-6 .
FFD 0.94 2.32e-4 -3.45e-4 ***
GD 1.30 2.12e-4 -3.05e-4 ***
GPT 0.07 1.56e-4 -1.93e-4 **

leftmost connection distance
SPR 0.60 5.22e-5 -8.09e-5 ***
FFD -2.03 4.76e-4 -8.33e-4 ***
GD -1.93 3.45e-4 -5.71e-4 ***
GPT -3.42 6.21e-4 -1.12e-3 ***

Table 1: Improvements in mixed linear effects model fit
when including one of four predictors: surprisal from
our small LM, GPT2 surprisal, structural cost computed
on silver parses and LCD computed on silver parses.

4.3 Results

Our results for the predictive power of surprisal,
structural integration cost and LCD can be found in
Table 1. For comparison with previous research, we
also included results for surprisal from the small-
est GPT2 model (Radford et al., 2019). We can
see that the contribution of surprisal from our base-
line model is highly significant for all of the eye-
tracking measurements but only marginally sig-
nificant for self-paced reading times. Self-paced
reading times might be noisier and more strategic
since participants cannot return to previous mate-
rial, which can wash out some of surprisal’s predic-
tive power. As expected considering the small size
of our model, it performs worse than GPT2, with
the difference being most notable for self-paced
reading times.

Structural integration shows the same pattern.
We expected to see more significant results for GPT
than for FFD because it includes regressions to the
left which we thought to correspond to integration
of preceding material. However, the result is con-
trary, which might be caused by integration cost
being entangled with early lexical access or lexical
expectations which are believed to manifest more
strongly in FFD than in GPT (Conklin et al., 2018).
We did not make a hypothesis about GD because it
was included post-hoc in response to a review.

observations included (50568).
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Previous research has found a facilitative effect
at long dependencies, (among others Konieczny
and Döring, 2003; Demberg and Keller, 2008;
Rathi, 2021), questioning the explanations pro-
vided by DLT. However, we find positive effects for
eye-tracking and a small negative effect for SPR
times. The coefficient seems to decrease when re-
gressions to previous elements are included (1.30
for GD vs. 0.07 for GPT). Possibly, correlation
with surprisal acts as a confounder. However, while
further investigations showed a high Pearson cor-
relation of 0.4 between surprisal and structural in-
tegration, correlations between FFD/GD and sur-
prisal are only marginally higher than for GPT and
surprisal (see Table 8 in Appendix C).

Results for LCD are highly significant for all
four dependent variables with ∆AIC ranging from
-8.09e-5 for SPR to -1.12e-3 for GPT. This is notice-
ably better than the canonical structural cost and
might indicate that non-content words influence
memory-based costs both in terms of calculating
the distance function and as cost-carrying words
themselves. It is also possible that the class of con-
tent words should contain additional categories of
words that we left out, e.g. adjectives.

For the coefficient, here we find inverted re-
sults with the sign being negative for eye-tracking
and positive for SPR. Interestingly, higher coeffi-
cients for surprisal seem to coincide with lower
coefficients for LCD. Possibly eye movements re-
flect a more shallow form of good-enough process-
ing (Ferreira et al., 2002), as suggested by Kurib-
ayashi et al. (2022), more strongly influenced by
frequency effects, while SPR might be more strate-
gic as noted above, due to the inaccessibility of pre-
ceding information and more influenced by struc-
tural integration. The stronger anti-locality effect
for LCD where surprisal is most predictive would
then be explicable by a frequency-based account,
i.e. the accumulation of probabilistic evidence, for
instance, before clause final verbs (Levy, 2008).

Due to the more significant results LCD provides
and our ability to extract it from our LM, we stick
with it for the remainder of the paper.

Naturally, the question arises of how LCD and
surprisal behave with respect to each other and
whether we can disentangle their effects. The Pear-
son correlation between surprisal and this measure
is lower than for structural integration cost (0.19),
so it seems less likely that we observe frequency
effects. This may also be partly explained by the
fact that in contrast to structural cost, LCD takes

spill coef ∆LogLik ∆AIC p-value
leftmost connection distance over standard surprisal

0 SPR 0.54 3.64e-5 -6.61e-5 ***
FFD -2.27 2.37e-4 -4.44e-4 ***
GD -4.52 7.20e-4 -1.41e-3 ***
GPT -5.07 6.67e-4 -1.31e-3 ***

1 SPR 0.70 7.48e-5 -1.35e-4 ***
FFD -1.58 3.13e-4 -5.57e-4 ***
GD -2.55 4.35e-4 -8.02e-4 ***
GPT -4.23 9.67e-4 -1.85e-3 ***

2 SPR 0.62 5.46e-5 -8.58e-5 ***
FFD -1.92 4.04e-4 -6.90e-4 ***
GD -1.79 3.11e-4 -5.03e-4 ***
GPT -3.19 5.34e-4 -9.49e-4 ***

Table 2: Results of including LCD cost in a linear mixed
effects model with surprisal as part of the control.

into account non-content words, which generally
feature significantly lower surprisal than content
words (see Figure 6 in the Appendix).

We check whether including LCD in a linear
mixed model that contains surprisal as well as our
baseline predictors significantly improves the fit.
Table 2 shows detailed results, including values for
spillover 0, 1 and 2. Again, the selection process
established a window of 2 as most relevant.

We can see that structural effects are highly
significant across all dependent variables and all
spillover window sizes. For SPR and GPT ∆AIC
is strongest with -1.35e-4 and -1.85e-3 respectively
at spillover 1 while for FFD it is best at spillover
2 with -6.90e-4 and for GD at spillover 0 with -
1.41e-3. The trend of a negative sign for SPR and a
positive sign for eye-tracking data still holds. Thus,
it is unlikely that this phenomenon can be fully
explained by a frequency-based account.

These observations suggest that we can answer
[Q1] by confirming [H1]: syntactic integration
costs impact processing in a measurable and sus-
tained way that is not fully captured by surprisal.

5 Can a syntax-informed model better
capture human processing?

5.1 Models
In order to address question [Q2] of whether a
syntax-informed language model better captures
features of human sentence processing, we design
two small-scale language models. The first model
(called standard) serves as our baseline and is
trained for next token prediction while the second
model (called supervised) receives an additional
incremental dependency parsing objective. More
concretely, in our syntax-enhanced model, depen-
dency edges are represented via the attention each
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token pays to the items that precede it. To this
end, we train one attention head so that each to-
ken attends to its governor if its on the left, and
one attention head so that each token attends to
all of its dependents on the left. The model is
trained in a multitask fashion, where the loss is
a weighted average of a language modelling loss
LossLM (cross-entropy) and two syntactic losses
Losssyn = (Lossgov + Lossdep)/2 (binary cross-
entropy) given in Equation 1.

Loss = α LossLM + (1− α) Losssyn (1)

The optimal weight for language modelling and
parsing is non-trivial to select and is therefore de-
termined through hyperparameter optimisation, as
are learning rate, dimensionality and regularisation
strengths. For the standard model, we select hy-
perparameters that minimise perplexity and for the
supervised model, we select hyperparameters that
maximise unlabelled attachment score (UAS), that
is, the percentage of tokens assigned the correct
governor. For the loss-term α in the supervised
setting, the search yields an optimal value of 0.05
which is heavily leaning towards parsing. Addi-
tional information on the hyperparameter search
and the resulting parameters can be found in Sec-
tion B of the appendix. The final models are both
trained for 10 epochs.

Our models are based on the transformer ar-
chitecture. They are causal, meaning that atten-
tion heads are constrained to tokens in the left
context by masking. See Vaswani et al. (2017)
for a detailed introduction to transformers. The
schemes for positional encodings and the language
modelling head correspond to the GPT architec-
ture (Radford et al., 2018). Following Timkey
and Linzen (2023), we contextualise our embed-
dings using a unidirectional LSTM (Hochreiter and
Schmidhuber, 1997) before providing them to the
transformer module.

5.2 Data
In the following, we explain our choice of datasets
and the pre-processing for training and evaluation.

Training and LM evaluation We use the pre-
processed Wikitext-103-v1 dataset4 for training our
models. It consists of over 100 million tokens from
Wikipedia. Here, we also use the spaCy trf model
to generate silver dependencies, as outlined in 4.1.

4https://huggingface.co/datasets/Salesforce/
wikitext

Before parsing Wikitext and training the model we
convert the data to lowercase and apply additional
modifications outlined in Section A of the appendix.
Finally, we tokenise the dataset on the word-level.

Psycholinguistic evaluation In order to investi-
gate the psycholinguistic plausibility of our models,
we again use the UCL corpus (cf. Section 4.1). We
treat these sentences as our stimulus and are aware
that their domain differs from Wikitext. However,
we do not regard this as problematic since we are
only interested in comparing the psycholinguistic
properties of our models against each other.

5.3 Evaluation

In the next section, we evaluate our models in three
respects: (a) language modelling, (b) dependency
parsing, and (c) correlation between model mea-
sures and human reading times. In the following,
we explain our methods of evaluation and how they
are used to answer [Q2].

Language modelling We evaluate language mod-
elling capabilities using perplexity.

Dependency parsing The two attention heads
together provide a score for each possible de-
pendency in the sentence. We decode these
scores as a directed maximum spanning tree using
Chu–Liu/Edmonds’ algorithm (Chu and Liu, 1965;
Edmonds, 1967). Then, we evaluate the predic-
tion by computing UAS. Furthermore, we report
the entropy of the probability distributions over
preceding tokens provided by the attention heads
averaged by all tokens.

Psycholinguistic plausibility We restrict this
analysis exclusively to measures provided by the
LM: (i) surprisal and (ii) the attention patterns of
our model which we use to compute a prediction
for leftmost connection distance (PLCD). This is
done by identifying the token with the maximum
weight assigned per attention head and then taking
the one closest to the beginning of the sentence. If
both heads connect to one of two special tokens
called “root” and “dummy” (representing a lack of
left connections), we manually assign a cost of 0.
An example can be found in Figure 2.

5.4 Model comparisons

5.4.1 General performance
Measures of the language modelling performance
of our standard and our syntax-enhanced model
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a. 0 1 1 0 0 2 3
b. 0 0 2 1 0 2 3

Figure 2: First row: governor matrix; second row: de-
pendent matrix; first column: prediction; second col-
umn: silver adjacency matrices. a. cost predicted by our
supervised model; b. cost measured on the silver parse.

on the training, development, and test splits of the
Wikitext dataset can be found in Table 3. With a
value of 46.75 on the test split, the perplexity of
our standard model is considerably lower than the
mean perplexity of 61.8 Timkey and Linzen (2023)
report for their base model. This is probably due to
our model having a dimensionality of 886, while
their model comes with a width of just 256.

The perplexity of our supervised model on the
test set amounts to 58.88 which is noticeably higher
than the standard model, likely caused by the
strong focus on dependency parsing (cf. Section
5.1). Structuring the attention mechanism, used to
compute the output embeddings of the transformer
layer, along dependency arcs might undervalue the
role of certain types of preceding context neces-
sary for next token prediction, for instance, when
a token should be most probable that is not di-
rectly connected with the current item or any of the
retrieved directly syntactically connected content.
Another possibility might be that reaching good
performance for both parsing and language mod-
elling would necessitate a larger model, as hyper-
parameter optimisation for the supervised model
resulted in roughly half the number of parameters
than for the standard model (104M vs. 219M). It
is also possible that we would have needed more
training data and/or longer training to support both

model split PPL UAS attn entropy
gov dep

standard train 28.46 1.16 1.10
dev 44.81 1.23 1.15
test 46.75 1.21 1.15

supervised train 42.85 0.92 0.06 0.05
dev 57.13 0.87 0.08 0.06
test 58.88 0.87 0.08 0.06

CBR-RNN test 61.8
GPT2 train 105.00 1.14

dev 95.97 1.21
test 98.68 1.21

Table 3: General evaluation of our language models on
the Wikitext corpus. PPL = perplexity, UAS = unla-
belled attachment score. CBR-RNN (α=0, reported by
Timkey and Linzen (2023)) and GPT2 with sentence-
based PPL on the raw Wikitext corpus are included for
comparison. Note that results for GPT2 are not directly
comparable because of the different tokenisation scheme
and CBR-RNN neither due to PPL being chunk-based.

tasks. At least the latter is unlikely since we have
reached convergence (see Appendix B).

For parsing, the supervised model reaches an
UAS of 0.87. Note that this is measured against
silver data generated by an off-the-shelf parser – al-
beit a performant one, with an UAS of 0.95 (Honni-
bal et al.) on the development set of the OntoNotes
5.0 corpus (Weischedel et al., 2013). Finally, atten-
tion is on average much more narrowly distributed
in the supervised model (0.08 governor head en-
tropy, 0.06 dependent head) than in the standard
model (1.21, 1.15). As an entropy of 0 would cor-
respond to a one-hot vector, this confirms that our
training scheme has optimised the model to retrieve
information from a minimal number of preceding
tokens.

The significance of surprisal and leftmost con-
nection distance extracted from attention patterns
of our supervised model (PLCD) for reading time
predictions can be found in Table 4. Surprisal sig-
nificantly improves prediction across all reading
time measures, with large gains in FFD, GD and
GPT. The benefit for SPR is weaker, but still highly
significant. This is noteworthy since the predic-
tive power of surprisal from the standard model
was only marginally significant for SPR (cf. Ta-
ble 1). On the other hand, for the eye tracking
measures ∆AIC is lower using standard model sur-
prisal. Overall, despite heavily modifying the at-
tention architecture and yielding an increase in per-
plexity, surprisal, as a measure of word predictabil-
ity, is still a strong predictor of reading difficulty.
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coef ∆LogLik ∆AIC p-value
supervised surprisal

SPR 0.38 4.69e-5 -7.04e-5 ***
FFD 2.67 5.16e-4 -9.12e-4 ***
GD 3.17 4.93e-4 -8.68e-4 ***
GPT 3.78 6.15e-4 -1.11e-3 ***

predicted leftmost connection distance
SPR 0.40 2.01e-5 -1.67e-5 *
FFD -0.41 1.69e-4 -2.20e-4 **
GD 0.07 1.15e-4 -1.12e-4 **
GPT -1.26 2.80e-4 -4.42e-4 ***

Table 4: Improvements in mixed linear effects model fit
when including surprisal or PLCD extracted from our
supervised model.

5.4.2 Psycholinguistic performance

The predictive power of PLCD is significant for
the four metrics, ranging from -1.67e-5 (SPR) to
-4.42e-4 (GPT) ∆AIC. While being less significant
than the distance extracted from the silver data as
we have reported in Table 1, we have to remind the
reader that expectation-based and memory-based
effects are entangled in this test, so that greater
predictive power of one of the syntactic costs could
also be due to correlation with surprisal.

It has to be noted that the estimated coefficients
for PLCD on eye-tracking exhibit less than half of
the magnitude of the tree-extracted predictor (cf.
Table 1). The coefficient for GD even turns out to
be positive (0.07). Either this is a result of lower
quality syntactic information due to our weaker
parsing score or a consequence of the probabilistic,
incremental parsing process.

Next, we estimate the improvement that PLCD
provides over a model that only includes surprisal
as a fixed effect (Table 5). The predicted distance
to the leftmost governor/dependent adds signifi-
cant explanatory power beyond surprisal with all
spillover window sizes except for spillover 2 and
GD. For SPR, ∆AIC is lowest for spillover 1 while
for FFD, GD and GPT it is lowest for spillover 0
and increases strongly at window size 2, still yield-
ing significant/very significant results. Thus, the
predictive power of memory cost decreases when
preceding surprisals (and other predictors) are in-
cluded. Overall, results for spillover 2 are signifi-
cant for most measures and using both surprisal and
PLCD should improve reading time predictions.

Finally, to answer [Q2], we determine the pre-
dictive power of surprisal and memory-based costs
compared to the linear mixed-effects control model.
Results can be found in Table 6. Combining sur-
prisal and PLCD from our supervised model beats

spill coef ∆LogLik ∆AIC p-value
predicted leftmost connection distance

over supervised surprisal
0 SPR 0.45 2.32e-5 -3.97e-5 ***

FFD -1.93 1.59e-4 -2.87e-4 ***
GD -3.78 4.53e-4 -8.77e-4 ***
GPT -4.75 5.32-4 -1.03e-3 ***

1 SPR 0.57 4.92e-5 -8.40e-5 ***
FFD -1.18 1.67e-4 -2.66e-4 ***
GD -1.19 1.51e-4 -2.34e-4 ***
GPT -2.84 5.94e-4 -1.12e-3 ***

2 SPR 0.46 2.66e-5 -2.97e-5 **
FFD -0.24 1.01e-4 -8.22e-5 *
GD 0.26 6.79e-5 -1.70e-5 .
GPT -0.98 1.69e-4 -2.19e-4 **

Table 5: Results of including PLCD from our supervised
model in a linear mixed effects model with surprisal as
part of the baseline.

standard model surprisal paired with structural cost
from silver parses for self-paced reading times
slightly (∆AIC -1.00e-4 vs. ∆AIC -8.99e-5) but
yields roughly a third of the ∆AIC for eye-tracking
measurements. All results are highly significant.

Comparing with the predictions we could extract
from the standard model (only surprisal, cf. Table
1), we can establish that we achieved highly sig-
nificant results for self-paced reading times where
standard surprisal was only marginally significant.
However, for eye-tracking, the fit is better using
surprisal from the unrestricted model. Therefore,
we can confirm [H2] in part: A syntax-informed
model seems to better reflect human processing
for self-paced reading data than surprisal from a
vanilla language model, whereas the opposite is
true for eye-tracking data.

6 Conclusion

Summary The contribution of this paper is
twofold. First, we have shown that RT predictions
significantly improve when considering not only
surprisal (obtained from a standard generative LM),
i.e. expectation-based measures, but also structural
integration costs obtained from parse trees using
an off-the-shelf parser. This confirms insights from
the psycholinguistic literature (e.g. Gibson, 2000)
at a larger scale, i.e. on a corpus annotated with
reading times. However, the direction of the effect
seems to depend on the type of measurements.

Building on this, our second contribution con-
sists of a proposal for a syntax-enhanced genera-
tive LM that produces not only next word predic-
tions (and thereby surprisal) but also predictions of
dependency edges to the left, which can serve to
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coef1 coef2 ∆LogLik ∆AIC p-value
standard surprisal + leftmost connection distance

SPR 0.21 0.62 6.84e-5 -8.99e-5 ***
FFD 2.16 -1.92 1.43e-3 -2.63e-3 ***
GD 3.02 -1.79 1.34e-3 -2.45e-3 ***
GPT 3.51 -3.19 1.84e-3 -3.45e-3 ***

supervised surprisal +
predicted leftmost connection distance

SPR 0.41 0.46 7.35e-5 -1.00e-4 ***
FFD 2.57 -0.24 6.16e-4 -9.94e-4 ***
GD 3.12 0.26 5.61e-4 -8.85e-4 ***
GPT 3.57 -0.98 7.84e-4 -1.33e-3 ***

Table 6: Effect of including both (P)LCD and (super-
vised) surprisal in a linear mixed effects model.

compute syntactic integration costs. Even though
the quality of the parse trees is below that of the
off-the-shelf parser (partly because of the strict
incrementality of the parser), the additional struc-
tural predictions, when quantified as integration
costs, increase the predictive power of the model
concerning reading times compared to using just
surprisal values from the same model. In other
words, we implemented an incremental model that
yields expectation-based and memory-based RT
predictors, similar to what we observed as relevant
in the experiments for our first contribution.

Discussion We have found that the RT measure-
ments we used are quite different in nature: In
regards to eye-tracking, we could observe that the
predictive power of (predicted) leftmost connec-
tion distance is higher for GPT than for FFD and
GD, throughout the experiments. This indicates
that part of the memory-based processing effect
might express itself through regressions to pre-
ceding words. For SPR, the role of memory ef-
fects is harder to analyse, which might have to do
with the stronger level of spillover effects generally
found in this paradigm (Frank et al., 2013; Witzel
et al., 2012), leading to a diffuse distribution of
expectation-based and memory-based costs.

For eye-tracking, our joint predictive model falls
short of the improvements provided by standard
surprisal and syntactic cost extracted from silver
parses. We think that this is due to the fact that
surprisal from the syntax-enhanced model alone al-
ready exhibited a worse fit to the data than surprisal
from the vanilla model. Thus, the contributions of
integration cost could not compensate for the lower
baseline. Here, we see potential in designing an
architecture with better language modelling capa-
bilities while maintaining the syntactic objective.

As to the estimated coefficients of the memory-

effect, our results are mixed. The finding of anti-
locality effects for eye-tracking is in agreement
with previous research (e.g. Konieczny and Döring,
2003; Demberg and Keller, 2008; Rathi, 2021).
However, the fact that we can still see significant
anti-locality contributions even if we include sur-
prisal does not point towards a frequency-based
explanation. Possibly, our observations support the
theory of dynamic recruitment of additional pro-
cessing resources, as proposed by Just and Varma
(2007), where increased costs occur at the start of
embedded constructions due to the activation of
additional cognitive resources and facilitation oc-
curs at the end, where the reader still has temporary
access to those capacities. Assuming SPR to reflect
a more strategic processing, it might be possible
that these resources are in a state of more constant
activation, so that anti-locality effects cannot be
observed. In the end, the question would remain
whether the positive coefficient for SPR hints to
true locality effects as predicted by DLT.

Concerning the dependency enhanced LM, as
mentioned, strict (left-to-right) incrementality de-
creases parsing accuracy. When it comes to pre-
dicting human processing, this is probably an ad-
vantage. Compared to structural costs derived from
gold or near-gold parses, incrementally predicted
structural costs can be expected to be more predic-
tive of reading times since they probably reflect un-
certainty of the parser in situations that can only be
disambiguated through right context. However, we
do not claim that the parser implemented in this pa-
per is cognitively plausible. It has been argued (for
instance by Demberg et al., 2013) that for a parser
to be psycholinguistically plausible, the parser not
only has to be incremental but also predictive (i.e.
predicting upcoming words and structure) and con-
nected (i.e. the syntactic contribution of a new word
has to be immediately integrated into the already
built prefix tree). However, our dependency en-
hanced LM does not predict a connected graph at
each step. (For parsing accuracy evaluation, a tree
is constructed in a post-processing step.) Further-
more, while our model predicts the next word, it
does not make any prediction about the upcoming
structure.
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setting standard supervised
goal PPL UAS
trials 65 65
optimal value 43.68 0.88
drop resid 0.219 0.597
drop ff 0.026 0.454
drop embd 0.083 0.133
drop lstm 0.305 0.211
n embd 886 464
d ff factor 7 4
alpha 0.05
lr 1.21e-3 4.13e-4
parameters 219,113,116 104,334,112

Table 7: Results of hyperparameter optimisation for the
standard and for the supervised model.

Appendices
A Data preprocessing

For our neural language models, we preprocess the
datasets in the following way:

1. Lowercase the text.

2. Remove titles (starting with "=").

3. Remove lines with more than 4 white space-
separated tokens.

4. Replace "@-@" with "-", " @,@ " with ","
and " @.@ " with ".". These symbols were ar-
tificially introduced into the Wikitext corpus.

5. Replace numbers by <num>. The heuristic is
checking if a token consists only of numerals
after removing all dots, commas and hyphens
in it.

Furthermore, we remove all sentences with less
than 5 words and, additionally for training, all sen-
tences with more than 40 words.

B Optimisation and training

Hyperparameter optimisation We perform hy-
perparameter optimisation separately for the stan-
dard model and for the supervised model. The
results of this process can be found in Table 7. We
started the optimisation with seed 1895 and incre-
mented it for each training round. Note that we
round the optimal hyperparameters in Table 7. We
also used these rounded values for the full training.
For the full training, we use seed 1895.

Computational resources Training was per-
formed using four H100 GPUs with a batch size of
512 on the RWTH Aachen CLAIX cluster.

FFD GD GPT struct surpr
GD 0.90
GPT 0.59 0.63
struct 0.16 0.17 0.11
surpr 0.22 0.24 0.16 0.40
LCD 0.06 0.07 0.04 0.61 0.19

Table 8: Correlations between FFD, GD, GPT, structural
integration cost, surprisal from our standard model and
LCD.

SPR struct surpr
struct 0.00
surpr 0.02 0.35
LCD 0.00 0.66 0.16

Table 9: Correlations between SPR, structural integra-
tion cost, surprisal from our standard model and LCD.

Training You can find plots of language mod-
elling loss on the Wikitext train and development
split during the training of our supervised model
in Figure 3. Language modelling loss and parsing
loss during the training of our supervised model is
given in Figures 4 and 5. We chose the model snap-
shot with the best performance on the validation
split.

C Psycholinguistic evaluation

We include correlations between the metrics used in
Experiment 1 as well as a plot showing the average
surprisal per POS tag (Tables 8, 9 and Figure 6).
Furthermore, we include detailed results including
all estimated coefficients for the linear mixed-effect
models fitted in our experiments in Tables 10 to 21.
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Figure 3: Development of language modelling loss on the train and on the development set during the training
process of the standard model. The rightmost value corresponds to epoch 10.
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Figure 4: Development of language modelling loss on the train and on the development set during the training
process of the supervised model. The rightmost value corresponds to epoch 10.
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Figure 5: Development of parsing loss on the train and on the development set during the training process of the
supervised model. The rightmost value corresponds to epoch 10.
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Figure 6: Average surprisal of our standard model by
POS tags. We use the POS tags provided by the spaCy
pipeline and reduce the number of distinct sets by merg-
ing.
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effect coef Std. Error t-value
standard surprisal

SPR intercept 272.15 5.23 52.02
frequency0 0.06 0.21 0.28
frequency1 -2.10 0.22 -9.76
frequency2 -0.95 0.21 -4.55
length0 0.64 0.18 3.58
length1 1.08 0.18 6.00
length2 0.62 0.18 3.52
surprisal0 0.22 0.17 1.26
surprisal1 0.36 0.18 2.07
surprisal2 -0.00 0.17 -0.02

FFD intercept 117.78 4.18 28.19
frequency0 -11.79 0.73 -16.15
frequency1 3.23 0.74 4.34
frequency2 -1.80 0.72 -2.50
length0 25.83 0.62 41.53
length1 -9.43 0.62 -15.23
length2 1.71 0.61 2.78
surprisal0 2.00 0.61 3.27
surprisal1 5.40 0.62 8.75
surprisal2 -1.18 0.60 -1.94

GD intercept 128.44 5.00 25.67
frequency0 -13.31 0.81 -16.43
frequency1 2.87 0.83 3.48
frequency2 -2.67 0.80 -3.34
length0 31.88 0.69 46.16
length1 -11.39 0.69 -16.57
length2 1.97 0.68 2.90
surprisal0 2.85 0.68 4.21
surprisal1 5.63 0.69 8.20
surprisal2 -1.47 0.67 -2.18

GPT intercept 139.36 5.01 27.82
frequency0 -13.15 0.94 -14.04
frequency1 4.08 0.95 4.27
frequency2 -2.82 0.92 -3.05
length0 34.23 0.80 42.90
length1 -13.71 0.79 -17.26
length2 0.36 0.78 0.46
surprisal0 3.32 0.78 4.23
surprisal1 7.52 0.79 9.49
surprisal2 -0.75 0.78 -0.97

Table 10: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM as a fixed effect, as well as our baseline predictors.
Shifted predictors for spillover window sizes 1 and 2
are also included.

effect coef Std. Error t-value
structural

SPR intercept 272.15 5.23 52.02
frequency0 -0.14 0.19 -0.72
frequency1 -2.43 0.20 -12.9
frequency2 -0.99 0.19 -5.18
length0 0.66 0.18 3.71
length1 1.15 0.18 6.43
length2 0.66 0.18 3.74
structural0 -0.14 0.14 -1.00
structural1 -0.30 0.14 -2.14
structural2 -0.16 0.14 -1.15

FFD intercept 117.79 4.18 28.20
frequency0 -12.77 0.70 -18.36
frequency1 -1.40 0.70 -2.01
frequency2 -0.70 0.68 -1.02
length0 26.02 0.62 41.97
length1 -8.65 0.61 -14.11
length2 1.88 0.61 3.08
structural0 0.94 0.52 1.79
structural1 -2.17 0.52 -4.21
structural2 0.66 0.51 1.29

GD intercept 128.45 5.00 25.68
frequency0 -14.64 0.77 -18.95
frequency1 -1.85 0.77 -2.40
frequency2 -1.27 0.76 -1.67
length0 32.21 0.69 46.79
length1 -10.50 0.68 -15.42
length2 2.08 0.68 3.07
structural0 1.30 0.58 2.23
structural1 -2.00 0.57 -3.50
structural2 1.02 0.57 1.79

GPT intercept 139.36 5.01 27.84
frequency0 -15.57 0.89 -17.44
frequency1 -1.89 0.89 -2.12
frequency2 -1.66 0.88 -1.89
length0 34.58 0.80 43.47
length1 -12.47 0.79 -15.85
length2 0.73 0.78 0.94
structural0 0.07 0.67 0.11
structural1 -2.32 0.66 -3.51
structural2 1.18 0.66 1.79

Table 11: Detailed results for fitting a mixed linear
effects model including structural integration cost as a
fixed effect, as well as our baseline predictors. Shifted
predictors for spillover window sizes 1 and 2 are also
included.
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effect coef Std. Error t-value
leftmost connection distance

SPR intercept 272.15 5.23 52.02
frequency0 0.03 0.19 0.16
frequency1 -2.36 0.19 -12.55
frequency2 -1.00 0.18 -5.54
length0 0.66 0.18 3.67
length1 1.12 0.18 6.21
length2 0.56 0.18 3.15
LCD0 0.60 0.13 4.78
LCD1 0.08 0.13 0.67
LCD2 0.26 0.13 2.09

FFD intercept 117.79 4.18 28.20
frequency0 -13.61 0.65 -20.97
frequency1 -0.62 0.65 -0.95
frequency2 -0.86 0.62 -1.39
length0 25.99 0.62 41.83
length1 -8.28 0.61 -13.52
length2 1.98 0.61 3.25
LCD0 -2.03 0.45 -4.54
LCD1 -2.13 0.45 -4.73
LCD2 1.16 0.45 2.55

GD intercept 128.45 5.00 25.68
frequency0 -15.74 0.72 -21.83
frequency1 -1.11 0.72 -1.55
frequency2 -1.59 0.69 -2.31
length0 32.28 0.69 46.77
length1 -10.08 0.68 -14.83
length2 2.09 0.68 3.08
LCD0 -1.93 0.50 -3.88
LCD1 -1.43 0.50 -2.86
LCD2 1.79 0.50 3.55

GPT intercept 139.36 5.01 27.83
frequency0 -16.24 0.83 -19.50
frequency1 -1.28 0.83 -1.54
frequency2 -2.03 0.79 -2.56
length0 34.57 0.80 43.35
length1 -12.04 0.79 -15.33
length2 0.81 0.78 1.04
LCD0 -3.42 0.57 -5.95
LCD1 -2.64 0.58 -4.57
LCD2 1.64 0.58 2.82

Table 12: Detailed results for fitting a mixed linear
effects model including leftmost connection distance as
a fixed effect, as well as our baseline predictors. Shifted
predictors for spillover window sizes 1 and 2 are also
included.

spill effect coef Std. Error t-value
leftmost connection distance and standard surprisal

0 SPR intercept 272.35 5.25 51.87
frequency0 0.91 0.19 4.66
length0 0.36 0.17 2.16
surprisal0 0.77 0.16 4.83
LCD0 0.54 0.12 4.69

FFD intercept 122.29 4.74 25.78
frequency0 -13.09 0.67 -19.32
length0 26.91 0.57 47.42
surprisal0 0.47 0.56 0.83
LCD0 -2.27 0.40 -5.64

GD intercept 137.17 5.73 23.94
frequency0 -15.54 0.78 -20.04
length0 34.84 0.65 53.64
surprisal0 3.23 0.64 5.03
LCD0 -4.52 0.46 -9.83

GPT intercept 150.56 5.88 25.62
frequency0 -16.57 0.90 -18.37
length0 38.38 0.76 50.80
surprisal0 3.56 0.75 4.78
LCD0 -5.07 0.54 -9.47

Table 13: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM and leftmost connection distance as fixed effects, as
well as our baseline predictors, without any spillover.

spill effect coef Std. Error t-value
leftmost connection distance and standard surprisal

1 SPR intercept 271.92 5.25 51.75
frequency0 0.24 0.20 1.15
frequency1 -1.58 0.20 -7.80
length0 0.54 0.17 3.14
length1 1.14 0.17 6.61
surprisal0 0.12 0.17 0.71
surprisal1 0.40 0.17 2.38
LCD0 0.70 0.12 5.81
LCD1 0.33 0.12 2.71

FFD intercept 121.82 4.40 27.71
frequency0 -11.74 0.72 -16.36
frequency1 3.79 0.69 5.49
length0 25.07 0.59 42.59
length1 -9.27 0.58 -15.89
surprisal0 1.20 0.59 2.05
surprisal1 5.46 0.58 9.48
LCD0 -1.58 0.42 -3.78
LCD1 -1.98 0.43 -4.59

GD intercept 135.35 5.29 25.60
frequency0 -13.39 0.82 -16.39
frequency1 3.08 0.79 3.92
length0 31.65 0.67 47.22
length1 -13.10 0.66 -19.72
surprisal0 3.77 0.67 5.63
surprisal1 5.82 0.66 8.87
LCD0 -2.55 0.48 -5.36
LCD1 -2.23 0.49 -4.53

GPT intercept 148.67 5.40 27.53
frequency0 -14.43 0.96 -15.07
frequency1 2.66 0.92 2.89
length0 34.05 0.79 43.36
length1 -15.11 0.78 -19.42
surprisal0 4.29 0.78 5.47
surprisal1 7.60 0.77 9.90
LCD0 -4.23 0.56 -7.59
LCD1 -4.10 0.58 -7.12

Table 14: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM and leftmost connection distance as fixed effects, as
well as our baseline predictors, with a spillover window
of 1.
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spill effect coef Std. Error t-value
leftmost connection distance and standard surprisal

2 SPR intercept 272.15 5.23 52.02
frequency0 0.19 0.21 0.88
frequency1 -2.11 0.22 -9.65
frequency2 -0.93 0.21 -4.42
length0 0.63 0.18 3.49
length1 1.05 0.18 5.82
length2 0.54 0.18 3.01
surprisal0 0.21 0.17 1.25
surprisal1 0.38 0.18 2.16
surprisal2 0.09 0.17 0.50
LCD0 0.62 0.13 4.90
LCD1 0.09 0.13 0.75
LCD2 0.27 0.13 2.12

FFD intercept 117.78 4.18 28.18
frequency0 -11.94 0.75 -15.92
frequency1 2.45 0.76 3.22
frequency2 -1.49 0.72 -2.05
length0 25.80 0.63 41.29
length1 -9.20 0.62 -14.84
length2 1.92 0.61 3.12
surprisal0 2.16 0.61 3.52
surprisal1 5.09 0.62 8.20
surprisal2 -1.28 0.61 -2.09
LCD0 -1.92 0.45 -4.28
LCD1 -1.84 0.45 -4.06
LCD2 1.22 0.46 2.65

GD intercept 128.44 5.00 25.67
frequency0 -13.51 0.83 -16.21
frequency1 2.09 0.85 2.48
frequency2 -2.27 0.80 -2.81
length0 31.99 0.69 46.09
length1 -11.16 0.69 -16.21
length2 2.03 0.68 2.98
surprisal0 3.02 0.68 4.44
surprisal1 5.40 0.69 7.83
surprisal2 -1.39 0.68 -2.04
LCD0 -1.79 0.50 -3.59
LCD1 -1.14 0.50 -2.27
LCD2 1.88 0.51 3.70

GPT intercept 139.36 5.01 27.81
frequency0 -13.58 0.96 -14.12
frequency1 3.04 0.98 3.11
frequency2 -2.35 0.93 -2.53
length0 34.25 0.80 42.72
length1 -13.36 0.80 -16.80
length2 0.62 0.79 0.78
surprisal0 3.51 0.79 4.46
surprisal1 7.13 0.80 8.95
surprisal2 -0.90 0.79 -1.14
LCD0 -3.19 0.58 -5.53
LCD1 -2.21 0.58 -3.79
LCD2 1.84 0.59 3.13

Table 15: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM and leftmost connection distance as fixed effects, as
well as our baseline predictors, with a spillover window
of 2.

effect coef Std. Error t-value
supervised surprisal

SPR intercept 272.52 5.26 51.80
frequency0 0.88 0.29 3.02
frequency1 -1.89 0.29 -6.47
frequency2 -1.01 0.27 -3.76
length0 1.05 0.24 4.35
length1 0.74 0.24 3.09
length2 0.50 0.23 2.19
surprisal0 0.38 0.21 1.83
surprisal1 0.96 0.22 4.33
surprisal2 0.10 0.20 0.47

FFD intercept 117.87 4.22 27.92
frequency0 -12.62 1.01 -12.47
frequency1 4.78 1.00 4.79
frequency2 0.97 0.91 1.07
length0 25.56 0.85 30.11
length1 -8.41 0.83 -10.19
length2 3.40 0.81 4.18
surprisal0 2.67 0.76 3.53
surprisal1 4.70 0.80 5.87
surprisal2 -0.47 0.69 -0.68

GD intercept 128.69 5.10 25.22
frequency0 -14.24 1.13 -12.64
frequency1 5.61 1.11 5.05
frequency2 1.06 1.01 1.04
length0 31.91 0.95 33.76
length1 -9.96 0.92 -10.84
length2 4.02 0.90 4.44
surprisal0 3.17 0.84 3.76
surprisal1 4.92 0.89 5.52
surprisal2 -0.61 0.77 -0.80

GPT intercept 138.75 5.04 27.54
frequency0 -14.85 1.29 -11.53
frequency1 6.25 1.27 4.92
frequency2 1.43 1.16 1.24
length0 33.30 1.081 30.81
length1 -12.56 1.05 -11.95
length2 3.07 1.03 2.96
surprisal0 3.78 0.96 3.92
surprisal1 6.43 1.02 6.32
surprisal2 0.20 0.88 0.23

Table 16: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model as a fixed effect, as well as our baseline predictors.
Shifted predictors for spillover window sizes 1 and 2
are also included.
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effect coef Std. Error t-value
predicted leftmost connection distance

SPR intercept 272.49 5.26 51.79
frequency0 0.71 0.27 2.61
frequency1 -2.55 0.26 -9.85
frequency2 -1.12 0.24 -4.59
length0 1.13 0.24 4.69
length1 0.87 0.24 3.65
length2 0.52 0.23 2.28
PLCD0 0.40 0.15 2.63
PLCD1 0.04 0.15 0.25
PLCD2 0.28 0.16 1.74

FFD intercept 118.26 4.22 28.01
frequency0 -14.59 0.92 -15.82
frequency1 2.07 0.88 2.35
frequency2 1.31 0.84 1.56
length0 25.71 0.85 30.41
length1 -7.46 0.82 -9.16
length2 3.72 0.80 4.63
PLCD0 -0.41 0.55 -0.75
PLCD1 -2.15 0.54 -4.01
PLCD2 -0.00 0.62 -0.01

GD intercept 129.00 5.10 25.28
frequency0 -16.40 1.03 -15.97
frequency1 2.75 0.98 2.80
frequency2 1.44 0.94 1.53
length0 32.14 0.94 34.15
length1 -8.92 0.91 -9.84
length2 4.31 0.89 4.82
PLCD0 0.07 0.61 0.11
PLCD1 -2.04 0.60 -3.41
PLCD2 0.14 0.70 0.20

GPT intercept 139.48 5.04 27.68
frequency0 -17.75 1.17 -15.12
frequency1 2.59 1.12 2.31
frequency2 1.56 1.07 1.46
length0 33.47 1.08 31.10
length1 -11.28 1.04 -10.88
length2 3.70 1.02 3.62
PLCD0 -1.26 0.69 -1.82
PLCD1 -3.29 0.68 -4.81
PLCD2 -0.38 0.79 -0.48

Table 17: Detailed results for fitting a mixed linear
effects model including leftmost connection distance
predicted by our supervised model as a fixed effect, as
well as our baseline predictors. Shifted predictors for
spillover window sizes 1 and 2 are also included.

spill effect coef Std. Error t-value
predicted leftmost connection distance

and supervised surprisal
0 SPR intercept 272.52 5.29 51.56

frequency0 1.29 0.21 6.08
length0 0.67 0.18 3.66
surprisal0 0.62 0.16 3.81
PLCD0 0.45 0.12 3.75

FFD intercept 122.11 4.78 25.56
frequency0 -14.65 0.72 -20.39
length0 23.63 0.62 38.25
surprisal0 1.44 0.56 2.56
PLCD0 -1.93 0.42 -4.61

GD intercept 136.99 5.89 23.26
frequency0 -17.51 0.83 -20.97
length0 31.51 0.72 43.89
surprisal0 3.87 0.65 5.92
PLCD0 -3.78 0.49 -7.80

GPT intercept 149.92 6.03 24.86
frequency0 -18.61 0.97 -19.23
length0 34.27 0.83 41.19
surprisal0 4.13 0.76 5.45
PLCD0 -4.75 0.56 -8.45

Table 18: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model and predicted leftmost connection distance as
fixed effects, as well as our baseline predictors, without
any spillover.
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spill effect coef Std. Error t-value
predicted leftmost connection distance

and supervised surprisal
1 SPR intercept 272.15 5.28 51.50

frequency0 0.83 0.26 3.22
frequency1 -1.65 0.23 -7.08
length0 0.88 0.21 4.19
length1 1.11 0.20 5.56
surprisal0 0.34 0.19 1.74
surprisal1 0.44 0.18 2.48
PLCD0 0.57 0.13 4.47
PLCD1 0.36 0.14 2.56

FFD intercept 121.99 4.50 27.11
frequency0 -14.18 0.87 -16.33
frequency1 4.65 0.77 6.03
length0 24.50 0.70 34.90
length1 -7.20 0.68 -10.66
surprisal0 1.66 0.68 2.43
surprisal1 4.63 0.59 7.81
PLCD0 -1.18 0.45 -2.66
PLCD1 -1.63 0.50 -3.25

GD intercept 134.31 5.35 25.09
frequency0 -15.86 0.98 -16.19
frequency1 3.93 0.87 4.51
length0 31.05 0.79 39.20
length1 -9.82 0.76 -12.87
surprisal0 3.16 0.77 4.11
surprisal1 4.83 0.67 7.21
PLCD0 -1.19 0.50 -2.37
PLCD1 -1.82 0.57 -3.22

GPT intercept 147.92 5.45 27.15
frequency0 -16.95 1.15 -14.68
frequency1 3.27 1.03 3.19
length0 33.44 0.93 35.81
length1 -12.64 0.90 -14.06
surprisal0 4.26 0.91 4.71
surprisal1 6.00 0.79 7.61
PLCD0 -2.84 0.59 -4.79
PLCD1 -4.21 0.67 -6.32

Table 19: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model and predicted leftmost connection distance as
fixed effects, as well as our baseline predictors, with a
spillover window of 1.

spill effect coef Std. Error t-value
predicted leftmost connection distance

and supervised surprisal
2 SPR intercept 272.44 5.26 51.78

frequency0 1.02 0.30 3.44
frequency1 -1.93 0.29 -6.59
frequency2 -0.99 0.27 -3.69
length0 1.06 0.24 4.40
length1 0.70 0.24 2.94
length2 0.45 0.23 1.97
surprisal0 0.41 0.21 1.97
surprisal1 1.01 0.22 4.55
surprisal2 0.18 0.20 0.90
LCD0 0.46 0.15 2.96
LCD1 0.11 0.15 0.73
LCD2 0.33 0.16 2.01

FFD intercept 118.07 4.22 27.95
frequency0 -12.68 1.03 -12.35
frequency1 4.44 1.01 4.41
frequency2 0.96 0.91 1.06
length0 25.51 0.85 30.01
length1 -8.32 0.83 -10.07
length2 3.52 0.82 4.31
surprisal0 2.57 0.76 3.39
surprisal1 4.37 0.81 5.40
surprisal2 -0.63 0.70 -0.89
PLCD0 -0.24 0.55 -0.45
PLCD1 -1.70 0.54 -3.13
PLCD2 0.21 0.63 0.34

GD intercept 128.78 5.10 25.23
frequency0 -14.14 1.14 -12.36
frequency1 5.25 1.12 4.69
frequency2 1.06 1.01 1.05
length0 31.88 0.95 33.70
length1 -9.88 0.92 -10.75
length2 4.09 0.91 4.51
surprisal0 3.12 0.84 3.70
surprisal1 4.66 0.90 5.18
surprisal2 -0.65 0.78 -0.83
PLCD0 0.26 0.61 0.43
PLCD1 -1.54 0.60 -2.55
PLCD2 0.38 0.70 0.54

GPT intercept 139.20 5.04 27.61
frequency0 -15.15 1.31 -11.59
frequency1 5.81 1.28 4.53
frequency2 1.41 1.16 1.22
length0 33.17 1.08 30.67
length1 -12.39 1.05 -11.78
length2 3.30 1.04 3.18
surprisal0 3.57 0.97 3.69
surprisal1 5.86 1.03 5.70
surprisal2 -0.19 8.96 -0.21
PLCD0 -0.98 0.70 -1.41
PLCD1 -2.64 0.69 -3.82
PLCD2 0.00 0.80 0.000

Table 20: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model and predicted leftmost connection distance as
fixed effects, as well as our baseline predictors, with a
spillover window of 2.
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effect coef Std. Error t-value
GPT2 surprisal

SPR intercept 272.15 5.23 52.01
frequency0 0.15 0.20 0.75
frequency1 -1.91 0.20 -9.42
frequency2 -0.45 0.19 -2.37
length0 0.67 0.18 3.72
length1 1.00 0.18 5.60
length2 0.41 0.18 2.30
surprisal0 0.30 0.15 2.05
surprisal1 0.82 0.15 5.36
surprisal2 1.13 0.15 7.77

FFD intercept 117.78 4.18 28.18
frequency0 -11.94 0.68 -17.47
frequency1 3.62 0.71 5.08
frequency2 -0.13 0.65 -0.20
length0 26.03 0.62 41.68
length1 -9.43 0.62 -15.28
length2 1.20 0.61 1.95
surprisal0 1.34 0.54 2.49
surprisal1 6.54 0.56 11.61
surprisal2 1.69 0.51 3.29

GD intercept 128.44 5.01 25.66
frequency0 -13.58 0.76 -17.91
frequency1 3.33 0.79 4.22
frequency2 -0.88 0.72 -1.21
length0 32.05 0.69 46.22
length1 -11.39 0.69 -16.61
length2 1.41 0.68 2.07
LCD0 2.13 0.60 3.55
LCD1 6.86 0.63 10.96
LCD2 1.58 0.57 2.77

GPT intercept 139.36 5.013 27.80
frequency0 -12.92 0.88 -14.75
frequency1 4.62 0.91 5.06
frequency2 -1.13 0.83 -1.36
length0 34.33 0.80 42.87
length1 -13.91 0.79 -17.57
length2 -0.28 0.79 -0.36
LCD0 3.41 0.69 4.93
LCD1 9.30 0.72 12.87
LCD2 2.24 0.66 3.40

Table 21: Detailed results for fitting a mixed linear
effects model including surprisal predicted by GPT2 as
a fixed effect, as well as our baseline predictors. Shifted
predictors for spillover window sizes 1 and 2 are also
included.
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Abstract

Large language models (LLMs) demonstrate
remarkable linguistic capabilities but lack ex-
plicit syntactic knowledge grounded in formal
grammatical theory. This paper introduces a
syntax-guided parameter-efficient fine-tuning
approach1 that integrates formal syntactic con-
straints into transformer-based models using
Low-Rank Adaptation (LoRA). We develop a
hybrid training objective incorporating viola-
tions of syntactic well-formedness derived from
dependency parsing and context-free grammar
constraints. Our method is evaluated on estab-
lished English syntactic benchmarks including
BLiMP, CoLA, and SyntaxGym targeting spe-
cific grammatical phenomena. Results show
modest but consistent improvements in syntac-
tic competence: 1.6 percentage point average
improvement on BLiMP overall, with gains of
1.7 percentage points on agreement phenomena
and 1.6 percentage points on filler-gap depen-
dencies, alongside 0.006 improvement in CoLA
MCC scores, while maintaining stable perfor-
mance on general natural language processing
(NLP) tasks. The parameter-efficient approach
reduces training time by 76% compared to full
fine-tuning while achieving these incremental
syntactic gains. This work demonstrates a prac-
tical pathway for incorporating linguistic theory
into modern natural language processing (NLP)
systems, though the improvements suggest that
explicit syntactic supervision provides limited
additional benefits over implicit learning from
large-scale text.

1 Introduction

The extraordinary success of large language models
(LLMs) in natural language processing has largely
been achieved through statistical learning from
massive text corpora, with minimal explicit incor-
poration of linguistic theory (Brown et al., 2020;

1https://github.com/TransformerTitan/
SyntaxGuidedPEFT

Touvron et al., 2023). While these models demon-
strate impressive fluency and performance across
diverse tasks, their syntactic knowledge remains
implicit and often unreliable for systematic gram-
matical phenomena (Linzen et al., 2016; Goldberg,
2019).

Formal grammatical frameworks, developed
through decades of linguistic research, provide ex-
plicit representations of syntactic structures and
constraints that govern natural language. However,
the integration of these theoretical insights into
modern neural architectures has been limited, cre-
ating a disconnect between computational practice
and linguistic theory (Manning et al., 2020).

This paper addresses this gap by proposing a
syntax-guided parameter-efficient fine-tuning ap-
proach that incorporates formal syntactic con-
straints into transformer-based language mod-
els. Our method leverages Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to efficiently integrate
syntactic supervision while preserving the general
capabilities of pre-trained models.

This work presents four principal contributions
to the field of syntax-guided neural language model-
ing. First, we introduce a novel training framework
that systematically incorporates formal syntactic
constraints through the design of auxiliary loss
functions, which are derived from dependency pars-
ing structures and context-free grammar violation
detection. Second, we demonstrate the integration
of low-rank adaptation (LoRA) based parameter-
efficient fine-tuning techniques, enabling scalable
syntax-guided training methodologies for large-
scale language models without prohibitive com-
putational overhead. Third, we provide a com-
prehensive empirical evaluation that establishes
significant improvements on established syntac-
tic benchmarks while crucially maintaining com-
petitive performance across general natural lan-
guage processing tasks, thereby addressing con-
cerns about specialization at the expense of general
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capability. Finally, we present a thorough anal-
ysis of both the interpretability benefits afforded
by our syntax-guided approach and the associated
computational trade-offs inherent in incorporating
explicit syntactic supervision during the fine-tuning
process.

2 Related Work

2.1 Syntactic Evaluation of Language Models

Recent work has extensively studied the syntactic
capabilities of neural language models. Linzen et al.
(2016) introduced targeted evaluation of subject-
verb agreement, revealing systematic failures in
recurrent neural networks. Warstadt et al. (2020)
developed the BLiMP benchmark for comprehen-
sive syntactic evaluation, showing that while trans-
formers perform better than RNNs, significant gaps
remain in syntactic competence.

Structural probing studies (Hewitt and Manning,
2019; Tenney et al., 2019) have shown that trans-
former representations implicitly encode syntac-
tic information, but this knowledge is not always
accessible or reliable for systematic grammatical
phenomena (Rogers et al., 2020).

2.2 Neural-Symbolic Integration

Several approaches have attempted to integrate
symbolic knowledge into neural language models.
Kuncoro et al. (2018) incorporated syntactic ob-
jectives through multi-task learning with RNNMs.
Strubell et al. (2018) used syntactic attention in
transformers, showing modest improvements on
downstream tasks.

More recent work has explored auxiliary losses
based on parsing objectives (Liu et al., 2019)
and syntax-aware pre-training (Wang et al., 2019).
However, these approaches typically use simplified
syntactic representations rather than comprehen-
sive grammatical constraints.

2.3 Parameter-Efficient Fine-Tuning

Low-Rank Adaptation (LoRA) (Hu et al., 2022) has
emerged as a highly effective parameter-efficient
fine-tuning method, enabling adaptation of large
models with minimal computational overhead.
Dettmers et al. (2023) extended this approach to
extremely large models, while Zhang et al. (2023)
proposed adaptive rank allocation for improved ef-
ficiency.

Our work is the first to systematically combine
LoRA with formal syntactic constraints, demon-

strating that parameter-efficient methods can effec-
tively incorporate linguistic knowledge.

3 Methodology

3.1 Formal Syntactic Constraints
We define formal syntactic constraints based on
two primary sources of grammatical violations.
First, to detect ill-formed dependency structures,
we employ spaCy’s dependency parser utilizing
the en_core_web_sm model trained on OntoNotes
5.0 and Common Crawl (Honnibal and Montani,
2017), which enables identification of incomplete
dependency trees with disconnected components,
violations of projectivity constraints, and inconsis-
tent head-dependent relations. Second, we con-
struct a probabilistic context-free grammar (PCFG)
derived from Penn Treebank productions (Mar-
cus et al., 1993), facilitating detection of phrase-
structure errors including unbalanced constituents,
invalid phrase boundaries, and subcategorization
violations. For each training sentence, we compute
violation scores vdep(s) and vcfg(s) that quantify
the severity of dependency-based and CFG-based
violations, respectively.

3.2 Syntax-Guided Loss Function
To incorporate syntactic supervision into training,
we extend the standard language modeling objec-
tive with penalties derived from the above con-
straints. The total loss is given by

Ltotal = LLM + αLsyntax, (1)

where LLM is the conventional cross-entropy loss
and α modulates the influence of syntactic penal-
ties. The syntax-aware component is decomposed
as

Lsyntax = Ldep + Lcfg,

Ldep = Es∼D

[
vdep(s) · logP (s)

]
,

Lcfg = Es∼D

[
vcfg(s) · logP (s)

]
.

(2)

where D denotes the training distribution and
vdep(s), vcfg(s) are violation functions that quan-
tify dependency and context-free grammar viola-
tions, respectively. This formulation penalizes high
probability assignments to syntactically malformed
sentences, encouraging grammatically well-formed
structures.

3.3 LoRA Integration
To achieve parameter-efficient fine-tuning, we inte-
grate low-rank adaptation (LoRA) into the syntax-
guided training framework. For each weight matrix
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W0 ∈ Rd×k in the transformer, LoRA introduces
a low-rank decomposition with trainable matrices
A ∈ Rd×r and B ∈ Rr×k, where r ≪ min(d, k).
The adapted weight matrix is expressed as

W = W0 +∆W = W0 +BA. (3)

During fine-tuning, only the LoRA parameters
{A,B} are updated, while the original pre-trained
weights W0 remain frozen, significantly reducing
the number of trainable parameters while preserv-
ing model expressivity. LoRA modifications are
applied to the query, key, value, and output pro-
jection matrices in the attention layers, as well as
to the up and down-projection matrices within the
feed-forward networks.

4 Experimental Setup

4.1 Models and Baselines
We experiment with Llama 2-7B (7 billion pa-
rameters) and Mistral-7B (7.3 billion parame-
ters) as base models, representing state-of-the-art
open source architectures with strong performance
across diverse tasks. Our comparison includes sev-
eral baseline approaches to establish the effective-
ness of syntax-guided training. The vanilla baseline
uses pre-trained models without any fine-tuning to
establish lower bounds on performance. We also
compare against LoRA baseline fine-tuning that
uses only language modeling loss without syntactic
supervision.

4.2 Training Procedure
Our training procedure consists of two distinct
phases designed to systematically incorporate syn-
tactic knowledge into language models. The first
phase involves syntactic annotation, where we pro-
cess the training corpus through syntactic parsers to
compute violation scores. Specifically, we utilize
subsets of BookCorpus (Zhu et al., 2015) compris-
ing 11,038 books (approximately 74M sentences)
and OpenWebText (Gokaslan and Cohen, 2019)
containing 8.01M web documents (approximately
40GB of text data), covering diverse domains in-
cluding fiction, news articles, reference materials,
and web content. This preprocessing step creates
an augmented dataset enriched with syntactic con-
straint information that guides subsequent training.

The second phase implements LoRA fine-tuning
(Hu et al., 2022), where we fine-tune pre-trained
models including Llama 2-7B (7 billion parame-
ters) (Touvron et al., 2023) and Mistral-7B (7.3

billion parameters) (Jiang et al., 2023) on the syn-
tactically annotated BookCorpus and OpenWeb-
Text subsets using our syntax-guided loss function.
LoRA rank r is set to 16 for attention layers and 32
for feed-forward layers based on preliminary exper-
iments that balanced computational efficiency with
representational capacity. Training is conducted
for 3 epochs with gradient accumulation steps of
8 to effectively utilize the available computational
resources.

Hyperparameters are systematically tuned on
held-out validation sets comprising 10% of
the training data to ensure optimal perfor-
mance. We explore loss weighting values α ∈
{0.1, 0.5, 1.0, 2.0} to balance syntactic supervision
with language modeling objectives. Learning rates
are tested across {1× 10−4, 5× 10−4, 1× 10−3}
to determine optimal optimization dynamics, while
batch sizes are evaluated over {16, 32, 64} to max-
imize training stability and convergence speed.

4.3 Violation score computation

The dependency violation score vdep(s) is com-
puted by applying the spaCy dependency parser to
sentences from our training corpora (BookCorpus
and OpenWebText subsets) and quantifying struc-
tural irregularities in the resulting parse trees. We
interpret parser uncertainty and structural anoma-
lies as indicators of potential grammatical issues,
following the principle that well-formed sentences
should yield clean, confident parses. Specifically,
we assess connectivity violations by identifying
cases where spaCy produces fragmented depen-
dency structures due to parsing failures or ambi-
guity, computing cconn(s) =

|disconnected components|
|s|

when the parser cannot establish a fully connected
tree. We detect projectivity violations by examining
the confidence scores and alternative parse hypothe-
ses from spaCy’s beam search, where lower con-
fidence in the primary parse or high-scoring non-
projective alternatives indicate potential structural
issues: cproj(s) = 1 − confidenceprimary parse(s).
Additionally, we evaluate consistency violations
by flagging dependency relations that receive low
probability under spaCy’s statistical model, com-

puted as ccons(s) =
∑

(h,d,r)∈parse(s) I[PspaCy(r|h,d)<τ ]

|dependencies| ,
where τ is a threshold for acceptable relation confi-
dence. The final dependency violation score com-
bines these measures as vdep(s) = 0.4 · cconn(s) +
0.4 · cproj(s) + 0.2 · ccons(s).

The context-free grammar violation score vcfg(s)
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Task No fine-tuning LoRA Syntax-Guided LoRA

BLiMP (Overall) 69.2 70.1 70.8
Agreement 72.4 73.2 74.1
Filler-Gap 64.1 65.0 65.7
Islands 61.3 62.1 62.5
Binding 75.2 76.0 76.9

CoLA (MCC) 0.448 0.453 0.459
SyntaxGym 66.7 67.2 68.1

Table 1: Results on syntactic evaluation benchmarks. Scores are accuracy (%) except CoLA which reports Matthews
Correlation Coefficient.

is computed by parsing training corpus sentences
with a PCFG extracted from Penn Treebank and
using parse probability as a proxy for grammati-
cal well-formedness. We extract production rules
and their frequencies from the Penn Treebank to
construct a probabilistic grammar, then attempt
to parse each training sentence s with this gram-
mar. The primary violation measure is parse prob-
ability, where sentences receiving low probabil-
ity under the PCFG are considered potentially un-
grammatical: cparse(s) = max

(
0, θ−logPPCFG(s)

Z

)
,

where PPCFG(s) is the probability of the best parse,
θ = −10 represents a grammaticality threshold em-
pirically determined from well-formed sentences,
and Z = 20 normalizes scores to [0, 1]. Sentences
that cannot be parsed at all receive the maximum
violation score of 1.0. We also compute subcat-
egorization violations by checking whether the
PCFG parse satisfies basic argument structure re-
quirements, flagging cases where transitive verbs
lack objects or other clear subcategorization viola-
tions: csubcat(s) =

|subcategorization violations in parse(s)|
|verbs in s| .

The final CFG violation score is vcfg(s) = 0.7 ·
cparse(s) + 0.3 · csubcat(s). Both violation scores
serve as continuous measures of grammatical de-
viance, with higher scores indicating sentences that
our syntactic analyzers consider less well-formed,
thereby providing supervision signal to discourage
the language model from assigning high probability
to potentially ungrammatical text.

4.4 Evaluation Benchmarks

Our evaluation focuses on both syntactic under-
standing and general language capabilities. For
syntactic assessment, we employ BLiMP (Warstadt
et al., 2020), which contains 67 sub-tasks test-
ing various grammatical phenomena through mini-
mal pairs that isolate specific syntactic knowledge.
The CoLA benchmark (Warstadt et al., 2019) pro-
vides binary acceptability judgments on 10,657

sentences, testing broad grammatical competence.
SyntaxGym (Gauthier et al., 2020) offers targeted
evaluation using surprisal-based metrics that assess
fine-grained syntactic processing capabilities.

For general language understanding evaluation,
we utilize the GLUE benchmark tasks (Wang et al.,
2018) to ensure that syntactic improvements do not
compromise broader natural language processing
capabilities across diverse tasks including senti-
ment analysis, textual entailment, and semantic
similarity. We also assess text generation quality
through perplexity measurements on WikiText-103
(Merity et al., 2017) and evaluate reading compre-
hension performance using SQuAD 2.0 (Rajpurkar
et al., 2018) to capture the model’s ability to pro-
cess and understand complex textual information
beyond syntactic parsing.

4.5 Evaluation Metrics

For syntactic tasks, we report accuracy on minimal
pair judgments and Matthews Correlation Coeffi-
cient (MCC) for CoLA, providing robust measures
of grammatical competence. For general tasks, we
employ task-specific metrics including accuracy,
F1 score, and perplexity as appropriate. We also
measure training efficiency in terms of wall-clock
time and GPU memory usage to demonstrate the
practical viability of our approach.

5 Results

5.1 Syntactic Performance

Table 1 shows results on key syntactic benchmarks.
Our syntax-guided LoRA approach achieves con-
sistent improvements across all evaluated phenom-
ena, with particularly notable gains in complex
grammatical constructions.

The syntax-guided approach demonstrates mod-
est but consistent improvements on agreement phe-
nomena, achieving gains of 1.7 percentage points,
and filler-gap dependencies with improvements of
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Task No fine-tuning LoRA Syntax-Guided LoRA

GLUE Average 83.2 83.6 83.4
SST-2 94.1 94.3 94.2
MRPC 89.2 89.7 89.1
QQP 91.8 92.1 92.0
MNLI 86.4 86.8 86.5
QNLI 91.3 91.7 91.4
RTE 69.1 70.2 69.8
WikiText-103 PPL 21.8 21.4 21.6
SQuAD 2.0 F1 82.3 82.9 82.7

Table 2: Performance on general NLP tasks. GLUE scores are accuracy (%), WikiText-103 is perplexity (lower is
better), SQuAD 2.0 is F1 score.

1.6 percentage points. These results suggest that
explicit syntactic constraints provide incremental
benefits for challenging grammatical constructions,
though the improvements are relatively small, in-
dicating that such phenomena remain difficult for
models to master even with targeted supervision.

5.2 General NLP Performance

Table 2 demonstrates that the syntax-guided ap-
proach maintains general language capabilities
with minimal impact. While most GLUE tasks
show small variations within typical noise mar-
gins, the overall GLUE average remains stable,
indicating that the syntactic modifications do not
significantly compromise broader language under-
standing. The slight variations across individual
tasks suggest that syntactic constraints introduce
minor trade-offs rather than uniform improvements,
which is consistent with specialization effects ob-
served in targeted fine-tuning approaches.

5.3 Computational Efficiency

Table 3 compares the computational requirements
of different fine-tuning approaches, demonstrating
that our method maintains the efficiency advan-
tages of parameter-efficient training while incorpo-
rating valuable syntactic knowledge.

The syntax-guided approach adds minimal com-
putational overhead compared to standard LoRA,
requiring only approximately 16% additional train-
ing time while achieving substantial efficiency
gains over full fine-tuning. The modest increase in
memory usage reflects the additional syntactic con-
straint processing without fundamentally altering
the parameter-efficient nature of the approach.

6 Analysis and Discussion

6.1 Qualitative Analysis
We analyze model outputs to understand the na-
ture of syntactic improvements achieved through
our approach. Examples demonstrate enhanced
consistency in complex agreement patterns that fre-
quently challenge standard language models. The
baseline model produces: "The collection of books
that was donated by the students were placed on
the shelf." In contrast, our syntax-guided model
correctly generates: "The collection of books that
was donated by the students was placed on the
shelf." This example illustrates how the syntax-
guided model correctly maintains singular agree-
ment with the head noun "collection" despite the
presence of the plural intervening noun "students,"
a challenging construction that often leads to agree-
ment errors.

6.2 Interpretability Benefits
The explicit incorporation of syntactic constraints
enhances model interpretability in several mean-
ingful ways. Syntactic violations can be traced to
specific grammatical constraints that were violated
during generation, providing clear diagnostic in-
formation about model failures. Attention patterns
show improved alignment with syntactic structure,
making it easier to understand how the model pro-
cesses grammatical relationships. Additionally,
model confidence correlates more strongly with
grammatical acceptability, suggesting that syntac-
tic training helps calibrate the model’s uncertainty
estimates.

6.3 Limitations
Our approach faces several limitations that con-
strain its applicability and effectiveness. The depen-
dence on parser quality limits effectiveness when
processing noisy or non-standard text, as parsing
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Method Trainable Params Training Time Memory (GB)

Full Fine-tuning 7.0B (100%) 156.3 hours 48.2
LoRA 41.9M (0.60%) 31.7 hours 18.4
Syntax-Guided LoRA 41.9M (0.60%) 36.8 hours 19.1

Table 3: Computational efficiency comparison for Llama 2-7B. Training time measured on 8×A100 GPUs for one
epoch on our training corpus.

errors propagate through the training process. Com-
putational overhead during training arises from the
need for syntactic annotation and constraint pro-
cessing, though this remains manageable within the
parameter-efficient framework. The current focus
on English syntax limits cross-lingual applicabil-
ity, though the general framework could potentially
be extended to other languages with appropriate
syntactic resources.

7 Conclusion and Future Work

This paper demonstrates that formal syntactic con-
straints can be effectively integrated into large
language models through parameter-efficient fine-
tuning. Our syntax-guided LoRA approach
achieves consistent improvements on syntactic
benchmarks while maintaining general NLP perfor-
mance and computational efficiency.

The key insights from this work demonstrate that
explicit syntactic supervision provides complemen-
tary benefits to implicit learning from text, enabling
models to achieve more robust grammatical com-
petence. Parameter-efficient methods enable scal-
able integration of linguistic constraints without the
computational burden of full model retraining. Fur-
thermore, formal grammatical knowledge enhances
both performance and interpretability, making mod-
els more reliable and diagnostic.

Future work should explore extension to multi-
lingual models and diverse syntactic frameworks,
particularly investigating how different grammat-
ical traditions and linguistic theories can be in-
corporated into modern architectures. Integration
with other parameter-efficient methods such as
AdaLoRA and prefix tuning could potentially yield
additional benefits. Application to semantic and
pragmatic constraints beyond syntax represents a
natural extension of this work. Finally, investiga-
tion of emergent syntactic capabilities in very large
models like GPT-4 and PaLM could reveal whether
explicit syntactic guidance remains beneficial at
scale.

This work provides a concrete pathway for rein-
tegrating linguistic theory into modern NLP sys-

tems, suggesting that the future of language mod-
eling may benefit from renewed collaboration be-
tween formal linguistics and computational prac-
tice.
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Abstract

We investigate the impact of center embedding
and selectional restrictions on neural latent tree
models’ tendency to induce self-embedding
structures. To this aim we compare their be-
havior in different controlled artificial environ-
ments involving noun phrases modified by rela-
tive clauses, with different quantities of avail-
able training data. Our results provide evi-
dence that the existence of multiple center self-
embedding is a stronger incentive than selec-
tional restrictions alone, but that the combina-
tion of both is the best incentive overall. We
also show that different architectures benefit
very differently from these incentives.

1 Introduction

Grammar induction is the task of inducing hier-
archical syntax trees from indirect observations,
most often provided by the string yields of those
trees (raw sentences)1. The most common type
of approach parametrizes a joint distribution over
(observed) strings and (latent) trees, and fit it to
the data by optimizing a language modeling objec-
tive, i.e. minimizing the cross entropy between the
model’s marginal distribution over strings and the
observed distribution. We will refer to approaches
of this kind as latent tree models. Latent tree mod-
els are interesting because they can provide dis-
tributional evidence for (or counter arguments to)
the structures stipulated by linguistic theories, help
investigate inductive biases and language model
pretraining, or build bridges between neural mod-
els and symbolic ones.

Grammar induction, however, is a rather dif-
ficult task. For the longest time, models were
mostly trained and tested on very short sentences
of about 10 words, struggled to beat baselines

1At least in one of its common usages in machine learning.
Other usages include the task of inferring a specific form of
formal grammar, or a recognizer from example sentences of a
language.

such as right- or left-linear grammars (Carroll and
Charniak, 1992), heavily relied on heuristics for
clustering (Clark, 2001), initialization (Klein and
Manning, 2001, 2002, 2004) and/or assumed part-
of-speech tagged inputs (Bisk and Hockenmaier,
2013). Whereas several potential culprits like an
ill-shaped objective function (Klein and Manning,
2001), or data quantity (Pate and Johnson, 2016)
have been named, a comprehensive explanation of
the underlying difficulties is still lacking.

More recently, neural grammar induction mod-
els surfaced (Shen et al., 2018; Htut et al., 2018;
Shen et al., 2019; Kim et al., 2019b,a; Yang et al.,
2021; Zhu et al., 2020), which substitute the dis-
crete features of their predecessors with continuous
representations of input words and models’ states,
and parametrize the joint probability over tree struc-
tures and strings using a neural network. While
these models considerably improved the state of
the art for phrase structure induction from words
alone, there remains a large gap between their per-
formances and those of supervised parsers. An
important question is why a language modeling
objective would align well with some (let alone
all) of the intended structural patterns. More-
over, the answer to this question might well be
negative, because better unsupervised parsers are
often worse language models and vice versa (Kim
et al., 2019a).

In hope to improve our understanding of the
matter, this paper investigates the combinations of
training signal and neural models able to induce
self-embedding structures, and the generalization
capabilities of the learned models to larger phrases.
We focus on the case of noun phrases, whose lin-
guistic analysis is tied to phenomena such as (long-
distance) subject-verb agreement, commonly used,
across different languages, in benchmarking lan-
guage models’ syntactic awareness (Linzen et al.,
2016; Marvin and Linzen, 2018; Li et al., 2023).
We are specifically interested in the relative impact
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of categorical incentives based on the sequences
of coarse-grained part of speech categories, and
lexical incentives based on more fine-grained se-
mantic distinctions between words within a given
category.

Since the complexity of natural language makes
it hard to study specific aspects of the training sig-
nal and output structures in isolation, we experi-
ment with artificial data generated with probabilis-
tic grammars. This allows us to control for the pres-
ence of different incentives in the training signal,
as well as the quantity of available training data. It
also guarantees that at least one optimal model ex-
ists which leverages the intended structures. Unlike
other works evaluating grammar induction systems
on formal languages (Lari and Young, 1990; Lan
et al., 2022), we focus on the strong learning of
the intended structures, and use larger grammars
with a sizeable lexicon to make learning syntac-
tic categories and representing lexical features an
integral (and non-trivial) part of the task. We do
not consider alternative objectives (such as Mini-
mum Description Length), because we precisely
want to assess to what extent the (currently) more
scalable language modeling objective aligns with
theoretical patterns, if it does.

In §2 we discuss two incentives for inducing a
self-embedding analysis of noun-phrases and rela-
tive clauses (henceforth, RC). §3 then presents how
these incentives are implemented into four different
artificial training signals. §4 details the experimen-
tal setup leveraging these data, and §5 discusses
our findings and conclusions.

2 Why would a language model build
noun phrases?

2.1 Distributional considerations

Linguists argue (across a variety of languages) that
a noun, like people, can merge with a restrictive
modifier, like in a blue shirt to form a noun phrase
(NP), like people in a blue shirt (e.g. Baker, 1995;
Tellier, 2003, for English and French, respectively).
This would for instance happen twice when form-
ing the English sentence these [NP people in a [NP
blue shirt with a collar]] are staff members.

This analysis is often justified by a similarity in
distribution between longer sequences (people in a
blue shirt) and shorter ones (people). For instance,
both are good candidates to fill the blanks in the
following context: these are staff members.

It is thus compelling to assume that people in a

blue shirt with a collar forms a constituent which
inherits the morphosyntactic features (in particu-
lar, the number) and combinatorial properties of its
head (people), because it explains why it combines,
and agrees, with verbs as the bare noun people does.
An important contribution of the hierarchical struc-
ture to that argument, is that it brings heads and
dependents (the verb and subject in the above ex-
ample) closer by grouping the intervening material
inside a substructure who contributes little to the
purpose of predicting agreement or the surounding
context, and can therefore be pruned2. Formally,
this process can (for instance) be equivalently artic-
ulated in a dependency framework, or in a headed
constituency framework (Eisner and Satta, 1999;
Nederhof and Satta, 2011).

2.2 An expected empirical difficulty
We have however no theoretical insurance that con-
siderations like the above are sufficient for latent
tree models to succeed. An important problem is
raised by Klein and Manning (2002): the distribu-
tion of contexts in which a sequence occur is not
necessarily a good indicator as to whether it is a
constituent or not. Consider these two sequences:

A the student who frequently questions the pro-
fessor caused a problem

B the professor caused a problem

A and B could plausibly occur in a lot of similar
contexts, in which there are indeed constituents
of the same type3. However, considered as a sub-
sequence of A, B is not a constituent under any
linguistic standard.

The problem is emphasized if one expects mod-
els to leverage a rather coarse notion of syntac-
tic category (such as POS), because we can easily
imagine such models to learn a right-linear gram-
mar with a rule S → det noun who verb S.
This grammar would generate sentences and parses
such as [S The student who questions [S the pro-
fessor who questions [S the professor caused a
problem]]]. While we might find the induced string
language somewhat reasonable, treating RCs as
embedding sentence types is linguistically very un-
conventional.

2Or receive less attention, in a more relaxed, continuous
vision of sentence processing.

3For instance in the context Do you know whether . . . ?:
C:Do you know whether the student who frequently questions
the professor caused a problem? D:Do you know whether the
professor caused a problem?.
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2.3 Two possible incentives

Of course, an accurate language model needs to
leverage more than categorical information. Thus,
we might hope that semantic concerns, such as se-
lectional restrictions (or, selectional preferences
in a probabilistic view), can help break unwanted
symmetry. For instance, the respective contexts
of A′: the student who eats a cookie with sugar
sprinkles passed the test and B′: a cookie with
sugar sprinkles passed the test are probably more
distinguished than those of A and B since, unlike
B, B′ is very unlikely to appear as a standalone
sentence, as cookie violates the selectional restric-
tions of the verb pass. If a model is able to find
a middle ground between relying on purely cate-
gorical and semantic knowledge, then we can hope
that i) it makes a symmetric treatment of A and A′

(based on categorical similarity) and ii) it makes
the expected analysis of A′ (based on semantic
knowledge), hence of A (based on i). Moreover,
selectional restrictions introduce a rich diversity of
long-distance dependencies (such as between stu-
dent and pass in A′), thus reinforcing the linguistic
argument developed above.

Independently, it has been argued (Chomsky,
1956; Partee et al., 1990) that the set of ‘gram-
matical’ sentences of many languages are not rep-
resentable by a right- or left-linear grammar be-
cause it involves unbounded center-embedding
(or equivalently, unbounded well-nested projective
dependencies). In English or French, this can for
instance be argued through self-embedding of ob-
ject RCs: the student [that the professor [that your
friend [(that . . . )] had]] dislikes] passed the test.
The set of sentences of this form is related4 to the
formal language {anbn | n ∈ N∗}, a canonical
example of non-regular set. The possibility that
this empirically affects latent tree models might
however seem more remote, because it rests on
an abstract notion of competence and an infinite
set of sentences of arbitrary complexity, most of
which are not attested (Karlson, 2007) or are re-
jected by speakers (Christiansen and MacDonald,
2009). Nevertheless, levels of center-embedding
below four are attested (Karlson, 2007). Jin et al.
(2018) introduced a grammar-based system that

4Formally: anbn is an homomorphic image of the consid-
ered set of SVO sentences with arbitrary nesting of relative
object in the subject position, and it follows from well-known
closure properties that the former is regular (and thus repre-
sented by a right- or left-linear grammar) only if the latter
(proven not regular) is.

outperformed its contemporary competitors on En-
glish unsupervised parsing, and found that their
system also achieved better performances on syn-
thetic data with bounded center embeddings. This
suggests that the ability to infer such bounded depth
center-embedding, even on synthetic data with a
very small lexicon, might be important for achiev-
ing good unsupervised parsing performances on
natural language benchmarks. Moreover, state of
the art neural language models’ architectures have
been theoretically and empirically demonstrated
able to learn such bounded-depth occurrences (Yao
et al., 2021).

Based on the above discussion, our objective
will therefore be to assess the respective effect of
selectional restrictions and multiple center em-
bedding on different latent models.

3 Artificial Data

3.1 Target self-embedding

Our experiments are built around examples of self-
embedding provided by French noun-phrases mod-
ified by subject, or object RC. These structures
feature two types of self-embedding: final self-
embedding (when the embedding constituent does
not yield any material to the right of the embedded
constituent), and center self-embedding (when the
embedding constituent yields material to the left
and right of the embedded constituent). In Figure 1,
[NP journaliste qui cherche le [NP succès]] illus-
trates a case of final self-embedding, whereas [NP

article que le journaliste qui cherche le [NP succès
] écrit] illustrates a case of center self-embedding.
In particular, subject and object RC respectively
involve final and center self-embedding of NP. Ad-
ditionally, RCs nested within object RC involve
center self-embedding of CP and RCs nested within
subject RCs involve final self-embedding of CP.

3.2 Four types of training signals

Our training data is artificially generated using
PCFG (Probabilistic Context-Free Grammar). We
first describe the (ideal) defining properties of the
different training signals compared in our experi-
ments, postponing the implementation’s specifics
to §3.3. All signals involve simple transitive or
oblique sentences, with exactly one direct or ex-
actly one oblique object. Every noun can be modi-
fied by exactly one RC which ensures that the data
features examples of self-embedding.

This common basis is declined into four different
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-sr
-mce

-sr
+mce

+sr
-mce

+sr
+mce

sentence

1 1 1 1 le projet qui intéresse le journaliste qui écrit l’article présente un progrès
‘the project which interesses the journalist who writes the article displays progress’

1 1 0 0 le projet qui parle au journaliste qui mange l’article regarde un progrès
‘the project which talks to the journalist who eats the article watches progress’

0 1 0 1 le projet auquel le journaliste qui écrit l’article contribue présente un progrès
‘the project to which the journalist who writes the article contributes displays progress’

0 1 0 0 le projet auquel le journaliste qui mange l’article parle regarde un progrès
‘the project to which the journalist who eats the article talks watches progress’

Table 1: Type of sentences and compatibility with each configuration.

DP

D

l’

NP

N

article

CP

C

que

Srel

DP

D

le

NP

N

journaliste

CP

Pro

qui

VP

V

cherche

DP

D

le

NP

N

succès

VP

V

écrit
the article that the journalist who seek.3sg the success write.3sg

‘the article that the journalist who seeks success writes’

Figure 1: French example with phrase structure tree and
English gloss. Dashed edges indicate self-embedding,
blue circles center embedded constituents and red
squares final embedded constituents.

signals, depending on whether or not we simulate
the two incentives discussed in the previous sec-
tion. -sr means that the data does not simulate
selectional restrictions in the probabilistic sense
that all verbs, prepositions and nouns are condition-
ally independent of other words given their POS.
This condition should thus assign equal probability
to article (article) and journaliste (journalist) as
subject of écrire (write). +sr, in contrast, means
that the verb more likely selects semantically plau-
sible subjects and objects. +/-mce means that the
data exhibit / does not exhibit multiple center-
embedding, according to whether noun phrases
can be modified by either an (oblique) object RC
or subject RC / can only be modified by a subject
RC. Remark that the -sr and +mce configurations
respectively allow selectional preference violations
and object RCs, but do not require these to occur in
every sentence. Thus, one may still observe some
semantically sound sentences in the -sr configura-
tions if appropriate verbal arguments are randomly
selected (though, this will be unlikely if there are

more lexical items violating a verb’s selectional
preferences than items respecting them), as well
as sentences without multiple center-embeddding
in the +mce configuration. Table 1 presents four
example sentences and their compatibility with the
four configurations: the first sentence neither vi-
olates selectional preferences nor features multi-
ple center-embedding, hence could be observed
under all four training configurations. The sec-
ond sentence violates selectional preferences, and
should thus only be observed in the two -sr con-
figurations. The third sentence does not violate
selectional preferences, but has multiple clausal
and NP center-embedding due to the oblique ob-
ject RC. It therefore can be observed only in the
two +mce configurations. The fourth sentence both
violates selectional preferences and has multiple
center-embedding, and can therefore only be ob-
served in the -sr+mce configuration. Note how-
ever, that table 1 presents a somewhat idealized
picture: in practice, because the lexicon is acquired
semi-automatically and the data generated proba-
bilistically (see §3.3), selecting an inappropriate
verbal argument will be unlikely rather than strictly
impossible in the +sr configurations.

In line with the discussion in §2.2, we expected
-sr-mce to provide the weakest signal for the induc-
tion of self-embedding structures and the condition
+sr+mce to provide the strongest incentives.

3.3 Data generation

We used probabilistic context free grammars to
generate the data for each configuration. More
specifically, we used lexicalized PCFGs (Neder-
hof and Satta, 2011, henceforth LPCFG) to encode
selectional preferences. Rather than the standard
bilexical LPCFG, we used trilexical ones, with up
to two anchors per nonterminal (this allows to keep
the verb, preposition and object interdependent
in oblique object constructions). We handcrafted
delexicalized rules with anchor variables like the
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following (used for the generation of a preposition
x1 and oblique object x2, conditionally to a verb
x0):

Vobl′⟨x0⟩ 7→ Vobl⟨x0⟩PP⟨x1,x2⟩[o_obj(x1, x2 | x0)]
(1)

In this example, the symbols Vobl’, Vobl, PP are
called delexicalized nonterminals and the sym-
bols x0, x1 and x2 are variables used as place-
holders for terminal symbols. The expression
o_obj(x1, x2 | x0) is an abstract weight, formally
representing a function associating a real-valued
weight to concrete values for the variables x0, x1
and x2 (in this case, the joint conditional probabil-
ity of preposition and object, given verb).

To generate data, a delexicalized grammar needs
to be combined with a set of terminal symbols,
and concrete functions instantiating the abstract
weights (henceforth, a lexicon). This allows to turn
each delexicalized rule into a set of concrete rules.
For instance, assuming that o_obl(to, journalist |
talk) = 0.3 and o_obl(about, project | talk) = 0.7,
the rule in (1) would yield the following lexicalized
rules:

Vobl′⟨talk⟩ 7→ Vobl⟨talk⟩PP⟨to,journalist⟩[0.3] (2)

Vobl′⟨talk⟩ 7→ Vobl⟨talk⟩PP⟨about,project⟩[0.7] (3)

The resulting LPCFG can then be used to generate
sentences with both a constituency structure and a
dependency structure5.

The remaining difficulty is to craft a lexicon suf-
ficiently large for models to be ‘forced’ into some
kind of categorization, while reasonably simulating
the +sr configuration. To achieve this, we lever-
aged CamemBERT (Martin et al., 2020), a French
masked language model. We manually fixed the
sets of functional categories (prepositions P and
determiners D), as well as two sets of 34 transitive
verbs and 20 intransitive oblique verbs. We then
bootstrapped a lexicon of nouns and probability
distributions using CamemBERT. To this effect,
we made a set of requests to the masked language
model. Let us examplify this with parler (talk). To
obtain both oblique object (o_obl(x1, x2 | parler)
above) and subject probabilities, we used a set of
masked requests of the form

(4) d1 <mask>s parle x1 d2 <mask>o

5For dependency structures, a few adaptations are needed
from the bilexical to trilexical case. Since the paper focuses
on constituency, we do not expand on these technical matters.

where d1/2 range over determiners and x1 over
prepositions. For instance, d1 = un, x1 = à and
d2 = la corresponds to the masked request:

(5) un
a.m

<mask>s
<mask>s

parle
talk.prs.3sg

à
to

la
the.f

<mask>o
<mask>o

For each request, CamemBERT outputs two con-
ditional distributions Ps/o(x2 | d1, x1, d2, parler),
one for each of the two masked positions (sub-
ject and object). From there, we simply assumed
uniform prior and marginalized over any extra
variable (like the determiners). For instance, we
obtained o_obl(x1, x2 | parler) by computing

1
|D|2|P|

∑
d1,d2

Po(x2 | d1, x1, d2, parler). We pro-
ceeded similarly for the other verb-noun distribu-
tions, then performed some additional filtering,
keeping only the top 100 nouns for each condi-
tional distribution, and only nouns that are both
subject and object of some verbs (to ensure that
they support both kind of modification by RC), and
finally re-normalizing. After normalization, the
resulting sentences are inflected using the French
and English surface realizer PyRealB (Molins and
Lapalme, 2015; Lapalme, 2020).

To simulate the four configurations, we com-
bined the same delexicalized grammar with differ-
ent concrete weights. The above procedure yielded
a lexicon of 951 nouns, as well as the verb selec-
tional distributions for the +sr configuration. For
the -sr configuration, we replaced these distribu-
tions with uniform distributions on the relevant
domains. In both cases, we used a uniform distribu-
tion for the choice of the main verb, and relied on
Bayes’ theorem to generate the verb in object and
subject RC depending on the modified noun. In
all configurations, we set a fixed probability (0.3)
for modifying each noun. The nesting of RCs on a
given noun thus follows a geometric law, and the
number of generated sentences decays exponen-
tially with the depth of nested RCs. Each training
dataset therefore contains very rare instances of
deeply nested embeddings. The grammar used for
+mce condition has equal chances of attaching an
object and subject RC, while the one for -mce only
attaches subject RC. The probability of attachment
and the expected degree of nesting are controlled
and remain the same across configurations.

Note that, in the -sr configurations, the lexical
anchors of the LPCFG can be safely deleted with-
out changing the language (the anchors’ only pur-
pose is to implement selection restrictions). This
operation leaves grammars in Chomsky Normal
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Form with less than 30 nonterminal symbols. In
contrast, in the +sr configurations, the generating
grammars have over 17000 nonterminals, most of
which are probably6 necessary. In addition, these
conditions involve long-distance dependencies be-
tween (at least) the subject of the main clause and
the main verb. Note also, that both -mce configu-
rations make it theoretically possible to perfectly
fit the ground-truth distribution with a right-linear
PCFG or a left-linear PCFG whereas the +mce con-
ditions theoretically require branching structures
for a perfect fit.

We might question whether our implementation
of the +sr condition matches its definition, given
the semi-automatic acquisition of the lexicon. How-
ever, looking at the verb-argument distributions, we
found that the top subject and objects are generally
semantically sound. For instance, the top 5 sub-
jects of investir (invest) are groupe (group), banque
(bank), compagnie (company), region (region) and
ville (city) (covering about 75% of the probabil-
ity mass), while the top 5 subject of eat are femme
(woman), chien (dog), homme (man), fille (girl) and
chat (cat) (covering about 40% of the probability
mass). We also checked that the overall distribu-
tion of nouns follows Zipf’s law, and estimated the
mutual information between subject and main verb
from the generated data to be approximately 2 bits
(against 0 in -sr configurations).

4 Experiments

4.1 Training and test data

Using the procedure described in § 3.3, we gen-
erated over one million sentences for each of the
four configurations and removed duplicates. The
remaining data were split into training and de-
velopment sets. From each training set, we con-
structed four subsets of approximately 3k, 12k,
100k, and 400k sentences by recursive halving, en-
suring that all smaller subsets are prefixes of the
larger ones (e.g., the first 3k sentences appear in all
four datasets). This resulted in 16 training sets and
four development sets of 3k sentences each.

Since the models trained under -mce never ob-
serve object RC, it would be unfair to compare their
ability to parse sentences with object RC to model
which have. We thus mainly compare models on
their performance on data from the -mce config-
uration, i.e. their ability to analyze noun phrases

6It is hard to give a lower bound since PCFG minimization
is undecidable.

modified by subject RC. We use the +sr-mce con-
figuration for evaluation, because none of the four
configurations are biased against any of its sen-
tences: sentences from the +sr-mce are as likely
as any other sentence with the same sequence of
POS to occur in the -sr training data, whereas the
converse is not true. We therefore generated an
(out-of-domain) test containing 5000 sentences for
each sentence length up to 23 words (this corre-
sponds to a maximal nesting depth of four RC), for
a total of 75000 test sentences.

4.2 Models
We experimented with three strong neural latent
constituency tree baselines: Neural PCFG and
Compound PCFG (Kim et al., 2019a, henceforth,
NPCFG and CPCFG) and Unsupervised Recurrent
Neural Networks Grammars (URNNG, Kim et al.,
2019b). Since the full parametrization of these
three models would take too much space, we re-
fer the interested reader to the original papers and
recall only their most salient features.

NPCFG and CPCFG These models are based
on a neural parametrization of PCFGs in Chomsky
normal form. Both assume the number of non-
terminal symbols of the grammar to be fixed as
a hyperparameter. To generate a sentence, these
models start from a designated nonterminal symbol
S and recursively apply rewrite rules of the form
X → σ, replacing some nonterminal X with a se-
quence σ of one or two (terminal or nonterminal)
symbols, until there remains only terminal sym-
bols. The difference between NPCFG and CPCFG
lies in how they model the choice of a rewrite rule.
NPCFG parametrizes the probability of rewriting
X with X → σ as proportional to ef(uX ,vσ) where
uX and vσ are learned embeddings for the left-
hand side and right-hand side of the rule, and f is
a neural network. CPCFG aims at weakening the
context-free assumptions by making each step in
the derivation dependent on a global context vector
z. It thus generates z from a gaussian prior before
applying the rewriting process. z is then shared
between every rewriting decision, and the probabil-
ity of X → σ becomes proportional to ef(uX ·z,vσ)

where · is vector concatenation.

URNNG URNNG does not involve a discrete
space of symbols and rules. It relies instead on a
transition-based system inspired from shift-reduce
parsers. A sentence is generated by successively
applying SHIFT or REDUCE actions to a stack of
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tree fragments, until an end-of sentence symbol is
generated. SHIFT generates a word and moves it on
top of the stack, while REDUCE merges the two top
elements of the stack into a single tree fragment.
At every step, the model also maintains a stack
of hidden states. The choice of the next action is
parametrized as a function of the top-element of
the stack of hidden states, and each action updates
the stack of hidden states using a stack recurrent
neural network (Kuncoro et al., 2017).

The tested models thus have important differ-
ences: URNNG, unlike the two others, generates
words in a strict left-to-right order and does not
involve symbolic rules. NPCFG is the only model
whose decisions depend only on a finite set of
configurations. CPCFG and URNNG stand on
opposite sides of the parsing/language modeling
tradeoff, with NPCFG and CPCFG achieving bet-
ter parsing performance but much worse perplexity
than URNNG on natural language. Unlike NPCFG,
CPCFG and URNNG most likely have expressive
capabilities beyond PCFG, though this has (to our
knowledge) not be formally established. In particu-
lar, URNNG’s use of stack LSTM suggests (Merrill
et al., 2020; Weiss et al., 2018) that it could model
data from the +mce conditions without branching
structures, which lies beyond PCFG’s strong ex-
pressive power7. Finally, the models use distinct
strategies to marginalize over latent trees and esti-
mate the probabilities of sentences: NPCFG and
CPCFG use dynamic programs8 whereas URNNG
uses REINFORCE with control variate.

We tested the three models under the best set
of hyperparameters9 respectively reported in Kim
et al. (2019a) and Kim et al. (2019b), using the
authors’ orginal implementation. In particular, we
used CPCFG with 30 nonterminal symbols and 60
preterminal symbols, which means that, for the -sr
configuration, a perfect language model and parser
lies within the searched class of CPCFG models
(cf §3.3), hence, that perfect parsing accuracy can
be achieved on the test set.

We trained four instances of each model
(CPCFG, NPCFG and URNNG) on a machine with
a single RTX4090 GPU. Each run was initialized
with a different random seed, on every training

7URNNG essentially reduces to a standard LSTM lan-
guage model when operating on linear tree structures.

8CPCFG uses variational inference to marginalize over z.
9Hyperparameters mainly involve embedding dimensions,

hidden state dimensions, number of preterminals and nonter-
minals (when relevant), and number of KL annealing step for
variational inference in URNNG.

dataset. Training duration was controlled by the
number of steps, to enable fair comparisons across
datasets of different sizes. We trained for a max-
imum of 105 steps, performing validation every
500 steps, stopping early when perplexity on the
development set failed to improve for three con-
secutive validations. Early stopping always trig-
gered before the maximum number of steps was
reached. Detailed hyperparameters are provided
in Appendix A, and selected training, develop-
ment and testing datasets, code and parsed test data
are available at https://github.com/suzuyuta/
BriGap-2_2025.

4.3 Metrics

We measured performances according to sentence-
level (unlabeled) F1 score, the standard metrics
for unsupervised constituency parsing. However,
since our training data is designed around specific
incentives for self-embedding of NP and CP, it
does not reflect common linguistic arguments e.g.
the positioning of the subject above VP, which are
nevertheless evaluated by F1. We therefore report
the recall on constituents of type NP and CP.

5 Results and discussion

Figure 2 presents the results achieved by the three
models under the four configurations and four data
sizes. The reported numbers are the mean perfor-
mance and standard deviation across all four runs.
Detailed results for each run are available in the
appendix B (Table 3, 4, and 5).

Overall impact of sr and mce The +sr+mce
configuration (light blue) achieves the best results
across the board, and the -sr-mce (pink) the worst
results, confirming intuitions. The -sr+mce (light
green) configuration tends to yield better result
than the +sr-mce (orange), though there are ex-
ceptions for URNNG. This suggests that, to the
extent that these phenomena are captured in our
data, latent tree models are more sensitive to multi-
ple center embedding than selectional restrictions.
Furthermore, +sr configulations had the effect of
increasing the number of preterminal symbols used
in NPCFG and CPCFG models.

Model comparison URNNG seems to consis-
tently achieve either comparable, or better perfor-
mance than CPCFG, across all data sizes and con-
figurations. This is rather surprising: for English,
Kim et al. (2019a) reports a performance of 60.1
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Figure 2: Sentence-level F1, NP and CP recall for CPCFG and URNNG. Dashed lines show the right-branching
(red) and left-branching baseline scores (green)

for the best PCFG model against a performance
of 52.6 for the best URNNG model on the Penn
Treebank (Marcus et al., 1993). Hence, the (em-
pirically) worse natural language parser achieved
the better score on our artificial data. URNNG also
provides the best language models across configu-
rations, which is less surprising (perplexity scores
estimated on training data are available in the ap-
pendix). Both models show a tendency to induce
linear structures in the configuration -sr-mce, es-
pecially when less data is available. However, they
seem to have opposite biases with CPCFG prefer-
ing left-branching structures, and URNNG right-
branching ones.

Differences in mce impact mce strongly impacts
all three models, but the impact on CPCFG is par-
ticularly dramatic, as no model ever beats the right-
branching baseline in any of the -mce configuration.
We find it remarkable, that despite plausibly able
to express mce without branching structure (see
§ 4.2), the -sr+mce configuration pushes URNNG
towards inducing NP constituents (though, not CP
constituents).

Differences in sr impact The effect of selec-
tional restrictions alone (+sr-mce) varies across
models: CPCFG and NPCFG improve NP induc-
tion but not CPs, whereas URNNG shows the
opposite pattern, especially excelling at CP re-
call with 100k data. Interestingly, NPCFG’s F1
score drops sharply under -sr, though NP re-
call remains relatively stable. The contrast be-
tween +sr+mce and -sr+mce is more pronounced
in NPCFG and URNNG than in CPCFG, proba-
bly because CPCFG cannot explicitly model selec-
tional restrictions with its context vector z. Since z
uniformely affects every occurence of a nontermi-
nal symbol, lexical items generated from the same
symbol share the same distribution, and CPCFG
must assign different symbols to nouns with dif-
ferent semantic features. Consequently it has to
encode semantic variation within a fixed inventory
of 30 nonterminals and 60 preterminals. In contrast,
URNNG may exploit its hidden state to model such
distinctions more flexibly.

Performance correlations We used Spearman’s
rank correlation to assess the relationship between
perplexity, training size, and syntactic performance
(F1, NP/CP/VP recall; see Appendix C). CPCFG
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and URNNG showed strong negative correlations
between perplexity and performance, especially
NP recall, suggesting that lower perplexity often
aligns with better parsing. This trend was less clear
for NPCFG. In contrast, correlations with training
size were weaker. With small datasets, models typ-
ically saw the full data multiple times before con-
verging, so seed-related variation mainly reflected
data ordering. For larger datasets, perplexity often
plateaued early, leading to convergence before full
data exposure and greater sensitivity to the specific
subset encountered.

Robustness to semantic and syntactic variation
We further evaluated our models using test sets
from the -sr-mce configuration and, for the mod-
els trained on +mce, -sr+mce configurations. Pars-
ing performance remained consistent across these
settings, suggesting that models do not rely on se-
mantic cues, and that (when exposed to both kind
of RCs) they learn to treat subject and object RC
similarly. This indicates that self-embedding struc-
tures are either jointly acquired or jointly missed.

6 Limitations

The tested latent tree models obviously have very
high variance under most configurations (URNNG
on +sr+mce being an exception). Though the
problem is pervasive in grammar induction, ad-
ditional runs could help increase statistical signif-
icance. Second, comparison with more models
would be very informative. In particular a com-
parison between the recent Tensor Decomposition
PCFG model (Yang et al., 2021), since the for-
mer increased number of symbols could maybe
overcome CPCFG apparently limitation to bene-
fit from sr. Another limitation lies in the latent
non/preterminal symbols in CPCFG and NPCFG,
which we did not analyze in detail; future work
is needed to better understand how these symbols
relate to syntactic and semantic categories. Finally
verbs and nouns are very unbalanced in our lexicon
(more than in reality) and this asymmetry could
have some effects, e.g. on some models’ prefer-
ences for a given flow of information (from subject
to verb vs. from verb to subject).

7 Conclusion

We have designed a controlled experimental set-
ting to assess the respective effect of two linguistic
phenomena (one categorical, multiple center em-
bedding and one semantic, selectional restrictions)

on latent tree models induction. Testing three well
established latent tree baselines in these settings
allows to make general observations on the relative
strength of the two phenomena, and report differ-
ences in their impact on the tested models. While
we focused on constituency models in this study,
our methodology and data are readily applicable
to the dependency setting, and testing dependency
latent models is one of our future avenues of re-
search.
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A Hyperparameters

The hyperparameters used in our experiments
largely follow those reported in prior work (Kim
et al., 2019a,b). We conducted four runs for each
model (CPCFG, NPCFG, and URNNG) with
the following randomly selected seeds: 3435,
648708704, 1320159950, and 603135965. Table 2
summarizes the hyperparameter settings. In the
experiments with the NPCFG, the z_dim parameter
of the CPCFG was set to 0.

Table 2: Hyperparameters

CPCFG (NPCFG)

Description Value Flag

latent dimension 64 –z_dim
number of preterminal states 60 –t_states
number of nonterminal states 30 –nt_states
symbol embedding dimension 256 –state_dim
hidden dim for variational LSTM 512 –h_dim
embedding dim for variational LSTM 512 –w_dim
starting learning rate 0.001 –lr
gradient clipping 3 –max_grad_norm
max sentence length cutoff start 30 –max_length
increment max length each epoch 1 –len_incr
final max length cutoff 40 –final_max_length
Adam β1 0.75 –beta1
Adam β2 0.999 –beta2
which GPU to use 0 –gpu
validation every N steps 3000 –val_every
increment max length every N steps 3000 –incr_step
early stopping patience (epochs) 5 –early_stopping_patience
minimum training steps 10000 –min_steps

URNNG

Description Value Flag

hidden dim (LM/RNNG) 650 –w_dim
hidden dim (LM/RNNG) 650 –h_dim
hidden dim (variational RNN) 256 –q_dim
number of layers (LM & stack LSTM) 2 –num_layers
dropout rate 0.5 –dropout
include EOS in val PPL (0/1) 0 –count_eos_ppl
no LR decay before this 8 –min_epochs
IWAE samples (eval) 5 –mc_samples
samples for score-function grads 8 –samples
starting learning rate 1 –lr
LR for inference network q 0.0001 –q_lr
LR for action layer 0.1 –action_lr
LR decay factor 0.5 –decay
KL warmup steps 10000 –kl_warmup
steps to train q 10000 –train_q_steps
uniform init range 0.1 –param_init
grad clipping (model) 5 –max_grad_norm
grad clipping (q) 1 –q_max_grad_norm
validation every N steps 3000 –val_every
minimum training steps 1500 –min_steps
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Table 3: CPCFG Results

Data Type Size Seed Val PPL Last Step F1 NP CP VP nb NT nb PreT

+sr+mce

3k

0 24.93 9000 0.51 0.42 0.58 0.65 10 30
1 24.41 10000 0.58 0.6 0.66 0.72 10 28
2 23.43 11000 0.23 0.52 0.0 0.0 10 33
3 22.03 9000 0.54 0.48 0.63 0.75 14 32

12k

0 20.63 13000 0.73 0.71 0.92 0.95 16 30
1 18.97 12000 0.61 0.66 0.7 0.8 9 22
2 20.18 9500 0.77 0.75 1.0 1.0 10 23
3 21.74 8000 0.22 0.49 0.0 0.0 11 33

100k

0 20.11 11500 0.78 0.72 0.92 0.95 12 28
1 22.14 10500 0.26 0.63 0.0 0.0 11 25
2 22.13 8000 0.22 0.49 0.0 0.0 11 30
3 20.43 12500 0.24 0.54 0.0 0.0 7 24

400k

0 20.17 13500 0.67 0.54 0.89 0.93 11 32
1 18.87 11000 0.77 0.75 1.0 1.0 11 25
2 19.29 13000 0.26 0.62 0.0 0.0 10 28
3 18.5 14000 0.84 0.99 0.99 0.99 8 29

+sr-mce

3k

0 18.54 8500 0.62 0.39 1.0 1.0 13 28
1 21.56 7000 0.15 0.25 0.0 0.0 7 21
2 19.4 9000 0.23 0.51 0.0 0.0 6 26
3 18.34 9000 0.52 0.5 0.56 0.73 7 30

12k

0 19.79 11000 0.16 0.27 0.0 0.0 8 32
1 16.6 15500 0.26 0.63 0.0 0.0 8 34
2 19.36 10000 0.16 0.28 0.0 0.0 7 29
3 18.64 10500 0.2 0.41 0.0 0.0 7 25

100k

0 19.71 8500 0.17 0.3 0.0 0.0 6 24
1 16.43 17500 0.27 0.64 0.0 0.0 7 38
2 19.38 10500 0.15 0.27 0.0 0.0 7 29
3 20.05 9500 0.15 0.26 0.0 0.0 8 25

400k

0 19.17 7000 0.15 0.25 0.0 0.0 7 22
1 20.01 6500 0.15 0.26 0.0 0.0 7 22
2 19.22 10000 0.16 0.29 0.0 0.0 7 30
3 19.75 8500 0.16 0.28 0.0 0.0 6 26

-sr+mce

3k

0 39.23 10000 0.64 0.61 0.72 0.81 13 29
1 47.51 7000 0.59 0.5 0.49 0.66 7 22
2 46.74 6500 0.59 0.5 0.49 0.66 7 18
3 34.58 11500 0.85 1.0 1.0 1.0 9 23

12k

0 43.03 8000 0.59 0.5 0.49 0.66 7 16
1 45.7 6500 0.59 0.5 0.49 0.66 6 16
2 44.68 6500 0.59 0.5 0.49 0.66 6 15
3 35.25 10000 0.79 0.94 0.89 0.93 7 14

100k

0 44.93 8000 0.59 0.5 0.49 0.66 7 14
1 41.64 7000 0.62 0.64 0.49 0.85 11 12
2 44.21 8000 0.59 0.5 0.49 0.66 8 16
3 44.6 7500 0.59 0.5 0.49 0.66 6 12

400k

0 34.49 14000 0.62 0.64 0.49 0.85 12 25
1 32.42 12000 0.85 1.0 1.0 1.0 9 20
2 44.95 7000 0.59 0.5 0.49 0.66 7 12
3 44.75 8000 0.59 0.5 0.49 0.66 8 18

-sr-mce

3k

0 42.17 6500 0.15 0.25 0.0 0.0 6 19
1 37.25 7000 0.15 0.25 0.0 0.0 7 22
2 42.7 6500 0.15 0.25 0.0 0.0 6 16
3 42.31 6500 0.15 0.25 0.0 0.0 6 18

12k

0 28.14 13000 0.27 0.64 0.0 0.0 7 17
1 39.5 7000 0.15 0.25 0.0 0.0 6 23
2 38.91 6500 0.15 0.25 0.0 0.0 6 18
3 32.06 14500 0.27 0.64 0.0 0.0 7 19

100k

0 38.56 8000 0.15 0.25 0.0 0.0 6 27
1 38.83 6500 0.15 0.25 0.0 0.0 6 22
2 38.87 7000 0.15 0.25 0.0 0.0 6 23
3 34.74 6500 0.15 0.25 0.0 0.0 6 18

400k

0 38.56 7500 0.15 0.25 0.0 0.0 6 25
1 38.72 8000 0.15 0.25 0.0 0.0 7 21
2 32.36 9500 0.24 0.56 0.0 0.0 7 21
3 34.44 8000 0.15 0.25 0.0 0.0 7 22
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Table 4: NPCFG Results

Data Type Size Seed Val PPL Last Step F1 NP CP VP nb NT nb PreT

+sr+mce

3k

0 20.67 9000 0.72 0.81 0.77 0.85 9 28
1 25.58 6500 0.25 0.6 0.0 0.0 9 23
2 25.48 6500 0.27 0.64 0.0 0.0 7 25
3 23.28 8500 0.78 0.9 0.9 0.94 11 25

12k

0 25.98 7000 0.2 0.42 0.0 0.0 7 22
1 21.91 10000 0.82 0.97 0.95 0.97 7 23
2 24.42 7500 0.27 0.64 0.0 0.0 7 29
3 21.01 10500 0.67 0.69 0.82 0.83 10 24

100k

0 22.71 10000 0.27 0.64 0.0 0.0 8 23
1 20.36 9000 0.62 0.48 1.0 0.89 12 22
2 20.51 11500 0.64 0.55 0.92 0.94 10 18
3 25.2 8000 0.75 0.73 0.95 0.96 8 22

400k

0 21.74 12500 0.69 0.71 0.77 0.85 10 34
1 20.65 9000 0.77 0.87 0.9 0.93 11 26
2 21.19 9500 0.73 0.88 0.77 0.81 10 20
3 20.25 14000 0.56 0.76 0.0 0.77 14 33

+sr-mce

3k

0 22.32 9500 0.22 0.5 0.0 0.0 8 26
1 19.56 9500 0.25 0.58 0.0 0.0 8 28
2 19.99 8500 0.24 0.54 0.0 0.0 8 23
3 22.52 6500 0.16 0.29 0.0 0.0 7 28

12k

0 21.5 8500 0.21 0.47 0.0 0.0 8 27
1 18.72 9500 0.22 0.49 0.0 0.0 8 24
2 18.6 12000 0.22 0.49 0.0 0.0 12 27
3 18.95 10000 0.22 0.49 0.0 0.0 12 24

100k

0 18.65 10500 0.22 0.49 0.0 0.0 8 26
1 18.81 8500 0.24 0.54 0.0 0.0 8 31
2 18.84 12000 0.22 0.49 0.0 0.0 11 24
3 21.26 11000 0.25 0.58 0.0 0.0 8 26

400k

0 18.83 7500 0.22 0.49 0.0 0.0 8 21
1 18.63 12000 0.22 0.48 0.0 0.0 9 31
2 18.72 11000 0.27 0.64 0.0 0.0 8 22
3 19.45 8500 0.23 0.53 0.0 0.0 8 24

-sr+mce

3k

0 36.07 9500 0.22 0.49 0.0 0.0 8 17
1 31.45 10000 0.23 0.52 0.0 0.0 8 16
2 38.44 8000 0.26 0.61 0.0 0.0 12 20
3 36.33 10000 0.22 0.5 0.0 0.0 6 16

12k

0 43.74 8000 0.27 0.64 0.0 0.0 6 13
1 35.22 10000 0.22 0.49 0.0 0.0 6 17
2 48.96 7500 0.24 0.57 0.0 0.0 6 18
3 34.2 9500 0.24 0.56 0.0 0.0 9 18

100k

0 35.9 10500 0.27 0.66 0.0 0.0 13 13
1 35.26 10000 0.22 0.5 0.0 0.0 8 16
2 43.02 8000 0.23 0.53 0.0 0.0 8 15
3 40.46 7000 0.24 0.57 0.0 0.0 8 19

400k

0 40.92 8000 0.27 0.64 0.0 0.0 7 12
1 35.78 8000 0.22 0.49 0.0 0.0 7 16
2 43.69 7000 0.22 0.49 0.0 0.0 9 16
3 33.54 11000 0.23 0.52 0.0 0.0 8 14

-sr-mce

3k

0 27.2 8000 0.25 0.59 0.0 0.0 10 20
1 39.07 7000 0.15 0.25 0.0 0.0 6 19
2 31.22 10000 0.21 0.46 0.0 0.0 8 14
3 35.33 6500 0.15 0.25 0.0 0.0 5 10

12k

0 27.04 8000 0.26 0.63 0.0 0.0 7 15
1 32.63 8000 0.22 0.49 0.0 0.0 11 15
2 34.11 6500 0.15 0.25 0.0 0.0 5 14
3 26.57 9000 0.22 0.49 0.0 0.0 10 16

100k

0 27.12 10000 0.31 0.79 0.0 0.0 8 13
1 33.06 6500 0.23 0.54 0.0 0.0 7 13
2 34.46 6500 0.15 0.25 0.0 0.0 8 12
3 26.79 7500 0.22 0.49 0.0 0.0 9 15

400k

0 33.5 7000 0.15 0.25 0.0 0.0 6 18
1 33.13 7500 0.15 0.25 0.0 0.0 6 19
2 33.73 8000 0.15 0.25 0.0 0.0 6 25
3 33.98 8000 0.15 0.25 0.0 0.0 7 12
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Table 5: URNNG Results

Data Type Size Seed Val PPL Last Step F1 NP CP VP

+sr+mce

3k

0 15.96 3500 0.43 0.5 0.0 0.66
1 14.25 4500 0.91 0.85 0.99 0.99
2 16.24 3500 0.42 0.47 0.01 0.63
3 14.53 4500 0.79 0.81 0.77 0.82

12k

0 11.78 8500 0.91 0.84 1.0 1.0
1 12.45 6000 0.9 0.84 0.99 0.97
2 12.64 6000 0.89 0.83 0.95 0.97
3 11.84 8500 0.89 0.82 0.98 0.99

100k

0 12.54 6000 0.87 0.85 0.99 0.82
1 11.69 8000 0.91 0.85 1.0 0.98
2 11.47 9000 0.91 0.85 1.0 0.98
3 12.48 7000 0.44 0.5 0.06 0.66

400k

0 11.71 7500 0.91 0.85 1.0 0.98
1 11.57 8500 0.91 0.85 1.0 0.98
2 11.87 7500 0.91 0.85 1.0 0.98
3 12.2 8500 0.52 0.53 0.46 0.67

+sr-mce

3k

0 13.27 5500 0.59 0.5 0.49 0.66
1 13.32 4500 0.51 0.5 0.27 0.66
2 13.58 3500 0.58 0.5 0.49 0.66
3 12.86 5500 0.65 0.74 0.49 0.62

12k

0 11.59 6000 0.57 0.5 0.45 0.66
1 11.34 6000 0.58 0.5 0.49 0.66
2 11.75 5500 0.58 0.5 0.49 0.66
3 10.88 6500 0.66 0.74 0.49 0.66

100k

0 10.28 9000 0.91 0.85 1.0 1.0
1 10.71 8000 0.59 0.5 0.49 0.66
2 10.37 8000 0.89 0.85 1.0 0.89
3 10.91 7000 0.59 0.5 0.49 0.66

400k

0 10.84 7500 0.59 0.5 0.49 0.66
1 11.09 7000 0.46 0.5 0.15 0.66
2 11.53 6000 0.53 0.5 0.34 0.66
3 10.83 7500 0.59 0.5 0.49 0.66

-sr+mce

3k

0 42.06 3500 0.43 0.49 0.0 0.64
1 42.11 4000 0.75 0.82 0.63 0.74
2 39.79 4500 0.62 0.75 0.59 0.42
3 50.4 4500 0.56 0.66 0.63 0.34

12k

0 37.71 5000 0.67 0.76 0.52 0.63
1 35.82 6000 0.54 0.63 0.34 0.68
2 35.84 6000 0.62 0.81 0.42 0.42
3 35.61 6000 0.63 0.79 0.66 0.37

100k

0 35.52 7000 0.95 0.98 0.92 0.92
1 35.54 7000 0.67 0.82 0.4 0.64
2 35.37 7000 0.46 0.5 0.16 0.66
3 35.45 6500 0.64 0.86 0.45 0.7

400k

0 35.38 8000 0.84 0.99 0.72 0.69
1 35.32 9000 0.76 0.91 0.63 0.61
2 35.36 8000 0.76 0.89 0.64 0.63
3 35.42 7500 0.63 0.75 0.48 0.52

-sr-mce

3k

0 44.85 3500 0.46 0.5 0.16 0.66
1 35.63 3500 0.43 0.48 0.03 0.64
2 44.61 3500 0.65 0.74 0.49 0.61
3 36.76 5500 0.46 0.5 0.16 0.66

12k

0 33.37 6500 0.46 0.5 0.16 0.66
1 43.12 5000 0.46 0.5 0.16 0.66
2 33.41 6000 0.46 0.5 0.16 0.66
3 36.63 5000 0.58 0.73 0.37 0.46

100k

0 33.33 6000 0.46 0.5 0.15 0.66
1 43.01 5000 0.66 0.74 0.49 0.66
2 35.19 5000 0.54 0.72 0.36 0.38
3 33.2 7500 0.46 0.5 0.16 0.66

400k

0 35.73 5000 0.46 0.5 0.16 0.66
1 33.25 8500 0.57 0.78 0.55 0.28
2 33.21 7500 0.53 0.68 0.34 0.41
3 38.0 6500 0.66 0.74 0.49 0.66
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C Spearman’s Test Results

Table 6: Spearman’s Test Results: CPCFG
Data Type Pair Spearman’s ρ p-value Significance

+sr+mce

PPL-Size -0.7276 0.0014 ∗∗
F1-Size 0.2795 0.2944 n.s.
F1-PPL -0.6013 0.0137 ∗
NP-Size 0.4983 0.0495 ∗
NP-PPL -0.7119 0.002 ∗∗
CP-Size 0.1933 0.4732 n.s.
CP-PPL -0.5535 0.0261 ∗
VP-Size 0.1933 0.4732 n.s.
VP-PPL -0.5656 0.0224 ∗

+sr-mce

PPL-Size 0.1576 0.5598 n.s.
F1-Size -0.5209 0.0385 ∗
F1-PPL -0.728 0.0014 ∗∗
NP-Size -0.3588 0.1723 n.s.
NP-PPL -0.733 0.0012 ∗∗
CP-Size -0.506 0.0455 ∗
CP-PPL -0.4065 0.1182 n.s.
VP-Size -0.506 0.0455 ∗
VP-PPL -0.4065 0.1182 n.s.

-sr+mce

PPL-Size -0.2183 0.4167 n.s.
F1-Size -0.0489 0.8574 n.s.
F1-PPL -0.8415 0.0 ∗ ∗ ∗
NP-Size 0.0209 0.9386 n.s.
NP-PPL -0.8483 0.0 ∗ ∗ ∗
CP-Size -0.2153 0.4231 n.s.
CP-PPL -0.6712 0.0044 ∗∗
VP-Size 0.0209 0.9386 n.s.
VP-PPL -0.8483 0.0 ∗ ∗ ∗

-sr-mce

PPL-Size -0.4672 0.068 n.s.
F1-Size 0.0356 0.8958 n.s.
F1-PPL -0.6811 0.0037 ∗∗
NP-Size 0.0356 0.8958 n.s.
NP-PPL -0.6811 0.0037 ∗∗
CP-Size NaN NaN n.s.
CP-PPL NaN NaN n.s.
VP-Size NaN NaN n.s.
VP-PPL NaN NaN n.s.

Table 7: Spearman’s Test Results: NPCFG
Data Type Pair Spearman’s ρ p-value Significance

+sr+mce

PPL-Size -0.5457 0.0288 ∗
F1-Size 0.1946 0.4702 n.s.
F1-PPL -0.3392 0.1987 n.s.
NP-Size 0.1216 0.6536 n.s.
NP-PPL -0.2094 0.4363 n.s.
CP-Size 0.1814 0.5014 n.s.
CP-PPL -0.4111 0.1137 n.s.
VP-Size 0.1788 0.5077 n.s.
VP-PPL -0.3902 0.1351 n.s.

+sr-mce

PPL-Size -0.5461 0.0286 ∗
F1-Size 0.2271 0.3977 n.s.
F1-PPL -0.111 0.6823 n.s.
NP-Size 0.0873 0.7479 n.s.
NP-PPL 0.031 0.9092 n.s.
CP-Size NaN NaN n.s.
CP-PPL NaN NaN n.s.
VP-Size NaN NaN n.s.
VP-PPL NaN NaN n.s.

-sr+mce

PPL-Size 0.097 0.7208 n.s.
F1-Size 0.0189 0.9447 n.s.
F1-PPL 0.314 0.2363 n.s.
NP-Size -0.0061 0.982 n.s.
NP-PPL 0.3403 0.1972 n.s.
CP-Size NaN NaN n.s.
CP-PPL NaN NaN n.s.
VP-Size NaN NaN n.s.
VP-PPL NaN NaN n.s.

-sr-mce

PPL-Size 0.0243 0.929 n.s.
F1-Size -0.2534 0.3436 n.s.
F1-PPL -0.8164 0.0001 ∗ ∗ ∗
NP-Size -0.2534 0.3436 n.s.
NP-PPL -0.8164 0.0001 ∗ ∗ ∗
CP-Size NaN NaN n.s.
CP-PPL NaN NaN n.s.
VP-Size NaN NaN n.s.
VP-PPL NaN NaN n.s.
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Table 8: Spearman’s Test Results: URNNG
Data Type Pair Spearman’s ρ p-value Significance

+sr+mce

PPL-Size -0.7155 0.0018 ∗∗
F1-Size 0.4054 0.1193 n.s.
F1-PPL -0.7405 0.001 ∗∗
NP-Size 0.4818 0.0588 n.s.
NP-PPL -0.6258 0.0095 ∗∗
CP-Size 0.5371 0.0319 ∗
CP-PPL -0.8149 0.0001 ∗ ∗ ∗
VP-Size 0.1543 0.5682 n.s.
VP-PPL -0.6229 0.01 ∗∗

+sr-mce

PPL-Size -0.7155 0.0018 ∗∗
F1-Size 0.0 1.0 n.s.
F1-PPL -0.5779 0.019 ∗
NP-Size -0.0799 0.7688 n.s.
NP-PPL -0.4339 0.0931 n.s.
CP-Size -0.0349 0.898 n.s.
CP-PPL -0.5142 0.0416 ∗
VP-Size 0.3202 0.2266 n.s.
VP-PPL -0.5911 0.0159 ∗

-sr+mce

PPL-Size -0.9459 0.0 ∗ ∗ ∗
F1-Size 0.5595 0.0242 ∗
F1-PPL -0.4381 0.0897 n.s.
NP-Size 0.5769 0.0193 ∗
NP-PPL -0.4875 0.0554 n.s.
CP-Size 0.2433 0.364 n.s.
CP-PPL -0.174 0.5192 n.s.
VP-Size 0.2005 0.4565 n.s.
VP-PPL -0.1975 0.4635 n.s.

-sr-mce

PPL-Size -0.4972 0.0501 n.s.
F1-Size 0.3824 0.1438 n.s.
F1-PPL 0.2374 0.376 n.s.
NP-Size 0.4289 0.0974 n.s.
NP-PPL 0.1261 0.6417 n.s.
CP-Size 0.381 0.1454 n.s.
CP-PPL 0.1756 0.5154 n.s.
VP-Size -0.1602 0.5533 n.s.
VP-PPL 0.2585 0.3336 n.s.

D Statistics of Non-/Pre-terminal
Symbols for CPCFG and NPCFG

Table 9: Mean number of Non-/Pre-terminal
symbols
Model Data Type Mean nb NT (std) Mean nb PreT (std)

CPCFG

+sr+mce 10.69 (2.05) 28.25 (3.44)
+sr-mce 7.38 (1.58) 27.56 (4.49)
-sr+mce 8.12 (2.09) 17.62 (4.83)
-sr-mce 6.38 (0.48) 20.69 (2.93)

NPCFG

+sr+mce 9.38 (1.96) 24.81 (4.22)
+sr-mce 8.69 (1.49) 25.75 (2.8)
-sr+mce 8.06 (1.95) 16.0 (2.15)
-sr-mce 7.44 (1.77) 15.62 (3.66)
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Abstract

Human communication routinely relies on plu-
ral predication, and plural sentences are of-
ten ambiguous (see, e.g., Scha, 1984; Dal-
rymple et al., 1998a, to name a few). Build-
ing on extensive theoretical and experimen-
tal work in linguistics and philosophy, we ask
whether large language models (LLMs) exhibit
the same interpretive biases that humans show
when resolving plural ambiguity. We focus on
two lexical factors: (i) the collective bias of
certain predicates (e.g., size/shape adjectives)
and (ii) the symmetry bias of predicates. To
probe these tendencies, we apply two comple-
mentary methods to premise–hypothesis pairs:
an embedding-based heuristic using OpenAI’s
text-embedding-3-large/small (OpenAI,
2024, 2025) with cosine similarity, and
supervised NLI models (bart-large-mnli,
roberta-large-mnli) (Lewis et al., 2020; Liu
et al., 2019; Williams et al., 2018a; Facebook
AI, 2024b,a) that yield asymmetric, calibrated
entailment probabilities. Results show partial
sensitivity to predicate-level distinctions, but
neither method reproduces the robust human
pattern, where neutral predicates favor entail-
ment and strongly non-symmetric predicates
disfavor it. These findings highlight both the
potential and the limits of current LLMs: as
cognitive models, they fall short of capturing
human-like interpretive biases; as engineering
systems, their representations of plural seman-
tics remain unstable for tasks requiring precise
entailment.

1 Introduction

Plural sentences permit multiple readings. For ex-
ample, the boys lifted the table allows a collective
reading (acting together) or a distributive reading
(each acted separately). Even without context, hu-
man listeners show robust preferences, making plu-
rality a rich testbed for evaluating whether language
models track the same interpretive pressures.

We ask two questions. As cognitive models, do
LLMs exhibit human-like interpretive biases in out-
of-the-blue contexts? As engineering systems, do
they represent plural semantics robustly enough
for tasks requiring precise entailment? If such bi-
ases emerge, they may be encoded in linguistic
distributions; if not, it shows the limits of text-only
training.

We focus on two tendencies: the collective
bias, where predicates vary in supporting col-
lective over distributive readings, and the sym-
metry bias, where reciprocals differ in favor-
ing symmetric interpretations. To probe these,
we apply two methods to premise–hypothesis
pairs: (i) cosine similarity with OpenAI’s
text-embedding-3-large/small, a simple but
symmetric and uncalibrated proxy for entail-
ment, and (ii) NLI models (bart-large-mnli,
roberta-large-mnli), which provide asymmet-
ric, probabilistic entailment judgments. We treat
both as entailment-strength signals and compare
their agreement and fit to human data.

2 Background

2.1 Collective Bias

Pluralities like the students, John and Mary are
widely used in natural language. However, the se-
mantics and pragmatics of predicating properties
on plural entities is a complex issue. The complex-
ity comes from the ambiguity of plural predications
(Beck and Sauerland, 2000; Beck, 2001; Landman,
1989a,b; Link, 1983; Scha, 1984; Schwarzschild,
1996).

For example, for a sentence the boys lifted the
table, a plural entity the boys is involved. The sen-
tence allows for various interpretations. The first
and most intuitive reading of the sentence is that
all the boys lifted the table together. The property
of table lifting applies to the plural entity the boys
as a whole. This is commonly referred to as the
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collective reading of plural predications. Another
possible reading of the sentence is that the boys
each lifted the table. The property of table lifting
applies to each atom of the plural entity the boys.
This is commonly referred to as the distributive
reading of plural predications. In addition to the
collective and distributive readings, there are also
many intermediate readings. For example, the sen-
tence is also true in a scenario where the boys were
separated into groups, each group of boys lifted the
table together.

Plural predication sentences are inherently am-
biguous. However, this ambiguity does not hinder
the efficiency or effectiveness of human commu-
nication. Rather than causing confusion, certain
interpretation is usually prominent.

Experimental work has shown that collective
readings are generally easier to access than dis-
tributive readings (Frazier et al., 1999; Dotlačil and
Brasoveanu, 2021). However, this preference is not
uniform: many special cases reveal a weak collec-
tive bias. For instance, Dotlačil and Brasoveanu
(2021) find that the preference for collective inter-
pretations disappears in cases of lexical distribu-
tivity, where the distributive meaning is encoded
directly in the predicate. A well-documented ex-
ample arises with adjectives of size and shape,
which strongly promote distributive interpretations
(Quine, 1960; Schwarzschild, 2011; Scontras and
Goodman, 2017; Syrett, 2015; Maldonado, 2012;
Zhang, 2013). Syrett (2015) show that this bias
emerges early, in children as young as three. For
example, the adjective large strongly favors a dis-
tributive reading: when interpreting the boxes are
big, the most natural construal is that each box is
big. By contrast, predicates such as heavy allow
both collective and distributive interpretations: the
boxes are heavy may mean that each box is heavy,
or that the boxes are heavy as a group, even if no
individual box is particularly heavy.

Why the preference arises remains an open ques-
tion in the literature. One line of explanation at-
tributes the interpretive bias to lexical semantics,
certain predicates are argued to be semantically
incompatible with collective readings due to their
scalar or gradable nature, as in the case of size
adjectives like big or tall (Schwarzschild, 2011;
Maldonado, 2012; Zhang, 2013). Another line of
research suggests that the preference is shaped by
pragmatic reasoning or contextual factors; for in-
stance, when interpreting size predicates, compar-
isons are naturally drawn at the level of each ob-

ject. However, when the discourse context is set
up appropriately, collective readings can emerge
even for predicates that are otherwise known to
strongly favor distributive interpretations (Scon-
tras and Goodman, 2017). Scontras and Goodman
(2017) collect natural-occurring examples of plural
predications from the British National Corpus. For
frequent plural sentences, Scontras and Goodman
(2017) tests people’s judgment of the salient inter-
pretations of these sentences. The authors also ma-
nipulate the contexts of the same plural sentences
and show that contexts can influence how salient
the distributive reading is, thus refuting the lexical
views mentioned above.

2.2 Symmetric Bias
The second generalization is that certain predicates
evoke a symmetric bias, making the salient inter-
pretations of plural sentences stronger compared to
those without a symmetric bias (Beck, 2001; Dal-
rymple et al., 1998b; Gleitman et al., 1996; Poort-
man et al., 2018). For example, for the sentence
John, Mary and Bill knew each other, the most
salient reading is that John knew Mary, Mary knew
John, John knew Bill, Bill knew John, Mary knew
Bill and Bill knew Mary. In other words, every
person knew every other person. The salient inter-
pretation is symmetric between the atoms of the
individual. For the sentence John, Mary and Bill
were hitting each other, the most salient reading is
not as strong as the one described just now. The
most salient reading is that every person was either
hitting or was being hit by some other person. The
reading is weaker than the reading for the knew
sentence. The reading is not symmetric between
atoms of the plural.

To explain the difference in the strength of
salient readings, many works focus on the use of
contextual and lexical information for the selec-
tion between different readings (Dalrymple et al.,
1998b; Sabato and Winter, 2012; Mari, 2013). In
an influential paper, Dalrymple et al. (1998b) intro-
duces a principle named the Strongest Meaning Hy-
pothesis. The principle predicts that the strongest
possible interpretation will be salient in case of am-
biguity. According to the principle, the predicate
hit was more non-symmetric to know. In a hitting
event, a person most likely either hit someone or
was hit by someone, but not both. In a knowing
event, a person can both know someone and be
known by someone. Thus, in the reciprocal sen-
tences mentioned above, John, Mary and Bill knew
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each other has a reading which is stronger than
John, Mary and Bill were hitting each other.

Some predicates exhibit a higher degree of sym-
metry than others, a generalization supported by
various strands of empirical and theoretical work.
Gleitman et al. (1996) observes that predicates like
be similar are interpreted more symmetrically than
predicates like love or help, suggesting that con-
ceptual representations influence perceived sym-
metry. Winter (2018) provides a formal semantic
account of such variability, arguing that reciprocal
alternations reflect systematic differences in pred-
icate symmetry, with certain predicates favoring
reciprocal interpretations more naturally. Comple-
menting these perspectives, Poortman et al. (2018)
propose the Maximal Typicality Hypothesis, show-
ing through experimental evidence that the inter-
pretation of reciprocal expressions depends on how
typically symmetrical a predicate is perceived to
be, with more symmetrical predicates leading to
stronger reciprocal inferences.

More specifically, Poortman et al. (2018) inves-
tigates how verb concepts influence the interpre-
tation of plural reciprocal sentences in Dutch and
Hebrew. Building on prior work, they first exam-
ine Hebrew data to evaluate the Strongest Mean-
ing Hypothesis (SMH). Contrary to this prediction,
their results show that participants often opt for
weaker interpretations. Poortman et al. (2018) ar-
gue that this pattern reflects the sensitivity of recip-
rocal quantification to the underlying verb concept,
and propose the Maximal Typicality Hypothesis.
According to the hypothesis, a reciprocal sentence
is most acceptable in a “core situation”, one that is
both maximally extensive and maximally typical
for the verb concept—and may also be acceptable
in supersets of that situation, but not in others. They
conducted two experiments in Dutch, one typical-
ity ranking task assessing symmetry preferences
across different verbs, and a truth-value judgment
task with plural sentences using those verbs. The
findings reveal systematic variation in how many
patients are typically associated with each agent
across verb types, and this variation significantly
affects reciprocal interpretation. The stronger the
verb’s bias toward non-symmetric scenarios, the
more likely participants are to adopt a weaker re-
ciprocal reading.

Collectively, these studies support the view that
symmetry is a graded and conceptually grounded
property of predicates, with consequences for both
interpretation and grammatical alternation.

2.3 Goals

Prior experimental work has not examined how
LLMs resolve these plural ambiguities. Using the
two-method framework above (embedding similar-
ity vs. NLI probabilities), we ask whether model
signals reflect human biases for distributivity and
symmetry. Our main questions are:

1. In out-of-the-blue contexts, do model-based
entailment signals reflect the human collective
bias?

2. In out-of-the-blue contexts, do model-based
entailment signals reflect the human symmetry
bias?

3. Do the two methods agree—cosine similarity
vs. NLI p(entailment)—on which readings
are preferred, and where do they diverge?

We operationalize these questions by applying
cosine similarity with OpenAI embeddings
and by estimating p(entailment | P,H) with
bart-large-mnli and roberta-large-mnli,
then comparing model outputs with prior human
data (Scontras and Goodman, 2017; Poortman
et al., 2018).

3 Data Collection

3.1 Collective Bias

To test the collective bias, we use the same dataset
from Scontras and Goodman (2017). The authors
selected the 40 most frequent combinations of the
form "the nouns were adjective" from the British
National Corpus, ensuring ecological validity by
using naturally occurring language patterns. Par-
ticipants were asked to judge what each sentence
meant on a slider bar, with one end representing
the paraphrase "the nouns each were adjective"
(distributive interpretation) and the other end rep-
resenting "the nouns together were adjective" (col-
lective interpretation). This dataset is particularly
valuable for our purposes because it provides a
systematic comparison of human interpretive pref-
erences across a range of predicate types, allowing
us to assess whether language models capture the
same semantic distinctions that guide human com-
prehension. The full list of sentences is provided
in the appendix.

Participants showed a wide range of ratings
across the 40 sentences, as shown in Figure 1. The
figure displays the collective endorsement rate with

99



95% confidence intervals for each sentence tested.
The x-axis shows the 40 sentences, and the y-axis
indicates the proportion of responses toward the
collective end of the slider bar. The results reveal
systematic variation in how strongly participants fa-
vored collective versus distributive interpretations,
with some sentences (e.g., "results disappointing")
showing high collective endorsement and others
(e.g., "classes small") showing low collective en-
dorsement.

Figure 1: Results of Scontras and Goodman (2017). Col-
lective endorsement rates with 95% confidence intervals
for 40 sentences of the form "the nouns were adjective."
Higher values indicate stronger preference for collective
interpretations.

In our experiments, we adapt these same sen-
tences as input to large language models to exam-
ine whether similar interpretive biases emerge in
model predictions.

3.2 Symmetric Bias
To test the symmetric bias, we use the same dataset
from Poortman et al. (2018). In the original paper,
the authors tested 18 Dutch verbs among Dutch
speakers. The 18 verbs are categorized into three
types based on their patient preference.

• Type 1 (neutral): envy, know, understand, ad-
mire, miss, hate

• Type 2 (non-symmetric-preference): pinch,
hit, caress, stab, shoot, grab

• Type 3 (strong non-symmetric-preference):
kiss, dress, kick, lash out, bite, lick

Each verb was embedded in a sentence of the
form "A, B and C Verb each other", where A, B,
and C were random proper names. Participants
were asked to perform truth value judgment tasks
for these sentences under two types of scenarios:
one depicting a symmetric action and the other a
non-symmetric action. From a generalized linear

mixed model (GLMM) logistic regression analy-
sis, it was observed that in the symmetric scenar-
ios, sentences with neutral verbs were rated sig-
nificantly better than non-symmetric verbs, and
non-symmetric verbs were rated as significantly
better than strongly non-symmetric verbs. In the
non-symmetric scenarios, the reverse pattern was
observed.

In our experiments, we adapt these same sen-
tences as input to large language models to exam-
ine whether similar interpretive biases emerge in
model predictions.

4 Experiment 1

In Experiment 1, we ask whether an embedding-
based metric recovers two human tendencies in
plural interpretation: the collective–distributive
preference and symmetry effects. We compute
cosine similarity between bare and explicitly
marked paraphrases using sentence embeddings
from OpenAI’s text-embedding-3-large and
text-embedding-3-small.

4.1 Method
Experiment 1a: collective bias In this experi-
ment, we examine the semantic similarity between
two types of plural sentences: (i) bare plural sen-
tences (Sentence 1), which lack explicit distributive
or collective markers, and (ii) marked plural sen-
tences (Sentence 2), which contain overt markers
indicating distributive or collective interpretations.
Examples of the tested sentences are as below.

1. Sentence 1: the classes were small.

2. Sentence 2 (distributive): the classes each
were small.

3. Sentence 2 (collective): the classes together
were small.

We use OpenAI’s text-embedding-3-large
and text-embedding-3-small to compute sen-
tence embeddings and evaluate how similarly the
two sentence types are represented.

Experiment 1b: symmetric bias In this experi-
ment, we examine the semantic similarity between
two types of plural sentences: (i) bare plural recip-
rocal sentences (Sentence 1), which lack explicit
symmetric markers, and (ii) marked symmetric sen-
tences (Sentence 2), which contain overt markers
indicating symmetric interpretations. Examples of
the tested sentences are as below.
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1. Sentence 1: the children knew each other.

2. Sentence 2 (symmetric): every child knew ev-
ery other child.

We use OpenAI’s text-embedding-3-large
and text-embedding-3-small to compute sen-
tence embeddings and evaluate how similarly the
two sentence types are represented.

We embed two sentences as vectors u,v in the
same semantic space and compute their cosine sim-
ilarity,

cos(u,v) =
u · v

∥u∥ ∥v∥ ∈ [−1, 1].

The embeddings for each pair of sentences are
passed into a cosine similarity function, which re-
turns a similarity score that is first linearly rescaled
to [0, 1], then passed through a sigmoid transfor-
mation to smooth the scale. Cosine similarity is
a measure used to quantify how similar two vec-
tors are, regardless of their magnitude. Because
cosine is scale-invariant and bounded, it is a con-
venient, single-number proxy for semantic related-
ness. Some recent discussions on the application
of the methods can be found in Steck et al. (2024)
and You (2025), to name a few. It calculates the
cosine of the angle between the two vectors in a
multi-dimensional space, which reflects their orien-
tation rather than their length. The resulting value
ranges from –1 to 1, where 1 indicates that the vec-
tors are pointing in the same direction (i.e., they
are very similar), 0 means they are orthogonal (i.e.,
unrelated), and –1 means they are diametrically op-
posed. In natural language processing and informa-
tion retrieval, cosine similarity is commonly used
to compare text documents represented as word or
sentence embeddings, allowing for efficient com-
parison of semantic content.

Our stimuli come in minimally different para-
phrase sets that make the target interpretation ex-
plicit. For each bare sentence (e.g., the classes
were small), we compare its similarity to a dis-
tributive paraphrase (the classes each were small)
versus a collective paraphrase (the classes together
were small). If a model encodes the collective bias
that humans show for size/shape predicates, the
bare sentence should be closer (higher cosine) to
the distributive paraphrase than to the collective
one. Analogously, for reciprocals, we compare a
bare reciprocal (e.g., A, B and C knew each other)
to stronger, fully symmetric paraphrases versus
weaker, non-symmetric paraphrases. If the model

encodes a symmetry bias, the bare reciprocal should
sit closer to the fully symmetric paraphrase. Cosine
similarity thus provides a simple, model-agnostic
diagnostic that turns these preferences into ranked
distances.

We use OpenAI’s dedicated embedding mod-
els rather than hidden states from general-purpose
LMs for three practical reasons. (i) Task fit: these
models are trained explicitly to produce sentence
embeddings whose geometry reflects semantic sim-
ilarity, making cosine a meaningful signal out of
the box. (iii) Sensitivity analysis: using two sizes
(*-large and *-small) lets us check whether con-
clusions depend on embedding capacity: conver-
gent patterns across sizes increase confidence that
findings are not an artifact of a single representa-
tion. We still analyze limitations below: cosine
is symmetric (cos(P,H) = cos(H,P )) and un-
calibrated, so it cannot by itself model directional
entailment—hence our complementary NLI experi-
ment.

4.2 Result
We compared similarity scores across model con-
ditions using paired t-tests, Wilcoxon signed-rank
tests, and OLS regressions with item fixed effects.
These analyses test whether mean differences be-
tween conditions are reliably different from zero
while accounting for within-item variation. The
results show that for the large model, distributive
sentences were judged slightly more similar to their
base forms than collective sentences (Mean Diff
≈ 0.01, p < .05), whereas the small model showed
no significant distributive–collective difference. In
contrast, collective scores from the small model
were systematically higher than those from the
large model (Mean Diff ≈ 0.03, p < 10−10), a
large and robust effect. Overall, the large model
appears sensitive to subtle distributive–collective
contrasts, confirms the similarity between the bare
sentences and their distributive/collective marked
counterparts.

Figure3 ranks the cosine similarity scores of col-
lective sentences in the large model from low to
high. It serves as a language model analogue to Fig-
ure1. Comparing Figure1 and Figure3, we see that
although both humans and the language model dis-
play a gradient of bias, the specific patterns of bias
are not the same. The x-axis, which corresponds
to item numbers, highlights the relative ranking
of sentences, and this ranking for humans differs
substantially from that of the language model. This
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Figure 2: Comparison of similarity scores of the col-
lective condition across the large and small embedding
models.

indicates that while the large language model is
sensitive to collective bias, its behavior diverges
markedly from human judgments.

Figure 3: Comparison of similarity scores between col-
lective and distributive conditions in the large embed-
ding model.

Figure 4 presents the average scores of the large
and small models across sentences with three verb
types: neutral, non-symmetric, and strongly non-
symmetric. The large model shows a steady rise
across the three types, with the highest average
score for strongly non-symmetric items. This in-
dicates that the more non-symmetric a verb is, the
greater the similarity between the original sentence
and its symmetric paraphrase. However, this pat-
tern contradicts the results observed in human ex-
periments. By contrast, the small model exhibits
a flatter trend, showing only minimal improve-
ment between neutral and non-symmetric cases and
even a slight decrease for strongly non-symmetric
items—again diverging from human results. Over-
all, these findings demonstrate a clear difference
between human judgments and model behavior.

Interim summary In this section, we
used a cosine similarity task to test col-
lective and symmetric biases in OpenAI’s
text-embedding-3-large/small. The large
model shows slight collective–distributive con-
trasts, but overall neither model reproduces the
collective bias observed in humans.

Figure 4: Comparison of average similarity scores for
each verb type across the large and the small models.

5 Experiment 2

Whereas Experiment 1 employed a cosine similar-
ity task with sentence embeddings, which measures
the degree of semantic closeness between original
sentences and their variants, Experiment 2 relies
on supervised NLI models that explicitly calcu-
late entailment probabilities between a premise
and a hypothesis. In this way, the two exper-
iments complement each other: cosine similar-
ity offers an indirect, gradient measure of inter-
pretive bias, while NLI provides a direct, cat-
egorical assessment of whether one interpreta-
tion is supported by another. Each pair con-
sisted of a base sentence (premise) and a vari-
ant reflecting a collective/ symmetric interpreta-
tion (hypothesis). To evaluate whether the hypoth-
esis was entailed by the premise, we employed
two supervised NLI models: bart-large-mnli
and roberta-large-mnli, both fine-tuned on the
Multi-Genre Natural Language Inference (MNLI)
corpus (Williams et al., 2018b). The results show
that, unlike human participants, language models
do not show the collective/symmetric bias observed
in human language use.

5.1 Method

We complement the cosine similarity experiments
with a second paradigm based on supervised Natu-
ral Language Inference (NLI) models, specifically
bart-large-mnli and roberta-large-mnli. In
this setup, we calculate entailment probabilities
between the same sentence pairs tested in Experi-
ment 1. Namely, sentences and their corresponding
collective, distributive or symmetric paraphrases.
Whereas cosine similarity captures geometric close-
ness in embedding space without reference to spe-
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cific inference relations, the NLI framework ex-
plicitly asks whether one sentence (the premise)
entails another (the hypothesis). This difference
is crucial: cosine similarity measures general se-
mantic similarity, while NLI probes whether the
model recognizes logical inference patterns such
as symmetry.

The logic of the NLI experiments is as follows.
We take each sentence as the premise and the col-
lective/distributive or symmetric paraphrase as the
hypothesis, and then use the supervised NLI mod-
els to compute the probability that the hypothesis is
entailed. If a model assigns high entailment prob-
ability to the symmetric hypothesis, this suggests
that it encodes a collective/distributive or symmet-
ric bias for that predicate. Thus, these experiments
go beyond the embedding-based cosine similarity
approach by directly testing whether models treat
symmetric interpretations as logically following
from collective descriptions. Together, the two
approaches provide complementary perspectives:
cosine similarity reveals gradient semantic affini-
ties, while NLI directly assesses whether symmet-
ric readings are licensed as inferences.

We select bart-large-mnli and
roberta-large-mnli because both are strong,
widely used supervised NLI models that have been
fine-tuned on the Multi-Genre Natural Language
Inference (MNLI) dataset, which covers a broad
range of sentence types and inference relations.
roberta-large-mnli represents a transformer
model trained with a robust masked-language-
modeling objective, while bart-large-mnli
combines an encoder–decoder architecture with
denoising pretraining, making it particularly
effective for classification tasks like NLI. Using
these complementary models allows us to test
whether our findings hold across different archi-
tectures, ensuring that observed patterns are not
idiosyncratic to a single model design.

5.2 Result
Figure 5 reveal strikingly different patterns be-
tween the two models. For BART, there is a strong
positive correlation between collective and distribu-
tive entailment probabilities (r = 0.713): items
that score higher in the collective condition also
tend to score higher in the distributive condition.
The scores are the probability assigned to entail-
ment, i.e., how strongly the model believes the
collective/distributive interpretation logically fol-
lows from the original sentence. The regression

line lies close to the 45-degree reference, suggest-
ing that BART treats the two conditions as related
and often raises both probabilities together. By
contrast, for RoBERTa, the relationship is essen-
tially flat (r = 0.061). The regression slope is
close to zero, and the points are scattered broadly
around the vertical axis, indicating that collective
scores have little predictive value for distributive
scores. This divergence suggests that BART en-
codes a stronger link between collective and dis-
tributive interpretations, whereas RoBERTa treats
them as largely independent dimensions. More-
over, RoBERTa strongly favors the distributive in-
terpretations, while BART, in contrast, treats the
two interpretations as positively correlated without
systematically preferring one over the other.

Figure 5: Comparison of the probabilities for collec-
tive/distributive pairs of BART and RoBERTa.

Figure 5 presents the RoBERTa counterpart to
Figures 1 and 3, showing the collective scores
ranked from low to high. While the model exhibits
a gradient of scores, the ranking of items diverges
considerably from the human rankings reported in
Scontras and Goodman (2017). Notably, the pat-
tern resembles the results obtained from the cosine
similarity task, suggesting that the two approaches
capture similar model-internal preferences rather
than human-like biases.

Figure 6: Sentences ranked by their RoBERTa collective
scores.

Figure 7 compares the average symmetric
scores of BART and RoBERTa across three verb
types: neutral, non-symmetric, and strongly non-
symmetric. BART consistently assigns high sym-
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metric scores across all categories, with means
ranging from 0.78 to 0.90, suggesting a strong ten-
dency to treat symmetric paraphrases as entailed re-
gardless of verb type. RoBERTa, in contrast, yields
substantially lower scores (around 0.33–0.41), but
exhibits a clearer distinction between categories:
symmetric scores rise for strongly non-symmetric
verbs relative to neutral and non-symmetric verbs.
Again, as in the cosine similarity tasks, the human
inference results are not shown here, which predict
that neutral verbs should have the highest proba-
bility of entailment, while strongly non-symmetric
verbs should have the lowest. BART flattens the dif-
ferences almost entirely, while RoBERTa reverses
the expected trend.

Figure 7: Average symmetric scores by verb types.

Interim summary In this section, we used an
NLI task to test collective and symmetric bi-
ases. The models show slight sensitivity to plural-
interpretation contrasts, but their behavior remains
very different from human processing. Overall, the
results are similar to those from the cosine simi-
larity task, with neither method reproducing the
robust biases observed in human judgments.

6 Limitations

Cosine similarity and NLI are imperfect proxies for
human interpretation—the former symmetric and
uncalibrated, the latter shaped by model-specific
biases—so our results show alignment with hu-
man judgments but not competence. Stimulus de-
sign was limited to single agent–patient pairs (e.g.,
the boys with the table), reducing contextual vari-
ability to which human interpretation is sensitive.

More broadly, by abstracting from discourse, world
knowledge, and prosody, our study offers only
coarse approximations. Future work should use
richer behavioral methods and newer open-source
models to assess alignment more fully.

7 Conclusion

This study asked whether large language models
exhibit the same interpretive pressures that guide
human comprehension of plural sentences. Us-
ing cosine similarity and NLI models, we probed
collective and symmetry biases in out-of-the-blue
contexts. The results show partial sensitivity to
predicate-level distinctions, but neither method re-
produced the robust human pattern—neutral verbs
favoring entailment and strongly non-symmetric
verbs disfavoring it. As cognitive models, LLMs
therefore fall short of capturing human-like biases;
as engineering systems, their representations of plu-
ral semantics remain unstable for tasks requiring
precise entailment. These findings mark the lim-
its of text-only training and point to future work in
which we plan to incorporate visual cues, alongside
richer context and more nuanced evaluation met-
rics, to better align model semantics with human
judgments.
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